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Heterogeneous Expectations, Dynamics, and Stability of Markets

1. Introduction

The aim of this paper is to explore the links between heterogeneous

beliefs and market stability. In economic systems, the introduction and

implications of behavioural diversity are of great importance.

In a behavioural heterogeneity context, if globalisation encourages firms

all to maximise anticipated profit, using a simple cobweb approach,

instability is likely to be generated if the underlying supply curve is

relatively elastic. If in the absence of globalisation “satisficing”

behaviours are more frequent, market stability could be present. The

proportion of types of behaviour is an important factor in the analysis of

market stability. Satisficers basically change as a result of globalisation

from relatively unresponsive supplies to responsive ones (Lasselle et al.,

2001a). In an expectational framework, the problem is different but

related. Indeed, the assumption of heterogeneous beliefs is usually not

sufficient per se to explain the large and persistent movements of some

economic variables. Nevertheless, when expectations are concerned,

their heterogeneity is sometimes considered as necessary.

When analysing financial asset prices, Levy and Levy (1996) claimed

that “…unacceptable market inefficiencies are observed when
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homogeneous expectations are assumed.” They compare stock price

dynamics in models with homogeneous expectations and heterogeneous

expectations and show that the results obtained in the model with

heterogeneous expectations are much more realistic. So, the analysis of

the asset price dynamics requires heterogeneous beliefs without any

doubts. How can these be considered?

Several authors such as Frankel and Froot (1990) assume that there exist

two types of traders on the market. There are traders who form their

expectations of the future price by their observation of the past and

current prices, i.e. the so-called “chartists”. There are traders who think

of the future price according to a model that would be exactly correct if

there were no chartists, i.e. the so-called “fundamentalists”. The

dynamical study of the price depends on the relative weight of one

group with respect of the other group. This study can be done in two

ways.

First, the co-existence of the two types of agents in the economy (some

include a third class of agents the so-called “portfolio managers” who

mix the behaviour of the two groups) can be considered. Their

proportion does not vary endogenously.

Second, a more sophisticated -endogenous- process of switching

between the two groups is elaborated. In other words, the forecasts of
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the market participants are drawn from competing views and that

switching from one behaviour to another is possible. This process is far

more satisfying but, as we shall see, quite difficult technically speaking

to study. It involves highly nonlinear equations and simulation models

are required.

The study of heterogeneous beliefs can be done twofold. Either it tries to

reflect the reality by analysing data and tries to elaborate new

forecasting rules that stick to the real environment of the economy, or

the economy is analysed in a more theoretical manner. In this paper, we

are in the second perspective.

Conclusions are as follows. First, when all agents are fundamentalists,

the market is stable. Second, when all agents are chartists, the market is

unstable. Third, in between these two extreme cases, there are a full

range of mixture of these two behaviours which can lead either to

market stability or instability. It then can be shown that the more

chartists are in the market, the more unstable the market is.

One of the most powerful tools to study the influence of heterogeneous

expectations and switching on the dynamics of prices is the cobweb

model (Goeree and Hommes, 2000; Hommes, 2000; Lasselle et al.,
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2001b). Even if this model is quite simple, it has become a classical

example in economics dynamics since adaptive (Nerlove, 1958) and

rational expectations were first introduced in it. When the cobweb model

is considered in this literature, it may lead to lengthy and not always

straightforward calculations, because of highly nonlinear equations

(connecting with hyperbolic functions). This is the reason that the

theoretical analysis is based on numerical simulations.

In this paper, the analysis of the cobweb model is in two stages.

In the first part of our study, we assume that two groups of producers –

fundamentalists and chartists – co-exist on the market. We study the

stability of the dynamical price path when the relative weight of both

groups is changing. Depending on the specification of the adaptive

process, we can then show that fundamentalists market behaviour as

compared to that of the chartists tends to promote market stability.

Chartist behaviour leads to instability, allowing the existence of cycles.

Although this model gives interesting and valuable insights, it might

lead to critics since there is no “endogenous” switch between the two

groups of agents. In a second stage, endogenous switching is possible by

extending Brock and Hommes’s (1997) specification.
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Brock and Hommes (1997) first offered a sensible specification of the

switching function. This function takes into account the incentives of

each group of agents might have in changing behaviour. Their

specification is done in terms of last net realized profits. They

considered the cobweb model with rational versus naïve expectations.

As Chiarella and He (2001) point out the key aspect of that is that it

exhibits expectations feedback. Agents adapt their beliefs over time by

choosing from different predictors or expectations functions, based upon

their past performance. They enrich the model by allowing among other

things the agents to have different risk attitudes. Another possible

extension of Brock and Hommes (1997) is offered by Branch (2002). He

considers that the agents can choose between three predictors: rational,

naïve and adaptive beliefs. He explains that the characteristic of the

predictor set affect the asymptotic stability conditions. As adaptive

expectations incorporate past information, their influence seeks to

dampen price oscillations.

In this paper, we will consider that agents have the choice between two

predictors: a costly rational predictor and a costless adaptive process.

We proceed in two stages. First, two groups of agents are distinguished.

They are either fundamentalists, or chartists. The latter specify the

expected price from an adaptive process, the former consider the

expected price as the steady state price, they then have a “rational
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behaviour”. Second, we enrich the model by allowing that agents may

choose between rational expectations and a simple adaptive process.

By connecting the first stage of our study to the second stage, we will

then be able to deduce some important results. We indeed show that

when agents can choose between rational expectations and adaptive

process:

• Market stability exists when the intensity of choice between the two

behaviours is not too large whatever the specification of the simple

adaptive process. The chartist behaviour is the less destabilising

when they take into account the present price without ignoring the

past prices.

• Bifurcations occur when the weight of the chartists to that of the

fundamentalists reaches a certain value. This depends on the

expectation specification and the intensity of choice.

In other words, we establish the stability/instability conditions of the

stationary point of the cobweb model with rational versus adaptive

expectations.

The paper is organised as follows. In section 2, we present the simple

cobweb model with heterogeneous expectations and an exogenous

switching. In section 3, we enrich the model by considering an
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endogenous switching process inspired from that of Brock and Hommes

(1997). Section 4 concludes.

2. The Linear Cobweb Model with Heterogeneous Expectations and

Exogenous Switching

2.1 The Model

We consider the cobweb model and we study the dynamical path of

prices in the market of a non storable good that takes one time unit to

produce. For simplicity we assume that the supply and demand functions

are linear. Let ( ) tt pbapD −=  be the demand and ( ) e
t

e
t pdpS =  the

supply of the good, where tp  is the actual price and e
tp  the producers

expected price, made at the beginning of period t. All the parameters are

strictly positive. Supply is derived from firms maximizing profits with a

cost function ( ) ( )dqqc 22= , so

( ) ( )( ) ( ) ( ) e
t

e
t

e
t

e
t pdp'cqcqppS 11

1
11 argmax ++

−
++ ==−=            (1)

In case of homogeneous expectations all producers use the same

expectations or predictor function 







=

→
+ t

e
t PHp 1 , where

( )Ltttt p,,p,pP −−
→
= K1  is a vector of past prices. Equilibrium price

dynamics is then described by



9

( ) 

















=

→
+ tt PHSpD 1  or

e
ttt p

b

d

b

a
PHSDp 1

1
1 +

→
−

+ −=

















=                                            (2)

with 1−D  the inverse demand function. Since we assume that demand is

decreasing and supply S is increasing, (2) is well defined.

In this paper we consider heterogeneous expectations. Two types of

agents co-exist: the chartists ( )c  and the fundamentalists ( )f . In this

section, the weighting of both groups is considered exogenous and we

denote by [ ]10,n f ∈  the relative weight associated with fundamentalists.

The market equilibrium in the cobweb with two groups of agents is then

determined by

( ) ( ) 

















−+


















=

→→
+ tcftfft PHSnPHSnpD 11                     (3)

Fundamentalists have perfect foresight, therefore 1+
→

=







ttf pPH .

Chartists or trend traders have expectations evaluated by a simple

adaptive process as in Hommes (1991). This adaptive process is a

weighted average of the two most recent prices, so
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( ) 11 −
→

−+=







tttc ppPH ττ  with 10 << τ . The parameter τ  is called

the expectations weight factor. When 1=τ , expectations are naïve.

Using linear demand and supply and the predictor functions, market

equilibrium in (3) becomes:

( ) ( )( )( ) bppdnpdnap ttftft 111 11 −++ −+−−−= ττ          (4)

Note that fundamentalists are assumed to have perfect knowledge about

market equilibrium equations, prices, and also about the chartists'

behaviour. Without loss of generality we change coordinates and choose

the steady state price ( )dba*p += , the intersection of demand and

supply, as the new origin, so that tp  represents (positive or negative)

deviations from the steady state. For our model this simply means fixing

0=a  in (4). Let ( ) ( ) ( )fff ndbndnA +−= 1 .

( )fnA  is non positive and ( ) 0>∂∂ ff nnA . Solving equation (4) for

1+tp  then yields

( ) ( )( )11 1 −+ −+= ttft ppnAp ττ                                               (5)

Equation (5) is a second-order linear difference equation which can be

rewritten as a system (5’) of two first-order difference equations:

( )
( ) ( )( )








−+=

=
′

+

+

ttft

tt

hpnAp

ph

ττ 1

5

1

1
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This system defines a global dynamics including the stationary point

equilibrium ( )00,E = .

2.2. Stability and Cycles

The stability or the instability of the stationary point E issued from the

two-dimensional system (5’) can be directly investigated by looking at

the corresponding characteristic polynomial ( )λQ  denoted by:

( ) 02 =+−≡ DTQ λλλ                                                             (6)

Its two characteristic roots are denoted ( )21 λλ ,  and the following

definitions apply: 21 λλ +=T  and 21 λλ .D = , in which we denote the

determinant by D and the trace by T of the Jacobian matrix of (5’) taken

at the stationary point E. The characteristic polynomial associated with

(5’) is:

( ) ( ) ( ) ( ) 012 =−−−= ff nAnAQ τλτλλ                                  (6’)

From equation (6’) and the previous definitions based on the

characteristic roots, we get ( ) ( ) ( ) ( )ffff ndbndnA,nT +−−== τττ 1

and ( ) ( ) ( ) ( )( ) ( )ffff ndbndnA,nD +−−=−−= τττ 111 .

Proposition 1 - Properties of the trace and the determinant

( ) 0≤τ,nT f  and ( ) 0≥τ,nD f
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( ) 0>∂∂ ff n,nT τ  and ( ) 0<∂∂ ττ,nT f

( ) 0<∂∂ ff n,nD τ  and ( ) 0<∂∂ ττ,nD f

Proof: the proof is left to the reader.

It is easy to deduce the following relation between the trace and the

determinant:

( )TD τ11−=                                                                             (7)

As shown by de la Fuente (2000), a simple geometrical way to look at

stability is to locate in the plane ( )D,T  the position of equation (7), (cf.

Figure 1). In the open region above (below) the parabola of equation

241 TD = , both roots are complex (real). Any couple ( )D,T  defining

by (7) which lies in the interior of the triangle ABC makes the stationary

point stable.

i) Let us assume first that 21=τ  and bdb 82 << , i.e. we study the

position of (7) in the plane ( )D,T  with ( )21,nT f  and ( )21,nD f . Since

d  and fn  are both non negative, (7) is defined by a segment [ ]OG  in

the ( )D,T  plane (cf. Figure 1).
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Figure 1

On the one hand, the stationary point E is stable in the dynamics defined

by (5’) for any couple ( )D,T  belonging to [ [OF  which lies in the

interior of the triangle ABC. On the other hand, E is unstable in the

dynamics defined by (5’) for any couple ( )D,T  belonging to [ ]FG .

Since [ ]OG  crosses the segment [ ]AB , one generates in this way a

change of stability in which the two characteristic roots ( )21 λλ ,  are

complex conjugate and cross the unit circle in the complex plane. When

[ ]OG  crosses [ ]AB  of equation 1=D , a three-period cycle occurs for a

value of the weight ( ) ( )dbdn*
f 32−= . Note that this value is positive

(and therefore exists) if and only if bd 2> .

On the other hand, since we have

( ) ( ) ( ) ( )( )ffff ndbnd,nA,nT +−−== 2122121  and

( ) ( ) ( ) ( )( )ffff ndbnd,nA,nD +−=−= 2122121  and recall

Proposition 1, there are two cases depending on the relative weight of

both groups:

- for *
ff nn ≤<0 , the equilibrium is unstable,

- for 1<< f
*
f nn , the equilibrium is stable.
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In other words, fundamentalists market behaviour as compared to that of

chartists tends to promote market stability. When the weight of the

chartists is high and greater than ( )*
fn−1 , non convergent oscillations

emerge.

ii) Second, we can assume any value for τ . The slope of the segment

[ ]OG  changes, when τ  varies. Indeed, when τ  is close to 1, the segment

[ ]OG  is close to the horizontal axis; when τ  is close to zero, [ ]OG  is

close to the vertical axis. In other words, the line defines by [ ]OG  may

not only cross the curve defined by 241 TD =  but also the segment

[ ]AC . One generates in this way another change of stability in which

one of the two real characteristic roots ( )21 λλ ,  crosses -1.

iii) Third, let us assume that 1>bd . If all agents are chartists, the

stationary point is unstable.

To summarise, one can say:

For a given τ , when fn  varies, the analysis is done along [ ]OF . The

higher fn  is, the closer to the origin the combination

( ) ( )( )ττ ,nD,,nT ff  defining (7) is.
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For a given fn , when τ  varies, the analysis is done from the slope of

[ ]OF . The higher τ  is, the higher the slope is.

The stability of the stationary point depends not only on fundamentalists

market behaviour as compared to that of chartists but also on the

expectations function of chartists, namely on the weight they give in

their expectations to the current price relatively to the past price.

It can be computed and illustrated (cf. Figure 2) that

when 32>τ , the stationary point is unstable if **
ff nn < ,

where ( ) ( )ddbn **
f τ21 +−= .

when 32<τ , the stationary point is unstable if *
ff nn < , where

( )( ) ( )( )21 −−+= ττ ddbn*
f .

Figure 2

Proposition 2 - Stability properties of the stationary point E

Assume that the slopes of the supply and the demand satisfy 1>bd .

The stationary point is stable when:

(i) 132 << τ
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(i)1.and ( ) ( ) ( ) 214211 τττ −<<− fnA . The two characteristic roots

1λ  and 2λ  are real and take values between –1 and 0.

(i)2. and ( ) ( ) 214 ττ −>fnA , the two characteristic roots 1λ  and

2λ  are complex with modulus less than 1.

(ii) 320 << τ  and ( ) ( )11 −> τfnA , the two characteristic roots 1λ

and 2λ  are complex with modulus less than 1.

In both cases, the dynamical path of prices takes the form of damped

oscillations.

Proof: See Appendix.

Corollary1

(i) When ( ) ( )τ211 −=**
fnA  (with 01 pp −= ) and 32>τ , a two-

period cycle occurs.

(ii) When ( ) ( )11 −= τ*
fnA , a cycle appears. For instance, when

21=τ , ( ) ( )dbdn*
f 32−=  (with bd 2> ) and ( ) 1−=*

fnA , a

three-period cycle appears.

Proof: See Appendix.
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Figure 3

Figure 3 illustrates Proposition 2. The shaded areas represent the

combination of τ  and ( )fnA  where the stability properties are fulfilled.

The darkest (lightest) area represents the combination of τ  and ( )fnA

where the eigenvalues are complex (real). Although the model is simple,

three facts can be drawn from Figure 3 and they will be relevant in the

next section.

First, if 0=fn , ( ) 1−<−= bdnA f , the stationary point is unstable.

Second, since ( ) 0>∂∂ ff nnA , fundamentalists market behaviour as

compared to that of chartists tends to promote market stability. Indeed

for any given τ , the higher fn  is, the higher ( )fnA  is and the closer

( )fnA  is to zero. As shown in Figure 3, the zones of stability are close

to the horizontal axis.

Third, chartists behaviour destabilises less the market when τ  is around

32 . This is an interesting result due to our specific adaptive process.

This result tells us that chartist behaviour is more destabilising when

chartists weight very heavily one of the two prices on which they based

their expectations, i.e. when τ  is close to zero or to one. When their

expectations are based on a sufficiently mix of the current and the past

                                                                                                                                            
1  The period of oscillations is not limited to 2 or 3. See Proof in the Appendix.
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price, then the stability conditions are wider; these reach their maximum

when the weight of the current price is equal to 32 .

3. The Cobweb Model with Heterogeneous Expectations and

Endogenous Switching

We are going to enrich the model by specifying a switching function

which takes into account the incentives that each group of agents might

have in changing behaviour. For that purpose and for practicality, we

introduce the specification introduced by Brock and Hommes (1997) in

terms of net realized profits in the last period as the performance

measure for predictor selection.

3.1. Endogenous Switching Process

Realized net profits 
















→
+ tjtj PH,p 1π , c,fj = , from using predictor








→
tj PH  when the actual equilibrium price becomes 1+tp  equals

j

tj

tjttjtj C
d

PHS

PHSpPH,p −
































−

















=



















→

→
+

→
+ 2

2

11π               (8)
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where 0≥jC  are information costs for obtaining predictor jH . For the

chartists, information has no costs. For the fundamentalists, CC f =  is

positive.

Using linear demand and supply, rational expectations versus adaptive

process, and realized net profits in the last period, the general

performance measure is

( ) Cp
d

p,p tttf −= +++
2

111 2
π                                                                       (9a)

( ) ( )( ) ( )( )( )11111 121
2 −+−−+ −+−−+= ttttttttc ppppp
d

p,p,p ττττπ      (9b)

After observing the equilibrium price 1+tp , the updated fractions of

agents using rational expectations or an adaptive process in the next

period are:

1
2

11 2
Exp +++ 














 −= ttt,f ZCp

d
n β                                                           (10a)

( )( ) ( )( )( ) 11111 121
2

Exp +−+−+ 



 −+−−+= ttttttt,c Zppppp

d
n ττττβ     (10b)

where 1+tZ  is the sum of the numerators, β  is the intensity of choice,

measuring how fast agents switch predictors. Since 111 =+ ++ t,ct,f nn ,

(10a) can be rewritten2 as:

                                                          
2 See Appendix for the computations.
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( )( ) ( )( )( ) 






















 −−−++= −+ CnApp

d
/n t,fttt,f

22
11 11

2
Exp11 ττβ       (11)

where ( ) ( ) ( )t,ft,ft,f ndbndnA +−= 1

Using linear demand and supply and the predictor functions, market

equilibrium in (3) becomes:

( ) ( )( )11 1 −+ −+= ttt,ft ppnAp ττ                                              (12)

Note that this equation is equivalent to equation (5), but fn  is now

endogeneised and depends on the performance of the agents, i.e. it

varies over time and its different values are given by equation (11).

We are then able to deduce the adaptive rational equilibrium dynamics

of the cobweb model with rational expectations versus adaptive process.

It is described by the following three-dimensional system of two non

linear difference equations given by (11) and (12) and can be

summarised as follows:

( )t,fttt n,p,pp 11 −+ = φ

( )t,fttt,f n,p,pn 11 −+ = ϕ

where ( ) ( ) ( )( )11 1 −− −+= ttt,ft,ftt ppnAn,p,p ττφ ,

( )
( )( ) ( )( )( ) 















 −−−+−+

=

−

−

CnApp
d

n,p,p

t,ftt

t,ftt
22

1

1

11
2

Exp1

1

ττβ
ϕ
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It can be rewritten as a system of three first-order difference equations:

tt ph =+1 (13a)

( )t,fttt n,p,hp φ=+1 (13b)

( )t,fttt,f n,p,hn ϕ=+1 (13c)

The stability or the instability of the stationary point issued from the

system (13) can be directly investigated by looking at the Jacobian

matrix of (13) taken at the stationary point. These properties will be

studied in the following sub-section.

Our model represents the cobweb model of Brock and Hommes (1997)

with rational versus adaptive expectations when 1=τ . However, our

adaptive process is simpler than that of Branch (2002). Branch considers

a possible costly predictor defined from many past prices. We consider a

costless predictor depending on tp  and 1−tp . As we shall see in the next

sub-section, it allows us to make a systematic and tractable dynamical

study.

3.2 Stability and Cycles

A simple computation shows that the system (13) has a unique

stationary point ( ) [ ]( )( )Cn,,E f ββ Exp1100 +==′ . To ease the
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presentation, let us assume that 0=C  or 1=C . When 0=C , the

agents have free access to the sophisticated predictor.

The stability (or the instability) properties of the stationary point are

now studied when fn  is endogeneised. In what follows, we proceed in

the same manner as in the previous section. We make our study

depending on the variation of τ . We could also make the analysis when

the intensity of choice β  varies. Indeed ( )fnA  has becomed ( )( )βfnA .

Proposition 3

( )( ) 0<∂∂ ββfnA

Proof: The proof is left to the reader.

The stability results are then as follows:

Proposition 4 – Stability properties of the stationary point E’

Assume that 1>bd .

(i) When the information costs are 0=C , the stationary point

( )2100 ,,E =′  is globally stable.

(ii) When the information costs are 1=C , the stationary point

( )( )βfn,,E 00=′ , where ( ) ( )ββ Expn f += 11 , is locally

asymptotically stable when
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Either 132 <<τ

(ii)1. and ( ) ( )( ) ( ) 214211 ττβτ −<<− fnA                       (14)

There are three eigenvalues: 1λ  and 2λ  are real and take values

between –1 and 0, 3λ  is zero.

(ii)2.  and ( )( ) ( ) 214 ττβ −>fnA . There are three

eigenvalues: 1λ  and 2λ  are complex with modulus less than 1,

3λ  is zero.

Or 320 << τ  and ( )( ) ( )11 −> τβfnA                                               (15)

There are three eigenvalues: 1λ  and 2λ  are complex with

modulus less than 1, 3λ  is zero.

Proof: See Appendix.

The stationary point is locally asymptotically stable when all

eigenvalues of the Jacobian matrix at the stationary point have moduli

strictly less than one (Azariadis (1993), p. 59). Propositions 4 and 2 are

closely related. Indeed the analysis of the stability properties of E' can

be resumed from Proposition 2. The dynamical system (13) has three

eigenvalues: 0, 1λ  and 2λ , where 1λ  and 2λ  are identical to those of

Proposition 2.  Proposition 4 is illustrated by Figure 4. From Proposition
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3, we know that when the intensity of choice β  is lower, fn and ( )fnA

are higher. It is then more likely that the stationary point is stable.

Proposition 5 – Possibility of Bifurcations

(i) If equality holds in the left-hand side of (14), and β  (or τ ) is

used as bifurcation parameter, then the dynamic system

undergoes a Flip bifurcation.

(ii) If equality holds in (15), and β  (or τ ) is used as bifurcation

parameter, then the dynamic system undergoes a Neimark-

Sacker bifurcation, with 50.≠τ .

Proof: See Appendix.

Figure 4

Figure 4 illustrates Propositions 4 and 5. On the one hand, the shaded

areas show the stability zones of the stationary equilibrium. As in Figure

3, the darkest area represents the combination of τ  and ( )( )βfnA  where

the eigenvalues are complex. The curves which separate shaded areas

from non shaded areas are given by the curves describing the Flip

bifurcation and the Neimark-Sacker bifurcation.
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Figure 5

Figure 5 allows us to plot the bifurcation curves in the ( )τβ , -plane for

specific values of the parameters, 1=b  and 5=d . The two curves

intersect for 32=τ . The intensity of choice varies negatively with fn .

The stability areas are “smaller” for low values of the intensity of choice

(or for large values of fn ) and “extreme” values of τ .

As in Brock and Hommes (1997), when the costs for rational

expectations are not zero, the equilibrium can be unstable. Our analysis

of the unstable stationary point enriches the results of Brock and

Hommes into two ways, technical and economical.

The technical problem we face is rather different. Indeed, the

introduction of the adaptive process has added another dimension in the

model. Our model is three-dimensional, recall that of Brock and

Hommes is only two-dimensional. As a consequence we do not deal

with the same kind of bifurcation and new phenomena occur. Their

paper emphasises the possibility of a period-doubling bifurcation. In our

case, not only a Flip bifurcation occurs, but also does a Neimark-Sacker

bifurcation. Depending on the specification of the adaptive process,
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degenerate Neimark-Sacker bifurcations may arise and strong

resonances may occur.

In economic terms, the introduction of the adaptive process allows new

phenomena to happen because either expectations change, or the

intensity of choice varies.

Stability is ensured for some “relative” small values of β . As β

increases, it is less likely that the system exhibits stable paths even when

τ  varies (cf. Figure 5). As we mention in Section 2, when the

expectations are based on a sufficiently mix of the current price and the

past price, the stability conditions are wider with respect to the intensity

of choice, i.e. chartists behaviour is less destabilising for the market.

Chartists have indeed more information to make predictions, fewer

fundamentalists are required in the economy to stabilise it. In that

respect, our result does differ from theorem 8 of Branch (2002). This

result is also in contrast of the usual thought that the chartists’ behaviour

is more stabilising in the economy when the recent past prices are

weighted more heavily. The knowledge of the “critical value” of τ

( 32 ) is of great importance. When the cost of adaptive process is nil,

the range of parameters under which the system is stable increases

(decreases) from the case of rational versus naïve expectations as τ
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varies from 1 to 32  ( 32  to 0). The range will be at its maximum

around 32=τ  and at its minimum at the extreme values of τ .

Therefore excessive weight implies that the behaviour of chartists is

destabilising. In other words, a balanced, or somewhat dampened

approach in which sufficient weighting is given to both sets of

information about observed prices is necessary to create stability.

Second, instability occurs depending on values taken by the expectations

weight factor or by the intensity of choice, leading to the possibility of

bifurcation. As chartists put less weight on today’s price or the intensity

of choice is getting larger, one of the eigenvalues can cross –1 or the

modulus of the complex eigenvalues can cross the unit circle. (Cf.

Figure 5). In our model, the bifurcations occur either when the

expectations weight factor decreases, for a given intensity of choice, or

when the intensity of choice increases for a given expectations weight

factor. Let us first consider a decrease of τ . In Figure 4, when the

expectations are naïve as in Brock and Hommes ( 1=τ ), Flip bifurcation

can only happen for a chosen value of ( )βA . As τ  decreases (for a

given intensity of choice and the other parameters remaining constant),

the system can undergo the two types of bifurcation previously

mentioned. The same phenomena occur when the intensity of choice is
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getting larger, for a given τ  and the other parameters remaining

constant).

Let us finally add that the possibility of the period-doubling bifurcation

is obtained for lower ( )βA , i.e. fn  is lower but the intensity of choice

is higher as τ  decreases.

4. Concluding Comments

Even if heterogeneous beliefs do not affect the existence of the

stationary equilibrium in the cobweb model, the local stability

conditions of the latter are largely dependent on the former. Our work

has emphasised that the nature of the chartists’ behaviour is as relevant

as their relative weight in the market. In the behavioural heterogeneity

rather than expectational heterogeneity context, the nature of the

behavioural response of the heterogeneous groups might be as equally

important as their proportions. We can therefore draw two main features

of behavioural diversity when two types of expectations co-exist.

On the one hand, when switching from one behaviour to another is

possible, its nature needs to be well specified. When its switching is

purely exogenous, this article clearly shows that chartist behaviour

promotes market instability. When it is endogenous, the resulting
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dynamics is nonlinear and the instability previously observed persists

but may take various forms. Different types of bifurcations may occur in

response to variations of specific parameters, such as the intensity of the

agents' switching from one behaviour to another.

On the other hand, the definition of chartists’ expectations function is as

important as the relative weight of chartists in generating instability.

Extending Brock and Hommes (1997) simple case of naïve expectations,

we have shown that the form taken by the chartists’ adaptive process is

crucial. Instability is more likely to occur when chartists weight more

heavily one of the prices used in their expectation function.
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Appendix

Proof of Proposition 2

The model is given by:

( ) ( )
( )( )










−+
+

−
−=

=

′
+

+

tt
f

f
t

tt

hp
ndb

nd
p

ph

ττ 1
15

1

1

Let ( ) ( )
f

f
f ndb

nd
nA

+

−
−=

1
. At the stationary point ( ) ( )00,*p*,hE == ,

the Jacobian Matrix ( )EJ  is:

( )
( )( ) ( ) 
















−
=

ττ ff nAnA

EJ

1

10

The characteristic polynomial associated with this matrix is:

( ) ( )( ) 012 =−−− ττλλ ff nAnA

Real roots
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If ( ) ( ) 0142 <−+ ττfnA  ⇔  ( ) ( )
2

1
4

τ

τ−
−<fnA , the characteristic

roots are real and equal to 
( ) ( ) ( ) ( )( )

2

142

1

τττ
λ

−+−
=

fff nAnAnA

and 
( ) ( ) ( ) ( )( )

2

142

2

τττ
λ

−++
=

fff nAnAnA
.

Study of 1λ

11 −<λ  ⇔  
( ) ( ) ( ) ( )( )

1
2

142

−<
−+− τττ fff nAnAnA

⇔  ( ) ( ) ( ) ( )( )τττ −+<+ 142 2
fff nAnAnA

If ( ) 02 <+τfnA  ⇔  ( )
τ
2

−<fnA , the above inequality is always true

and then 11 −<λ  whatever τ .

Let us now assume that ( )
τ
2

−≥fnA  and let us find the conditions for

which 01 1 <<− λ . We have:

( ) ( ) ( ) ( )( )τττ −+−<−− 142 2
fff nAnAnA

⇔  ( ) ( ) ( )( ) ( )τττ fff nAnAnA +<−+ 2142

⇔  ( ) ( ) ( )( ) ( )( )22 214 +<−+ τττ fff nAnAnA

⇔  ( )( ) 4214 <− τfnA
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⇔  ( )
12

1

−
−>

τfnA  if 
2

1
>τ

Note that 
ττ
2

12

1
−>

−
−  when 

3

2
>τ .

0
12

12
<

−
+−

ττ
 ⇔  ( ) 0

12

23
<

−
+−

ττ
τ

 if 
3

2
>τ .

So we have shown that when ( ) ( )
2

1
4

12

12

τ

τ
ττ

−
−<<

−
−<− fnA  and

3

2
>τ , then 01 1 <<− λ .

Study of 2λ

01 2 <<− λ  ⇔  
( ) ( ) ( ) ( )( )

0
2

14
1

2

<
−++

<−
τττ fff nAnAnA

⇔  ( ) ( ) ( ) ( )( ) 0142 2 <−++<− τττ fff nAnAnA

( ) ( ) ( ) ( )( )τττ −+<−− 142 2
fff nAnAnA  is always true.

( ) ( ) ( )( ) ( )τττ fff nAnAnA −<−+ 142  is always true, so 01 2 <<− λ .

Complex roots

If ( ) ( ) 0142 >−+ ττfnA , the characteristic roots are complex and equal

to 
( ) ( ) ( ) ( )( )

2

142

21

τττ
λ

−+−±
=

fff
,

nAnAinA
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Study of the modulus

( ) ( ) ( ) ( )( )( ) ( ) ( )fff
f

, nAnAnA
nA

τττ
τ

λ −−=−+−+







= 114

4

1

2
2

2

21

121 >,λ  ⇔ ( )
τ−

−<
1

1
fnA

Note that 
( )

2

1
4

1

1

τ

τ
τ

−
−>

−
−  when 

3

2
0 << τ .

Q.E.D.

Sketch of the proof of Corollary

Cycle of period 2 { }21 p,p  (here { }11 p,p − )

( ) ( )( )212 1 ppnAp f ττ −+=  ⇔  
( )
( )( )τ

τ

−−
=

11

1
2

f

f

nA

pnA
p

and 
( )
( )( ) 2

2

2 11
p

nA

nA
p

f

f













−−
=

τ

τ

 ⇔  
( )
( )( ) 1

11
=

−− τ

τ

f

f

nA

nA
 with ( )

τ−
−≠

1

1
fnA

Note that 
( )
( )( ) 1

11
=

−− τ

τ

f

f

nA

nA
 is impossible.

A few computations yield ( )
12

1

−
−=

τfnA .

In this case, 11 −=λ  and 0
12

1
1 2 ≤

−
−

=≤−
τ
τλ  (recall 32>τ ).
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Cycle of period 3 (Allen (1956), p. 196)

Since the trace of the matrix ( )EJ  is always negative and its

determinant is always positive, θ  is between 2π  and π  (with 2πθ ≠

since 0≠τ  and πθ =  is impossible since 1≠τ ). The period of

oscillations lies between 2 and 4. Let us take two examples.

When 21=τ , 
d

bd
n f 3

2−
= , then ( ) 1−=fnA  and we have

11 −+ −−= ttt ppp .

We can rewrite the roots 
2

3

2

1
21 i, ±−=λ  in polar co-ordinates as

θθ sinicos ±  where 32πθ = . The period of the cycle is equal to

( ) 3322 =ππ .

Another simple period of oscillation is to be found when 43πθ = , τ  is

then equal to ( ) 58570212 .≅+ . The period of the cycle is equal to

38 , i.e. the dynamical path is cyclical every 8 periods of unit time.

Generally speaking, cycles appear when ( )
τ−

−=
1

1
fnA  (cf. proof of

Proposition 1) and 32<τ . In that case, the complex roots are equal to:

( )
( )( )

( )τ
ττ

τ
τλ

−
−−

±
−

−=
12

322

1221 i, .

Q.E.D.
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Some computations for Section 3

Computation of 1+t,fn :

1
2

11 2
Exp +++ 














 −= ttt,f ZCp

d
n β

( )( ) ( )( )( ) 11111 121
2

Exp +−+−+ 



 −+−−+= ttttttt,c Zppppp

d
n ττττβ

where

( )( ) ( )( )( )



 −+−−++














 −= −+−++ 111

2
11 121

2
Exp

2
Exp ttttttt ppppp

d
Cp

d
Z ττττββ

( )( ) ( )( )( )















 −





 −+−−+

+

=

+

−+−

+

Cp
d

ppppp
d

n

t

ttttt

t,f

2
1

111

1

2
Exp

121
2

Exp

1

1

β

ττττβ

⇔

( )( )( ) ( )( ) 














 −−++−+−−+

=

−−++

+
Cpppppp

d
â

n

tttttt

t,f
2

1111

1

112
2

Exp1

1

ττττ

⇔
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( ) ( )( )

( ) ( )( ) ( )( )( )
( )( ) 














































−−++

−+−−+

−+

−+

=

−

−−

−

+

Cpp

ppppnA

ppnA
d

â

n

tt

ttttt,f

ttt,f

t,f

2
1

11

1

1

1

121

1
2

Exp1

1

ττ

ττττ

ττ

⇔

( )( ) ( )( ) 














 −−−+−+

=

−

+
CnApp

d
â

n

t,ftt

t,f
22

1

1

11
2

Exp1

1

ττ

Proof of Proposition 4(ii)

We just need to study the stability properties of the stationary point

( ) ( )( )ββ Exp1100 +==′ fn,,E . We look for the conditions for which

all the absolute values of the real eigenvalues or all the modulus of the

complex eigenvalues of the Jacobian matrix at E' are less than 1.

The Jacobian Matrix at E':

( ) ( )( )( ) ( )( )( )























−=′

000

01

010

τβτβ ff nAnAEJ

In what follows, we will denote ( )βfn  by fn , keeping in mind that the

relative weight of fundamentalists depends on the intensity of choice β .
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If ( ) ( ) 0142 >−+ ττfnA , then there are three eigenvalues: 0 and

( ) ( ) ( ) ( )( )
2

142

21

τττ
λ

−+−±
=

fff
,

nAnAinA

If ( ) ( ) 0142 <−+ ττfnA , then there are three eigenvalues 0 and

( ) ( ) ( ) ( )( )
2

142

21

τττ
λ

−+±
=

fff
,

nAnAnA
.

When all the modulus of the complex eigenvalues and all the absolute

value of the real eigenvalues are less than 1 (cf. proof of Proposition 2),

the stationary point is asymptotically stable.

Proof of Proposition 5 (we follow Kuznetsov (2000))

Our system (13) is three-dimensional and needs to be rewritten so that

the stationary point is at the origin.

tt ph =+1

( )t,fttt n,p,hp φ=+1

( )t,fttt,f n,p,hn ϕ=+1

Let us denote ft,ft nnm −= . Then the system becomes system (16):

tt ph =+1 (16a)

( )ftttt nm,p,hp +=+ φ1 (16b)

( ) ( )tttfftttt m,p,hnnm,p,hm ψϕ =−+=+1  (16c)
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The stationary point is then ( )000 ,, .

Let us denote (16) as a discrete –time dynamical system:

( )xfx →

We can write this system as:

( )xFxJx~ += , 3Rx∈ ,                                                           (17)

where J is the Jacobian matrix of (16) at the stationary point and

( ) 




= 2xOxF  is a smooth function. Let us represent its Taylor

expansion in the form

( ) ( ) ( ) ,xOx,x,xCx,xBxF 




++= 4

6

1

2

1

where ( )y,xB  and ( )z,y,xC  are multilinear functions.

Let us first consider the Flip case.

The Jacobian matrix J of (16) at the stationary point is:























−
−

−
−

=

000

0
1212

1

010

τ
τ

τ
τ

J

There are three eigenvalues: 0, -1 and ( ) ( )121 −− ττ . The

corresponding critical eigenspace cT  is one dimensional and spanned

by an eigenvector 3Rq∈  such that qqJ −= , where
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( )02121 ,,qT −= . Let 3Rs ∈  be the adjoint eigenvector, that is,

ssJ T −= , where TJ  is the transposed matrix of J. Normalise s with

respect to q such that 1=q,s , where ( )0121
32

2
,,sT −−

−
= ττ

τ
. Let

suT  denote a 2-dimensional linear eigenspace of J corresponding to the

eigenvalues other than –1. It can be shown that suTy∈  if and only if

0=y,s .

The first term of ( ).F  is the Hessian matrix B of (16) at the stationary

point. B can be partitioned into three elements:

( )T
m

T
p

T
h

T BBBB =

where hB  is the first partitioned Hessian matrix associated with (16a),

pB  is the second partitioned Hessian matrix associated with (16b), mB

is the third partitioned Hessian matrix associated with (16c).

These partitioned matrices are computed as follows:
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0=zB , 

( )

( )

( ) ( ) 





















=

03231

3200

3100

,B,B

,B

,B

B

pp

p

p

p  and

( ) ( )

( ) ( )























=

000

02221

02111

,B,B

,B,B

B mm

mm

m

where ( ) ( ) ( ) ( )m,Bpm,Bhp,Bmh,BmB p
T

p
T

p
T

p
T

p 32313211 +++=

and ( ) ( ) ( ) ( )p,Bpp,Bhh,Bph,BhB m
T

m
T

m
T

m
T

m 22212111 +++=

We left to the reader to show that none of ( ).C  is a relevant element for

us.

Now we “decompose” any vector 3Rx∈  as

,yuqx +=

where cTuq∈ , suTy∈ , and



43

( ) ( )( )

( )

( )










































+







−
−

+







−
−

=−=

−+−
−

==

.

m

ph

ph

qx,pxy

,phx,su

t

tt

tt

tt

τ
τ
τ
τ

ττ
τ

32

1

32

21

121
32

2

In the coordinates ( )y,u , (17) can be written as

( )

( ) ( )







+−++=

++−=

.qyuqF,syuqFJyy

,yuqF,suu

Using Taylor expansions, we can write the above system as:










++=

++++−=

.uJyy~

,uy,uuuu~

K

K

2

32

2

1

6

1

2

1

α

δγσ
                                             (18)

where Ru∈ , 3Ry∈ , R, ∈σδ , 3R, ∈γα  and ∑=
=

3

1i
ii yy, γγ  is the

standard scalar product in 3R . δσ ,  and α  are given by:

( ) ( ) 0=== q,qBsq,qB,s Tσ

( ) 0== q,q,qC,sδ

( ) ( ) ( ) ( )( )T/Dq,qBqq,qB,sq,qB 22100 2τα −==−=    (19)
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where 

2













+
+

−=
ff ndb

db

n

Expd
D

ββ
.

The scalar product y,γ  can be expressed as ( )y,qB,sy, =γ .

The center manifold of (18) has the representation

( ) ( )32
22

1
uOuwuVy +== ,

where 3
2 RTw su ⊂∈ , so that 02 =w,s . The vector 2w  satisfies an

equation in 3R :

( ) 02 =+− αwIJ .

In our case, ( ) 





 −= 2

2 21
2

00 τD
,,wT  and I is the identity matrix. The

center manifold takes the form

( )( ) ( )4313
6

1
uOuIJ,qB,suu~ +





 −−+−= − αδ ,

This restricted map can be simplified further. Using (19) and the identity

( ) q.qIJ 501 −=− − ,

we can write the restricted map as

( ) ( ) ( )432 00 uOuuuu~ +++−= γα ,                                                    (20)

with ( ) ( ) 0500 == q,qB,s.α

( ) ( ) ( )( ) ( ) ( )( )q,qBIJ,qB,sq,qB,sq,q,qC,s 12

2

1

4

1

6

1
0 −−−−=γ .
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( ) ( ) ( )( ) ( )
( ) ( )fnADq,qBIJ,qB,s ′
−
−

−=−−= −

τ
τγ
32

21

4

1

2

1
0

4
1

where ( ) ( ) ( ) ( )1212

4 22

−+−
=′

ττ
τ

dbd

d
nA f .

It can be shown that (20) can be transformed to the normal form

( ) ( )430 εεχεε O~ ++−= ,

where ( ) ( ) ( )000 2 γαχ +=

Thus, the critical normal form coefficient ( )0χ , that determines the

nondegeneracy of the Flip bifurcation and allows us to predict the

direction of bifurcation of the two-period cycle, is given the following

invariant formula:

( ) ( ) ( ) ( )( ) ( )
( ) ( )fnADq,qBIJ,qB,sq,q,qC,s ′
−
−

−=−−= −

τ
τχ
32

21

4

1

2

1

6

1
0

4
1

Let us now consider the Neimark-Sacker case.

The Jacobian matrix J of (16) at the stationary point is:























−
−−=

000

0
1

1

010

τ
τ

J



46

There are three eigenvalues: 0 and

( )
( )( )

( ) ( ) ( )λλ
τ

ττ
τ

τλ ImiRei, ±=
−
−−

±
−

−=
12

322

1221 . J has a simple

pair of eigenvalues on the unit circle 0
21

θλ i
, e±=  with πθπ << 02

and 320 πθ ≠ . Let 3Cq∈  be a complex eigenvector corresponding to

1λ :

qeqJ i 0θ= , qeqJ i 0θ−= ,

( ) ( )( )01 ,ImiRe,qT λλ +=  and ( ) ( )( )01 ,ImiRe,q T λλ −= . Introduce also

the adjoint eigenvector 3Cs∈  having the properties

sesJ iT 0θ−=  and sesJ iT 0θ= ,

and satisfying the normalisation

1=q,s ,

where i
i

iqsq,s ∑=
=

3

1
 is the standard product in 3C ,

( ) ( ) ( )( ) ( ) ( )( )01
2

1
,ImiRe,

ReiImIm
sT λλ

λλλ
−−

−
= . The critical real

eigenspace cT  corresponding to 21,λ  is two-dimensional and is spanned

by { }qIm,qRe . The real eigenspace suT  corresponding to the other
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eigenvalue is one dimensional. It can be shown that suTy∈  if and only

if 0=y,s .

Now we “decompose” any vector 3Rx∈  as

,yqzzqx ++=

where 1Cz ∈ , and cTyqzzq ∈++ , suTy∈ . The complex variable z

is a coordinate on cT . We have









−−=

=

.qx,sqx,sxy

,x,sz

In these coordinates, (17) can be written as

( )

( ) ( ) ( )







++−++−+++=

+++=

.qyqzzqF,sqyqzzqF,syqzzqFJyy

,yqzzqF,szez~ i 0θ

This system is 5-dimensional, but we have to remember the two real

constraints imposed on y . The system can be written in a similar form

to (18), namely (21)










+++=

+++++++=

.zHzzHzHJyy~

,zy,Gzy,GzzGzGzzGzGzez~ i

K

K

2
0211

2
20

0110
2

21
2

0211
2

20
0

2

1

2

1

2

1

2

1

2

1θ

where 20G , 11G , 02G , 21G  1C∈ , 01G , 10G , ijH  3C∈  and the scalar
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product in 3C  is used. The complex numbers and vectors involved in

(21) can be computed as follows:

( )y,qB,sy,G =10 , ( )y,qB,sy,G =01

The center manifold of (21) has the representation

( ) ( )32
2011

2
20 2

1

2

1
zOzwzzwzwz,zVy +++== ,

where 0=ijw,s . The vectors 3Cwij ∈  can be found from the linear

equations

( )

( )

( )













=−

=−

=−

−
0202

02

1111

2020
02

HwJIe

HwJI

HwJIe

i

i

θ

θ

                                   (22).

These equations have unique solutions. The matrix JI −  is invertible

because 1 is not an eigenvalue of J, 10 ≠θie . If 103 ≠θie , then

( )JIe i −± 02 θ  are also invertible in 3C . Thus, generically, the restricted

map can be written as (21)

( )( )( )
( ) K+






 −+

−++++++=

−

−

zzHJIe,qB,s

HJI,qB,sGzGzzGzGziz~

i 2
20

1
02

11
1

21
2

0211
2

200 2
2

1

2

1

2

1

θ

ω

Using (21) and the identity
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( ) ( )qe
qJI

i 0

1

1

1
θ−

=− − , ( ) ( )qe

e
qJIe

i

i
i

10

01
02

−
=−

−−

θ

θ
θ ,

( ) ( )qe
qJI

i 0

1

1

1
θ−

−

−
=− , ( ) ( )qe

e
qJIe

i

i
i

103

01
02

−
=−

−

θ

θ
θ

transforms (22) into the map

K+++++= zzgzgzzgzgzez~ i 2
21

2
0211

2
20

02

2

1

2

1

2

1θ

where ( ) 020 == q,qB,sg , ( ) 011 == q,qB,sg , and

( ) 002 == q,qB,sg

and

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 2

03

02

00

00

1
021

21

11

2

1

21

2

q,qB,s
e

e
q,qB,s

e
q,qB,sq,qB,s

e

ee

q,qBJIe,qB,sq,qBJI,qB,sq,q,qC,sg

i

i

ii

ii

i

−
−

−
−

−

−
+







 −+−+=

−

−

−−

θ

θ

θθ

θθ

θ

( ) ( )( ) ( ) ( )

( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )( )3

1
021

21

1
2

2

λτλττ
λλλ

λλ

θ

ImiReDnA
ReiImIm

ImiRe

q,qBJIe,qB,sq,qBJI,qB,sg

f

i

++−′
−

+−
=







 −+−=

−−

In the absence of strong resonances, i.e.

,eik 10 ≠θ  for 4321 ,,,k =

we can write the restricted map as

( )( ) ( )420 01 uOzzez~ i ++= κθ ,                      (23)
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with ( ) ( ) 000 == κα Re , that determines the direction of the bifurcation

of a closed invariant curve, can be computed by the formula:

( ) ( )
( )

2
02

2
111120

0

020
21

0

4

1

2

1

12

21

2
0 gggg

e

ee
Re

ge
Re

i

iii

−−










−

−
−










=

−−

θ

θθθ
α

Therefore, ( ) 









=

−

2
0 21

0 ge
Re

iθ
α .

This compact formula allows us to verify the nondegeneracy of the

nonlinear terms at a nonresonant Neimark-Sacker bifurcation of our 3-

dimensional map.

Let us now see what happens when 320 πθ = . Recall the findings of

the corollary. When 50.=τ  (and ( ) 1−=fnA ), the stationary

equilibrium undergoes a strong resonance 1:3 as 32πθ = , see

Kuznetsov (2000) p. 397.

Finally, when 32=τ , the two curves of the Neimark-Sacker

bifurcation and of the Flip bifurcation intersect. The stationary point has

a double –1 eigenvalue, a codim-2 bifurcation occurs (See Frouzakis et

al., 1991, p. 85).

Q.E.D.
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Figure 1 when 50.=τ

Figure 2

241 TD =

D =1

T
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( )TD τ11−=
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O

1−=TD
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τ
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Figure 3
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Figures 5 is drawn for d = 5 and b = 1 and show the stability properties

of the stationary point.

Figure 5
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