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Abstract

The scale effect prediction of a growth model with a single type of
technological progress (usually modelled as variety expansion or quality
improvement) is empirically inconsistent. This is due to the “knife-edge”
assumption that new ideas created are linear in the stock of knowledge.
If this assumption is dropped to make a one-sector R&D-based model
consistent with data, growth becomes semi-endogenous in the sense that
public policy and consumer preferences do not affect growth in the long
run. This view is predominant among researchers. This paper challenges
this Consensus View, using an otherwise very standard one-sector R&D-
based model. Specifically, we demonstrate that the rate of technological
progress may exhibit endogenous cycles in the long run, and it is no longer
pinned down by exogenous structural parameters. In the long run, public
policy and consumer preferences will affect productivity growth. This
result is obtained when the knife-edge assumption is violated. Our paper
departs from the dominant “knife-edge” perspective based upon the degree
of externality in the production of knowledge, and turn to the nature of
long-run equilibria, cyclical or not.
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1 Introduction

Endogenous growth means that long-run growth is driven by the deliberate
activity of agents who are motivated by private incentives. By implication,
public policy and consumer preferences which affect private incentives have a
permanent impact on long-run growth.

Although this result sounds appealing, its theoretical mechanisms are still
controversial in R&D-based growth models in particular. Early R&D-based
models assume, explicitly or implicitly, an increase in knowledge is linear (at
least in the long run) in the stock of knowledge.! This assumption, often called a
“knife-edge” condition, plays an essential role in endogenizing technical progress.
However, because of this assumption, early R&D-based models produced an
empirically inconsistent prediction of positive scale effects, i.e. a larger labor
force implies a higher growth rate (see Jones (1995a)).2

On the other hand, Jones (1995b) shows that if the knife-edge condition is
dropped, scale effects disappear. But a serious “side-effect” is that growth is
no longer endogenous in the sense that public policy and consumer preferences
do not have a permanent effect on growth.?Jones termed such long-run growth
“semi-endogenous,” since technological progress is still driven by economic in-
centives.

There are now several studies which demonstrate how to re-endogenize R&D-
driven growth. A common approach is to introduce a second source of long-run
growth. One strand of studies, pioneered by Young (1998), is to assume two

types of R&D in the form of variety expansion and quality improvement.*:°In

I This assumption is made explicit in expanding-variety models of Romer (1990) and Gross-
man and Helpman (1991, Ch.3). It is implicit in the quality index of quality-ladder models of
Aghion and Howitt (1992) and Grossman and Helpman (1991, Ch.4).

2The reason is that in a larger economy, a sales volume, hence profits are higher, creating
greater incentives to do R&D.

3The models of Segerstrom (1998) and Kortum (1997) also exhibit the same property.

4See Jones (1999) for more references. He argues that a variant of the knife-edge assumption
is behind endogenous growth in those two-sector R&D-based models. In fact, Li (2000)
shows that growth is in general semi-endogenous in a two-R&D-sector model once inter-R&D
knowledge spillovers are explicitly incorporated. In particular, Li (2002) demonstrates that
the number of knife-edge restrictions regarding the production technology of knowledge, which
are required for endogenous growth, increases with the number of R&D sectors.

5Cozzi (2001), which introduces an imitative activity of innovative goods, may be added



a different approach, Jones (2001) demonstrates that endogenous fertility deci-
sions will make R&D-based models exhibit endogenous growth. Note that these
studies explicitly depart from the one-sector framework, by introducing an addi-
tional engine of growth. The current state of the literature, therefore, suggests

that the following view has emerged:

Consensus View: In one-sector R€D-based models, growth is en-
dogenous only with scale effects, and it becomes semi-endogenous

once scale effects are removed.%

We call it “consensus,” as the literature developed on the basis of this premise.
At a positive level, this dominant view questions the robustness of one-R&D-
sector models as a system generating endogenous growth. One-R&D-sector
models would cease to be a useful tool for those who accept endogenous growth
as a plausible representation of economic dynamics. At a normative level, policy
implications derived from those models may require re-assessment.

The main objective of this paper is to challenge the Consensus View. We
will demonstrate that long-run growth can be endogenous in a one-sector R&D-
based model without scale effects. This result will be established in a growth
model of expanding variety. It can also be easily established that the same
result carries over to a quality ladder model.

To be more specific, we will demonstrate the possibility of endogenous cycles
in the rate of technological progress in the long run, and such cycles are the
source of endogenous growth without scale effects. As the model exhibits a cycle,
the rate of technological progress oscillates from one period to the following
period in the long run. Since the rate of technological progress fluctuates, it is
no longer pinned down by population growth. More importantly, public policy
and consumer preferences will affect cyclical rates of technological progress. The

same result may carry over to the trend growth rate. These results clearly go

to this class of models.

6In this paper, a phrase “one-sector” is used to refer to the number of R&D sectors. For
example, the quality ladder model of Aghion and Howitt (1992) is a one-sector R&D-based
model, since quality improvement is a sole driving force of growth.



against the Consensus View.”

To understand the nature of endogenous growth through cycles, note that an
important trait of R&D activity is that expectations of future profits and R&D
intensity affect the decisions of the current R&D effort level. Therefore, endoge-
nous cycles that arise in our model are interpreted as self-fulfilling expectational
equilibria. We consider two different assumptions regarding expectations: per-
fect foresight and “sunspot” beliefs. These alternative assumptions of rational
expectations give rise to two different types of endogenous cycles, deterministic
and stochastic.

Consider first perfect foresight that is often assumed in R&D-based models.
In a steady state equilibrium where the R&D share of workers is constant,
growth is semi-endogenous. However, this result arises only if such equilibrium
is “selected” in the long run. Under certain parameter values, a steady state
coexists with cyclical equilibria, i.e. multiplicity of long-run equilibria. If a long-
run equilibrium is expected to be a steady state, it will be achieved in the long
run. But, if cyclical equilibria are expected in the long run, such expectations
are self-fulfilled. Private agents’ beliefs determine which equilibrium is selected,
and in this sense, long-run equilibria are indeterminate.

With perfect foresight, agents “know” in advance what will happen in future.
Although this assumption may be justified in a stationary or repetitive state, it
is less convincing for the analysis of dynamics before such a state is reached. An
alternative assumption of expectations is “sunspot” beliefs. Sunspot refers to
some exogenous random signal which has no influence upon the fundamentals
of the economy. Nevertheless, agents expect sunspot to affect the economy, and
such belief becomes a self-fulfilling prophecy, even though they are aware that
sunspot is irrelevant to the determination of the fundamentals. When sunspot-
driven stochastic cycles exist, growth is not pinned down by population growth,

and growth becomes endogenous.

"In our model, a growth cycle is induced by technology. This appears to be consistent with
empirical evidence. Greenwood, et al. (2000) show that the introduction of new products or
technologies can account for 30% of US GDP fluctuations in 1954-90. Jovanovic and Lach
(1997) also report a similar result.



To develop our argument in a familiar framework, we introduce only three
minimal modifications into the standard R&D-based model of Grossman and
Helpman (1991, Ch3): (i) no knife-edge condition, (ii) (exogenous) population
growth and (ii) discrete time. Assumptions (i) and (ii) are essential for an
R&D-based model without scale effects. An assumption (iii) represents a minor
departure, given that continuous time is assumed in the first-generation R&D-
based models. Although this assumption is not essential for our key results,8it
is useful to make the following observation. The use of continuous time limits
the possibility of complicated non-linear dynamics. Cycles of arbitrary length
can arise in one-dimensional difference equations, whereas they are not possible
in one-dimensional differential equations. A cyclical equilibrium in differential
equations requires a dimension of at least two.?*19The use of discrete time allows
us to highlight the possibility of endogenous growth through cycles in a more
simple way.

Does our results suggest that semi-endogenous growth is “dead” in one-
sector R&D-based models? The answer is “not completely.” This is because
cyclical endogenous growth is likely to arise only for a sub-set of the parameter
space. Nevertheless, our analysis demonstrates an important qualification to
the long-run analysis of the current literature.

The present paper is structured as follows. Section 2 briefly reviews the
Consensus View and develops the basic ideas of our paper in an informal way.

It also mentioned some related studies. The basic model of expanding variety

8The use of discrete time enables us to identify three channels through which growth
becomes endogenous: (i) a deterministic cycle due to a Hopf bifurcation, (ii) a deterministic
cycle due to a Flip bifurcation, and (iii) a stochastic cycle due to sunspot beliefs. In continuous-
time models, the second channel does not exist, and establishing the last channel would be
more involved than the present paper shows.

9 Aperiodic cycles (i.e. “chaos”) can arise in one-dimensional difference equations. For
differential equations, a dimension of at least three is required for aperiodic equilibria. See
Nishimura and Sorger (1999) for a survey of non-linear dynamics and the qualitative differences
between the discrete and continuous time systems.

10 Jones (1995b) showed that a steady state in his continuous-time one-R&D-sector model
without permanent scale effects is stable. However, this might be due to an assumption used in
his local stability analysis that the R&D share of labour and the physical investment rate are
held constant. This assumption will reduce dimensionality of his model, thereby reducing the
possibility of periodic equilibrium. In non-scale growth models of Eicher and Turnovsky (1999,
2001), cyclical equilibria do not arise. Again, restrictions imposed by the use of continuous
time may be operating.



is described in Section 3, followed by the analysis of stability of a steady state
and semi-endogenous growth in Section 4. Section 5 establishes that our one-
sector R&D-based model exhibits endogenous growth through a deterministic
growth cycle. This is followed by Section 6 where long-run growth is shown to
be endogenous due to a sunspot cycle. Section 7 summarizes key differences
between the prevailing “knife-edge” perspective of the current literature and
our approach to the issue of robustness of one-sector R&D-based models in

generating endogenous growth. 8 concludes.

2 Preliminary

2.1 The Consensus View

What was “wrong” with the Consensus View? To answer this, suppose that
there are L; workers, and the labor force grows at a rate of n > 0. Of these, M,

workers are used in manufacturing, and R; workers are used in R&D:

L, = M, + R;. (1)

The stock of knowledge is denoted by ¢, and it augments according to
Nigr — Ny = 6R,NP,  6>0, 1> ¢. (2)

¢ is a measure of externalities, capturing two opposing effects. One is the
“standing on shoulders effect” where accumulated knowledge improves R&D
productivity. The other is the “diminishing technological opportunities” where
the past technological innovations make the current R&D project more difficult.
When the first effect dominates, we have 1 > ¢ > 0.

Note that the first-generation one-sector R&D-based models assume ¢ = 1.
For this knife-edge value of ¢, technology improves at a rate of Nyi1/N;y =
OR; + 1, which exhibits scale effects, i.e. a larger number of R&D workers
makes technology progress at a faster rate. In particular, a positive population

growth would imply that R&D workers rises over time, resulting in a sustained



increase in the rate of technological progress.'! This is clearly inconsistent with
an average TFP growth of 1.4% in the US with a positive population growth
over the past fifty years. To get around this problem, ¢ need be less than one.

Using (1) and (2), the rate of technological progress is written as
—71£gt:6(lt*mt) (3)

where l; = L; /Ntl_‘z’ and m; = M, /Nt1_¢. We call [; the “effective” worker-
knowledge ratio, interpreting Mth) as the effective number of workers. my is
similarly interpreted. It is easy to establish that the effective worker-knowledge

ratio is related to technological progress according to

(0 + 1) = (n+1) 7 (@)
lia

The Consensus View assumes that the rate of technological progress g; is
constant in the long run. This assumption leads us to the conclusion that
growth is semi-endogenous growth, since ¢ +1 = (n+ l)ﬁ. Technological
progress is pinned down by population growth, and public policy and consumer
preferences do not affect growth. However, note that this analysis precludes
the possibility of cyclical g; (and I;) as long run equilibria, since constancy is
imposed on g;. The current literature fails to give clear reasons for doing so.
Moreover, disregarding the possibility of a growth cycle is not convincing, given
that many studies in the nonlinear dynamics literature demonstrate that it can
arise in the long run.'?Data also show a persistent growth cycle over more than a
century.'3We argue that the current literature neglected the role of endogenous
cycles in making growth endogenous, and this contributed to the Consensus

View.

U Theoretically, R; can be constant in the presence of population growth. However, this
would mean an ever decreasing proportion of R&D workers, which is empirically inconsistent.

128ee Section 2.3 for references.

13See Figure 10 for U.S. TFP growth in the second half of the last century. See also
Figure 17.4 of Baumol and Wolff (1983, p.371) which shows persistent fluctuations of a labor
productivity growth rate in the US for the period of 1880-1986.



2.2 Basic Ideas

This section presents the basic ideas of our argument in a less formal way,
assuming perfect foresight. Using (3) and (4), one obtains

(gt + 6my)
(ge+1)'°
This is the equation of motion for g, given the evolution of the effective manufac-

gt+1 +0mepr = (14 n) 2 (g, my) - (5)

turing worker-knowledge ratio m;. Since it is derived from the full-employment
condition (1), we refer to it as the labor market condition.

Since my enters the labor market condition (5), we require an equation of
motion for m; to fully determine the time trajectory of g;. This is where the
private incentives for R&D come into play. Innovators conduct R&D, motivated
by future profits. Facing a trade-off between future profits and R&D costs in the
current period, they determine the profit-maximizing number of R&D workers
they employ. This R&D decision is influenced by the discount factor and public
policy, such as R&D subsidy. In the next section, we will formally derive the
R&D incentive condition which reflects all these considerations. However, it is
sufficient at this stage to consider what would happen when the effective man-
ufacturing worker-knowledge ratio m; is constant or cyclical for our purposes.

Initially suppose that m; is constant in the long run. (5) immediately tells
us that technological progress is pinned down by population growth, i.e. g; +
1=(n+ 1)ﬁ . Since the effective manufacturing worker-knowledge ratio m;
is cancelled out in (5), growth is independent of a private incentive for R&D,
hence the discount factor and public policy. This is a familiar situation of semi-
endogenous growth, as discussed above. However, this result is valid if and only
if a steady state with a constant g; is expected in the long run. Indeed, there is
no reason why agents should expect a steady state to be a long-run equilibrium,
if other types of long-run equilibria exist. Agents can expect g; to follow a
cyclical trajectory in the long run, and a constant g; may not be achieved. In
this case, the nature of long-run growth dramatically changes.

To illustrate this point, suppose that the effective manufacturing worker-

knowledge ratio m; exhibit persistent cycles. Cycles can be deterministic or



stochastic. But what is important is that persistent fluctuations can be a long-
run equilibrium rather than transitional dynamics. The first question that may
arise is “Can g; be constant when m; oscillates?” The answer is negative.'*

When m; exhibits persistent cycles in the long run, so does g; necessarily.
Consequently, cyclical technological progress cannot be pinned down by popu-
lation growth. This fact leads to the possibility of endogenous growth where
government policy and consumer preferences affect long-run growth. This is the
main point that the present paper emphasizes.

To diagrammatically represent this result, let us consider the simplest case
of a deterministic period-2 cycle where m; takes values mg and my, mo # m;.

(5) shows that g; must satisfy the following two conditions

gty1+0my =z (gtymo) ) gy +6émg =z (gt—la m1)~ (6)

These two functions are either increasing or decreasing in the lagged value of
g, depending on the values of mgy and m;. Figure 1 shows the case where both
curves are increasing.'®Cyclical technological progress (go and g1) are deter-
mined by those curves in the figure. g; alternates in each period, creating waves
of technological innovations. A private incentive for R&D follows an oscillatory
pattern in the long run, and this translates into cyclical rates of technological
progress.

Note that gy and g; are determined by the values of mgy and my, which in turn
depend on model parameters including public policy. As the policy changes, mq
and mj alter. In turn, the curves in Figure 1 change their positions, affecting
equilibrium gg and g;. That is, public policy (and consumer preferences) af-
fect the long-run rate of technological progress. This is the mechanism which
re-endogenizes growth in our one-sector R&D-based model. Note that those
cyclical rates of technological progress are obtained as a long-run equilibrium.

This finding goes against the Consensus View.

141t can be easily established, as follows. According to (4), a constant g: means a constant
l¢. In turn, (3) implies a constant mg.
158ince the curves do not intersect on the 45 degree line, a constant g; cannot arise.



2.3 Some Related Studies of R&D-driven Cycles

Baumol and Wolff (1983) is an early study which examines the possibility of an
endogenous deterministic cycle in productivity growth driven by R&D. However,
it is not based on microfoundations in an optimizing framework.

Aghion and Howitt (1992) is an important contribution to the growth liter-
ature. Although a growth cycle was not a main issue of the study, it indicated
the possibility of endogenous cycle. Deissenberg and Nyssen (1998) and Fran-
cois and Shi (1999) demonstrated the existence of a growth cycle in a variant
of the quality ladder model. The role of a financial market is emphasized in
the former, and the latter study introduced a time lag in R&D activity. In a
more recent attempt, Francois and Lloyd-Ellis (2002) show a growth cycle due
to entrepreneurs’ herd behavior fuelled by “animal spirits.”

In an expanding variety model, Matsuyama (1999) showed the existence of a
deterministic cycle in growth. His main interest was to show that an endogenous
cycle is driven by changes in phases where growth is mainly driven by capital
accumulation or technological progress. In this sense, it is related to the study
of Jovanovic and Rob (1990), where what they call “extensive” and “intensive”
search in R&D oscillate, though it is a partial equilibrium industry model.

Boldrin and Levine (2002) is closest to our paper in spirit, though their
study concerns technology adoption rather than technology creation. What the
authors term the slow growth regime arises where long-run growth is exogenous
along a balanced growth path. Since technical adoption is endogenous in this
regime, this equilibrium configuration is equivalent to semi-endogenous growth
in our terminology. On the other hand, endogenous growth occurs along a
cyclical growth regime where consumer preferences affect a long run growth
path. However, this model departs from a well-established R&D-based models
of growth in modelling approach.

Turning to a sunspot growth cycle, Evans, et al. (1999) demonstrated that
it exists in an R&D-driven model of expanding variety. An economy switches

between high and low growth phases, and multiple steady states are generated



due to complementarity of accumulation of differentiated physical capital.

An endogenous stochastic cycle was also shown to exist in a continuous-time
quality-ladders model of Drugeon and Wigniolle (1996). A driving mechanism
is complementarity in R&D activity across firms.

When the present paper is compared with endogenous growth models men-
tioned above,'®three important points can be made. First, all of those models
predict positive scale effects. Hence they have to face a scale effect criticism
directed at the first-generation R&D-based models. Second, none of the above
studies consider endogenous cycles as a channel through which growth becomes
endogenous. Third, the existence of an endogenous cycle is established by in-
troducing an array of mechanisms into the first-generation R&D-based models.
In contrast, our model keeps extensions of the Grossman and Helpman (1991,
Ch3) model to minimum. Our analysis also shows that an endogenous cycle
(hence endogenous growth) is possible even when externalities in R&D are al-

most non-existent.

3 The Model of Expanding Variety

Initially we assume perfect foresight, and postpone the discussion of sunspot
beliefs to Section 6. There are three sectors; (i) final output produced using
intermediate goods, (ii) intermediate goods produced using workers, and (iii)
R&D conducted by workers.

A representative consumer maximizes his intertemporal utility function -
(B(n+1)) (y; =7 — 1) /(1 — o) subject to a usual budget constraint where 1 >
8 > 0 is consumers’ discount factor and y; is per capita consumption. The
utility maximization implies

o
() =50+ @

where r; is the interest rate between periods ¢t and ¢ — 1.

16 That is, except for Baumol and Wolff (1983) and Jovanovic and Rob (1990).
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Consumption goods are produced according to

N, 1/«
Yt:</ x;?;) , 1>a>0 (8)
0

where Y; is final consumption goods and z;; is differentiated (perishable) inter-
mediate goods. The final output sector is perfectly competitive, and the demand

function of x;; is given by

Y, (9)

Tit = =
it Ny T g
o Pit g

where p;; is the price of a variety input.

The intermediate goods sector is monopolistically competitive. Facing the
demand function (9), intermediate goods producers maximize profits m; =
pitTit — wpx;y where w, is the wage and one worker is assumed to produce one
unit of x;;. Given the price elasticity of demand being —1/ (1 — &), monopolists

charge p; = p;y = wy/a, and earn

T = T4t

1 —awM,
S o
Turning to R&D, blueprints of new intermediate goods are produced ac-
cording to (2). Successful innovators who engage in research at time ¢ will start
producing a new variety in the following period. The present value of future

profit flows, vy, is defined as

UVt = ﬁ (7Tt+1 + ’Ut+1) . (11)

Innovators determine the number of R&D workers by maximizing vtéRth) —
(1 — s)wy Ry where s is the rate of R&D subsidies for s > 0 and taxes for s < 0.

This maximization problem gives the first-order condition

1—
Ve = % for Rt > 0. (12)

Using (7), (8), (9), (10), (11) and (12), one can derive the following difference
equation
mg
(I/a—=1)6
1—
where 0 = (1 — o) (1/a— 1 — ¢) — 0. This is the R&D incentive condition.

= Bm{ (g + 1)’ (13)
Mmep1 + 1

11



4 Is Growth Semi-endogenous?

In the literature, semi-endogenous growth is established on the basis of local
stability analysis. This section aims to review the reasoning employed in the
analysis. In particular, we will point out a potential pitfall of this reasoning.

The evolution of our economy is defined by the system of difference equations
(5) and (13). A unique steady state solution is given by

1-—s
(/o —1)

g H1=(1+n)T7, m =<

T ig*)e - 11 g

Linearizing (5) and (13) around the steady state yields
€t+1 —J ft (15)
me41 my
where my; = m; —m*, g = g; — ¢*, and J is the associated Jacobian matrix. Its

determinant and trace, labelled D and T respectively are

D = oMMl —MAs, T =0M~+X— Mg, (16)
1
Moo= > ; (17)
B(l+g*) —(1-o0)
g+ om* gé6m*
Ao = 1—(1—¢)—— A3 = ——. 18

For local stability analysis, consider the space spanned by the determinant and
trace of the Jacobian. We can define seven regions, separated by three lines,
D=T-1,D=-T—1and D =1, as shown in Figure 2.17

To interpret the stability properties of the steady state, we emphasize two
features of the model. First, the linearized system (15) takes the form of
forward-looking perfect foresight difference equations (time running forward).
Therefore, we should interpret m;;1 as an expected value which is consistent
with pre-determined my, g and g;41. With perfect foresight, those future values
are self-fulfilled in each period. Second, in our model both mg = My/Ny and

go = N1/Np — 1 (the initial conditions) are not pre-determined. In the initial

7Eigenvalues below (above) the dotted curve are real (complex). See Azariadis (1993,
pp.62-7) for further details.
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period, Ny is inherited from the past, but My and N7 are determined in period
0 on the basis of expectations of private agents. Therefore, my and gy can take
“any” values in the initial period, depending on expectations of agents. Putting
it differently, the initial conditions mgy and gy are endogenous, since they are
determined by a type of perfect foresight equilibria that agents expect to hold
in the long run.

Bearing this in mind, consider the region Source 1 and 2. Since both eigen-
values are located outside the unit circle, an economy diverges from the steady
state if it starts at its vicinity. In the R&D-based growth literature, this is often
taken as an indication that g; goes off to zero or infinity in the long run, which
must be ruled out as rational expectation equilibria. This is justified as follows.
Infinite g; means that R;/N; ? becomes arbitrarily large (see (2)), which in
turn requires R; grows faster than Nt1_¢, ie. n > (1 — ¢)gs This clearly con-
tradicts an infinite g;. Regarding trajectories towards g; = 0, it contradicts the
the perfect foresight assumption. That is, along those divergent paths, research
firms do not conduct R&D in the long run despite the fact that they know for
sure that R&D is profitable.!®This suggests that an economy must start at the
steady state. In this sense, the initial condition is endogenously determined, like
many other models with perfect foresight. A “long-run” equilibrium is reached
from the initial period, and growth is semi-endogenous.?

However, this no-zero-no-infinity-growth reasoning to determine the initial
condition implicitly assumes that there are only three candidate equilibrium con-
figurations in the long run: g; = g*, g = 0, and g; = oco. This analysis disregards
the possibility of (deterministic) endogenous cycles in g; as long-run equilibria.
If there are oscillatory equilibria, semi-endogenous growth may not be attained,
depending on what agents expect. In this sense, the no-zero-no-infinity-growth
reasoning would be flawed if cyclical equilibria coexist with the steady state.
Therefore, it is important to examine the possibility of an endogenous cycle in

order to assess the validity of the no-zero-no-infinity-growth reasoning, hence

18This is formally shown in Appendix.
19Tn their continuous-time model, Grossman and Helpman (1991,Ch3) describe this type of
equilibrium configuration as “an instantaneous jump” to a steady state at time 0.
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semi-endogenous growth. This observation is particularly relevant to the region
Source 1, as we will see.

Next consider the regions Saddle 1a, 1b, 2a and 2b. If an economy is not
initially located on a saddle path (or a steady state), g; diverges from the steady
state once it starts around it. Again this could be taken as an indication that
g: goes off to zero or infinity in the long run. The afore-said no-zero-no-infinity-
growth reasoning could be used to eliminate such trajectories, so that the ini-
tial condition is such that the economy starts on a saddle path (or a steady
state).20This analysis depends on the assumption that cyclical equilibria do not
exist. In this sense, the nature of equilibria when a steady state is a saddle does
not differ much from that of equilibria when a steady state is a source. Note
that this observation is relevant to the region Saddle la, as we will show.

Finally, consider the region Sink. Irrespective of the initial conditions, the
economy always converges to the steady state if it starts at its vicinity. There
are an infinite number of equilibrium trajectories leading to the steady state, i.e.
indeterminacy. Does this mean that the growth is necessarily semi-endogenous?
On the contrary, the nonlinear dynamics literature demonstrated that indeter-
minacy is closely related to the existence of cycles. Indeed, we will establish that
deterministic cycles of different periodicity coexist under certain conditions.?! To
appreciate the importance of this result, recall that the initial conditions gy and
my are endogenous, but they cannot be uniquely determined. Given multiplicity
of (go,mo), it is not clear whether the initial conditions leading to the steady
state is “chosen”. This model simply does not have a mechanism which allows
us to pin down a unique initial condition in the presence of multiple equilibria.
Therefore, in the presence of endogenous cycles, there is no guarantee that a
steady state, i.e. semi-endogenous growth is attained.

An upshot of the above discussion is that establishing semi-endogenous

20Note that the endogenously determined initial condition is not unique. According to the
no-zero-no-infinity reasoning, the economy can start at any point on the saddle path or a
steady state.

21 Moreover, a stochastic sunspot cycle of any finite periodicity also exists when a steady
state is indeterminate.
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growth as a long-run equilibrium crucially depends on the absence of cyclical
equilibria. An important issue, therefore, is whether or not cyclical equilib-
ria exist under the perfect foresight assumption, to which we turn in the next

section.

5 Growing through Deterministic Cycles

5.1 The Framework of Analysis

In Section 4, the linearized system (15) was used to examine stability proper-
ties of a steady state. Indeed, the same framework can be applied to detect
endogenous cycles around a steady state. This section aims to briefly discuss
this method.??

A bifurcation occurs when the qualitative nature of a steady state(s) changes
when a given parameter alters only slightly. To describe this concept, suppose
that parameters are such that the economy is located in the region Sink in
Figure 2. Further suppose that an externality parameter ¢ changes with other
parameters being constant. If the economy is well inside the triangular region,
it stays in the region even after a small change in ¢. However, if the economy is
close enough to or on the triangular boarder line, a slight change in ¢ (a bifur-
cation parameter) may move the economy into an adjacent region, and stability
properties abruptly alter. These changes may also reveal the “emergence” of
endogenous cycles around a steady state. There are two types of bifurcations
that are relevant to this paper.

First, suppose that an economy which is initially in the region Sink in Figure
2 crosses the D = —T —1 line due to a slight change in a bifurcation parameter.
In this case, a Flip bifurcation occurs (one of the eigenvalues which were only
slightly greater than —1 crosses the value —1). It indicates either the emergence
of a stable period-2 cycle in the region Saddle 1 or the existence of a period-2

cycle with a saddle property in the region Sink. The former is called supercrit-

22See Azariadis (1993) and Grandmont et. al. (1998) for more details.
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ical, and the latter is subcritical. Note that in either case, a Flip bifurcation
reveals the existence of a period-2 cycle.

Second, if an economy, starting from the region Sink, crosses the D = 1 line
from “below” in Figure 2 after a small parameter change, a Hopf bifurcation
occurs (one of the eigenvalues which were within the unit circle in the complex
plane goes outside the circle). It signifies either the appearance of a stable
invariant closed curve in the region Source 1 or the existence of an unstable
invariant closed curve in the region Sink. As above, they are called supercritical
and subcritical, respectively. The equilibrium dynamics along this orbit does
not need to be periodic, since the economy never visits the same point twice,
although it remains on the closed curve forever.

This local bifurcation analysis demonstrates that a cycle can exist in the

regions Sink, Source 1 or Saddle 1a, but not any other regions.?3

5.2 The Case of 0 > 1

This case includes the logarithmic utility function, i.e. ¢ = 1, which is often
assumed in the literature. First note that bifurcations require that a steady
state is a sink or indeterminate. Also note that D > T — 1 is necessary for

indeterminacy. This necessary condition is equivalent to
1>0 /\1, (19)

using the determinant and trace in (16) and noting A2 > 0. If this inequality is
not satisfied, the economy is located in one of the regions Saddle 2a, Saddle 2b
or Source 2 in Figure 2 where no cyclical equilibria exist.

To show that this is indeed the case, note that the consumer’s intertemporal

utility function must be bounded in a steady state. This requirement is met for

1> 5(1 _~_g*)9+1+(17¢~)0 . (20)

231f an economy crosses the D = T'—1 line in Figure 2 due to a slight change in a parameter,
a saddle-node bifurcation is said to occur. However, this happens only when there are multiple
steady states. A saddle-node bifurcation cannot occur in our model, given that a steady state
is unique.
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Since this condition implies 1 > G (1 —i—g*)e 224we have o)1 > 1, given (17).
Therefore, there are no cyclical equilibria, and growth is always semi-endogenous
for 0 > 1. In general, endogenous cycles require o < 1, on which the rest of the

paper focus.

5.3 Identifying Indeterminacy

¢ is taken as a bifurcation parameter, holding other parameters constant. How-
ever, it is difficult to conduct analysis for arbitrary values of parameters. There-

fore, we initially assume

1 1
Z —105. 0.7. 0. - —0.02, §=001 s=0. 21
~={05, 07,09}, f=15 n=002 §=001 s=0 (21)

The discount factor chosen means the long-run interest rate of 5%, which is
slightly larger than a long-run rate of a free risk asset. But it is smaller than
the rate of return on the stock market, which is based on the average real
return of 7% on the stock market for the last century in the U.S. (see Mehra
and Prescott (1985)). Given that the return on the stock market is also relevant
to our model, the choice of 3 does not seem too high. In any case, we mention
the impact of changes in 3 on the possibility and nature of equilibrium cycles.?®

Regarding o, we can give it at least three interpretations. First, its inverse

measures a monopoly markup over marginal cost.?5Second, « is related to the

24This also ensures that m* > 0.

25§ is a scale factor, and it turns out that it does not affect the possibility of endogenous
growth.

26 Empirical studies distinguish between gross output markup and value added markup.
They differ due to the use of intermediate goods in final output production. Our 1/« corre-
sponds to gross output markup (See Rotemberg and Woodford (1994)). Empirical estimates
of gross output markup vary from 1.041 (the lowest estimate of Basu and Fernald (1997)) to
1.7 (the highest estimate of Domowitz et al. (1988)). However, more recent studies seem to
point to a lower range of this interval after estimation is improved. For example, Basu and
Fernald (2000), correcting utilization of production factors, obtain value added markup of 5%,
which implies an even lower gross output markup. Gali, et al. (2001) refer to the interval
(1.1,1.4) as a range of plausible estimates of price markup, i.e. a € (0.714,0.909) .
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elasticity of output with respect to the stock of knowledge.?” Third, a determines
the elasticity of substitution between any two variety inputs.2®Since empirical
estimates based on these interpretations point to the range of a € (0.5,1), we
focus on this interval by considering three values given in (21).2°

We use parameter values in (21) to identify the parameter combinations
(¢, o) which give rise to a sink. An advantage of this approach is that the values
of o relevant to endogenous cycles can be identified without prior restrictions.
Once those parameter combinations are found, we conduct bifurcation analysis.

Given (21), we can write the determinant and trace in (16) as a function of ¢

and o, i.e. D(¢,0) and T (¢, 0). Then, consider the following three equations:

D(¢’ U) _T(¢7 U) = -1, (Cl)
D(¢,0) = 1, (C2)
D(¢,0)+ T (p,0) = -1. (C3)

These equations correspond to the three lines drawn in Figure 2. They are
depicted in the (¢, 0) space in Figures 3. The parameter space is divided into
seven regions by three curves, just like Figure 2. The shaded region is infeasible,
as the intertemporal utility will not be bounded in a steady state. The nature

of a steady state is indicated in the same way as in Figure 2.3°

1—a

27The production function (8) can be re-written as Y; = AtT M, showing that the elas-
ticity of output with respect to the stock of knowledge is (1 — ) /. Griliches (1992, p.44)
suggests 0.3 as being representative of estimates of the elasticity, implying a = 0.769. This
value is also used by Kortum (1997) to calculate the social rate of return from R&D in his
model.

28Using an R&D-based model, Caballero and Jaffe (1993) gave an estimate which implies
o = 0.463. In a different strand of macroeconomics Rotemberg and Woodford (1995) reported
the elasticity of substitution being 7.88, which translates into a = 0.8726.

29TIndeed, endogenous cycle is very unlikely for a < 0.4, given the above parameter values.

30T his is confirmed by simulation which shows the following properties. We have D < T —1
in the area above the curve C1, and the inequality is reversed below the curve. Regarding
the curve C2, it pivots anti-clockwise around the intersection point with the curve C1, as
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There are four things worth mentioning. First, indeterminacy is possible,
but it requires a low value of ¢. Second, indeterminacy does not require a high
degree of externality. Indeed, if it is too high, a steady state becomes a saddle.
Third, the size of the region Sink is not monotonically related to «. High or
low values of « tend to make a sink less likely. In fact, Sink disappears for
a < 0.2829 approximately. Fourth, simulation indicates that a lower discount
factor enlarges the size of the region Sink. This is shown only in the case of

a = 0.7 in Figure 3-(d). The same property is also found in other cases.

5.4 Endogenous Cycles

We are in a position to examine the possibility of endogenous deterministic
cycles. Note that in Figures 3, Sink is adjacent to Source 1 and Saddle 1la.
This implies that Flip and Hopf bifurcations are possible.?'Indeed, any small
parameter change which moves the economy from Sink to either Source 1 or
Saddle 1a will lead to the “appearance” of a cycle.

Choose any point on the C3 curve between Sink and Saddle la in one of
Figures 3. A slight increase in ¢ will tip the economy into Saddle 1a, and a Flip
bifurcation occurs. It means the “emergence” of a period-2 cycle either in the
region Saddle 1a or Sink, depending on its stability. Similarly pick any point on
the C2 curve between Sink and Source 1. As ¢ falls, a steady state turns into a
source, and a Hopf bifurcation occurs. An invariant closed curve appears in the
region Source 1 or Sink, depending on the stability of a cycle.?2This confirms
the existence of endogenous cycles in the rate of technological progress.

Cyclical equilibria are interpreted as an endogenous growth cycle, driven by
self-fulfilling expectations. Intuitively a period-2 cycle can be explained by the

inverse relationship between the current and future R&D intensity. As more

D decreases from 1. It will eventually converge to the curve C'1l. On the other hand, as D
increases from 1, the curve C2 turns clockwise and approaches the curve C1. Next consider
the curve C3. It turns clockwise as D 4 T increases from —1, and converges to the curve C1.
The opposite happens when D + T falls from —1.
31Note that Sink is not directly connected to Saddle 2a, Saddle 2b and Source 2. This
means that the economy cannot cross the D = T — 1 line in Figure 2. See foonote 23.
320bviously, bifurcations can occur by changing o, but holding ¢.
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varieties of goods are introduced, profits of a firm will drop. Therefore, if future
R&D intensity is expected to be high, then future profits are expected to fall,
discouraging the current R&D efforts. The opposite story holds when R&D
intensity is expected to be low. This pattern of expectational oscillations con-
tinues in the long run equilibrium. On the other hand, it is less straightforward
to give an intuitive account of a cycle that emerged through a Hopf bifurcation.

Regarding the stability of a cycle, it is difficult to confirm analytically
whether a bifurcation is super- or subcritical.?®*Instead, we resort to simulation

to examine the stability property of a cycle through examples.

5.4.1 Flip Bifurcations

Example 1 For a = 0.5, pick a bifurcation point of o = 0.025 and ¢ ~

0.2908. A period-2 cycle with a saddle property occurs at ¢ ~ ¢Fli” — 0.01 with
go ~ 0.0321, g1 ~ 0.0237, my ~ 2.65, and my ~ 3.48.

Example 2 For a = 0.7, pick a bifurcation point of o = 0.02 and (bF”p ~
0.49669. A period-2 cycle with a saddle property occurs at ¢ ~ ¢F”p — 0.001
with g ~ 0.0430, g1 ~ 0.0371, mo ~ 12.21, and m; ~ 12.78.

Example 3 For o = 0.9, pick a bifurcation point of o = 0.01 and ¢ ~

0.1525. A period-2 cycle with a saddle property occurs at ¢ =~ d)F”p — 0.0001
with go ~ 0.0251, g1 ~ 0.0222, my ~ 46.01, and mq ~ 46.24.

These examples confirm that the Flip bifurcations are subcritical.>*They
confirm that a growth cycle exists when a steady state is indeterminate. That
is, there exists a period-2 cycle around a stable steady state, and there are
“saddle paths” leading to the cyclical equilibrium. Put differently, there are
long-run multiple equilibria: one is a steady state, and the other is a growth
cycle. It is, therefore, misleading to conclude that growth is semi-endogenous by

merely showing that a steady state is stable. Indeed, depending on expectations,

33See Guckenheimer and Homes (1983, Sec.3.5) for stability analysis.
34To obtain these results, time should run forward for (5) but backward for (13) in simula-
tion, given a saddle property of the cycles.
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the economy may end up in cyclical equilibria where growth is endogenous even
when a steady state is stable.

One may object to this conclusion by observing that being on a “saddle path”
towards cyclical equilibria is possible only on a narrow set of initial conditions.
However, given the absence of an equilibrium-selection mechanism which de-
termines the initial condition, we cannot exclude the possibility of being on
a “saddle path”. Moreover, we will show in Section 5.7 that there can exist
multiple cycles when a steady state is a sink. This is particularly so when the
government intervenes in R&D activities.

In fact, this point is related to the emergence of more complicated cycles
when ¢ falls further from ¢""P in the above examples. Simulation indicates
that a higher ¢ makes the amplitude of a cycle larger, so that g; tends to hit
zero before a cycle of higher order arises without government intervention. On
the other hand, when the government subsidizes R&D, a cycle of higher order

can arise. This point will be discussed in detail in Section 5.7.

5.4.2 Hopf Bifurcations

Example 4 For a = 0.7, pick a bifurcation point of o = 0.01 and ¢)th ~
0.00657. A stable invariant closed curve arises ¢ = ngFlip — 0.00001, as shown

wm Figure 4.

This example shows that the Hopf bifurcation is supercritical. Indeed, the
same result was found in other examples considered (but not reported) for dif-
ferent parameter values. In Figure 4, the economy starting off the steady state
but inside the variant closed curve converges to the latter. Therefore, it is wrong
to assume that the rate of technological progress will reach 0 or infinity in finite
time if a steady state is shown to be a source with complex eigenvalues. More-
over, when the economy starts outside the invariant closed curve, it is actually
moving “closer” to a steady state, as shown in Figure 4. Although a steady state
can be reached if it is expected in the initial period, the likelihood of cyclical

equilibria is far greater in this case. Endogenous growth is more likely than
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semi-endogenous growth.

Another important observation is that the degree of externality does not
need to be very large for endogenous cycles. In the above example, the value
of ¢ for a long-run cycle is nearly zero. A similar result is obtained for other

parameter combinations, as can be seen in Figures 3.

5.5 Endogenous Growth

Having established the existence of growth cycles, our next task is to examine
the impacts of parameter changes on long-run growth. Their effects are realized
via m;. Unfortunately, it is in general difficult to examine their qualitative im-
pacts unless specific parameter values are assumed. Therefore, we demonstrate
that growth is endogenous through examples. For a period-2 cycle, results are
summarized in Table 1. We call gy and ¢g; a good and bad state, respectively.

As expected, the rate of technological progress changes in response to param-
eter changes. The first feature that one can easily notice is that the direction of
changes in g; is typically asymmetrical between a good and a bad state. As an
example, consider a lower discount factor. It discourages technological progress
in a bad state, but encourages it in a good state. An intuition goes as follows. A
lower discount factor directly discourages R&D in both states. However, there
is an indirect effect. When R&D is discouraged in a bad state, it means less
creative destruction in that state. Since a good state precedes a bad state,
R&D becomes relatively more profitable in a good state. Simulation shows that
the indirect effect dominates the direct effect in a good state, but the opposite
happens in a bad state.

However, technological progress does not respond in a “consistent” way in a
given state. For example, the R&D subsidy stimulates growth in a good state
in Example 2, whereas the opposite happens in other examples. This is due
to a highly nonlinear nature of the model. R&D subsidy promote R&D, but it
depends on parameter values as well as the state of the economy.

Regarding population growth, its impact can be positive or negative. There-
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fore, there is no clear positive link between technological progress and population
growth. This appears consistent with empirical studies which often found the
relationship statistically insignificant. This property starkly contrasts with the
existing semi-endogenous growth models.

Another feature worth mentioning is that parameter changes can alter the
nature of an equilibrium. That is, the economy can stop exhibiting a cycle
following a parameter change. This happens in Example 3 of Table 1 where g;
becomes constant at 2.36% due to R&D subsidy.?’In this case, a steady state
is a long-run equilibrium. This observation suggests that a policy changes can
make growth semi-endogenous.3%

Turning to a cycle along an invariant closed circle (via a Hopf bifurcation),
consider the effect of an increase in the discount factor in Example 4. The
amplitude of the cycle gets smaller, as confirmed in 5, although the frequency
of a cycle seems affected little. Similar results are obtained for R&D subsidy
and population growth. A small increase in R&D subsidy or population growth
reduces the amplitude of a cycle. Note that like a period-2 cycle, there is no
clear link between population growth and technological progress.

On the other hand, if 3, s or n increases sufficiently, the amplitude of a cycle
becomes arbitrarily small, and a steady state becomes a long-run equilibrium.
Conversely, a sufficient fall in 3, s or n makes the amplitude of a cycle so large
that g; hits zero. In that case, a long-run equilibrium is a steady state where

growth is semi-endogenous.?”

35In simulation, this occurs when g; hits zero, which is not consistent with rational expec-
tations. See Appendix A

360n the other hand, the public policy can enlarge the possibility of endogenous growth as
long as g; does not hit zero. The point is explored in Section 5.7.

37Note that a supercritical Hopf bifurcation in Example 4 occurs just above the D = 1 line
between Sink and Source 1 in Figure 2. A fall in 3, s or n pulls the economy closer to the
line, and the parameter change can put the economy back in the triangle Sink. Conversely, a
rise in (3, s or n pushes the economy further away from the D = 1 line, and the amplitude of
an invariant cycle gets larger.
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5.6 Average Growth Rate

The main finding of the preceding analysis is that the cyclical period-to-period
rates of technological progress are obtained as long-run equilibria, and they are
affected by public policy and consumers’ preferences. In this sense, long-run
growth is endogenous. The following question, then, naturally arises. Is the
average growth rate, around which the rate of technological progress oscillates,
endogenous or not?

First, consider the arithmetic average of fluctuating rates of technological

progress. In a period-2 cycle, the trend or average growth rate is given by

+
Jarith = B9 5 an (22)

We already established that gy and g7 are affected by model parameters. Hence,
it should be clear that g,,itn also depends on them in general. Therefore, growth
is endogenous even at the level of arithmetic means. The same result clearly
carries over to a growth cycle of a higher order or along an invariant closed
curve.

Next consider the geometric mean of cyclical rates of technological progress.

In a period-2 cycle, it is
Jgeo +1= (90 + 1) (gl + 1) (23)

Now substituting (4) into this expression yields ggeo +1 = (n+ 1)ﬁ . The
average growth rate is pinned down by population growth. This implies that
R&D subsidy is ineffective on the trend growth measured by a geometric aver-
age.?8Note that this result is unaffected by the periodicity of endogenous growth

cycles.??

38Recall that technological progress alters asymmetrically between a good and bad state in
response to the industrial policy (see Table 1). It promotes R&D in one state, but discourages
in another state. A semi-endogenous geometric average growth rate means that the industrial
policy affects period-to-period rates of growth in such a way that a net effect is zero. That is,
a policy-induced increase in productivity growth in one period is exactly offset by its fall in
the following period if those effects are measured using a geometric mean. This observation
applies to changes in any parameter, except for population growth n and the measure of
externality ¢.

39This statement is true in the limit in the case of an invariant closed curve of g+ that occurs
via a Hopf bifurcation.
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How do we reconcile these seemingly conflicting observations? Note that g;

is typically a small number. Therefore, an arithmetic average can be taken as

a good approximation of an geometric mean, i.e. In (ggeo + 1) = Garith or*®

In(go+1)+In(g1+1) go+g
2 T2

(24)

This means that the impact of R&D subsidy on the average growth would
be quantitatively small. However, note that the error of this approximation
increases more than linearly in g. Therefore, the impact of, e.g. R&D subsidy

seems greater as the rates of technological progress are larger.

5.7 Multiplicity of Cycles
5.7.1 “Long-run” Analysis

The aim of this section is to establish the existence of multiple cycles under
certain conditions. This interesting result will be established for the special
case of # = 0.*'A consequence of this restriction is that the R&D incentive

condition is reduced to

m.
my = 11 /o = f (mt+l) . (25)

()

1

Since it is independent of g;, the evolution of m; is determined by (25)
only. This condition is depicted in Figure 6. Although the determination of g;
requires analysis of both difference equations (5) and (25), we initially focus on
the behavior of m;. By doing so, we aim to isolate long-run cyclical equilibria,
postponing the discussion of its stability property, i.e. dynamics around the
long-run equilibria. Our strategy is to examine the long-run behavior of my
first, and then impose it on the equation of motion of g; (5) to derive the long-
run dynamics of g, sideskipping the stability issue of the equilibria that arises.

In a sense, this approach is similar to a familiar long-run steady state analysis

401n (1 + go) can be approximated by go when go is small.
e g

41This restriction is equivalent to o = Ti=
a
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of a dynamic model without examining its stability property. The full stability
property of long-run equilibria will be discussed later.

The condition (25) is initially interpreted as a backward-looking difference
equation, i.e. the current value m; depends on its future value my;; ;1. This
interpretation is appropriate, since the current R&D effort is determined on
the basis of what innovators expect profits will be in the future (see (11) and
(12)). An obvious problem with this approach is that time is running backwards.
However, note that an equilibrium cycle that emerges when time goes to infinite
past from now also exists when time goes to infinite future. We will discuss later
how the results based on a backward-looking equation (25) may be interpreted

when time goes forward.

5.7.2 Existence of Cycles

One can easily check that the slope of f(.) at a steady state m* is f’ (m*) =

_a=(1—a¢)B
1—a(1+9¢)

less than one, the steady state is stable, hence no cycle arises once an economy

where the denominator is positive for # = 0. When it is modulus

starts at its vicinity.*>When this slope becomes less than —1, the steady state
turns unstable, and the economy diverges from it if it starts from its neighbor-

hood. However, note that m; cannot go to zero, since the slope of f (m;) at

43

m; = 0 is greater than one.**m; cannot go to infinity either, since m; cannot

escape from the interval (0, f (m)) once it enters the region, as seen in Figure
6. Therefore, an economy must converge to a periodic (or aperiodic) cycle.
In general, cyclical equilibria require f’ (m*) < —1, which means
1 2
i 26

62 2 -1 (26)
This condition defines the lower bound of the degree of externality for cyclical
m¢. On the other hand, there is the upper bound defined by 8 = 0, which
requires o > 0 or
1
Z 1> 6. 27
11z )

42Stability of my is analyzed in a backward-looking sense in what follow until we consider
forward-looking dynamics later.

__1-a¢
430ne can eaily verify f' (0) = 8~ T-a0+9) > 1.
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Note that the set of values of ¢ that satisfy (26) and (27) is non-empty. This
confirms that there exist long-run cyclical dynamics of m;.

To demonstrate this result graphically, Figure 7 is created for a = 0.7 with
other parameters given in (21). The horizontal axis measures the degree of
externality ¢ starting from 0.4, holding other parameter values fixed. On the
vertical axis, the long-run values of m;, generated after many iterations are
measured for each value of ¢. For ¢ = 0.4042, a steady state is stable, and there
is no cycle. But once ¢ passes this critical value, the steady state bifurcates
into a period-2 cycle, followed by a period-4 cycle, a period-8 cycle, and so on.
Given parameter values used, the range of ¢ where long-run cycles arise is rather
narrow. But within this range, a rich variety of equilibrium cycles exist.** Also
note that simulation used to create Figure 6 can identify stable cycles only in a

backward-looking sense.

5.7.3 Multiplicity of Cycles

A more striking result can be obtained if we consider the so-called Sarkovskii

ordering of all positive integers

3 = b=7T=-=22Xx3=22%X5=2X7=---
= 22x3=22%x5=22Xx7T=---=22%x3=2Px5=Bx7=---

= =220 =29235922=29= 1.

Sarkovskii (1964) proved that if a map has an orbit of period &, which precedes
k' in the Sarkovskii ordering, then the map also has a periodic orbit of &’. This
result reveals the coexistence of cycles of different periodicity. Remarkably, if
a map exhibits a period-3 cycle, then there coexist infinitely many cycles with

every possible period. Figure 7 shows that a period-3 cycle exists.

Example 5 For parameter values used in Figure 7, a period-3 cycle exists at

¢ = 0.4133 with mg ~ 3.123, my ~ 0.126 and mo ~ 33.067.

44Figure 7 does not show a full range of values that ¢ can take. However, it should be
obvious that a steady state m* is stable for ¢ < 0.4, but complicated cycles exist for 0.415 <
¢ < 0.4286 where the upper bound value is defined by (27).
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Now suppose that m; exhibits a period-k cycle. There are k different equi-
librium values of m; in the long run. To translate the dynamics of m; into a
cycle of g¢, we need to solve a system of k different equations obtained from (5),
ie. giy1 + O6mip1 = 2(gi,m;), i = 0,1,..k — 1. Solving these equations yields
long-run cyclical equilibria in the (my, g+) space.

However, simulation shows that g; often hits zero when m; exhibits a cycle
of order 4 or higher in the Sarkovskii ordering.*>In that case, a steady state is
the long-run equilibrium, and growth is semi-endogenous. On the other hand, if

R&D subsidy is sufficiently high, more complex dynamics in g; becomes possible.

Example 6 For parameter values used in Figure 7, ¢ = 0.40939 and s = 0.62,
the economy exhibits a period-4 growth cycle with go ~ 0.0682, g1 ~ 0.0015,
g2 ~ 0.0689 and g3 ~ 0.00004.

Example 7 For parameter values used in Figure 7, ¢ = 0.4133 and s = 0.84,
the economy exhibits a period-3 growth cycle with go ~ 0.0495, g1 ~ 0.0538 and
g2 =~ 0.0005.

In Example 7, an infinite number of orbital paths coexist in the long run,
along which growth is endogenous. Those examples also indicate that R&D
subsidy can be a source of multiplicity of cyclical equilibria.

These results admittedly require an implausibly high rate of R&D sub-
sidy.*However, it seems too premature to dismiss this intriguing result on the
basis of calibrated values, given that our model lacks other realistic features of

an aggregate economy (e.g. capital and human capital accumulation).*”

45Simulation also shows that a cycle of order 4 or even higher order can occur without g;
being zero, if n gets small enough.

46The lowest rate of R&D subsidy required for complex cycles becomes higher or lower
depending on parameter combinations. For example, consider o = 0.654. A period-4 cycle in
gt occurs with s = 0.57, and a period-3 cycle arises with s = 0.76.

47Indeed, if we introduce other types of policy, e.g. production subsidy related to differen-
tiated goods, the required rate of R&D subsidy would be lower. Simulation also shows that a
cycle of higher order can arise without a much lower subsidy rate when a population growth
rate n is low.
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5.7.4 Stability

We examine the stability of a cycle in forward-looking dynamics in three steps.
First, we consider the stability property of m; alone (i.e. along the m—axis) in

backward-looking dynamics. For this, consider the Schwarzian derivative:

- Dy 3 (£ )y’
Sf (mt+1) - f// (mt+1) 2 <f/ (mt+1)

An important result in the nonlinear dynamics literature is the following. Given

(28)

that f (myy1) is single-peaked, there is at most one weakly stable cycle if the
Schwarzian derivative (28) is negative for the range of (0, f (m)) in Figure 6,
except m where f’ (m) = 0.4¥That is, when there exist multiple cycles in my, as
shown above, at most one cycle is stable and other cycles are unstable.
Second, note that cycles (as well as a steady state) which are stable in back-
ward-looking dynamics are unstable in forward-looking dynamics.** This means
that when the Schwarzian derivative is negative for a backward-looking dif-
ference equation (25), there is at most one weakly unstable cycle and other
cycles that exist are all stable in a forward-looking sense. Therefore, if there
is a period-3 cycle in backward-looking dynamics with a negative Schwarzian
derivative, then there exists an infinite number of cycles of every other possible

periodicity, all of which are stable in forward-looking dynamics.

Example 8 Sf (mi11) < 0 for the range of (0, f (m)), except m, whenever

long-run cycles arise in Figure 7.

In the third step, note that the above discussion concerns the stability prop-
erty of m; or stability of the model along the m;-axis. Therefore, it is not clear
whether equilibrium growth cycles are a sink, a source or a saddle, just like a
local bifurcation analysis above. This approach may be justified, since the issue
of whether or not growth is endogenous can be answered by examining long-run

dynamics of the model, rather than dynamics around the long-run equilibria.

48See Grandmont (1992) for details.

49Therefore, cycles in Figure 7 are in fact unstable in a forward-looking sense. On the
other hand, backward- and forward-looking difference equations may share the same stability
property, once a learning process is explicitly introduced. We do not explore this interesting
subject here. See Evans and Honkapohja(1999) for details of this topic.
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However, the full stability property of a specific case can be easily verified
by simulation. A period-3 cycle in Example 7 is a saddle.’*This should not be
surprising, given that all examples of Flip bifurcations above are subcritical.
In Example 7, there exists an infinite number of saddle-type cycles of different

periodicity in addition to a stable steady state.

6 Growing through Stochastic Cycles

In the above analysis, endogenous growth arises due to deterministic cycles.
The aim of this section is to demonstrate that growth can also be endogenous
due to stochastic cycles, which occur endogenously. A key difference between
deterministic and stochastic cycles lies in the type of expectations.

With perfect foresight, agents correctly anticipate what will happen in fu-
ture. An alternative assumption is sunspot beliefs in which agents base their
expectations on exogenous random signals, which they know are not related to
the fundamentals of the economy. Such sunspot beliefs are self-fulfilled, depend-
ing on parameter values. The question is: Is semi-endogenous growth robust to

sunspot beliefs?

6.1 The Stochastic Model

To simplify analysis, we assume the risk-neutral consumers, i.e. ¢ = 0. In this
case, modification is required only in the value of innovation (11), which is the

sum of the expected future profit flows:

v = BE (Ti11 + veg1) (29)

where E is an expectation operator. Note that expectations are taken over future
profits, but uncertainty arises due to entrepreneurs’ beliefs about sunspot, which
has no information about endowments, technology and preferences. Sunspots

are assumed to follow a stationary Markov process with a sufficiently small

50Tn simulation, time runs backward for (25) and forward for (5) with an initial condition
involving mo = m in Figure 5.
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support on a given interval. Entrepreneurs observe the random variable in each
period before they make their R&D decisions.

Using (29) and other conditions, we can derive the R&D incentive condition:

(g + 1)¢_1%¥
<]

1—s
6(1/a—1)

-1 =E (mt+1) : (30)

The long run distribution of (my, g;) is determined by two conditions (5) and
(30). Linearizing those equations around a steady state gives
e I R —6 i (31)
Miy1 my 1
where €41 = my11—E(myy1) and the Jacobian matrix J is equivalent to (16)
for o = 0.

Next, we invoke the following famous result in the nonlinear dynamics lit-
erature. Stochastic sunspot equilibria arise around a steady state if it is a
sink.?' That is, endogenous stochastic cycles exist if both eigenvalues of J are
modulus less than one. The idea goes as follows. If a steady state is a sink, the
economy converges to it over time, if it is located close enough to the steady
state. On the other hand, sunspot beliefs dislocate the economy off the conver-
gent path. The economy can move away from the steady state, but not “too
far” from it, given the assumption of a sufficiently small finite support of the
random process (i.e. 441 is not too large). This assumption is essential for a lin-
earized system to be a good approximation of the nonlinear model. In the long
run, those opposing forces balance out, and there is an invariant distribution of
(m¢, g¢) in the long run.

According to this result, we only need to examine the stability property of
a steady state, using Figure 2. First note that D > T — 1 that is necessary
for indeterminacy is equivalent to 1 > A9, which is always satisfied. Given this,
our strategy is to characterize parameter combinations (¢, ), using parameter
values in (21). An advantage of this approach is that we do not impose prior

restrictions on ¢ and «, while other parameters take reasonably plausible values.

51See Woodford (1986) and Guesnerie and Woodford (1992).
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In Figure 8, two curves are drawn, representing D (¢,«) =1 and D (¢, o) +
T (¢,) = —1. The intertemporal utility is not bounded in the shaded region.
The figure demonstrates that the region of indeterminacy is not trivial. Endoge-
nous stochastic cycles can occur in a wide range of parameter combinations. An
interesting observation is that a higher degree of externality tends to limit an
interval of o compatible with indeterminacy. Indeed, if ¢ is too high, a steady

state becomes a saddle, and a stochastic cycle will not arise.

6.2 An Example

To illustrate the existence of a stationary sunspot equilibrium, consider the
following example. Agents believe that there are two states, i.e. m11 + ery1
where e;11 = {eg,e1} and eg # e;. Using P to denote the probability that eg
will occur, Peg+ (1 — P) e; = 0 is assumed. Then, the R&D incentive condition

(30) becomes

(9 + )"
E

1—s
6(1/a—1)

- 1‘| = Mi41 + €41 (32)

If ep and e; are sufficiently small, the conditions (5) and (32) define the degen-

erate distribution of (g¢, m;) .

Example 9 Using parameter values of a = 0.7, ¢ = 0.6, eg = 1, 3 = —0.25

and P = 0.2, Figure 9 shows the stochastic dynamics of g: in the long run.

In the figure, sudden jumps represent extrinsic uncertainty which has nothing
to do with the fundamentals. Given no clear periodicity, it is not possible to
examine the effect of parameter changes on each growth rate. Instead, we
consider the standard deviation of g; as an alternative indicator demonstrating
endogenous growth. The results are summarized in Table 2. Note that the
standard deviation of g; is zero for semi-endogenous growth.

Regarding the average growth rate, simulation indicates that it little differs
from a semi-endogenous growth rate up to the third decimal point, whether it

is calculated as an arithmetic or geometric average.
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7 Departing from the Knife-edge Perspective

The present paper examines the robustness of a one-sector R&D-based model
as an economic system generating endogenous growth. It is worth stressing
what differentiates our approach from the dominant perspective of the current
literature.

Section 2.1 showed that, given the R&D technology (2), stationary growth is
endogenous for ¢ = 1 with scale effects, but semi-endogenous for 1 > ¢ without
scale effects. Note that ¢ = 1 is obtained only on a measure-zero subset of
1 > ¢. This means that if a value of ¢ is randomly chosen, the probability
of endogenous growth is zero, while the probability of semi-endogenous growth
is one. In this sense, endogenous growth is highly special according to this
externality criteria. The robustness issue hinges only on ¢.

The approach adopted in this paper departs from this knife-edge perspective.
We examine the robustness issue on the basis of the nature of long-run equi-
libria, stationary or cyclical. Growth can be endogenous or semi-endogenous
even if a knife-edge condition is violated. Consider Figures 3, which show com-
binations of (¢, ). Endogenous deterministic cycles exist in the area near the
border lines between the regions Sink and Source 1/Saddle la. Therefore, if a
combination (¢, o) is randomly picked, the probability of endogenous growth is
strictly positive. Similarly, Figure 8 shows combinations of (¢, «). Given that
endogenous stochastic cycles exist in the region Sink, the probability of endoge-
nous cycles is again strictly positive. In short, endogenous growth ceases to be
a “knife-edge” case and becomes more likely once the possibility of endogenous
cycles is taken into account.

There is an additional advantage of our cyclical approach. Our model can
potentially offer an explanation of cyclical behaviors of some R&D-related time-
series data. First, Figure 10 shows a TFP growth rate in the U.S. An extremely
oscillatory pattern can be due to short-run shocks or may represent uncorrected
factors such as monopoly markups and capital utilization. However, it is widely

accepted that TFP exhibits a persistent cyclical trajectory over a long period
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of time. This cyclical feature of TFP growth cannot be explained by R&D-
based models in which a non-cyclical steady state is the only type of long-run
equilibria.

Second, in Figure 2 of Jones (1995b, p.764), he showed that the share of R&D
workers in total labor force increased in the U.S. for four decades since 1950.
A look at the figure immediately suggests the existence of a cycle. The share
steadily increased from 1950 to late 1960s. Then, it showed a steep fall which
continued for about 10 years, followed by a steady rise to the end of the data.
Since the trend is increasing, Jones (2002) argues that the U.S. economy has
not achieved a long-run equilibrium. Our cyclical model offers an alternative
interpretation. As far as the share of R&D workers is concerned, it can be
accounted for as a long-run cyclical equilibrium behavior.??

Third, Figure 2 of Howitt (1999, p.726) shows the proportion of R&D ex-
penditure in GDP in the U.S. from 1953 to mid-1990s. It showed a steep rise
in the first decade, followed by a fall which continued for more than a decade.
Then, it picked up for about five year, and showed a drop again. Since the data
appears trendless, Howitt argued that a non-cyclical steady state of his model is
consistent with the data.>3*Our model suggests that a cycle that seems to exist

in the data can be explained as a long-run equilibrium behavior.>*

8 Conclusion

A hallmark of R&D-based endogenous growth models is that public policy af-
fects long-run growth. An empirical study of Jones (1995a) challenged this
theoretical prediction derived from early one-sector R&D-based models. Those
models predict scale effects, whereas Jones demonstrated a clear lack of correla-

tion between a falling TFP trend growth and an increasing number of scientists

52 Jones (2002) regarded an increase in educational attainment as an additional indication
that the economy is not in a non-cyclical long-run equilibrium.

53He also observed that “the ratio reached a peak in 1964 that was never again reached in
32 years.”

54Tn our model, the share of R&D workers in total population is g:/ (g¢ + émy), and the
proportion of R&D expenditure in GDP is ag:/dm¢. They exhibit cycles when the economy
is in oscillatory equilibria.
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and engineers over decades in developed economies. In an attempt to reconcile
the empirical evidence with one-sector R&D-based models, Jones (1995b) pro-
posed a semi-endogenous growth model with limited externalities in the R&D
sector. This result led to the Consensus View that is currently predominant in
the literature. This View stands on the ground that growth is endogenous in
one-sector R&D-based models only when a parameter capturing externalities in
R&D takes a knife-edge value (¢ = 1), i.e. new ideas created are linear in the
stock of knowledge.

This paper challenged this Consensus View. We departed from this dom-
inant knife-edge perspective, and turned to the issue of whether or not long
run equilibria are cyclical (when the knife-edge condition is violated). Our
argument was developed, using a discrete-time version of an otherwise very
standard one-sector R&D-based model. Specifically, we demonstrated that the
rate of technological progress may exhibit an endogenous cycle, deterministic
or stochastic, in the long run, hence it is no longer pinned down by parameters
which are often considered to be exogenous. In the long run, public policy and
consumer preferences will affect productivity growth. Growth is re-endogenized
in our cyclical framework, and endogenous growth ceases to be a “knife-edge”
case in one-sector R&D-based models. Our “cyclical” approach makes endoge-
nous growth more probable in one-sector R&D-based models than previously

thought.

Appendix

This appendix shows that a divergent path towards g, = 0 contradicts perfect
foresight of private agents. Suppose that g; = 0 in the long run. This means

l1—a

that N = N; and L; = M;, which in turn imply Y; = N * L; from (8). These
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—l-a
also imply w; =w = aN ¢ from (9) and p;; = w¢/a. Moreover, since R; = 0,
we must have vy < % instead of (12). Making use of (10), this inequality

—_awL 1—s)w . .
means )7, fTIZE I < U0 which can be re-written as

1704Lt >

o N
N T=1

— S8

B+n) <=

(33)

For 8 (1 + n) > 1, this inequality does not hold. For 8 (1 + n) < 1, the inequality
is violated in finite time, since L; grows at a rate of n. This contradicts perfect
foresight, allowing us to rule out g; = 0 as a long-run equilibrium.
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Before R&D Subsidy Discount Factor Population Growth

Changes s=0.01 8 =1/1.0501 n = 0.0201
Example 1 | go | 0.0321 0.0302 (—) 0.0332 (1) 0.0309 (—)
(a=05) | ¢1 0.0237 0.0257 (+) 0.0227 (—) 0.0252 (+)
Example 2 | go 0.0430 0.0563 (+) 0.0533 (+) 0.0447 (+)
(a=07) | ¢ 0.0371 0.0241 (—) 0.0270 (—) 0.0358 (—)
Example 3 | go | 0.0251 0.0236 (—) 0.0263 (1) 0.0254 (+)
(a=09) | ;1 0.02220 0.0236 (+) 0.0210 (—) 0.02216 (—)

Table 1: The effects of parameter changes in period-2 cycles. "+" and "-" signs
indicate an increase and decrease following parameter changes.

E le 9 Before R&D Subsidy Discount Factor Population Growth
xampie Changes s=0.1 B =1/1.06 n = 0.022

gtar.ldz’?rd 3.2221 x 1075 | 3.0223 x 1075 (=) | 3.0486 x 10~ (=) | 3.2082 x 1075 (-)
eviation

Table 2: The effects of parameter changes on the standard deviation in a sto-
chastic growth cycle of Example 9. Each simulation involves 10100 iterations,
and each standard deviation is calculated using the last 10000 observations. "+"
and "-" signs indicate an increase and decrease following parameter changes.
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Figure 8: A steady state is indeterminate in the region Sink where
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