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Abstract

Recent research has reported that both the federal funds rate futures market and
the federal funds target contain valuable information for explaining the behavior of
the US effective federal funds rate. A parallel literature on interest rate modelling
has recorded evidence that the dynamics of interest rates displays significant regime-
switching behavior. In this paper we produce out of sample forecasts of the federal
funds rate at horizons up to 8 weeks ahead using linear and nonlinear, regime-switching
equilibrium correction models of the funds rate and employing both point and density
measures of forecast accuracy. We cannot discriminate among the models considered
in terms of point forecast accuracy. However, in terms of density forecast accuracy,
we find that the term structure model of the federal funds futures rate is significantly
better than the other models considered, and that regime-switching models provide a
substantial forecasting improvement relative to their linear counterparts and relative
to individual series of the futures rate.

JEL classification: E43; E47.
Keywords: federal funds rate; term structure of interest rates; forecasting; nonlinearity.
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1 Introduction

The importance of the effective federal funds rate in US financial markets is unquestionable. The

Federal Reserve (Fed) implements monetary policy by targeting the effective federal funds rate.

The ability of market participants to predict the federal funds rate is important to modern analyses

of monetary policy in that other interest rates are believed to be linked to the federal funds rate by

the market expectation of monetary policy actions that directly affect the funds rate. This paper

investigates the ability of three models to generate out-of-sample forecasts of the daily federal

funds rate over forecast horizons ranging from one to eight weeks.

We consider three alternative models of the federal funds rate. The first model is inspired

by the analysis of Taylor (2001), who demonstrates that the federal funds rate target contains

valuable information for explaining the behavior of the federal funds rate. Specifically, Taylor

shows that the funds rate responds to deviations of it from the Fed’s target. If the funds rate

responds relatively quickly to deviations from the funds rate target, this model might be expected

to forecast well at short horizons but less well at longer horizons.

Our second model incorporates information about the future federal funds rate that is reflected

in the term structure of the federal funds futures rate. There is a growing literature that suggests

that federal funds futures rates contain substantial information about future monetary policy

actions and therefore the future federal funds rate (e.g., Krueger and Kuttner, 1996; Kuttner,

2001; Poole, Rasche and Thornton, 2002).

Our intuition is that the first model may perform relatively well at short horizons given that

deviations of the funds rate from its target are relatively short lived, while the model based on

the term structure of the futures rates might perform better at longer horizons—up to the maturity

of the longer futures contract considered in the model. Hence, we consider a third model that

incorporates the information in both the federal funds rate target and the term structure of the

federal funds futures rates.

For all three models we motivate and estimate a vector equilibrium correction (VECM) to

capture the equilibrium and dynamics of the relationship between the federal funds rate and the

predictor variables. Our approach is distinctive in that we consider both linear and nonlinear,

regime-switching VECMs based on the three specifications described above in order to generate
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out-of-sample forecasts of the federal funds rate. Our consideration of regime-switching models

is motivated by a recent strand of the empirical literature (e.g., Garcia and Perron, 1996; Gray,

1996; Ang and Bekaert, 2002) that provides convincing evidence that explicit modelling of regime

switches in interest rates may be key to produce satisfactory statistical fit of interest rates data.

Whether allowing for nonlinearities in the underlying data-generating process for the federal funds

rate yields superior federal funds rate forecasts is investigated using a fairly general three-regime

Markov-switching vector equilibrium correction model (MS-VECM). To the best of our knowl-

edge, this paper represents the first application of Markov-switching in a multivariate cointegrated

framework to interest rate modelling and forecasting.

Using daily data since 1990, we first provide confirmatory evidence that each of the federal funds

rate target and the term structure of the federal funds futures rates contain valuable information to

explain a substantial fraction of movements in the federal funds rate in a linear VECM framework.

However, we show that a conventional linear VECM displays significant residual nonlinearity and

is easily rejected when tested against the alternative of an MS-VECM.

We then compare the performance of the models considered in an out-of-sample forecasting

exercise, where each linear and nonlinear model is tested against each other as well as against

the simple futures rate time series, for forecast horizons up to 8 weeks.1 The evaluation of the

relative performance of the competing models is based on conventional statistical criteria for point

forecasting performance as well as on the ability of the models to forecast the true predictive

density of federal funds rate out of sample.2 We argue that density forecasting accuracy is more

appropriate for evaluating the competing models because the federal funds rate is not normally

distributed and because we are considering nonlinear models consistent with non-normal densities

(see, inter alia, Diebold, Gunther and Tay, 1998; Granger and Pesaran, 1999; Timmerman, 2000).

To anticipate our forecasting results, we find that all models appear to produce equally good

point forecasts of the federal funds rate in that none of the models can be rejected against any of the

others and against the simple time series of the futures rate. Nevertheless, our density forecasting

1Under the market efficiency hypothesis, the federal funds futures rate is the optimal predictor of the future
federal funds rate.

2By true predictive density of the data we mean the density of the data estimated over the chosen forecast period.
Therefore, no forecast is in fact carried out in this case, and the term ‘predictive’ simply refers to the fact that the
density in question is not estimated over the full sample but only over the forecast period.
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results suggest that models based on the term structure of the federal funds futures rate are the

best forecasting models of the funds rate and that nonlinear VECMs provide sizable forecasting

improvements relative to their linear counterparts. Furthermore, both linear and nonlinear term

structure models outperform the simple futures rate time series in terms of density forecasting

performance.

The remainder of the paper is set out as follows. In Section 2 we motivate our empirical

framework for modelling and forecasting the federal funds rate using the information contained

in the federal funds rate target and in the term structure of the federal funds futures rates. In

Section 3 we briefly set out the econometrics of Markov-switching multivariate models as applied

to nonstationary processes and cointegrated systems. In the following section we describe the data

and discuss some of the key features of the federal funds rate and federal funds futures markets.

In Section 5, we report our modelling and testing results, while in the following section we report

and discuss our forecasting results. A final section concludes.

2 The information in the federal funds rate target and in
the term structure of the federal funds futures rate

In this section we consider alternative ways of modelling the US effective federal funds (FF) rate.

The first specification is based on the relationship between the FF rate and the official FF rate

target. Let st and sTt be, respectively, the FF rate and the FF rate target on date t. If the

Fed uses open market operations to keep the FF rate close to the FF rate target, a logical way to

model daily movements in the FF rate is to assume that

∆st = constant+ θdt−1 + error term, (1)

where ∆ is the first-difference operator; dt = (st − sTt ); and θ < 0 governs the speed at which

the FF rate responds to deviations from the FF rate target. Assuming that both st and sTt are

better characterized as unit root or I(1) processes, this then implies that st and sTt cointegrate

with a cointegrating vector [1,−1]. In turn, by the Granger Representation Theorem (Engle and

Granger, 1987), the dynamic relationship between the FF rate and the FF rate target must be

characterized by an equilibrium correction model where the FF rate responds to lagged deviations
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of the FF rate from the target, which plays the role of the equilibrium correction term. This

equilibrium correction model may therefore take the form of equation (1) or a more general variant

of it which also includes lags of the change in the FF rate and the FF rate target as right-hand-side

variables.3

Taylor (2001) suggests that the Trading Desk of the Federal Reserve Bank of New York (here-

after Desk) strives to keep the FF rate close to its target level. Hence, equation (1) can be thought

of as the Desk’s reaction function. Taylor argues that the adjustment to departures of the federal

funds rate from its target is not full at daily frequency, which implies −1 < θ ≤ 0.4 However, the

usefulness of the funds rate target for forecasting the funds rate in a VECM depends not only on

the equilibrium correction term but also on the dynamic relationship between the funds rate and

the funds rate target.

The second model we consider relies on information contained in federal funds futures rates.

Define fht the FF futures rate at time t for a contract maturing in month h. The pre-tax profits

for an investor long in federal funds contracts purchased on date t for delivery in month h is given

by:

πht = fht −
1

M

MX
i=1

st+Mh+(M−t)−i+1, (2)

where πht denotes the pre-tax profits at the maturity of the futures contracts; M is the number of

calendar days in month h; and 1
M

PM
i=1 st+Mh+(M−t)−i+1 is the settlement price based on month

h’s average effective FF rate.5

3As discussed in our empirical analysis below, using standard unit root test statistics, we found clear evidence
that both the FF rate and the FF rate target are first-difference stationary, supporting the stylized fact that interest
rates are I(1) processes (e.g., Stock and Watson, 1988, 1999). There is, however, an apparent conflict between
conventional economic and finance theory, which often assumes that interest rates are stationary processes (e.g.,
see the vast finance literature assuming a Vasicek (1977) model of interest rates, which is simply a mean-reverting
process representable as an Ornstein-Uhlenbeck equation) and the mainstream empirical literature on interest rates,
which (at least since Engle and Granger, 1987) either assumes or finds that interest rates are nonstationary processes.
In our discussion in this section and in our empirical work below, we follow the empirical practice because very
persistent series with a root very close to unity are better approximated by I(1) processes than by stationary ones
(see, for example, Stock, 1997, and the references therein).

4Thornton (2001) offers a different motivation for the Desk’s behavior. Specifically, he suggests that the Desk
frequently uses the funds rate as an indicator of reserve demand, which is difficult to estimate. While Thornton’s
motivation for the Desk’s behavior differs from Taylor’s, the implication is the same: deviations of the funds rate
from the funds rate target induce changes in reserve supply that tend to push the funds rate towards the funds rate
target. Thornton provides evidence that is consistent with either interpretation.

5On the microstructure of the FF futures market, see, inter alia, Carlson, McIntire and Thomson (1995), Krueger
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The rational expectations efficient market hypothesis implies the absence of arbitrage oppor-

tunities, so that Etπ
h
t = 0. Imposing this no-arbitrage condition yields:

6

fht = Et

"
1

M

MX
i=1

st+Mh+(M−t)−i+1

#

=
1

M

MX
i=1

Etst+Mh+(M−t)−i+1. (3)

Assuming that each of the effective FF rate and FF futures rate is I(1)7, the possibility that

these two rates cointegrate is suggested by rearranging equation (2) as follows:

fht − st =
1

M

"
MX
i=1

Etst+Mh+(M−t)−i+1 −Mst

#

=
1

M

MX
i=1

Et

¡
s
t+Mh+(M−t)−i+1 − st

¢
. (4)

Since
¡
s
t+Mh+(M−t)−i+1 − st

¢
is stationary for all i = 1, . . . ,M if st is I(1), the right-hand-side

of equation (4) is stationary. Thus, it follows that the left-hand-side of equation (4) must also

be stationary, which implies that fht and st cointegrate with a cointegrating vector
h
1 −1

i0
.

Because this is true for any h, we consider the vector [st, f1t , f
2
t , f

3
t , ....f

m
t ]

0. Hence, there must

be m unique cointegrating vectors, each given by a row of the matrix [−ι, Im], where Im is an

m-dimensional identity matrix and ι is an m-dimensional column vector of ones. Further, by the

Granger Representation Theorem (Engle and Granger, 1987) the same set of FF and FF futures

rates must possess a vector equilibrium correction representation in which the term structure of the

deviations of the futures FF rates from the FF rate (say the futures premia) play the part of the

equilibrium errors. We exploit this framework by estimating a VECM to extract the information

in the term structure of FF futures rates for the purpose of forecasting the FF rate.

Note that, under the market efficiency hypothesis, the FF futures rate should predict optimally

the FF rate (see Kuttner, 1996, 2001). In some sense, therefore, the existence of a VECM for

the FF rate and the FF futures rate implies that there is a wedge between the FF futures rate

and Kuttner (1996), Furfine (1999) and Kuttner (2001); see also Stigum (1990).
6Differently from Kuttner (2001), for clarity of exposition we do not explicitly consider the premium accruing to

investors long in the spot-month futures contract in this section of the paper.
7 See footnote 3.
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and the expected FF rate that may be due, for example, to constant or time-varying risk premia

or to departures from the rational expectations hypothesis that underlies the market efficiency

hypothesis.

A third model (Model III) we consider incorporates both the information in the FF rate target

and the information in the term structure of FF futures rates. If the FF rate target and the

term structure of futures rates each contain independent information valuable for forecasting the

FF rate, the third model should produce better modelling and forecasting results relative to either

Model I or Model II. Finally, we consider both linear and nonlinear (regime-switching) variants

of Models I to III.

3 Markov-switching equilibrium correction

In this section, the econometric procedure employed in order to model regime shifts in the dynamic

relationships represented in all three models is outlined. The procedure essentially extends Hamil-

ton’s (1988, 1989) Markov-switching framework to nonstationary systems, allowing us to apply it

to cointegrated vector autoregressive (VAR) and VECM systems (see Krolzig, 1997, 1999).

Consider the following Q-regime p-th order Markov-switching vector autoregression (MS(Q)-

VAR(p)) which allows for regime shifts in the intercept term:

yt = ν(zt) +
Pp

i=1Πiyt−i + εt, (5)

where yt is a K-dimensional observed time series vector, yt = [y1t, y2t, . . . , yKt]
0; ν(zt) is a K-

dimensional column vector of regime-dependent intercept terms, ν(zt) = [ν1(zt), ν2(zt), . . . , νK(zt)]0;

the Πi’s are K × K matrices of parameters; εt = [ε1t, ε2t, . . . , εKt]
0 is a K-dimensional vector

of Gaussian white noise processes with covariance matrix Σ, εt ∼ NID(0,Σ). The regime-

generating process is assumed to be an ergodic Markov chain with a finite number of states

zt ∈ {1, . . . , Q} governed by the transition probabilities pij = Pr(zt+1 = j | zt = i), and
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PQ
j=1 pij = 1 ∀i, j ∈ {1, . . . ,Q}.8

A standard case in economics and finance is that yt is nonstationary but first-difference sta-

tionary, i.e. yt ∼ I(1). Then, given yt ∼ I(1), there may be up to K − 1 linearly independent
cointegrating relationships, which represent the long-run equilibrium of the system, and the equi-

librium error (the deviation from the long-run equilibrium) is measured by the stationary stochastic

process ut = α0yt − β (Granger, 1986; Engle and Granger, 1987). If there is cointegration, the

cointegrated MS-VAR (5) implies a Markov-switching vector equilibrium correction model (MS-

VECM) of the form:

∆yt = ν(zt) +
Pp−1

i=1 Γi∆yt−i +Πyt−1 + εt, (6)

where Γi = −
Pp

j=i+1Πj are matrices of parameters, and Π =
Pp

i=1Πi − I is the long-run impact
matrix whose rank r determines the number of cointegrating vectors (e.g. Johansen, 1995).9 For

expositional purposes we have only presented the MS-VECM framework for regime shifts in the

intercept alone; however, the procedure can easily be extended to regime shifts elsewhere.

For Model I yt = [st, s
T
t ]
0, one unique cointegrating relationship should exist. Federal funds

futures contracts from 1 through 5 months were initially considered for Model II. However, FF

futures rates for contracts longer than 2 months did not appear to have any incremental information

over the information contained in 1- and 2-month contracts. Hence, we decided in favor of a

parsimonious model where yt = [st, f
1
t , f

2
t ]
0. Model III combines Model I and Model II, so that

yt = [st, s
T
t , f

1
t , f

2
t ]
0.

We consider both linear and regime-switching versions of these VECMs for each model. As

discussed in Section 5.3 below, after considerable experimentation, we selected a specification of

the MS-VECM that allows for regime shifts in the intercept as well as in the variance-covariance

matrix. This model, the Markov-Switching-Intercept-Heteroskedastic-VECM or MSIH-VECM,

8To be precise, zt is assumed to follow an ergodic Q-state Markov process with transition matrix

P =


p11 p12 · · · p1Q
p21 p22 · · · p2Q
...

...
. . .

...
pQ1 pQ2 · · · pQQ

 ,
where piQ = 1− pi1 − . . .− piQ−1 for i ∈ {1, . . . ,Q}.

9 In this section it is assumed that 0 < r < K, implying that yt is neither purely difference-stationary and
non-cointegrated (i.e. r = 0) nor is a stationary vector (i.e. r = K).
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may be written as follows:

∆yt = v (zt) +

p−1X
i=1

Γi∆yt−i +Πyt−1 + ut, (7)

where Π = αβ0, ut ∼ NIID(0,Σ(zt)) and zt ∈ {1, . . . , Q}.
An MS-VECM can be estimated using a two-stage maximum likelihood procedure. In the

first stage, Johansen’s (1988, 1991) maximum likelihood cointegration procedure is employed in

order to determine the number of cointegrating relationships in the system and to estimate the

cointegration matrix. Use of the conventional Johansen procedure is legitimate without modelling

the Markovian regime shifts explicitly (see Saikkonen, 1992; Saikkonen and Luukkonen, 1997). In

the second stage, an expectation-maximization (EM) algorithm for maximum likelihood estimation

is implemented to obtain estimates of the remaining parameters of the model (Dempster, Laird

and Rubin, 1977; Hamilton, 1990; Krolzig, 1999).

4 The federal funds rate, the target, and the futures market:
discussion and data issues

The data set consists of daily observations on st, sTt , and f jt for j = 1, 2. The FF rate, st is a

weighted average of the rates on federal funds transactions of a group of federal funds brokers who

report their transactions daily to the Federal Reserve Bank of New York. Federal funds are deposit

balances at Federal Reserve banks that institutions (primarily depositories, e.g. banks and thrifts)

lend overnight to each other. These deposit balances are used to satisfy reserve requirements of

the Federal Reserve System.10 f jt is the rate on a federal funds futures contract with maturity j,

traded on the Chicago Board of Trade (CBT). Futures contracts are designed to hedge against

or speculate on the effective FF rate. The CBT offers contracts on the FF rate at a variety of

maturities; however, the most active contracts are current month and a few months into the future.

The contracts are marked to market on each trading day, and final cash settlement occurs on the

first business day following the last day of the contract month. The FF rate was obtained from

the Federal Reserve Bank of St. Louis database, Federal Reserve Economic Data (FRED). The

FF rate target was taken from Thornton and Wheelock (2000, Table B1). The FF futures rates

10For a discussion of the Federal Reserve’s reserve requirements, see, for example, Taylor (2001).
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were obtained from the CBT.

The sample period spans from January 2 1990 through December 29 2000, a total of 2, 869

observations. This period was chosen mainly for two reasons. First, while the Fed has never

explicitly stated when it began targeting the federal funds rate in implementing monetary policy,

an emerging consensus view is that the Fed has been explicitly targeting the funds rate since at

least the late 1980s.11 12 Second, while the FF futures market has existed since October 1988,

trading activity in this market was initially small. To insure against the possibility that the

empirical analysis would be affected by the thinness of the FF futures market during the early

years of its operation, we decided to begin the sample in January 1990.

It is important to note that the Fed made two procedural changes in 1994 that may have

affected the market’s ability to predict the FF rate target. First, in February 1994 the Fed began

the practice of announcing FF rate target changes immediately upon making them. Prior to that,

target changes were not announced. Consequently, the market had to infer the Fed’s actions by

observing open market operations and the FF rate (e.g., Cook and Hahn, 1989; Rudebusch, 1995;

Taylor, 2001; Poole, Rasche, and Thornton, 2002). Second, in 1994 the FOMC began the practice

of changing the funds rate target primarily at regularly scheduled FOMC meetings.13 Prior to

that, most target changes were made during the inter-meeting period and at the discretion of the

Chairman. We allow for these procedural changes by including a dummy variable for the 1994

procedural break.

Since in this paper we are mainly interested in the predictive power of alternative time series

models, we estimate each model considered over the period January 2 1990 through December 29

1995 and generate forecasts over the remaining five years of data.

11See, for example, Meulendyke (1998), Hamilton and Jordá (2001), Poole, Rasche and Thornton (2002).
12Also, since October 1989, the Fed has followed the practice of changing the funds rate target by either 25 or

50 basis points, whereas the previous practice involved making target changes of various amounts. (There was one
exception: on October 15 1994 the Fed raised the funds rate target by 75 basis points.)
13 In fact, during our sample period, with two exceptions, the FF rate target was changed at regularly scheduled

FOMC meetings. The exceptions occurred on April 18 1994 and October 15 1998.
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5 Empirical results14

5.1 Preliminary data statistics, unit root and cointegration tests

Table 1 presents summary statistics and the results of unit root tests for the series of interest in

this paper. The summary statistics reported in Panel a) of Table 1 show that all four rates display

very similar values for the mean, variance, skewness and kurtosis. Indeed, an examination of the

third and fourth moments indicates the existence of both excess skewness and kurtosis, suggesting

that the underlying distribution of each of these time series appears to be non-normal. This is

clearly confirmed by the strong rejections of the Jarque-Bera test for normality reported in the

last row of Panel a).15

Before presenting the estimates of the VECMs, the results of preliminary unit root and cointe-

gration tests are presented. Tests for a unit root in each of st, sTt , f
1
t and f

2
t are reported in Panel

b) of Table 1. The standard augmented Dickey-Fuller (ADF) test does not enable us to reject the

unit root null hypothesis for any of the four rates.16 Moreover, differencing the series appears to

induce stationarity, confirming that each of the time series examined is an I(1) process.

The results of the Johansen (1988, 1991) maximum likelihood procedure for testing for coin-

tegration for each of the three models are summarized in Table 2. Consistent with our priors,

discussed in Section 2, the Johansen likelihood ratio test statistics (based on the maximal eigen-

value and on the trace of the stochastic matrix) indicate that there is one cointegrating vector in

Model I, two cointegrating vectors in Model II, and three cointegrating vectors in Model III.17

Tests of the over-identifying restrictions on the β0 matrix of cointegrating coefficients are re-

ported in Panel b) of Table 2. The results indicate that the unity restrictions implied by the

framework described in Section 2 could not be rejected at conventional levels of significance for

14 In all statistical tests executed in this and subsequent sections, we use a five percent nominal significance level,
unless otherwise specified.
15 Indeed, nonparametric estimation of the density of the FF rate clearly shows that there are three modes, in

addition to excess skewness and kurtosis. These features of the higher moments are also present in funds rate
changes.
16The lag length was chosen to be the number of lags such that no residual autocorrelation was evident in the

auxiliary regressions. However, using non-augmented Dickey Fuller tests or augmented Dickey-Fuller tests with
any number of lags in the range from 1 to 10 yielded qualitatively identical results. See also footnote 3.
17We allowed for a maximum lag length of five and chose, for each model, the appropriate lag length on the basis

of conventional information criteria. However, the cointegration results were found to be robust when using any
number of lags in the range between one and five. In each VAR, we allowed for a unrestricted constant term.
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any of the cointegrating relationships.

5.2 Linear VECM estimation results and linearity testing

Next, we estimate a standard linear VECM of the form

∆yt = ν +
Pp−1

i=1 Γi∆yt−i +Πyt−1 + ut (8)

using full-information maximum likelihood (FIML) methods for each of Models I-III over the sam-

ple period January 1990-December 1995. We set p = 1, as suggested by the Akaike Information

Criterion, the Schwartz Information Criterion and the Hannan-Quinn Criterion. A dummy vari-

able is included in the equilibrium correction term to account for the 1994 procedural change

discussed in Section 4. The dummy variable equals zero until 1994 and unity thereafter. The

results, reported in Table A1 in Appendix A, suggest that the dummy is not statistically significant

in Model II, so it was dropped from that model in the final estimation. However, the dummy is

significant in Models I and III.18 The incremental value of the adjustment parameters due to the

dummy is negative, indicating that the FF rate adjusts more rapidly towards the equilibrium level

determined by the FF rate target after the Fed began the practice of announcing publicly changes

in the FF rate target upon making them in 1994.

An analysis of the residuals, presented in Table A1 in Appendix A, shows that none of the

models exhibit significant residual serial correlation. All three models perform reasonably well in

sample. The largest adjusted coefficient of determination (R
2
) in the estimated VECMs is always

for the FF rate equation, with values of 0.35, 0.28, and 0.35 for Models I, II and III respectively.

While these estimates are rather similar, it appears that the models that include the FF rate target

(namely Models I and III) explain slightly more of the variation in the FF rate than models based

on the term structure of the FF futures rates. In light of the finding that there is little difference in

the estimates of the R
2
for Models I and III and that the estimate of the R

2
for Model II is smaller

than that of the other two models, one might be tempted to conclude that futures rates may not

have incremental information over the FF rate target. There are two reasons to be cautious,

however. First, in-sample fit is not necessarily a good indicator of out-of-sample predictive power.

18 In particular, in Model III the dummy was significant only for the equilibrium correction term involving the
target rate sTt . In fact, in the final estimation this is the only dummy considered.
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Second, because they do not take into account moments higher than the second in evaluating the

ability of a model to explain a particular variable, standard goodness-of-fit measures such as the

R
2
are less reliable in the presence of non-normally distributed variables.

Ramsey’s (1969) RESET test was also applied to the residuals from the three estimated linear

VECMs. The results, reported in Table A1 in Appendix A, reveal evidence that each of the linear

VECMs fails to capture statistically significant nonlinearities in the unknown data generating

process driving the FF rate. Furthermore, the Jarque-Bera tests also indicate that the residuals

from the linear VECMs are highly non-normal, suggesting that these linear VECMs fail to capture

the intrinsic non-normality of the FF rate.19

5.3 MS-VECM estimation results

We account for nonlinearities in the data by estimating a Markov-switching model of the form:

∆yt − δ (zt) = α
£
β0yt−1 − µ (zt)

¤
+

p−1X
i=1

Γi [∆yt−i − δ (zt)] + ωt, (9)

where ∆yt is defined as before for each of Models I-III; δ (zt) is the regime-dependent vector

of means of the short-run dynamics; and µ (zt) is the regime-dependent vector of means of the

long-run equilibrium relationships.

The conventional ‘bottom-up’ procedure was applied. This procedure is designed to detect

Markovian shifts in order to select the most adequate characterization of a Q-regime p-th order

MS-VECM for ∆yt.20 The VARMA representations of the series (see Poskitt and Chung, 1996;

and Krolzig, 1997) suggested in each case that there are between two and three regimes. The

linearity test, reported in the first column of Table A2 in Appendix A, indicates the rejection

of the linear VECM in favor of a nonlinear alternative model. An analysis of the in-sample

19We also tested, in Model II, whether the futures rates’ implicit funds rate forecasts are unbiased, which would
imply market efficiency. Market efficiency also implies that the changes in the futures rates are unpredictable, so
that the coefficients on lagged differences and the equilibrium correction term in the futures rate equation should
be zero under market efficiency. However, we strongly rejected market efficiency at conventional significance levels
(results not reported to conserve space but available upon request).
20Essentially, the bottom-up procedure consists of starting with a simple but statistically reliable Markov-switching

model by restricting the effects of regime shifts on a limited number of parameters and testing the model against
alternatives. In such a procedure, most of the structure contained in the data is not attributed to regime shifts,
but explained by observable variables, consistent with the general-to-specific approach to econometric modelling.
For a comprehensive discussion of the bottom-up procedure, see Krolzig (1997).
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and out-of-sample performance of the nonlinear counterparts of the linear VECMs I, II and III

(discussed in detail below) revealed that Model II was the best in terms of both in-sample and

out-of-sample forecasting performance. Consequently, to conserve space only the results for Model

II are reported in Table A3 (Appendix A).21

For all of models considered, the assumption that the regime shifts affect only the intercept term

of the VECM was found to be inappropriate. A check for conditional homoskedasticity by estimat-

ing an MS-VECM where the innovation is allowed to be regime-dependent, εt ∼ NID(0,Σ(zt)),

yielded evidence of regime dependence. The hypothesis of no regime dependence in the variance-

covariance matrix was tested using a likelihood ratio (LR) test of the type suggested by Krolzig

(1997, p. 135-6), in addition to constructing an LR test for the null hypothesis of no regime depen-

dent intercept. The results indicated strong rejection of the null of no regime dependence, sug-

gesting that an MS-VECM that allows for shifts in both the intercept and the variance-covariance

matrix, MSIH-VECM(p), is the most appropriate model within its class for this application.

To determine the order of the MSIH-VECM(p) we tested the null of an MSIH-VECM(1) against

the alternative of an MSIH-VECM(p). The results, reported in the second column of Table A2

(Appendix A), show that we are unable to reject the null hypothesis. Consequently, it appears

that a first-order specification is sufficient to characterize the dynamics between the FF rate and

the FF futures rates.

Finally, in order to discriminate between models allowing for two regimes against models gov-

erned by three regimes the upper bound LR test of Davies (1987) was constructed. The results,

reported in the last column of Table A2 (Appendix A), suggest that three regimes may be appro-

priate.22 Therefore, we allowed for three regimes.

It is instructive to note that model (9), where the regime shifts occur in the drift of the VECM

as well as the equilibrium mean of the cointegrating relationships, can be equivalently represented

by means of an MSI-VECM.23 Hence, the MS-VECM, governed by three different regimes, can
21The results of the other MS-VECMs are available upon request.
22 It is important to note here that the regularity conditions under which the Davies (1987) test is valid are

violated, since the Markov model has both a problem of nuisance parameters and a problem of ‘zero score’ under
the null hypothesis. Therefore, the distribution of the LR test is likely to differ from the adjusted χ2 distribution
proposed by Davies (1987). For extensive discussions of the problems related to LR testing in this context, see
Hansen (1992, 1996) and Garcia (1998). We are thankful to Bruce Hansen for clarifying several econometric issues
related to LR testing in the present context.
23 In order to recognize the shifts in the drift of the VECM separately from the ones occurring in the long-
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be written as follows:

∆yt = v (zt) +Πyt−1 +
p−1X
i=1

Γi∆yt−i + ωt, (10)

where Π = αβ0, ωt ∼ NIID(0,Σ(zt)) and zt = 1, 2, 3. In Table A3 in Appendix A, we report

the final MSIH-VECM estimation results for Model II. The estimation yields fairly plausible

estimates of the coefficients, including the adjustment coefficients in α, which were generally found

to be statistically significantly different from zero.24 25 Also, the RESET test for the null of

no misspecification and the Jarque-Bera test for the null of normality of the residuals suggest

non-rejection in each case. Hence, the MSIH-VECM appears to have captured some important

features of the unknown data generating process driving the FF rate.

It is difficult to give a precise interpretation to the three regimes identified by the MSIH-VECM.

Shifts from one regime to another are due largely to shifts in the variance of the term structure

equilibrium—shifts in the intercepts were found to be smaller in magnitude, albeit statistically

significant. One possibility is that regimes are capturing a time-varying risk premium that reflects

a departure from the no-arbitrage condition defined in Section 2.

We now turn to our forecasting results.

term equilibrium mean, consistent with the standard theoretical literature on multiple cointegrated time se-
ries, it is possible to decompose the shifts in the intercept term v (zt) into changes in the drift of the system
δ (zt) = β⊥

¡
α0⊥β⊥

¢−1
α0⊥v (zt) (⊥ denoting the orthogonal complement) and the equilibrium mean µ (st) =

− (β0α)−1 [β0v (zt)].
24 Investigation of the estimated smoothed transition probabilities (not reported to conserve space) for the different

regimes indicated that, in general, all of the three regimes seem to be important in that they characterize a substantial
fraction of the joint movements of the FF rate and the term structure of futures rates.
25We also examined graphs of standardized residuals, the smoothed residuals and the one-step prediction errors for

each estimated MSIH-VECM. The difference is concerned with the weighting of the residuals. Loosely speaking, the
smoothed residuals are the closest to the sample residuals from a linear regression model; however, they overestimate
the explanatory power of the Markov-switching model due to the use of the full-sample information covered in the
smoothed regime vector. The standardized residuals are conditional residuals. The one-step prediction errors are
based on the predicted regime probabilities. Unfortunately, many conventional diagnostic tests, such as standard
residual serial correlation tests, may not have their conventional asymptotic distribution when the residuals come
from Markov-switching models and are therefore not reported here. However, the graphs of standardized residuals,
the smoothed residuals and the one-step prediction errors provided no visual evidence of residual serial correlation
in any of the residuals series plotted. See, for example, Krolzig (1997) for a discussion of residual-based model
checking in this context.
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6 Out-of-sample forecasting results

6.1 Linear VECM forecasting results

The predictive ability of our linear and nonlinear models is investigated by calculating up to forty

steps-ahead (one to eight weeks ahead) forecasts using each of the linear models over the period

January 1996-December 2000. The out-of-sample forecasts for a given horizon are constructed

recursively. That is, the forecasts are conditional only upon information available up to the date

of the forecasts because the model is re-estimated as the date on which forecasts are conditioned

moves.

The forecasting results for the linear VECMs are summarized in Table 3. The ability of the

linear VECMs to produce accurate point forecasts of the FF rate is evaluated using several criteria.

Panels a) and b) of Table 3 show the difference between the mean absolute errors (MAEs) and

mean square errors (MSEs) for each of the estimated models compared to the remaining two.

Further, in order to assess the accuracy of forecasts derived from two different models we employ

the Diebold and Mariano (1995) test:

DM =
dq
2π bf(0)

T

(11)

where d is an average (over T observations) of a general loss differential function and bf (0) is
a consistent estimate of the spectral density of the loss differential function at frequency zero.

Diebold and Mariano show that the DM statistic is distributed as standard normal under the null

hypothesis of equal forecast accuracy. The loss differential function we consider is the difference

between the (absolute and square) forecast errors. A consistent estimate of the spectral density at

frequency zero bf (0) is obtained using the method of Newey and West (1987), where the optimal
truncation lag has been selected using the Andrews (1991) AR(1) rule.26

On the basis of MAEs and MSEs, Model II seems to underperform (produces higher MAEs and

MSEs) relative to the other two alternative models across the forecast horizons considered (5, 10,

26The rule is implemented as follows: we estimated an AR(1) model to the quantity dt obtaining the autocorre-
lation coefficient bρ and the innovation variance from the AR(1) process bσ2. Then the optimal truncation lag A for

the Parzen window in the Newey-West estimator is given by the Andrews rule A = 2.6614
hbζ (2)Ti1/5 where bζ (2)

is a function of bρ and bσ2. The Parzen window minimizes the mean square error of the estimator (Gallant, 1987, p.
534).
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20 and 40 steps ahead, that is 1, 2, 4 and 8 weeks ahead). However, the results of the Diebold-

Mariano test of the null hypothesis of equal forecast accuracy indicate that the null hypothesis

cannot be rejected for any pair of models. Hence, the differences in terms of MAEs and MSEs

reported in Table 3 are not statistically significant.27

The results suggest that the FF rate target and the term structure of FF futures rates have

equal predictive power in forecasting the FF rate. This suggests that a more stringent criterion

may be necessary in order to differentiate between the forecasting ability of competing models.

Given that the FF rate appears to be non-normal it seems reasonable to evaluate the ability of the

competing models to forecast the FF rate out of sample in terms of predictive density. Hence,

we investigate which model provides the predictive density that is closest to the true predictive

density of the data over the sample period used to perform the out-of-sample forecasting exercise.

A large body of literature in financial econometrics has recently focused on evaluating the

forecast accuracy of models on the basis of density forecasting performance (see, inter alia, Diebold,

Gunther and Tay, 1998; Diebold, Hahn and Tay, 1999; Granger and Pesaran, 1999; Timmerman,

2000). In general, this line of research has produced several methods either to measure the

closeness of two density functions or to test the hypothesis that the predictive density generated

by a particular model corresponds to the true predictive density. However, these tests do not

allow us to test directly the null hypothesis of equal density forecast accuracy between competing

models.

In order to test formally the null hypothesis of equal density forecast accuracy between the

competing linear models, we employed the η test recently proposed by Sarno and Valente (2002).

The η test is similar in spirit to the test suggested by Diebold and Mariano (1995) but it involves

27Several problems may arise using DM statistics in small sample as well as taking into account parameter
uncertainty (see also West, 1996; West and McCracken, 1998; and McCracken, 2000). In our case, where we are
dealing with nested competing forecasting models - some of which in the next subsection are nonlinear - and with
multi-step-ahead forecasts, the asymptotic distribution of the DM statistic is non-standard and unknown. Therefore,
the marginal significance levels reported below should be interpreted with caution. Clark and McCracken (2001)
derive the asymptotic distributions of two standard tests in this context for one-step-ahead forecasts from nested
linear models. Their results are, unfortunately, not directly applicable to our case because we are dealing with
multi-step-ahead forecasts from nested models, and because one of the competing models is a Markov-switching
model. Our case is one for which the asymptotic theory of the DM statistic is unknown at the present time.
A possible solution involves calculating the marginal significance levels by bootstrap methods using a variant of
the bootstrap procedure proposed by Kilian and Taylor (2001), although this procedure is computationally very
demanding and it is unknown whether it is valid in the context of MS-VECMs.

17



the analysis of the whole predictive density instead of point forecasts.28 This test statistic is

constructed as follows:

η =
dqcσ2
B

, (12)

where d = 1
B

PB
j=1 d

j = 1
B

PB
j=1

³dISDj

1 − dISDj

2

´
is an average (over j = 1, ..., B bootstrap

replications) of the difference between two estimated integrated square differences, dISDj

1 anddISDj

2; dISDj

1 is the integrated square difference between a generic modelM1 and the true predictive

density, and dISDj

2 is the integrated square difference between a generic model M2 and the true

predictive density; cσ2 is a consistent bootstrap estimate of the variance of the difference d.29

Under general conditions, the η test is asymptotically distributed as standard normal under the

null hypothesis that the two competing models M1 and M2 have equal density forecast accuracy.

The results from applying the η test to our linear VECMs, reported in the last section of Table

3, are in sharp contrast to those obtained using standard out-of-sample statistics that only consider

point forecast accuracy. For every forecast horizon, Model II produces the best density forecasts,

with the null hypothesis of equal density forecast accuracy being rejected with p-values of virtually

zero. Hence, while it is not possible to discriminate between the linear forecasting models in terms

of their point forecasting performance, Model II emerges clearly as the best forecasting model of

the FF rate in terms of density forecasting. Before providing potential explanations of this finding,

we examine the forecasting performance of the MS-VECMs.

6.2 MS-VECM forecasting results

In order to evaluate the usefulness of allowing for nonlinearities and measure the gain from using a

nonlinear model, we used MS-VECMs to produce dynamic out-of-sample forecasts of the FF rates

up to forty steps ahead (eight weeks ahead) over the period January 1996-December 2000. We first

attempt to discriminate between the three MS-VECMs. We then compare the best MS-VECM

to each of the linear VECMs estimated in the previous section in order to identify the overall best

28See Appendix B for details on the calculation and the properties of the η-test.
29The estimated integrated square difference dISD =

R hbφ (x)− bγ (x)i2 dx is obtained by estimating the density
functions φ and γ by means of the Gaussian kernel estimator.
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forecasting model of the FF rate. Finally, we compare the best linear and nonlinear models to

the futures rate time series, which would be the optimal predictor under market efficiency.

It is well known in the literature that forecasting with nonlinear models raises special problems.

We therefore adopt a very general forecasting procedure based on Monte Carlo integration which

is capable of producing forecasts virtually identical to analytical forecasts for a wide range of

models. In particular, we forecast the out-of-sample path for the FF rate using Monte Carlo

simulations calibrated on our estimated MSIH-VECMs. The vector of Gaussian innovations is

set consistent with the estimated covariance matrices. The simulation procedure is repeated with

identical random numbers 10,000 times and the average of the 10,000 realizations of the sequence

of forecasts is taken as the point forecast. Since we use a large number of simulations, by the Law

of Large Numbers this procedure should produce results that are virtually identical to those which

would result from calculating the exact forecast analytically (see, inter alia, Brown and Mariano,

1984, 1989; Granger and Teräsvirta, 1993, chapter 8; Franses and van Dijk, 2000, chapters 3-4).

Again, the forecasts are evaluated in terms of both point and density forecasting performance.

The first two panels of Table 4 show the difference between MAEs and MSEs from each esti-

mated MS-VECM compared to the other two MS-VECMs. On the basis of these criteria, Model

II seems to outperform the other two nonlinear competing models across the forecasting horizons

considered. However, the results of the Diebold and Mariano (1995) test indicate that the null

hypothesis is rejected only when comparing Model II with Model III and using the MAE measure.

This suggests that a nonlinear model exploiting the information in the term structure of FF rates

performs better in out-of-sample point forecasting than a nonlinear model combining the term

structure of FF futures rates and the FF rate target.30 As was the case with the linear models,

in general, the differences in terms of MAEs and MSEs reported in Table 4 are not statistically

significant.

The last section of Table 4, however, suggests that the MSIH-VECM II significantly outperforms

the other two Markov-switching models in terms of density forecasting performance (using the η-

test), with p-values close to zero. This result is consistent with the outcome of the forecasting

30 In turn, this suggests that although there may be some independent information in the FF rate target and in
the term structure of FF futures rates, the incremental information in the FF rate target is not sufficiently large to
offset the loss of parsimony that occurs when the target is entered in the VECM.
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exercise using linear models. While we are not able to choose among competing models on the basis

of point forecasting criteria, we could do so on the basis of their density forecasting performance.

Once again, the model that uses only the information in the term structure of the FF futures rates

outperforms the alternative models.

Next, in order to quantify the gain from using a nonlinear model, we compare the out-of-sample

forecasts from the linear VECMs discussed in the previous section to the forecasts provided by

the best nonlinear model (i.e. MS-VECM II). Table 5 reports the difference between the MAEs

and MSEs for each of the estimated linear models compared to the MSIH-VECM II. On the basis

of these criteria, the MSIH-VECM II produces higher MAEs and MSEs than all the alternative

models across the various forecast horizons, but in no instance does the Diebold-Mariano test reject

the null of equal predictive accuracy.

However, the test of predictive density forecast accuracy, reported in the last section of Table

5, confirms the importance of the nonlinearities that are explicitly considered in the MSIH-VECM.

The null hypothesis is easily rejected in each case. More precisely, for each alternative model

and each forecast horizon, the MSIH-VECM II produces the best density forecasts, with the null

hypothesis of equal density forecast accuracy being rejected with p-values of virtually zero.

As a final exercise, we investigated whether the simple time series of the FF futures rate can

outperform the predictions embedded in the term structure of the FF futures rates at different

maturities. To this end, we compared the out-of-sample forecasting performance of the best linear

and nonlinear models, VECM II and MSIH-VECM II respectively, to the simple time series of the

FF futures rate at 1 and 2 months maturity. Again, the predictive performance was evaluated using

absolute and square differences between the predictions of the futures rates and the two competing

models at forecast horizons corresponding to the maturity of the FF futures rate (namely 4 and 8

weeks or 1 and 2 months respectively).

As the results in Table 6 show, both linear and nonlinear VECMs outperform the simple FF

futures rates across the forecast horizons examined in terms of mean errors. As before, the

differences were not statistically significant on the basis of the DM test. If one is concerned about

forecasting the whole predictive density, however, the term structure models—linear or nonlinear—

significantly outperform the simple FF futures rates at these forecast horizons.
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The results of our density forecasting exercises are summarized in Figures 1-2, which report

(for each forecast horizon considered) the true predictive density of the FF rate (in first difference)

over the forecast period together with the predictive densities implied by the three linear VECMs

reported in Table A1 and our preferred MS-VECM, based on the term structure of the FF futures

rates. For each of Figures 1 and 2 (which include 1, 2-, 4- and 8-week ahead forecasts), the

true predictive density of the FF rate data and the predictive densities of the forecasts from the

three linear VECMs are reported in the left panel. The right panel of Figures 1-2 show the true

predictive density of the FF rate data and the predictive densities from the best linear model

(Model II) and the best MS-VECM (MSIH-VECM (10)).

The differences in predictive density forecasting, largely due to excess kurtosis of the predictive

densities of the model forecasts, are apparent. The best performing model in terms of density

forecasting performance (closeness of a model’s predictive density to the true predictive density of

the data) is the regime-switching version of Model II.31 The second best model is the linear model

of the term structure. Hence, it appears that our ability to match reasonably well the predictive

density of the FF rate is due, in part, to the information in the term structure of FF futures rates.

The fact that the nonlinear model is statistically superior to the linear model, however, suggests

that it is also important to allow for regime shifts in the term structure VECM.

6.3 Summing up the forecasting results

These forecasting exercises suggest the following results. First, it is very difficult, if at all possible,

to discriminate between models of the FF rate target and models of the term structure of the FF

futures rates in terms of their predictive power using conventional point forecasting accuracy

criteria, such as mean (absolute or square) errors. The forecasts from several alternative (linear

and nonlinear) models could not be distinguished statistically from one another or from the simple

futures rate forecast on the basis of point forecasts (Table 6).

Second, it appears that one can discriminate statistically between these models on the basis

of their density forecasting performance. The evidence suggests that, by this criterion, the linear

(nonlinear) model based on the term structure of FF futures rates is the best forecasting model

31 In fact, the η-test results discussed earlier essentially confirm that the visual evidence provided by the right
panels of Figures 1-2 is significant in a statistical sense.

21



among the linear or nonlinear models considered.

Third, we find that the general MSIH-VECM (10) performs significantly better than the other

linear and nonlinear models considered (as well as the simple time series of the FF futures rates)

in terms of predicting the out-of-sample density of the FF rate. Indeed, the performance of the

linear term structure model was significantly improved by explicitly allowing for regime switches

in both the intercept and the variance-covariance structure of the VECM. This result suggests

that not only is the term structure of the FF futures rates important for capturing the behavior of

the funds rate, but also that the parametric formulation of the model is important in enhancing

the predictive power of the FF futures rates. The difference between the predictive density of the

term structure linear VECM and the term structure MS-VECM, graphed in Figures 1-2, clearly

quantifies the gain from estimating and forecasting from a nonlinear VECM rather than a linear

VECM.

7 Conclusion

In this paper we reported what we believe to be the first analysis of the federal funds rate, the

federal funds futures rate and the federal funds rate target in a multivariate Markov-switching

framework, and in particular we have applied that framework to forecast the future federal funds

rate. Our research was inspired by encouraging results previously reported in the literature on

the presence of nonlinearities (and particularly by the success of Markov-switching models) in the

context of interest rate modelling in general as well as by the relative success of the term structure

of federal funds futures rates and the federal funds rate target in explaining the behavior of the

federal funds rate.

Using daily data on the federal funds rate, the funds rate target and the 1- and 2-months

futures rates over the period January 1990 through December 1995, we found strong evidence of

the explanatory power of the term structure of futures rates and the funds rate target and of

the presence of nonlinearities in each of three models of the federal funds rate, which appeared

to be modelled well using a multivariate three-regime Markov-switching VECM that allows for

shifts in both the intercept and in the covariance structure. We then used this model to forecast

dynamically out of sample over the period January 1996 through to December 2000 and compared
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these forecasts to the forecasts obtained from using a variety of linear and nonlinear models. The

forecasting results were interesting. We have found that both the term structure of futures rates and

nonlinearity are very important in forecasting the federal funds rate. However, their importance is

not obvious when the forecasting ability of our proposed nonlinear VECM is evaluated on the basis

of conventional point forecasting criteria. Using general tests for equal point forecast accuracy

(e.g. Diebold and Mariano statistics) we could not distinguish among different alternative models

using as predictor variable the federal funds futures, the federal funds rate target or both.

In order to measure the forecasting ability of our nonlinear model more accurately we employed

a test of the null hypothesis of equal density forecast accuracy, which revealed three clear findings.

First, models exploiting the information embedded in the term structure of the federal funds futures

rate are the best forecasting models (among the models considered) as they outperform models

that use the information in the federal funds rate target. Second, nonlinear VECMs provide

sizable improvements relative to their linear counterparts, capturing adequately the non-normality

of the federal funds rate and producing more accurate out-of-sample density forecasts. Third,

the linear and nonlinear term structure models outperform the simple futures rates time series in

terms of density forecasting performance.

Overall, these findings suggest that it is possible to build time series models that can forecast

fairly accurately the federal funds rate at horizons up to 2 months or so, using available information.

However, obtaining accurate forecasts requires estimation of and forecasting from a nonlinear

VECM which allows for intercept corrections and shifts in the variance-covariance matrix. In

terms of point forecasting the performance of the linear and nonlinear models considered in this

paper is essentially identical, and we were only able to establish the forecasting superiority of the

nonlinear VECM of the term structure of futures rates using a test that evaluates the relative

density forecasting performance.

While these results aid the profession’s understanding of the behavior of the federal funds

rate, we view our nonlinear model as a tentatively adequate characterization of the data, which

nevertheless is capable of improvement. In particular, while the model used here is fairly general

and flexible, the evidence we document suggests that the federal funds rate, the federal funds rate

target and the term structure of federal funds futures rates are linked by very complex dynamic
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interactions. Much more work needs to be carried out to shed light on these relationships. More

importantly, while this paper adds to the literature that proposes the use of density forecasting

measures in addition to point forecasts, it suffers from a common criticism in this literature. We

refer to the fact that, while density forecasts contain a lot more information than point forecasts,

it remains unclear how practitioners and policy makers could use this information and act upon

it. These questions remain on the agenda for future research.
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Table 1. Preliminary data statistics and unit root tests

Panel a): Summary statistics

Levels

st f1t f2t sTt
Maximum 10.390 8.530 8.660 8.250
Minimum 2.580 2.760 2.820 3.000
Mean 5.265 5.277 5.304 5.224

Variance 1.895 1.771 1.741 1.832
Skewness 0.241 0.139 0.097 0.179
Kurtosis 3.080 3.001 2.976 3.010
JB 1.00×10−6 9.31×10−4 1.01×10−3 4.39×10−5

First differences

∆st ∆f1t ∆f2t ∆sTt
Maximum 2.830 0.550 0.380 0.750
Minimum -2.700 -0.320 -0.330 -0.500
Mean -2.43×10−3 -1.68×10−3 -1.73×10−3 -1.75×10−3
Variance 1.01×10−1 1.79×10−3 1.97×10−3 2.11×10−3
Skewness 0.791 2.116 0.210 1.449
Kurtosis 21.804 42.447 20.632 110.149
JB 0 0 0 0

Panel b): Unit root tests

Levels

st f1t f2t sTt
ADF test -2.073 -2.055 -2.051 -2.103

First Differences

∆st ∆f1t ∆f2t ∆sTt
ADF test -26.768 -24.129 -20.947 -15.419

Notes: st, f1t , f
2
t , s

T
t denote the effective federal funds rate, the one-month federal funds

futures rate, the two-month federal funds futures rate, and the federal funds rate target respectively.
∆ is the first difference operator. In Panel a), JB denotes the Jarque-Bera test for normality,
for which only p-values are reported. 0 indicates p−values below 10-500 , which are considered
as virtually zero. In Panel b), statistics are augmented Dickey-Fuller test statistics for the null
hypothesis of a unit root process, calculated allowing for a constant term in the auxiliary regression.
The asymptotic critical value at the 5 (10) significance level is −2.86 (−2.57) (see Fuller, 1976;
MacKinnon, 1991).
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Table 2. Johansen maximum likelihood cointegration procedure

Panel a): Cointegration tests

Model I : st and sTt

λmax λtrace

H0 H1 LR 5%

r = 0 r = 1 553.70 15.7
r ≤ 1 r = 2 6.79 9.2

H0 H1 LR 5%

r = 0 r ≥ 1 560.50 20.0
r ≤ 1 r = 2 6.79 9.2

Model II: f1t , f
2
t and st

λmax λtrace

H0 H1 LR 5%

r = 0 r = 1 429.80 22.0

r ≤ 1 r = 2 47.95 15.7
r ≤ 2 r = 3 3.86 9.2

H0 H1 LR 5%

r = 0 r = 1 479.80 34.9

r ≤ 1 r = 2 51.62 20.0
r ≤ 2 r = 3 3.86 9.2

Model III: st and sTt , f
1
t , f

2
t

λmax λtrace

H0 H1 LR 5%

r = 0 r = 1 567.60 28.1
r ≤ 1 r = 2 84.46 22.0
r ≤ 2 r = 3 55.01 15.7
r ≤ 3 r = 4 3.76 9.2

H0 H1 LR 5%

r = 0 r = 1 710.80 53.1
r ≤ 1 r = 2 143.20 34.9
r ≤ 2 r = 3 58.78 20.0
r ≤ 3 r = 4 3.76 9.2

(continued ...)
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(... Table 2 continued)

Panel b): Test for the restrictions on the cointegration space

Model I : β0yt =
h
−1 1

i " st

sTt

#

Model II : β0yt =

"
−1 1 0

−1 0 1

# st

f1t
f2t



Model III : β0yt =

 −1 1 0 0

−1 0 1 0

−1 0 0 1




st

sTt
f1t
f2t



χ2 (g)

Model I 0.1185 {0.7307}
Model II 0.0613 {0.9698}
Model III 0.0746 {0.9947}

Notes: Panel a): H0 and H1 denote the null hypothesis and the alternative hypothesis respec-
tively; r denotes the number of cointegrating vectors; λmax and λtrace denote the likelihood ratio
cointegration test based on the maximum eigenvalue of the stochastic matrix and the likelihood
ratio test based on the trace of the stochastic matrix respectively (Johansen, 1995); the 5% critical
values reported in the last column are taken from Osterwald-Lenum (1992). Panel b): The test
is a χ2 version of the test of the overidentifying restrictions on the β0 matrix; g is the number of
restrictions imposed. Figures in braces are p-values.
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Table 3. Forecasting exercises - linear models

Diebold and Mariano (1995) test: mean absolute errors

k Model I - Model II Model I - Model III Model II - Model III

1 -0.1858 0.0033 0.1858
{0.852} {0.997} {0.852}

2 -0.1858 0.0026 0.1849
{0.852} {0.997} {0.853}

4 -0.1841 0.0032 0.1852
{0.853} {0.997} {0.853}

8 -0.1735 -0.0047 0.1696
{0.862} {0.996} {0.865}

Diebold and Mariano (1995) test: mean square errors

k Model I - Model II Model I - Model III Model II - Model III

1 -0.0609 -0.0037 0.0559
{0.951} {0.997} {0.955}

2 -0.0618 -0.0038 0.0567
{0.951} {0.997} {0.955}

4 -0.0600 -0.0037 0.0550
{0.952} {0.997} {0.956}

8 -0.0547 -0.0063 0.0473
{0.956} {0.995} {0.962}

Density forecasting test: η test

k Model I - Model II Model I - Model III Model II - Model III

1 5.2545 0.0333 -5.2311©
1.4× 10−7ª ©

9.7× 10−1ª ©
1.7× 10−7ª

2 5.6407 0.0778 -5.5310©
1.7× 10−8ª ©

9.4× 10−1ª ©
3.2× 10−8ª

4 4.5284 0.0837 -4.7780©
5.9× 10−6ª ©

9.3× 10−1ª ©
1.8× 10−6ª

8 5.6182 0.2481 -4.7518©
1.9× 10−8ª ©

8.0× 10−1ª ©
2.0× 10−6ª

Notes: Model i - Model j (i = I, II; j = II, III) is the Diebold and Mariano test statistics
obtained using the difference between the forecast errors of out-of-sample dynamic forecast of the
competing linear models up to k = 1, 2, 4, 8 weeks ahead over the period 1996-2000. The asymptotic
variance of the Diebold and Mariano statistics has been calculated choosing the optimal truncation
lag according to the AR(1) Andrews’s (1991) rule. The η statistics (Sarno and Valente, 2002) have
been calculated using a Gaussian kernel and setting the number of bootstrap replications equal to
100 (see Appendix B).
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Table 4. Forecasting exercises - Markov-switching models

Diebold and Mariano (1995) test: mean absolute errors

k MS I - MS II MS I - MS III MS II - MS III

1 1.3648 -0.6011 -2.0641
{0.172} {0.548} {0.039}

2 1.2966 -0.6963 -1.9871
{0.195} {0.488} {0.047}

4 1.2897 -0.6799 -1.9808
{0.197} {0.497} {0.048}

8 1.2878 -0.7038 -2.0364
{0.198} {0.482} {0.042}

Diebold and Mariano (1995) test: mean square errors

k MS I - MS II MS I - MS III MS II - MS III

1 0.6726 -0.2081 -0.8985

{0.501} {0.835} {0.369}
2 0.6809 -0.2203 -0.9356

{0.496} {0.826} {0.349}
4 0.6821 -0.2144 -0.9463

{0.495} {0.830} {0.344}
8 0.6840 -0.2347 -0.9654

{0.494} {0.814} {0.334}

Density forecasting test: η test

k MS I - MS II MS I - MS III MS II - MS III

1 5.9802 -0.1005 -6.6720©
2.2× 10−9ª ©

9.2× 10−1ª ©
2.5× 10−11ª

2 5.1880 -0.0715 -5.3790©
2.1× 10−7ª ©

9.4× 10−1ª ©
7.5× 10−8ª

4 6.3792 -0.6149 -6.9900©
1.8× 10−10ª ©

5.4× 10−1ª ©
2.8× 10−12ª

8 5.6560 -0.1799 -3.5590©
1.6× 10−8ª ©

8.6× 10−1ª ©
3.7× 10−4ª

Notes: MS i - MS j (i = I, II; j = II, III) is the Diebold and Mariano test statistics ob-
tained using the difference between the forecast errors of out-of-sample dynamic forecast of the
competing Markov-switching models up to k = 1, 2, 4, 8 weeks ahead over the period 1996-2000.
The asymptotic variance of the Diebold and Mariano statistics has been calculated choosing the
optimal truncation lag according to the AR(1) Andrews’s (1991) rule. The η statistics (Sarno and
Valente, 2002) have been calculated using a Gaussian kernel and setting the number of bootstrap
replications equal to 100 (see Appendix B).
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Table 5. Forecasting exercises - comparison

Diebold and Mariano (1995) test: mean absolute errors

k Model I - MS II Model II - MS II Model III - MS II

1 -0.4105 -0.2891 -0.4092
{0.6814} {0.7725} {0.6823}

2 -0.4301 -0.3199 -0.4274
{0.6671} {0.7490} {0.6691}

4 -0.4228 -0.3121 -0.4225
{0.6724} {0.7549} {0.6581}

8 -0.4045 -0.3047 -0.4006
{0.6858} {0.7605} {0.6887}

Diebold and Mariano (1995) test: mean square errors

k Model I - MS II Model II - MS II Model III - MS II

1 -0.1586 -0.1163 -0.1543

{0.8739} {0.9074} {0.8773}
2 -0.1610 -0.1182 -0.1565

{0.8720} {0.9059} {0.8756}
4 -0.1591 -0.1196 -0.1536

{0.8735} {0.9048} {0.8779}
8 -0.1467 -0.1107 -0.1396

{0.8833} {0.9118} {0.8889}

Density forecasting test: η test

k Model I - MS II Model II - MS II Model III - MS II

1 6.6762 2.4747 6.3221©
2.46× 10−11ª ©

1.33× 10−2ª ©
2.59× 10−10ª

2 6.5371 3.1195 6.6586©
6.30× 10−11ª ©

1.81× 10−3ª ©
2.78× 10−11ª

4 5.6688 2.9299 6.0354©
1.44× 10−8ª ©

3.39× 10−3ª ©
1.59× 10−9ª

8 6.4174 3.3841 6.3761©
1.39× 10−10ª ©

7.14× 10−4ª ©
1.82× 10−10ª

Notes: Model i - MS (i = I, II, III) is the Diebold and Mariano test statistics obtained using
the difference between the forecast errors of out-of-sample dynamic forecast of the competing
models up to k = 1, 2, 4, 8 weeks ahead over the period 1996-2000. The asymptotic variance
of the Diebold and Mariano statistics has been calculated choosing the optimal truncation lag
according to the AR(1) Andrews’s (1991) rule. The η statistics (Sarno and Valente, 2002) have
been calculated using a Gaussian kernel and setting the number of bootstrap replications equal to
100 (see Appendix B).
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Table 6. Predictive ability of the federal funds futures rate

Diebold and Mariano (1995) test: mean absolute errors

k ∆f1t - Model II ∆f1t - MS II

4 0.6340 0.2130

{0.5260} {0.8313}

∆f2t - Model II ∆f2t - MS II
8 0.6570 0.2144

{0.5111} {0.8302}

Diebold and Mariano (1995) test: mean square errors

k ∆f1t - Model II ∆f1t - MS II

4 0.5685 0.4273
{0.5696} {0.6691}

∆f2t - Model II ∆f2t - MS II
8 0.5647 0.4234

{0.5722} {0.6720}

Density forecasting test: η test

k ∆f1t - Model II ∆f2t - MS II

4 22.265 18.871
{0} {0}

∆f2t - Model II ∆f2t - MS II
8 21.384 19.163

{0} {0}

Notes: f1t and f2t denote the the one- and two-month federal funds futures rates respectively;
∆ is the first-difference operator. Model II and MS II denote the linear and nonlinear VECMs
for the term structure of futures rates respectively. Figures denote the Diebold and Mariano test
statistics obtained using the difference between the forecast errors from using the futures rates and
the out-of-sample dynamic forecast of the competing models up to k = 1, 2, 4, 8 weeks ahead over
the period 1996-2000. The asymptotic variance of the Diebold and Mariano statistics has been
calculated choosing the optimal truncation lag according to the AR(1) Andrews’s (1991) rule. The
η statistics (Sarno and Valente, 2002) have been calculated using a Gaussian kernel and setting
the number of bootstrap replications equal to 100 (see Appendix B). {0} indicates p−values below
10-500 , which are considered as virtually zero.
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A Linear VECM and MS-VECM estimation results

Table A1. Linear VECM estimation results

Model I : y =
h
st sTt

i0
∆yt = ν +

Pp−1
i=1 Γi∆yt−i + α

h
β0yt−1 β0yt−1d94

i
+ ut

eΓ1 =


0.0996 −0.0585
(0.025) (0.004)

−0.0014 −0.0026
(0.143) (0.025)

 ; ev =

−0.00207
(0.0065)

−0.00187
(0.0011)

 ; eα =

−0.7511 −0.1628
(0.0307) (0.0055)

0.0074 −0.0216
(0.0843) (0.0151)

 ;

eΣ = " 0.0658 0.0010
0.0010 0.0021

#
; AIC = -3.1954; BIC = -3.1509

R
2

LM1 ARCH WHITE JB RESET

st equation 0.3539 0.7737 2.66×10−7 2.79×10−18 1.83×10−164 4.65×10−4
sTt equation 0.0021 0.3111 0.7207 0.0148 0 7.02×10−4

Model II : y =
h
st f1t f2t

i0
∆yt = ν +

Pp−1
i=1 Γi∆yt−i + αβ0yt−1 + ut

eΓ1 =


0.0182 −0.5188 0.3141

(0.0257) (0.2887) (0.27756)

−0.0046 0.0408 0.0294

(0.00394) (0.044) (0.0425)

−0.0061 0.0601 0.0304

(0.0041) (0.047) (0.045)


; ev =



−0.0002
(0.0069)

−0.0004
(0.0010)

−0.0009
(0.0011)


; eα =



−1.0911 0.5024

(0.0803) (0.0644)

0.0906 −0.0728
(0.0123) (0.0098)

0.0525 −0.0423
(0.0130) (0.0104)


;

eΣ =
 0.0728 0.0010 0.0009

0.0010 0.0017 0.0015
0.0009 0.0015 0.0019

 ; AIC = -7.8534; BIC = -7.7506

R
2

LM1 ARCH WHITE JB RESET

st equation 0.2846 0.346 2.12×10−10 4.93×10−14 1.41×10−162 3.31×10−2
f1t equation 0.0438 0.877 0.727 5.10×10−11 0 8.16×10−2
f2t equation 0.0195 0.854 0.975 2.05×10−6 0 2.71×10−2

(continued ...)
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(... Table A1 continued)

Model III : y =
h
st sTt f1t f2t

i0
∆yt = ν +

Pp−1
i=1 Γi∆yt−i + α

h
β0yt−1 β01yt−1d94

i
+ ut

eΓ1 =



0.1044 −0.1837 −0.0913 −0.0638
(0.0254) (0.2833) (0.2663) (0.1558)

−0.0023 0.0707 0.0130 −0.0234
(0.0040) (0.045) (0.042) (0.0249)

−0.0051 0.0751 0.0240 −0.0196
(0.0043) (0.048) (0.046) (0.0266)

−0.0012 0.0630 −0.0272 −0.0174
(0.0044) (0.049) (0.046) (0.0272)


; ev =



−0.0011
(0.0066)

−0.0007
(0.0010)

−0.0011
(0.0011)

−0.0003
(0.0011)


;

eα =



−0.1232 0.1023 −0.7371 −0.1693
(0.1083) (0.0691) (0.0601) (0.084)

0.1068 −0.0796 −0.0077 −0.0646
(0.0173) (0.0110) (0.0096) (0.0013)

0.0563 −0.0441 −0.0002 −0.0374
(0.0185) (0.0118) (0.0103) (0.0145)

−0.0639 0.0028 0.0694 −0.0303
(0.0189) (0.0121) (0.0105) (0.0148)


; eΣ =


0.0655 0.0008 0.0009 0.0011

0.0008 0.0016 0.0014 0.0006
0.0009 0.0014 0.0019 0.0006
0.0011 0.0006 0.0006 0.0020

 ;

AIC = -11.4644
BIC = -11.2793

R
2

LM1 ARCH WHITE JB RESET

st equation 0.3553 0.8259 3.61×10−7 6.29×10−15 9.48×10−164 6.31×10−2
f1t equation 0.0591 0.2124 0.8884 5.92×10−20 0 8.48×10−5
f2t equation 0.0239 0.4027 0.9587 3.37×10−5 0 8.98×10−2
sTt equation 0.0489 0.0835 0.7729 3.70×10−7 0 1.24×10−5

Notes: Tildes denote estimated values obtained using FIML estimation; figures in paren-
theses are estimated standard errors. d94 denotes the dummy variable for the 1994 procedural
change. AIC and BIC are the Akaike Information Criterion and Bayesian Information Criterion
respectively. R

2
is the adjusted coefficient of determination, LM1 is an LM-type test statistic for

residual serial correlation (Godfrey, 1988); ARCH is a test statistic for autoregressive conditional
heteroskedasticity (Engle, 1982); WHITE is the White (1980) test for heteroskedasticity calculated
without the cross products; JB is the Jarque-Bera test for normality of residuals; RESET is a RE-
SET test calculated using a third order polynomial (Ramsey, 1969). For each of LM1, ARCH,
WHITE, JB and RESET we only report p-values.
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Table A2. ‘Bottom-up’ identification procedure

LR1 LR2 Davies

3411.49 18.847 236.511
p-value 0 4.43×10−3 7.79×10−93

Notes: LR1 is a test statistic of the null hypothesis of no regime dependent variance-covariance
matrix (i.e. MSI(Q)-VECM(p) versus MSIH(Q)-VECM(p)). LR2 is a test statistic of the null
hypothesis of no regime dependent intercept (i.e. MSH(Q)-VECM(p) versus MSIH(Q)-VECM(p)).
Both tests are constructed as 2(lnL∗− lnL), where L∗ and L represent the unconstrained and the
constrained maximum likelihood respectively. Those tests are distributed as χ2(g) where g is the
number of restrictions imposed. Davies is the upper bound of the likelihood ratio test where the
model is not identified under the null due to the nuisance parameters. In this case it tests the null
hypothesis that the model with two regimes is equivalent to the model with three regimes. Figures
in braces denote p−values, calculated as in Davies (1987), and {0} indicates p−values below 10-500 ,
which are considered as virtually zero.
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Table A3. MSIH(3)-VECM(1): estimation of Model II, y =
h
st f1t f2t

i0
Model: ∆yt = ν (zt) +

Pp−1
i=1 Γi∆yt−i + αβ0yt−1 + ut with ut ∼ N [0,Σ (zt)]

eΓ1 =


−0.0630 −0.3787 0.0961

(0.0170) (0.1535) (0.1335)

−0.0040 0.0013 0.0365

(0.0022) (0.0244) (0.0203)

−0.0032 0.0472 0.0120

(0.0028) (0.0307) (0.0263)


; eα =


−0.9814 0.0168 0.0052

(0.0636) (0.0073) (0.0092)

0.4680 −0.0045 0.0022

(0.0448) (0.0055) (0.0071)

 ;

ev (z1) =


−0.0073
(0.0140)

−0.0039
(0.0016)

−0.0029
(0.0019)


; ev (z2) =



−0.0221
(0.0033)

−0.0003
(0.0005)

−0.0007
(0.0006)


; ev (z3) =



0.2403

(0.0861)

−0.0034
(0.0155)

−0.0061
(0.0151)


;

fP (z1) =

 0.0871

0.0015 0.0012

0.0013 0.0013 0.0017

 ; fP (z2) =

 0.0063

0.0001 0.0001

0.0007 0.0001 0.0003

 ;

fP (z3) =

 0.5979

0.0091 0.0209

0.0089 0.0165 0.0198

 ;

eP =
 0.583 0.205 0.483

0.323 0.770 0.329

0.094 0.025 0.188

 ; eξ =
 0.355

0.585

0.058

 ;
ρ (A) = 0.0556; LR linearity test: 0; JB: 0.541; RESET: 0.492

Notes: Tildes denote estimated values obtained using the EM algorithm for maximum likeli-
hood (Dempster, Laird and Rubin, 1977). Figures in parentheses are asymptotic standard errors.
Symbols are defined as in equation (10). P and ξ denote the Q × Q transition matrix and the
Q-dimensional ergodic probabilities vector respectively. ρ (A) is the spectral radius of the matrix
A calculated as in Karlsen (1990). It can be thought as a measure of stationarity of the MS-
VECM. The LR linearity test is a Davies (1987)-type test checking the hypothesis that the true
model is a linear VECM against the alternative of a MSIH-VECM. Its p−value is calculated as
in Davies (1987). JB is the Jarque-Bera test for normality of the standardized residuals; RESET
is a RESET test calculated using a third-order polynomial (Ramsey, 1969). For each of LR, JB
and RESET we only report p-values; 0 indicates p−values below 10-500 , which are considered as
virtually zero.
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B The η-test for equal density forecast accuracy

This appendix briefly outlines the derivation of the η-test statistic for the null hypothesis of equal
density forecast accuracy. Let f (y), g1 (y) and g2 (y) be three probability density functions with
distribution functions F , G1 and G2 respectively, and F , G1 and G2 are absolutely continuous
with respect to the Lesbegue measure in <p. Let f (y) be the probability density function of
the variable yt over the period t = 1, ..., T , whereas g1 (y) and g2 (y) are the probability density
functions implied by two competing forecasting models, say M1 and M2.
We are interested in testing the null hypothesis of equidistance of the probability densities

g1 (y) and g2 (y) from f (y), that is

H0 : dist [f (y) , g1 (y)] = dist [f (y) , g2 (y)] , (B1)

where the operator dist denotes a generic measure of distance.
A conventional measure of global closeness between two functions is the integrated square

difference (ISD) (e.g. see Pagan and Ullah, 1999):

ISD =

Z
[φ (x)− γ (x)]2 dx, (B2)

where φ (·) and γ (·) denote probability density functions; ISD ≥ 0, and ISD = 0 only if φ (x) =
γ (x). Using (B2) we can rewrite the null hypothesis H0 in (B1) as follows:

H0 :

Z
[f (y)− g1 (y)]

2 dy =

Z
[f (y)− g2 (y)]

2 dy

: ISD1 − ISD2 = 0. (B3)

In (B3) the null hypothesis of equal density forecast accuracy of models M1 and M2 is written
as the null hypothesis of equality of two integrated square differences or, equivalently, as the null
hypothesis that the difference between two integrated square differences is zero.
Consider three series of realizations from f(y), g1 (y) and g2 (y), say {yt}Tt=1, {by1t}T1t=1 and

{by2t}T2t=1 respectively.32 With observations {yt}Tt=1 , {by1t}Tt=1 and {by2t}Tt=1 we can consistently
estimate the unknown functions f (y), g1 (y) and g2 (y) using kernel estimation, obtaining:

bf(y) =
1

Th

TX
i=1

K

µ
yi − y

h

¶
(B4)

bg1(y) =
1

Th

TX
i=1

K

µ
y1i − y

h

¶
(B5)

bg2(y) =
1

Th

TX
i=1

K

µ
y2i − y

h

¶
(B6)

32For simplicity and for clarity of exposition, throughout this section, we consider the case where T1 = T2 = T ,
although the results derived below can be easily extended to the more general case where T1 6= T2.

36



where K (·) is the kernel function and h is the smoothing parameter.33 Using (B4)-(B6) we
can then obtain a consistent estimate of the integrated square differences ISD1 and ISD2, dISD1

and dISD2. Define d = dISD1 − dISD2 as the estimated relative distance between the probability
density functions. In order to test for the statistical significance of d, the next step is to calculate
a confidence interval for d.
In the spirit of the analysis of Hall (1992), define

n
yji

oT
i=1
,
nbyj1ioT

i=1
,
nbyj2ioT

i=1
as the j−th

resample of the original data {yt}Tt=1, {by1t}Tt=1, {by2t}Tt=1, drawn randomly with replacement. From
these resamples it is possible to obtain consistent bootstrap estimates of the density functions bf j(y),bg1j(y), bg2j(y) and, consequently, of dj = dISDj

1 − dISDj

2.
34

Consider a sample path
©
dj
ªB
j=1
, where B is the number of bootstrap replications. Under

general conditions35 , we have:

√
B
¡
d− µ

¢ d−→ N
¡
0, σ2

¢
, (B7)

where

d =
1

B

BX
j=1

dj =
1

B

BX
j=1

³dISDj

1 − dISDj

2

´
(B8)

is the average difference of the estimated relative distances over B bootstrap replications. Because
in large samples the average difference d is approximately normally distributed with mean µ and
variance σ2/B, the large-sample statistic for testing the null hypothesis that models M1 and M2

have equal density forecast accuracy is:

η =
dqbσ2
B

d−→ N (0, 1) , (B9)

where bσ2 is a consistent estimate of σ2.36 37

33 In practice, for several econometric models bg1(y) and bg2(y) are known analytically. However, for more complex,
nonlinear models we may not know the probability density function and therefore need to estimate it. In this paper
we consider nonparametric estimation of density as a general procedure to implement the test statistic discussed
below, but it should be clear that the test is directly applicable also when the probability density function is known
analytically.
34Note that the data

n
yji

oT
i=1

can only be resampled with replacement if it is independently and identically
distributed. If there is dependence, the bootstrap procedure needs to be modified to accommodate dependence.
35 See Kendall and Stuart (1976, Ch. 11).
36On the consistency of the bootstrap estimates of σ2 in this context see Hall (1992) and Mammen (1992).
37Using Monte Carlo methods designed to investigate the size and power properties of this test statistic, Sarno

and Valente argue that the η-test has satisfactory empirical size and power properties in finite sample in a variety
of circumstances with a number of boostrap replications equal to 100 or so.
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Figure 1: Kernel predictive density estimation
Federal Funds Rate Prediction - 1 and 2 weeks ahead
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Figure 2: Kernel predictive density estimation
Federal Funds Rate Prediction - 4 and 8 weeks ahead
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