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ABSTRACT

In this article a method for joint estimation of the number of stochastic trends

and the deterministic processes in a multivariate error correction model is presented.

This approach takes advantage of the Laplace method of approximating integrals

and, the second important contribution of the paper, careful elicitation of the prior

for the cointegrating vectors from a prior on the cointegrating space. The approach

follows the classical approaches of James (1969), Anderson (1951) and Johansen (1988

and 1991) and performs well when used to estimate the number of stochastic trends

compared with information criteria in …nite samples in Monte Carlo experiments.
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1 Introduction.

Since its development by Granger (1983) and Engle and Granger (1987), the con-

cept of cointegration has proven a valuable tool in economic analysis and has found

applications in many theories such as for real business cycle models, term structure

of interest rates, purchasing power parity, and money demand to name just a few.

An important consideration in cointegration is the accurate determination, or esti-

mation, of the number of stationary combinations, r: Many classical tests have been

developed for this purpose, although relatively few Bayesian tests exist. In an early

study, Geweke (1996) proposed the use of predictive probabilities estimated using a

Markov Chain Monte Carlo (MCMC) method to determine the rank. Other work by

Kleibergen and Paap (forthcoming) also used an MCMC approach but produced a

posterior distribution for the rank. While there have been a few other approaches (see

for example Strachan, forthcoming), none of these has produced a simple, e¢cient

test which performs consistently well.

The …rst aim of this paper is to present a simple Bayesian test for the rank which

is related to the classical trace test developed by Anderson (1951) for the general

reduced rank regression model and applied to the cointegrating ECM by Johansen

(1988 and 1991). This test has similar performance to the trace test when used to

estimate the number of stochastic trends, which is not surprising as it can be shown

to be a simple function of the trace statistic for particular common priors.
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In applied analysis, economic time series are commonly modelled as combinations

of both stochastic and deterministic trends. Deterministic processes have implications

for both theoretical and applied analysis of time series as evidenced by the range

of distributions necessary to conduct classical inference in cointegrated models, the

presence (or absence) of various deterministic processes a¤ects inference about the

number of stochastic trends. This in‡uence is re‡ected in the changing location

of the posterior distribution of r for models with di¤erent deterministic processes.

Therefore, we extend the analysis to consideration of various models of deterministic

terms within the ECM and present a method for estimation of the joint posterior

distribution of (r; i), where i is an indicator of the deterministic process present in

the model.

Important advantages of the Bayesian approach over the classical approach are

the treatment of model uncertainty and greater ‡exibility to explicitly incorporate

prior beliefs. Classical methods such as hypothesis tests on parameter values or the

use of information criteria for model selection, result in subsequent inference being

conditional upon the chosen model, regardless of the information content of ‘nearby’

models. Bayesian posterior probabilities, however, allow inference to be averaged over

a range of models if the econometrician so desires.

The outline of the article is as follows. In Section Two the models are described.

The likelihood, the priors and a general form for the posterior are given in Section
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Three. An important contribution of this section, and indeed this paper, is the careful

elicitation of the prior distribution on the cointegrating coe¢cients from a prior on the

cointegrating space. An outline of the identifying restrictions which arise naturally

from the prior elicitation is also provided. Section Four introduces the inferential

tool, the Bayes factor and the application of Laplace approximation is presented in

Section Five. Monte Carlo experiments are reported in Section Six and the technique

is applied to an actual data set in Section Seven. Section Eight concludes.

Throughout this paper the notation ‘a ´ b’ implies that models a and b are

equivalent. The space spanned by a matrix A is denoted sp (A) and its j th largest

eigenvalue is ¸j (A), Vr;n = fV (n£ r) : V 0V = Irg is the Stiefel manifold, O (r) =

fC (r £ r) : C0C = Irg denotes the orthogonal group of r £ r orthogonal matrices.

p 2 Gr;n¡r denotes that p is an r¡dimensional plane in n¡space, passing through

the origin of that space, and hence p is an element of a Grassman manifold, Gr;n¡r:

Importantly, for any V 2 Vr;n; there exists a plane p = sp (V ) such that p 2 Gr;n¡r:

The reader is referred to Muirehead (1982) and in particular James (1954) for more

details on these matrix spaces.
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2 The model.

The error correction model (ECM) of the 1 £ n vector time series process yt =

(y1t; : : : ynt) ; t = 1; : : : ; T; conditioning on the l observations t = ¡l+ 1; : : : ; 0; is

¢yt = yt¡1¯+® + dt¹+ ¢yt¡1¡1+ : : :+ ¢yt¡l¡l + "t (1)

= yt¡1¯+® + dt¹1® + dt¹2®? + ¢yt¡1¡1 + : : :+¢yt¡l¡l+ "t

= z1;t¯®+ z2;t© + "t (2)

where¢yt = yt¡yt¡1; z1;t = (dt; yt¡1) ; z2;t = (dt;¢yt¡1; : : : ;¢yt¡l) ; © = (®0?¹02;¡01; : : : ;¡0l)
0

and ¯ =
¡
¹0; ¯+0

¢0. The matrices ¯+ and ®0 are n£ r and assumed to have rank r:

Of interest when considering the number of stochastic trends is the coe¢cient

matrix ¯ which is of dimension ni £ r; where ni depends upon the deterministic

processes present and is de…ned in the next section, and rank (¯®) = r · n. When

r < n this implies yt is cointegrated. Expressing z1;t¯ as z1;t¯ = dt¹1 + yt¡1¯
+; then

¯+ is the matrix of cointegration coe¢cients and ® is the matrix of factor loading

coe¢cients or adjustment coe¢cients.

The (j +1)th element of the vector dt; is tj such that dt contains the deterministic

terms such as constants and trends. We will restrict ourselves to considering j 2 (0; 1)

such that dt = (1; t) and ¹ = (a ±)0 = ¹1® + ¹2®?: Restricitions on these trends

and constants entering either the levels, yt; or the cointegrating relations, yt¯+; are

discussed further in the next subsection.
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Finally, introduce the following terms to simplify the expressions in the posteriors.

Let ezt = (z1;t¯ z2;t) ; and the (r + ki) £ n matrix B = [®0 ©0]0 : The model may now

be written as

¢yt = eztB + ": (3)

2.1 Deterministic terms

It is well known that simplistic treatment of the deterministic terms by testing whether

¹ or some elements of ¹ are zero leads to the strange and unsatisfactory situation that

very di¤erent trending behaviour is implied in the levels of the process for di¤ering

values of r: For example, a nonzero intercept, a, in (1) simply produces a nonzero

mean when r = n, but it could induce a linear drift in yt and a nonzero mean for the

error correction term, yt¯+; when r < n. It is for the purpose of incorporating a range

of deterministic behaviours, such as drifts and trends in the cointegrating relations

and in the levels, that ¹ is decomposed into ¹ = ¹1®+ ¹2®? where ¹1 = ¹®0 (®® 0)
¡1

and ¹2 = ¹®0? (®?®0?)
¡1 (see Johansen, 1995 Section 5.7 for further discussion).

Economists are commonly interested in the presence or absence of deterministic

processes in yt or yt¯+: Important are questions such as whether linear or quadratic

drifts are present in yt and whether nonzero constant terms and deterministic trends

are present in yt¯+: Assuming dt = (1; t) ; then for each j = 1; 2; dt¹j = ¹j;¶ + t¹j;±:

Although a wider range of models are clearly available, the …ve most commonly
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considered may be stated as follows, where Mr;i is the ith model of deterministic

terms at given rank r :

Mr;1 : dt¹= ¹1;¶®+ ¹2;¶®? +
¡
¹1;±® +¹2;±®?

¢
t

Mr;2 : dt¹= ¹1;¶®+ ¹2;¶®? + ¹1;±®t

Mr;3 : dt¹= ¹1;¶®+ ¹2;¶®?

Mr;4 : dt¹= ¹1;¶®

Mr;5 : dt¹= 0

A total of 5 (n + 1) models of deterministic terms and numbers of stochastic terms

are considered in this article. Notice that at r = n, Mn;1 ´ Mn;2 and Mn;3 ´ Mn;4

since ®? = 0. Similarly, at r = 0; M0;2 ´ M0;3 and M0;4 ´M0;5 since ® = 0. Finally,

ni = n +2 for i = 1; 2; ni = n + 1 for i = 3; 4 and ni = n for i = 5:

3 Priors and posteriors.

In this section the forms of the priors and resultant posterior are presented. We

restrict ourselves to ‡at priors where possible, although consideration is given to

informative priors when discussing the parameters of interest. For the model in (3),

assume the rows of " = ("01; "02; : : : ; "0T)
0 are "t s iidN(0;§): The likelihood can then

be written as L
³
yj§; B; ¯; r; eZ

´
/ j§j¡ T2 exp

©
¡1

2 tr (§
¡1"0")

ª
:
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3.1 The prior for (§; B; r; i) :

Throughout this paper, the prior for the rank r is p (r) = (n + 1)¡1and for the deter-

ministic models p (i) = 1=5. The standard di¤use prior for §; p (§) _ j§j¡(n+1)=2 ; is

used.

The matrix B changes dimensions across the di¤erent models Mr;i: Thus if the

prior on B is p (Bj¯; r; i) = cr;ih (B) where c¡1r;i =
R
h (B) (dB) ; then clearly cr;i

depends upon (r; i) : As discussed in O’Hagan (1995), Bayes factors for Mr;i toMr¤;i¤;

from which the posterior probabilities are derived, are proportional to the ratio ¶ =

cr;i=cr¤;i¤ and therefore knowledge of ¶ is required. If an improper prior on B such as

h (B) = 1, were used, then cr;i does not exist but can be treated as an unspeci…ed

constant such that cr;i=cr;i = 1 and as a result the posterior will be well de…ned.

However, as ¶ will be unspeci…ed, the resulting Bayes factors can not be obtained.

For this reason a (weakly) informative proper prior for B must be used. In this article,

the prior for B conditional upon (§; ¯; r; i) is normal with zero mean and covariance

§ ­
³
ē0Hē

´¡1
whereH = 0:01I(n+ki) and

ē =

2
664
¯ 0

0 Iki

3
775 :
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3.2 Eliciting a prior on ¯:

Linear restrictions and the cointegrating space: It is well known that as ¯ and

® appear as a product in (2), r2 restrictions need to be imposed on the elements of ¯

and ® to just identify these elements. These restrictions are commonly imposed upon

¯ by assuming c¯ is invertible for known matrix c and the restricted ¯ is ¯ = ¯ (c¯)¡1 :

Thus the free elements are collected in ¯2 = c?¯ where c?c0 = 0: A common choice in

theoretical work is c = [Ir 0] such that ¯ = [Ir ¯02]
0 : A prior is then speci…ed for ¯2:

The practical problems in classical analysis of incorrectly selecting cwere discussed

in Boswijk (1996) and Luukkonen, Ripatti and Saikkonen (1999) and in Bayesian

analysis by Strachan (forthcoming). In each of these papers compelling examples

were provided of the importance of correctly determining c: Assumng known c; the

pathologies and complicating features (for analysis) of the posterior for ¯2 with a ‡at

prior, such as multimodality, nonexistence of moments and (under some speci…cations)

impropriety of the posterior have been detailed by Kleibergen and van Dijk (1994)

and Bauwens and Lubrano (1996). In addition, unpublished notes by Bauwens and

Lubrano showed nonexistence of the posterior when another important and commonly

employed restriction on (2), exogeneity, is imposed. Further, from the discussion on

the prior for B it is clear a ‡at prior on ¯2 cannot be employed to obtain posterior

probabilities for (r; i) ; since the dimensions of ¯2 depend upon (r; i) :

As argued in the introduction, an advantage of the Bayesian approach is the ability
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to explicitly incorporate prior beliefs into the analysis. As a ‡at prior is generally

intended to re‡ect ignorance about the parameter of interest, the above issues with

the posterior at least, may be resolved by use of an informative prior on ¯2: However,

to preserve the options of both informative and uninformative priors, as the issue of

selecting c is not resolved by a proper prior, and as we do not see ¯2 as the parameter of

interest, we therefore diverge at this point from much of the earlier literature (except

Villani 2000) in both specifying our parameter of interest and eliciting uninformative

and informative priors on that parameter.

In cointegration analysis it is not the values of the elements of ¯ that are the

object of interest, rather the space spanned by ¯; p = sp (¯) ; and this space is in

fact all we are able to uniquely estimate. The parameter p is an r¡plane in n¡space

(ignoring for now the dependence on ni and assume ni = n) and as such an element of

the Grassman manifold Gr;n¡r : Before we derive the priors for p we brie‡y comment

on the relationship between priors on ¯2 and on p:

The Jacobian for the transformation from p 2 Gr;n¡r to ¯2 2 R(n¡r)r is presented

in Villani (2000) as jIr + ¯ 02¯2j
¡n=2 : Although Villani (2000) uses c = [Ir 0] ; this form

holds for general c and is the kernal of a Cauchy density. From this Jacobian we can

clearly see that a ‡at prior on p is informative with respect to ¯2 and vice versa. This

result re‡ects that found by Phillips (1994) in classical analysis when an element of the

Steifel manifold - which de…nes an element of a Grassman manifold - is renormalised
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by imposing linear restrictions. That is Phillips (1994) shows that the …nite sample

distribution of the maximum likelihood estimator with linear restrictions imposed has

Cauchy tails and that this Cauchy behaviour is a direct result of imposing the linear

restrictions.

Next consider the implications of a ‡at prior on ¯2 for the prior on p. A common

justi…cation for the linear restrictions is that an economist will usually have some

idea about which variables will enter the cointegrating relations and so she chooses c

to select the rows of coe¢cients most likely to be nonzero - more generally linearly

independent from eachother - and then normalise on these coe¢cients. This is a

necessary assumption to ensure (c¯)¡1 exists. By using these linear restrictions,

however, the Jacobian for ¯2 ! p places more weight in the direction where the

coe¢cients thought most likely to be di¤erent from zero are, in fact, zero (or linearly

dependent).

To demonstrate this claim, consider a n¡dimensional system for y = (x0; z0)0 where

x is a r vector. To use linear restrictions a normalisation must be chosen by choice of c.

It is believed that if a cointegrating relationship exists then it will most likely involve

the elements of x in linearly independent relations: That is in y¯ = x¯1+z¯2 v I (0),

det(¯1) is believed far from zero making it safe to normalise on ¯1; and so choose

c = [Ir 0] and estimate ¯2 = c?¯ (c¯)
¡1 : If p = sp (¯) ; ¯ 2 Vr;n; the Jacobian for the
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transformation ¯2 ! p is proportional to

J (¯2 : ¯) =
¯̄
Ir + (c¯)0¡1 ¯0c0?c?¯ (c¯)

¡1¯̄n=2 :

As p = sp (¯) ! sp (c) ; c?¯ ! 0(n¡r)£r and c¯ ! O (r) and J (¯2 : ¯) ! 1. However,

as vectors in ¯ approach the null space of c, that is det (c¯) ! 0; then (c¯)¡1 ! 1;

and thus J (¯2 : ¯) ! 1. As a result the prior will more heavily weight regions

where det(c¯) = det(¯1) t 0; contrary to the intention of the economist. As a trivial

example, if r = 1; we would choose c = (1; 0; : : : ; 0) as we believe ¯1 6= 0: Yet the

Jacobian places in…nite weight in the region of ¯1 = 0:

A uniform prior on the cointegrating space: Clearly then there is reason

to consider another approach to eliciting priors for ¯. Our recommendation is, if the

economist wishes to incorporate prior beliefs about the cointegrating relations, these

should be expressed in the prior distribution for the cointegrating space.

As we have claimed the cointegrating space to be the parameter of interest, we

propose working directly with p = sp (¯) and avoiding the linear restrictions. Initially

a distribution and identifying restrictions for ¯ from the uniform distribution for p

over Gr;n¡r is derived using the results of James (1954). This prior has the form

p (¯) (¯0d¯) =
1R

(¯ 0d¯)
(¯ 0d¯)

where (¯0d¯) is the exterior product di¤erential form for the free elements of ¯ and

de…nes the invariant (to left and right orthogonal translations) measure on Gr;n¡r and
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is equivalent to the product of the Jacobian for the transformation from p to ¯ and

the di¤erential for the elements of ¯ (see James 1954, Muirhead 1982, Ch. 2). This

expression for the prior de…nes a probability measure on the space of ¯: Throughout

the paper, to save on notation we omit the di¤erential term for all parameters except

¯ as this is the focus of the analytical results.

As the support of ¯ is a function of (r; i) ; so will be
R
(¯ 0d¯)2 : Therefore to

employ the above distribution it is necessary to …nd the explicit form for
R
(¯ 0d¯) :

This is obtained by using the relationship between Gr;n¡r and the Steifel manifold

and orthogonal group. We reproduce this result from James (1954) as we will rely

on some of its implications later. If A 2 Vr;ni and p = sp (A) ; then p 2 Gr;ni¡r and

A is determined uniquely given p and orientation of A in p by C 2 O (r), such that

A = ¯C where ¯ 2 Vr;ni ; sp (¯) = p: James (1954)3 shows

Z

Gr;ni¡r
(¯ 0d¯) =

R
Vr;ni

(A0dA)
R
O(r) (C0dC)

(4)

= ¼¡(ni¡r)r¦rj=1
¡ [(ni + 1¡ j) =2]
¡ [(r +1 ¡ j) =2]

where ¡ [q] =
R1
0 u

q¡1e¡udu q > 0:

In early work in this area, Villani (2000) also began with a uniform prior upon

the cointegrating space from which he derived the prior distribution for ¯2: However
2The authors are grateful to an anonymous referee for pointing out the importance of this de-

pendence in development of the posterior.
3There is an error in (5.23) of James (1954). The sums, §, should be products, ¦:
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his interest was in estimation and tests related to sp (¯) and as such, the analysis was

conditional upon (r; i). For reasons discussed earlier, we wish to avoid using linear

restrictions to identify ¯ and thus must …nd an alternative set of restrictions that do

not require knowledge of c and which avoid the issues associated with the posterior for

¯2: Fortunately the de…nition of A provides a natural solution to this question. That is

use ¯ 2 Vr;ni which implies r (r + 1)=2 restrictions, with the usual assumption about

…xing the sign of the element in the …rst row. This latter assumption simply restricts

the vectors of ¯ to one half hemisphere but in no way restricts the estimable space.

Although the dimension of the Grassman manifold is only (ni ¡ r)r; the remaining

r (r ¡ 1) =2 restrictions come from the orientation by C. The prior, the posterior (as

is made clear later) and the di¤erential form for ¯ are all invariant to translations

of the form ¯ ! ¯H; H 2 O (r) : Therefore it is possible to work directly with ¯

as an element of the Steifel manifold and adjust the integrals with respect to ¯ by
³R
O(r) (C

0dC)
´¡1

as shown in (4). Note that these identifying restrictions do not

distort the weight on the space of the parameter of interest, p.

An informative prior on the cointegrating space: Although the uniform

prior (4) is used in this paper, it is common to employ informative priors for parame-

ters and so one is speci…ed here for p.

If an economist believes a parameter is likely to have a particular value, to incor-

porate this prior belief she places more prior mass around this likely point. For the
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parameter p, we will denote the likely value as pH = sp (H·) where H 2 Vs;n (again

we ignore the dependence on ni and assume ni = n) is a known n£ s (s¸ r) matrix,

H? 2 Vn¡s;n its orthogonal compliment and · is an s£ r full rank r matrix. To obtain

H; specify the general matrix Hg with the desired coe¢cient values, then map this

to Vr;n by the transformation H = Hg (Hg0Hg)¡1=2 :

A dogmatic prior for p could be obtained by letting ¯ = H·V; V 2 O (r) : De…ne

·V = V· 2 Vr;s and specify the prior in (4) for V·: This prior assigns probability one

to the point p = pH:

Often, however, the economist will want to employ a less dogmatic prior such that

there is some weight away from the likely value. A possible speci…cation for this prior

follows. Let the random scalar ¿ have E (¿ ) = 0 and E (¿2) = ¾2: The value of ¾ will

control the tightness of the prior around pH. Next construct

P¿ = HH 0 +H?H 0
?¿

= [H H?]

2
664
Ir 0

0 In¡r¿

3
775

2
664
H 0

H 0
?

3
775

and let the elements of the n£ r matrix Z be independently distributed as standard

normal,N (0; 1) : The matrixX = P¿Z can be decomposed asX = ¯· where ¯ 2 Vr;n

and · is an r £ r lower triangular matrix. For ¿ 6= 0 and j¿j < 1; the space of ¯;

p = sp (¯) ; is a direct weighted sum of the spaces pH and pH? with the weight

determined by ¿ :
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At ¿ = 0 and ¿ = §1; p is respectively pH and pH?. It is for this reason that

we chose E (¿) = 0 such that with respect to ¿ , the space will on average be pH: One

choice for ¿ is N (0; 1). Integrating with respect to K = ··0 which is distributed as

Wishart, the form of the resultant prior for ¯ and the hyperparameter ¿ is

p (¿; ¯) (¯0d¯) (d¿) = ¿¡(ni¡r)r exp
½

¡¿
2

2

¾ ¯̄
¯ 0P¡1¿2 ¯

¯̄¡n=2 c(r;i) (¯0d¯) (d¿)

where c(r;i) = 2¡r¡1=2¼r(r¡1)=4¡(n+1)r=2¦rj=1¡ [(ni +1 ¡ j) =2] : This prior treats the

area around pH?; which occurs at ¿ = 1; as an extreme (practically impossible)

event regardless of the choice of ¾. This is desirable since at ¿ = 1 the dimension

of the cointegrating space, dim(p) ; would become dim
¡
pH?

¢
= min (p¡ r; r) rather

than r:

As an alternative, if the researcher would prefer to assign more weight in the

direction of pH? but preserve dim (p) = r with probability one, she may choose

P¿ = HH 0 (1¡ ¿ 2)1=2 + H?H 0
?¿ with ¿ 2 [¡1; 1] : Again the choice of E (¿) = 0

would make sense and E (¿ 2) = ¾2 controls the tightness of the prior around pH. A

possible choice of a distribution for ´ = ¿+1 may be Beta over ´ 2 [0; 2] which allows

some mass to be distributed around pH? by appropriate choice of parameter values.

An MC(MC) scheme for obtaining draws from the posterior with either the uni-

form or informative prior could be developed using the form of the above informative

prior as a candidate density in which H is set near to the mode of the posterior (see

Appendix). Draws of ¯ could then be drawn using the above outline by drawing ¿
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and Z; then constructing X then ¯; giving a draw of (¿; ¯). Finally, the value of ¾

could be calibrated to a preferred level of dispersion using the span variation measure

(sv) of Larsson and Villani (2001), developed further in Villani (2000), and MC(MC)

draws. Villani (2000) shows how sv can be used to express the degree of variation

in a distribution for as a proportion of the variation under the uniform distribution -

the uniform providing equal variation in every direction.

3.3 The posteriors.

Using the priors speci…ed above, the general form of the posterior is then

p (B;§; ¯; r; ijy) / j§j¡(T+n+r+ki+1)=2

£ exp
½

¡1
2
tr§¡1

·
TS +

³
B ¡ eB

´0
V

³
B ¡ eB

´¸¾
(5)

£ (2¼)¡n(ki+r)=2 100¡n(ki+r)=2p (¯) (¯ 0d¯)

where S = S00 ¡ S01¯ (¯ 0S11¯)¡1 ¯ 0S10; eB =
·

e®0 e©0
¸0

, e® = (¯ 0S11¯)
¡1 ¯0S10; e© =

S¡122 S20; and V = ē 0 ¡§Tt=1z0tzt +H
¢ ē where zt = (z1;t z2;t). The values for the Sij are

de…ned as

ºMij = hij + §Tt=1z
0
i;tzj;t for i and j = 1; 2;

hij = 0 if i 6= j and hii = 0:01I;

ºM20 = §Tt=1z
0
2;t¢yt; ºM10 = §Tt=1z

0
1;t¢yt;

ºM00 = §Tt=1¢y 0t¢yt and so Sij =Mij ¡Mi2M¡1
22 M2j for ij = 0; 1; 2,
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except i = j = 2 where

S22 = M22 ¡M21M¡1
11 M12 and S20 =M20 ¡M21M¡1

11 M10:

For later use we also de…ne D0 = D1 ¡D2; D1 = S11 and D2 = S01S¡111 S10:

4 Bayes factors and posterior probabilities.

In this section the tool for Bayesian inference in this paper - the posterior probabilities

of the ranks - is introduced. Our objective is to report estimates of the posterior

probabilities of the model Mi;r; p (Mi;rjy) = p (i; rjy) : Let Bkl be the Bayes factor for

the model Mk; k = (r; i) to the model Ml, l = (r¤; i¤). The posterior probabilities

and the Bayes factors are linked through the expression for the posterior odds ratio.

First consider the posterior odds ratio for model Mk to model Ml with parameters µk

and µl respectively,

p (kjy)
p (ljy) =

p (k)
R
L (µk) p (µkjk) d (µk)

p (l)
R
L (µl) p (µl jl) d (µl)

=
p (k)
p (l)

£ m (yjk)
m (yjl) =

p (k)
p (l)

£Bk;l:

where p (k) is the prior probability of the model k and

m (y jk) =
Z
L (µk) p (µkjk) d (µk) (6)

is the marginal likelihood for the model k. As the prior odds are known, we need only

estimate Bk;l.
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To estimate the relevant Bayes factors for the models of interest, estimates of the

marginal likelihoods in (6) are required. To perform the integration in (6) of µk =

(§; B; ¯) ; …rst analytically integrate (5) with respect to (§; B) : From the expression

in (5), it is straight forward to show that the posterior for (§; B) conditional on

(¯; r; i) has a standard form which may be integrated analytically (see for example

Zellner, 1971). The resulting posterior for the remaining parameters is

p (¯; r; ijy) _ g(r;i) jS00j¡T=2 jM22j¡n=2 j¯ 0D0¯j¡T=2 j¯ 0D1¯j(T¡n)=2 (¯ 0d¯) (7)

where in this case g(r;i) = T ¡nr=2¼¡(ni¡r)r=2100¡n(ki+r)=2: The conditional density for

¯ given (r; i) has the form

p (¯jr; i; y) (¯ 0d¯) _ j¯ 0D0¯j¡T=2 j¯0D1¯j(T¡n)=2 (¯0d¯)

= k (¯) (¯0d¯)

where k (¯) = j¯ 0D0¯j¡T=2 j¯ 0D1¯j(T¡n)=2 : (¯ 0d¯) is invariant to ¯ ! ¯C for C 2 O (r)

and the above form makes it clear that so is k (¯) : The eigenvalues ¸j (Dl) for l = 0; 1;

will be positive and …nite with probability one. By the Poincaré separation theorem,

since ¯ 2 Vr;n; then ¦rj=1¸n¡r+j (Dl) · j¯0Dl¯j · ¦rj=1¸j (Dl) and so k (¯) is bounded

above (and below) by some positive …nite constant. Also, (¯ 0d¯) is integrable and

therefore …nite almost everywhere. Thus k (¯) (¯ 0d¯) has a …nite upper bound, M .

As the elements of ¯; bij; have compact support, the integral
R
Vr;n
bmijk (¯) (¯

0d¯) for

m = 0; 1; ::: will be bounded above almost everywhere by the integral M
R 1
¡1 b

m
ijdbij.
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These conditions are su¢cient to ensure the posterior for ¯ will be proper and all

…nite moments exist (see Billingsley 1979, pp. 174 and 180).

To obtain the posterior distribution of (r; i) ; p (r; ijy) ; it is necessary to integrate

(7) with respect to ¯ and so obtain an expression for

p (r; ijy) =
Z
p (¯; r; ijy) d¯

=
Z
p (¯jr; i; y) p (r; ijy) d¯

=
Z
p (¯jr; i; y) d¯p (r; ijy) : (8)

The marginal density of ¯ conditional on r has the same form in all cases as

p (¯jr; i; y) = c¡1(r;i)k (¯) (¯
0d¯) (9)

which is not of standard form. Although one may exist, we do not currently know of

a simple, general analytical solution for c(r;i) =
R
Vr;n
k (¯) (¯0d¯) and so we estimate

c(r;i).

Two possible approaches to estimating c(r;i) are either to use Markov Chain Monte

Carlo (MCMC) methods or numerical integration. Kleibergen and Paap (forthcom-

ing) and Bauwens and Lubrano (1996) demonstrate how to evaluate similar integrals

using MCMC when ¯ has been identi…ed using linear restrictions rather than those

used in this paper. Strachan (forthcoming) demonstrates the MCMC approach when

¯ has been identi…ed using related restrictions, how ever the posterior has a very

di¤erent form as an embedding approach similar to Kleibergen and Paap is used. An

20



alternative approach commonly used in classical work to approximate integrals over

Vr;n; is to use the Laplace approximation which is computationally much faster. In the

following section the Laplace approximation to a general integral is brie‡y outlined

and applied to obtain an estimate of c(r;i):

5 Laplace approximation.

Let µ be am-dimensional vector of parameters. If ln f = ln f (µ) is a smooth, positive

function with a maximum at µ; then by the Laplace method the integral
R
gf·dµ

can be approximated by g
¡
µ
¢
f·

¡
µ
¢ ¡

2¼
·

¢m
2 jªj¡ 1

2 where ª is the Hessian of ¡ ln f,

evaluated at µ = µ (g = g (µ) is a continuous nonzero function around µ). There are a

number of papers on applications of the Laplace approximation in econometrics (see

for example Lindley 1980, Tierney & Kadane 1986, Tierney, Kass & Kadane 1989,

Kass & Raftery 1995). However for more relevant references for our application to

an integral over the Stiefel manifold the reader is directed to Muirehead (1982, Ch.

9), G.A. Anderson (1965) and James (1969). In these applications the aim was to

derive distributions of latent roots of covariance matricies and the Laplace approach

was used to provide asymptotic representations of hypergeometric functions of zonal

polynomials which can be represented as integrals over the orthogonal group or, in

some cases, the Stiefel manifold.

The Laplace method will work well if the mode and Hessian, ª; are easy to obtain
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and if the posterior is reasonably peaked around the mode (Tierney and Kadane 1986,

Tierney, Kass & Kadane 1989, Kass and Raftery 1995). Expressions for the mode

and Hessian are presented in the Appendix. The posterior tends to be peaked for

reasonable sample sizes and the mode dominates as T increases. On the general ques-

tion of approximating the marginal likelihood, c(r;i), by the Laplace approximation,

there is considerable precedent in the literature for using this method for this purpose

(Lindley 1980, Kass & Vaidyanathan 1992, Raftery 1994, Kass & Raftery 1995, Lewis

& Raftery 1997). Further, the results presented in this paper support the application

of Laplace approximation at least for estimation of r.

To apply the Laplace approximation, let k = fTg; µ = ¯, m = r
2 (2ni ¡ r ¡ 1) ;

· = T; f = j¯ 0D0¯j¡1=2 j¯ 0D1¯j1=2 and g = j¯0D1¯j¡n=2 : The value of ¯ at the mode

of f will be denoted as ¯ and the Hessian matrix for rank r evaluated at ¯ will

be ª = ªr: Johansen (1991) presents a modal estimator for f (¯) ; b̄; from which

we could obtain ¯ = b̄
³
b̄0b̄

´¡1=2
2 Vr;n. However, a slightly di¤erent derivation is

presented in the Appendix such that ¯ = D1=2
1

b̄ so ¯ is the r eigenvectors associated

with the eigenvalues ¸i
³
D¡1=21 D2D¡1=21

´
for i = 1; : : : ; r: This approach simpli…es

derivation of the Hessian which is also presented in the Appendix.

Using (7), (8), and (9), approximate p (r; ijy) by

bp (r; ijy) =
µ
2¼
T

¶r(2ni¡r¡1)=2
g

¡
¯
¢
f·

¡
¯
¢
jªrj¡

1
2

£g(r;i) jS00j¡T=2 jM22j¡n=2 (see Appendix):
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The classical maximum eigenvalue test statistic, which is a likelihood ratio test

statistic for the hypothesis H0 : rank (¦) = r versus H1 : rank (¦) = r + 1; has the

form mr;r+1 = ¡T ln
³
1 ¡ b̧r+1

´
: From this expression it is possible to show the link

between the classical test statistic, mr;r+1; and the Bayes factor, B(r;i)(r+1;i), for the

di¤use prior as bB(r;i)(r+1;i) = cr exp (¡0:5mr;r+1) where cr depends on the data, r; and

n: Denote the classical trace test statistic, which is a likelihood ratio test statistic

for the hypothesis H0 : rank (¦) = r versus H1 : rank (¦) = n; as mr;n: Similarly,

it is possible to present the link between mr;n and the Bayes factor, B(r;i)(n;i), for the

di¤use prior as bB(r;i)(n;i) = ¦nj=rcj exp (¡0:5mr;n) :

6 Monte Carlo experiment.

To investigate the small sample performance of our estimator for p (r; ijy), we conduct

Monte Carlo experiments and compare these results to those for the a range of infor-

mation criteria and the classical trace test. In the next section, the test is applied to

a set of real data.

The general DGP for the experiments is a VAR with 2 lags and deterministic

processes ¹jt = ¹j + ±jt for j = 0; 1; 2: Let ¯2 be a (n¡ r) £ r matrix, w1;t be

a 1 £ r random vector and w2;t be a 1 £ (n¡ r) random vector is generated by

wj;t = ¹jt + wj;t¡1½j + "j;t; j = 1; 2 where "j;t v iidN (0; ¾2) and ½j is an identity

matrix times ½: The 1 £ n vector of variables in the system is yt = (y1;t y2;t) where
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y1;t is a 1£ r random vector and y2;t is a 1£ (n¡ r) random vector jointly generated

by y1;t = ¹0t + y2;t¯2+ w1;t; y2;t = y2;t¡1 +w2;t.

This speci…cation corresponds to the ECM in (1) as ¢yt = ¹ + ±t + yt¡1¯® +

¢yt¡1¡1+"t with ± =
·
±1 + ±2¯2; ±2

¸
; ¹ =

·
¹1 + ¹2¯2 ¡ ±0; ¹2

¸
; ® = [(½¡ 1) Ir 0] ;

¯ =
·

¡¹00 ¡± 00 Ir ¡¯ 02
¸0
; ¡1 = [¡011; ¡021] ;¡11 = 0; ¡21 =

·
½¯2 In¡r½

¸
; and

"t = ("1;t + "2;t¯2; "2;t).

The ¹j and ±j are set equal to 0:35¶ in which ¶ is a vector of ones, ½ = 0:35;

¾ = 1:5; T = 100; and each element of ¯2 is 1: All of the following results come from

10; 000 draws of yt for each model such that the following probabilities and relative

frequencies will have Monte Carlo standard errors of at most 0:005:

The range of models simulated is for each i = 1; : : : ; 5; n = 2; 3; 4 and r = 1; 2

for a total of 30 experiments. For each model the combination of (r; i) is selected

using the highest estimated posterior probability for the Laplace method (LP) and

three commonly employed information criteria: the Akaike (1974) (AIC); Schwarz

(1978) (BIC); and the Hannan and Quinn (1979) (HQ). The estimator’s performance

in selecting r by using the mode of p (r; ijy) is also compared to that of mr;n at the

5% (m5%
r;n) and the 1% (m1%

r;n) level of signi…cance. However, when using mr;n it is

assumed i is known. While this assumption is expected to advantage the classical

test, the results indicate that the Laplace estimator still performs, generally, as well

and often better than mr;n.
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The marginal relative selection frequencies of the correct r are compared for the

…ve techniques and marginal relative selection frequencies for i are compared for the

information criteria and LP. Full results are available from the authors and a selection

is reported here.

Again it should be noted at this point that the reporting of selection frequencies

aids only in comparison with other techniques for the purpose of selecting a com-

bination (i; r) on which subsequent inference can condition. This does not indicate

performance of the method in model averaging.

In selecting r LP was …rst or equal …rst in 20 of the 30 experiments. For the other

techniques the same result was: AIC 5; BIC 6; HQ 6; m5%
r;n 9; and m1%

r;n 7. Ranking

the techniques on frequencies of correct selection of r from 1 (best) to 6 (worst), the

average ranks were LP 1:97; AIC 4:9, BIC 2:77, HQ 2:8, m5%
r;n 2:93; and m1%

r;n 3:33:

The results were fairly consistent across the range of models although there were some

patterns evident. Figure 1 shows a sample result for correct selection frequencies of

r in this case for n = 3; r = 2 and over the …ve models of i: LP tended to perform

better for the models with fewer deterministic processes (i = 3; 4; 5), the AIC was

most frequently the worst, while m5%
r;n performed markedly better and m1%

r;n performed

slightly better when i = 1; 3 or 5:

In selecting i LP was …rst or equal …rst in 13 of the 30 experiments. For the other

techniques the same result was: AIC 4; BIC 13; and HQ 6. The average ranks were
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LP 2:67; AIC 3:03, BIC 1:9, and HQ 2:17: The performance of LP was not consistent

over i; as LP came equal last 16 times (AIC 11 times, BIC 1 and HQ 0). Figure 2

shows the sample results for selection of i: In this case the information criteria tended

to perform better when i = 1 or 5; but poorly otherwise (particularly at i = 4). BIC

and HQ tend to over-select i = 5 when in fact i = 4: LP performs very well when

i = 1 or 3 (with relative frequencies near 1), but only occassionally selects correct

i when i = 2; 4; or 5: The better performance of the information criteria is due to

the treatment in the penalty function of the change in the number of parameters.

The information criteria treat changes in the dimensions of ¯ and B symmetrically,

however the Laplace method distributes the changes among gamma functions and

exponents. An alternative speci…cation of the prior for i could remove this problem,

however the e¤ect diminishes with increased sample size.

The Monte Carlo results suggest that LP is useful for selecting r from the joint

distribution of (r; i) ; however when selecting i it performs well in only some cases.

7 An illustrative example: Interest rates.

In this section we demonstrate testing for the (r; i) for four U.S. treasury bill rates.

The four interest rates are the 5 year (i5) and 1 year (i1) Treasury Bond rates (Capital

Market) and the 1 and 3 month and 1 and 5 year Treasury constant maturity rates

(i30; i180; i1YR and i5YR respectively). The data are annualised monthly rates for the
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period January 1982 to January 1999 (T = 214).

These variables are useful for the study of the various theories for the term struc-

ture of interest rates. Common implications of many of these theories is that, while

the rates themselves may be integrated of order one, we would expect to …nd in this

case, three cointegrating relations. It is unlikely that interest rates would contain lin-

ear drifts suggesting i = 4 or 5; however over the period in this sample rates showed

a clear downwards movement suggesting we may …nd i = 3. It is commonly assumed,

and there is strong empirical evidence in support of this assumption, that the rates

enter the cointegrating relations through the spreads. With this assumption, choosing

between i = 4 and 5 depends upon our beliefs about the long run or equilibrium term

structure of the interest rates. If we believe the term structure to be ‡at, this would

support i = 5; if we believe it is sloping (up or down) this would suggest i = 4:

Classical pretesting suggests each series is integrated of order one and we …nd

an ECM with two lags of di¤erences is su¢cient to model the process. The residu-

als in the ECM, particularly for the short rates, do not appear normal and this is

largely due to excess kurtosis, however, following earlier studies using interest rates

to demonstrate an application, such as Luukkonen, Ripatti and Saikkonen (1999), we

ignore this feature as modelling this behaviour is outside the scope of this paper.

The information criteria select combinations of (r; i) of AIC (4; 5), BIC (1; 5)

and HQ (2; 5) : Likelihood ratio tests at r = 2 suggest i = 5; and assuming i =
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5 and using m5%
r;n and m1%

r;n; r = 2 is accepted. Posterior probabilities using LP

suggest (r = 2; i = 3) to be the most likely combination with posterior probability of

Pr(r = 2; i = 3jy) = 0:63. The conditional probabilities for r also support r = 2 with

Pr(r = 2ji = 3; y) = 0:68 and Pr(r = 2ji = 5; y) = 0:50. Conditioning on i = 3; m1%
r;n

supports r = 2 whereas m5%
r;n supports r = 4. The acceptance by the classical test of

r = 4 when i = 3 at the 5% level of signi…cance is re‡ected in a Bayesian conditional

posterior probability of Pr(r = 4ji = 3; y) = 0:25:

8 Conclusion.

In this paper a method of …nding approximations to Bayes factors has been demon-

strated for models of stochastic and deterministic processes of a cointegrating er-

ror correction model. These approximations use both analytical integration and the

Laplace method of approximating integrals. Although the Laplace method has been

employed in many Bayesian studies, the approach in this article owes more to the

classical literature on obtaining distributions of latent roots of covariance matrices.

The Monte Carlo results suggest the Laplace approach performs well at selecting the

number of stochastic trends when compared with the equivalent classical test statis-

tics and information criteria. However, the approach does not perform consistently

well when used to determine the deterministic processes in the data.

An important contribution of this article is the approach to eliciting priors for
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cointegrating vectors. As the object of interest is the cointegrating space, a prior is

placed upon this parameter and this de…nes the implied prior for the elements in the

cointegrating vectors.

9 Appendix.

The Laplace approximation.

Before applying the Laplace approximation to the integral in (8), de…ne by U =

[U1 U2] 2 O (n) the eigenvectors of A = D¡1=21 D2D¡1=21 such that A = U¤U 0 and

¤ = diag (¸1 (A) ; : : : ; ¸p (A)) : Next let Dul = U 0DlU for l = 0; 1; 2; H1 = U 0¯ and

since U 2 O (n) then (¯ 0d¯) = (H 0
1dH1) by invariance of (¯0d¯) : Therefore

Z

Vr;n
f (¯) g (¯) (¯ 0d¯) =

Z

Vr;n
f (UH1)g (UH1) (H 0

1dH1)

where f (UH1) = jH 0
1Du0H1j¡1=2 jH 0

1Du1H1j1=2 : The Laplace approximation is then

applied to this integral with respect to H1: This application requires the mode of f;

H1; and an expression for the Hessian of ¡ lnf at H1; ªr:

Maximising f > 0 is equivalent to minimising f¡2 =
¯̄
H 0

1Du0H1 (H 0
1Du1H1)¡1

¯̄
.

Note for a m£m matrix E, jE j = ¦mj=1¸i (E) = ¦mj=1¸i (U 0EU) : From an extension

of the Poincaré separation theorem (see Schott 1997, p. 116)

minf¡2 = ¦rj=1¸n¡r+j
¡
Du0D

u¡1
1

¢

= ¦rj=1¸n¡r+j
¡
D0D¡11

¢
since Du0Du¡11 = U 0D0D¡1

1 U:
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Since D¡1=2
1 D0D

¡1=2
1 = In ¡ A; and ¸n¡r+j

¡
D0D¡11

¢
= ¸n¡r+j

³
D¡1=21 D0D

¡1=2
1

´
,

then this equals 1 ¡ ¸j (A) = 1 ¡ ¸j (¤). Therefore, minf¡2 = ¦rj=1 (1¡ ¸j (¤)) =

min jIr ¡H1¤H1j which occurs atH1 = [§Ir 0]0 where §Ir means one of the 2r matri-

ces with zero o¤-diagonal elements and diagonal elements either +1 or -1. Therefore

if H1 = [Ir 0]0 for large T;

c t 2r
Z

N(H1)
k (UH1) (H 0

1dH1)

where N ¡
H1

¢
denotes a neighbourhood of the matrix H1 (see Muirehead 1982, Ch.

9 p. 394 for a more detailed explanation of this point). This result will allow a simple

form for the Hessian of ¡ lnf (UH1) at H1:

First note that the Hessian of ¡ lnf = 1
2 ln jH 0

1Du0H1j ¡ 1
2 ln jH 0

1Du1H1j has the

form ªr = JH;hªHJH;h where

ªH = ¡ @2 lnf
(@vecH1)0 (@vecH1)

= ª0 ¡ ª1:

Using standard results for obtaining matrix di¤erentials (see Magnus and Neudecker,

1988), for l = 0; 1 and using ¯ = UH1;

ªl =
h
(¯ 0Dl¯)

¡1 ­
³
Dl ¡Dl¯ (¯0Dl¯)¡1 ¯0Dl

´i

¡
h
(¯ 0Dl¯)

¡1 ¯ 0Dl­Dl¯ (¯0Dl¯)¡1
i
Kn;r

where for the (n£ r) matrix E; Kn;rvec (E) = vec (E0) :
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The nr £ r
2 (2n¡ r ¡ 1) matrix JH;h contains the partial di¤erentials of H1 with

respect to the free elements of H1 denoted by hij; dvec(H)dvec(hij)
. From Muirehead (1982),

since H1 2 Vr;n there exists a n£ n orthogonal matrix H = [H1 : ¡] given by

[H1 : ¡] = exp (X )

= In +X + 1
2
X2 + 1

3!
X3 + : : : ; (10)

X =

2
664
X11 X12

¡X 0
12 0

3
775

where X and X11 are skew symmetric. If H has ij th element hij and X has xij; then

hii = 1 ¡ 1
2
§nj=1x

2
ij + higher order terms, i · r and

hij = xij + higher order terms (i 6= j) ; xij = ¡xji

(see James 1969 for details). In the neighbourhood N
¡
H1

¢
; X11 = 0 and X12 = 0:

Di¤erentiate (10) once and set all remaining xij = 0 to obtain dvec(H)
dvec(hij)

and thus the

Jacobian from H1 to hij at H1 = H1.
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12 Figures.
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Figure 1: The above …gures show the relative selection frequencies for r when n = 3;

r = 2:The labels are given in the …gure and the x-axis shows the value of i.
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Figure 2: The above …gures show the relative selection frequencies for i when n = 3;

r = 2: The legend is given in Figure 1 and the x-axis shows the value of i.

13 Figure Legends.
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Figure 3: Legend for Figures 1 and 2. LP - Laplace approximation method; AIC,

BIC and HQ are the information criteria and 5% and 1% are the classical trace tests.
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