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1. INTRODUCTION

The financial market is inevitably affected by information arrivals. As argued in

Merton (1976) in relation to the jump-diffusion stock market model, the release of

routine trading information will result in smooth changes in the underlying stock re-

turn process whereas bursts of information are often reflected in price behaviour as

discontinuous jumps. The existence of jump components has been documented in the

literature for the stock market and the exchange rate market, for example in Ball and

Torous (1983, 1985), Jorion (1988), and recently in Bates (1996, 2000), Jiang (1999)

and Pan (2002).

The fixed-income market is equally substantially impacted by information surprises.

As cited in Das (2002), a number of researchers have found that economic news an-

nouncements and other releases of information have an impact on the Treasury bond

market. Such findings include those of Hardouvelis (1988), Dwyer and Hafer (1989)

and more recently, Balduzzi, Green and Elton (1998) and Green (1998). Therefore,

jump-diffusion models for interest rates are proposed and analyzed in Babbs and Web-

ber (1995), Naik and Lee (1995), El-Jahel, Lindberg and Perraudin (1997), Piazzesi

(1999) and Das (2002), albeit the specification of the jump models are different. The

general models of Chacko (1998), Chacko and Das (2002) and Singleton (2001) also

contain jumps.

The above-mentioned works have extensively focused on the spot rate of interest. In

this paper, we study jump-diffusion interest rate models under the general framework

of Heath, Jarrow and Morton (1992) (hereafter HJM), which starts with specification

of the dynamics of the instantaneous forward rate, under which the spot rate is one par-

ticular rate, ie. the instantaneous forward rate with zero maturity. The HJM model is

an arbitrage-free model which matches the current term structure by construction, and

relies on no assumption about investor preferences. The model offers a parsimonious

representation of the market dynamics and requires only specification of the form of

the forward rate volatility function.

The HJM model in the form of a diffusion process is difficult to estimate due to its

(in general) non-Markovian nature. When jumps are introduced into the model, the

degree of complexity is magnified. In this paper, we only consider time-deterministic

diffusion volatility processes. Unlike previous studies on jump diffusion of the spot



JUMP COMPONENT - INTEREST RATE FUTURES MARKETS 3

rate of interest, where the jump size is assumed to be drawn from a continuous distribu-

tion, we use multiple jump processes, each of which is associated with a constant jump

value scaled by a time-deterministic jump volatility. The advantage of this approach is

that if the jump size is distributed with an infinite number of possible realizations (as in

the case of a continuous distribution such as the normal distribution), under the HJM

framework, the market will not be complete (see Björk, Kabanov and Runggaldier

(1997) for a detailed discussion of this issue), and therefore contingent claim prices

are not uniquely defined. Our approach is based on Shirakawa’s (1991) extension of

the HJM model, in which a Wiener noise is generalized into a Wiener-Poisson noise,

with a finite number of possible jumps. Shirakawa (1991) assumes the existence of a

sufficient number of bonds to hedge away all of the jump risks, and so obtains a unique

arbitrage-free pricing measure. Our specification here is slightly more general in that

it allows the generalized noise to be maturity-dependent.

Bhar, Chiarella and Tô (2002) demonstrate that attempts to estimate HJM models

directly from the instantaneous forward rate specification using the short term futures

yield as a proxy would result in non-negligible estimation bias. Therefore, they first

derive the evolution of the futures prices by treating the futures contract as a derivative

instrument written on the instantaneous forward rate. In this paper we extend the

approach of Bhar, Chiarella and Tô (2002) to the HJM model under jump-diffusion

and show that if the underlying market variable follows a jump-diffusion process, then

the futures prices should also experience jump components. We then use this futures

price evolution to estimate our model’s parameters using Duan’s (1994) likelihood

transformation method. Under our specification, the likelihood is well defined, details

will be discussed in later sections of the paper.

The theoretical contribution of the paper is, therefore, two-fold. The first is to de-

rive the evolution of futures prices1. This evolution can then be used as an input for the

Björk and Landén (2002) framework to determine the evolution of options on futures.2

The second contribution is to utilize this evolution to obtain a method to estimate the

parameters for all HJM models with time-deterministic diffusion and jump volatili-

ties, under the finite jump assumption. This estimation method does not rely on the

1As far as we are aware, research so far has exclusively focused on bond and option pricing rather than
futures contracts.
2Björk and Landén (2002) start with a marked point process for the instantaneous forward rate, and
assert a marked point process for the futures prices without establishing a link between the two sets of
parameters.
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Markovianization of the system comprising the spot rate of interest, and equivalently

the bond price, which may not always be possible.

We then estimate the jump-diffusion HJM model for four major futures markets

around the world, namely the Chicago Mercantile Exchange (CME), the London Inter-

national Financial and Futures Exchange (LIFFE), the Tokyo International Financial

Futures Exchange (TIFFE) and the Sydney Futures Exchange (SFE). The empirical

analysis supports the existence of jump components in the CME futures market, as

predicted by previous studies of jumps utilizing U.S. data. The SFE futures market

also experiences jumps, though the mechanism by which a surprise in information im-

pacts on the Australian market is different from that of the U.S market. On the other

hand, we do not find empirical support for the existence of jump components in the

U.K market. In the TIFFE market, it seems that the perception of the jump risk is

negligible, since the market price of jump risk is found not to be significantly different

from zero.

The rest of the paper is organized as follows. Section 2 discusses the class of HJM-

jump models with which we are working. The evolution of futures prices are derived

in Section 3. This evolution is subsequently used to estimate the model’s parameters

via the likelihood transformation method proposed by Duan (1994), as presented in

Section 4. Data and models considered are described in Section 5. We discuss the

empirical finding in Section 6. Finally, Section 7 concludes the paper. All technical

details are relegated to the Appendices.

2. MODEL FRAMEWORK

Consider a financial market characterized by a probability space (Ω,F ,P). Assume

that the probability space carries a standard Wiener process W , and M Poisson pro-

cesses N1, N2, . . . , NM , respectively associated with intensities υ1(t), υ2(t), . . . , υM(t).

We further assume that the Poisson processes are independent of each other and of the

Wiener process.

The dynamic evolution of the instantaneous T -maturity forward rate f(t, T ) (for

t ≤ T ∈ R
+) is assumed to be governed by the stochastic differential equation

df(t, T ) = α(t, T )dt + σ(t, T )dW (t) +
M∑

m=1

δm(t, T )γmdNm(t), (2.1)



JUMP COMPONENT - INTEREST RATE FUTURES MARKETS 5

where α(t, T ) and the σ(t, T ) are respectively the drift and the Wiener diffusion coef-

ficient for the instantaneous forward rate to maturity T , whereas γm(m = 1, . . . ,M)

is the constant jump size that occurs at the Nm Poisson jump time. The corresponding

jump volatility function is δm(t, T ).

This model extends the HJM framework by allowing the evolution of the instanta-

neous forward rate to include discrete jump components in addition to the diffusion

process. Each of the noise terms is then scaled by the corresponding volatility func-

tions. The process, is therefore, a special case of the marked point process introduced

by Björk, Kabanov and Runggaldier (1997), where the marked space is finite3. If we

recall one of the very first models that include jump components for forward rate speci-

fication, that of Shirakawa (1991) for which the dynamics of the forward rate are given

by

df(t, T ) = α∗(t, T )dt + σ(t, T )

[
dW (t) +

M∑

m=1

γm

(
dNm(t) − υmdt

)
]

, (2.2)

we can see that our specification in (2.1) allows for the “generalized noise term” to be

maturity dependent. Instead of generalizing the Wiener noise increment dW (t) into a

maturity independent Wiener-Poisson noise increment

dW (t) +
M∑

m=1

γm

(
dNm(t) − υmdt

)
,

we generalize the Wiener noise increment into the maturity dependent Wiener-Poisson

noise increment

dW (t) +
M∑

m=1

δm(t, T )

σ(t, T )
γm

(
dNm(t) − υmdt

)
.

This generalization has the advantage of giving us greater flexibility to capture empiri-

cally the jump components. It has the disadvantage of making the Markovianization of

the associated spot rate or bond price difficult, if not impossible4. However we do not

suffer from this disadvantage since our work is based on the futures prices, and our ma-

nipulations to obtain an expression for futures prices do not require Markovianization

of the system dynamics.

3The reason we impose a finite marked space is to ensure market completeness. Details will be discussed
later in the section.
4For some results on Markovianization of the HJM models under jump-diffusion see Chiarella and
Nikitopoulos Sklibosios (2002) and Chiarella and Kwon (2002b).
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Under the historical martingale measure P , the instantaneous T -maturity forward

rate 2.1 evolves according to the stochastic integral equation

f(t, T ) = f(0, T ) +

∫ t

0

α(u, T )du +

∫ t

0

σ(u, T )dW (u)

+
M∑

m=1

∫ t

0

δm(u, T )γmdNm(u),

(2.3)

from which the evolution of the instantaneous spot rate can be derived by setting T = t,

thus

r(t) = f(0, t) +

∫ t

0

α(u, t)du +

∫ t

0

σ(u, t)dW (u)

+
M∑

m=1

∫ t

0

δm(u, t)γmdNm(u).

By application of the generalized Itô’s lemma (see Appendix A), the dynamics for

P (t, T ), the price at time t of a bond maturing at time T , may be expressed as

dP (t, T ) = P (t, T )

[
r(t) + A(t, T ) +

1

2
S(t, T )2

]
dt + P (t, T )S(t, T )dW (t)

+
M∑

m=1

P (t−, T )[eDm(t,T ) −1]dNm(t)

where

A(t, T ) ≡ −

∫ T

t

α(t, s)ds,

S(t, T ) ≡ −

∫ T

t

σ(t, s)ds,

and

Dm(t, T ) ≡ −

∫ T

t

δm(t, s)γmds, for m = 1, . . . ,M.

The specification (2.1) limits the jump space to be finite. Björk, Kabanov and Rung-

galdier (1997) then prove (in theorem 5.6, page 235) that the market is complete (ie.

every contingent claim can be replicated by a self-financing portfolio) if the following

2 conditions hold:

(i) For each t, the functions σ(t, T ) and δm(t, T ) are analytic in the T -variable
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(ii) For each t, the functions

S(t, T ), eDm(t,T ) −1, m = 1, . . . ,M, (2.4)

of the argument T are linearly independent. Furthermore, for each t we can choose

the distinct bond maturities arbitrarily, apart from a finite number of values on every

compact interval. If all functions above are deterministic and analytic also in the t-

variable, then the maturities can be chosen to be the same for every t.

The completeness of the market implies that the martingale measure is unique (see

Corollary 4.8 of Björk, Kabanov and Runggaldier (1997), p229). Under this equivalent

martingale measure P̃ , the bond dynamics are given by

dP (t, T ) = P (t, T )r(t)dt + P (t, T )S(t, T )dW̃ (t)

+
M∑

m=1

P (t−, T )[eDm(t,T ) −1]dNm(t),

where W̃ is a standard Wiener process and Nm is a Poisson process associated with

intensity λm, for m = 1, . . . ,M , which can be interpreted as the market price of jump

risk, see Shirakawa (1991). The Poisson processes Nm remain independent of each

other and of the Wiener process W̃ .

Björk, Kabanov and Runggaldier (1997) (Proposition 3.13, p222) show that to elim-

inate arbitrage opportunities, the relation

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds −

M∑

m=1

δm(t, T )γm eDm(t,T ) λm(t)

≡ α̃(t, T ) (2.5)

must hold under P̃ .

Since all derivative instruments can then be priced under the equivalent martingale

measure, for model application and pricing purposes, it is sufficient to estimate only

the model parameters that appear under the equivalent measure, i.e. the parameters of

the volatility coefficients of the Wiener and Poisson processes, and the P̃- intensities

λm(t) (m = 1, . . . ,M ).
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3. EVOLUTION OF FUTURES PRICES UNDER HJM WITH JUMPS

Let F (t, TF , TB) be the price at time t of a futures contract maturing at time TF (> t).

The contract is written on a pure discount instrument which has a face value of $1 and

matures at time TB(> TF ). Let the price of this instrument at time TF be P (TF , TB)

and the logarithm value of the price be V (TF , TB).

Since futures contracts are marked-to-market, it is shown in Cox, Ingersoll and Ross

(1981) that the futures price is a martingale under the equivalent measure P̃ , so that

F (t, TF , TB) = E
P̃

t

[
F (TF , TF , TB)|Ft

]

= E
P̃

t

[
P (TF , TB)|Ft

]

= E
P̃

t

[
exp(V (TF , TB))|Ft

]
.

The log-price V (TF , TB) under P̃ is given by

V (TF , TB) = −

∫ TB

TF

f(TF , s)ds

= −

∫ TB

TF

f(0, s)ds −

∫ TB

TF

∫ TF

0

α̃(u, s)du ds

−

∫ TB

TF

∫ TF

0

σ(u, s)dW̃ (u) ds −
M∑

m=1

∫ TB

TF

∫ TF

0

δm(u, s)γmdNm(u) ds.

By an application of the stochastic Fubini theorem

V (TF , TB) = −

∫ TB

TF

f(0, s)ds −

∫ TF

0

∫ TB

TF

α̃(u, s)ds du

−

∫ TF

0

∫ TB

TF

σ(u, s)ds dW̃ (u) −
M∑

m=1

∫ TF

0

∫ TB

TF

δm(u, s)γmds dNm(u).
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Therefore5

F (t, TF , TB) = E
P̃

t

[
exp(V (TF , TB))|Ft

]

= exp

[
−

∫ TB

TF

f(0, s)ds −

∫ TF

0

∫ TB

TF

α̃(u, s)ds du

−

∫ t

0

∫ TB

TF

σ(u, s)ds dW̃ (u) −
M∑

m=1

∫ t

0

∫ TB

TF

δm(u, s)γmds dNm(u)

]

× E
P̃

t

[
exp

(
−

∫ TF

t

∫ TB

TF

σ(u, s)ds dW̃ (u)

)]

×

M∏

m=1

E
P̃

t

[
exp

(
−

∫ TF

t

∫ TB

TF

δm(u, s)γmds dNm(u)

)]
(3.1)

due to the independence of the Wiener and the Poisson processes.

The final task is to carry out the expectation operations. The first expectation in

(3.1) is a standard result. In fact, Musiela, Turnbull and Wakeman (1992) have used

this method to derive the futures price evolution when the market jump components

are absent from the market. The second expectation, which involves the increments of

5The reader is reminded that at time t, the integrals from 0 to t of dW̃ and dNm(t) are realized quantities.
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Poisson processes, is evaluated in Appendix B. The final result is

F (t, TF , TB)

= exp

[
−

∫ TB

TF

f(0, s)ds −

∫ TF

0

∫ TB

TF

α̃(u, s)ds du

−

∫ t

0

∫ TB

TF

σ(u, s)ds dW̃ (u) −
M∑

m=1

∫ t

0

∫ TB

TF

δm(u, s)γmds dNm(u)

]

× exp

[
1

2

∫ TF

t

(∫ TB

TF

σ(u, s)ds

)2

du

]

×
M∏

m=1

exp

{
λm

∫ TF

t

[
exp

(
−

∫ TB

TF

δm(u, s)γmds

)
− 1

]
du

}

=F (0, TF , TB) exp

{
−

1

2

∫ t

0

(∫ TB

TF

σ(u, s)ds

)2

du

−
M∑

m=1

λm

∫ t

0

[
exp

(
−

∫ TB

TF

δm(u, s)γmds

)
− 1

]
du

−

∫ t

0

∫ TB

TF

σ(u, s)ds dW̃ (u) −
M∑

m=1

∫ t

0

∫ TB

TF

δm(u, s)γmds dNm(u)

}
(3.2)

From this stochastic integral equation for F (t, TF , TB), we can derive the corre-

sponding stochastic differential equation

dF (t, TF , TB)

F (t−, TF , TB)
= α(F )(t, ·)dt + σ(F )(t, ·)dW̃ (t) +

M∑

m=1

δ(F )
m (t, ·)dNm(t), (3.3)

where

σ(F )(t, ·) ≡ −

∫ TB

TF

σ(t, s)ds,

δ(F )
m (t, ·) ≡ exp

(
−

∫ TB

TF

δm(t, s)γmds

)
− 1,

α(F )(t, ·) ≡ −
M∑

m=1

λmδ(F )
m .

We have treated the futures contract as a derivative instrument written on the forward

rates to derive the evolution for the futures price. This evolution is important for two
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practical reasons. First, since futures prices are quoted in the market6, the evolution of

F (t, TF , TB) can be used to estimate the parameters of the forward rate specification,

which is our main focus here. Second, this evolution may be used as an input for the

Björk and Landén (2002) framework to derive the prices of options on futures, such

applications however are beyond the scope of the present paper.

4. THE LIKELIHOOD TRANSFORMATION TECHNIQUE

The evolution of F (t, TF , TB) involves the parameters of the forward rate specifi-

cation. In order to use this evolution to estimate the model parameters, one possible

approach is to discretize the stochastic differential equation (3.3). However, the usual

Euler discretization may result in inconsistent estimators (see Lo (1988) for detailed

discussion). Therefore, we will derive the true likelihood function for futures prices

via a state variable, under the likelihood transformation technique of Duan (1994).

The method of Duan only requires one derivative instrument to estimate the under-

lying model parameters. However, in our framework, for each underlying instrument,

there are a number of futures contracts (with different maturities) traded in the market.

In order to include all of these futures series in the estimation, we follow the approach

of Bhar, Chiarella and Tô (2002) who set up and derive the full information likelihood

function for the quoted futures prices in the case of pure Wiener processes. A review of

the method will be presented in the first half of this section for completeness, whereas

the second half of the section derives the likelihood function needed to handle the case

of Wiener-Poisson noise.

4.1. State variables.

Assume that for each underlying pure-discount interest rate instrument, there are K

futures contracts maturing at times TFk (k = 1, 2, . . . , K). The (observable) quoted

futures price in the market is G(t, TFk, TBk), which is linked with F (t, TFk, TBk) via a

function η

F (t, TFk, TBk) ≡ η
(
G(t, TFk, TBk)

)
. (4.1)

6The quoted value in the market is not exactly F (t, TF , TB) but some value related to F (t, TF , TB),
depending on each exchange convention.
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The link between F and G depends on the quoting convention of each exchange. For

example, Eurodollar futures prices traded on the Chicago Mercantile Exchange are

related to quoted prices according to

F (t, TFk, TBk) =
1

1 +
(
1 − G(t,TFk,TBk)

100

)
(TBk − TFk)

≡ η
(
G(t, TFk, TBk)

)
. (4.2)

The quoting convention of other exchanges that are considered in the empirical part of

this paper are given in Appendix C. We are considering the case in which all of the

futures contracts are written on the same underlying instrument, and therefore the time

to maturity of the underlying contract is TBk − TFk = τ constant for all k ∈ [0, K].

Let X(t, TFk, TBk) be a state variable defined by

X(t, TFk, TBk) = ln(F (t, TFk, TBk))

≡ ζ(F (t, TFk, TBk)). (4.3)

From (3.2) we have that X(t, TFk, TBk) satisfies the stochastic integral equation

X(t, TFk, TBk) = X(0, TFk, TBk) +

∫ t

0

µk(u, ·)du

+

∫ t

0

βk(u, ·)dW̃ (u) +
M∑

m=1

∫ t

0

νm,k(u, ·)dNm(u),

where

µk(u, ·) ≡ −
1

2
β2

k(u, ·) −
M∑

m=1

λm

[
exp

(
νm,k(u, ·)

)
− 1
]
,

βk(u, ·) ≡ −

∫ TBk

TFk

σ(u, s)ds,

νm,k(u, ·) ≡ −

∫ TBk

TFk

δm(u, s)γmds.

In order to set up a maximum likelihood estimation procedure, we need to find the

density function for the state variable X , then transform it successively into the density

functions for F and G.

4.2. The likelihood transformation formula.
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Let Xj k ≡ X(tj, TFk, TBk)be an unobservable state variable k (k = 1, 2, . . . , K)

occurring at time tj < TFk (j = 0, 1, . . . , J).

Denote by xj the vector of unobservable state variables occurring at time tj , ie. xj =(
Xj1, Xj2, . . . , XjK

)
. Denote by x the unobservable state vector of size K(J +1)× 1

at time tJ , ie.

x = vec ( x0 x1 . . . xJ )

= vec




X(t0, TF1, TB1) X(t1, TF1, TB1) . . . X(tJ , TF1, TB1)

X(t0, TF2, TB2) X(t1, TF2, TB2) . . . X(tJ , TF2, TB2)
...

...
. . .

...

X(t0, TFK , TBK) X(t1, TFK , TBK) . . . X(tJ , TFK , TBK)




,

where vec is the standard matrix operator that, when applied to a matrix, transforms

the matrix into a vector by stacking the columns of the matrix on top of each other.

Denote the density function of X by

pX(x; θ) = pX(x0,x1, . . . ,xJ ; θ),

where θ ∈ Θ is the parameter vector of interest.

Suppose that a transformation Ξ exists, which applied to X , produces a vector Z

that is observable in the market, so that

Z = Ξ(X; θ) : R
K(J+1)×1 → R

K(J+1)×1,

where

z = vec ( z0 z1 . . . zJ )

= vec




Z01 Z11 . . . ZJ1

Z02 Z12 . . . ZJ2

...
...

. . .
...

Z0K Z1K . . . ZJK




.

Assume that this transformation is one-to-one for every θ ∈ Θ.

Since Ξ is one-to-one, there exists an inverse Ξ
−1 = Ψ(Z; θ). Applying the stan-

dard change of variable technique we obtain the density function for Z as

pZ(z,θ) = pX (Ψ(z; θ)) ×
∣∣J (Ψ(z; θ))

∣∣,
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where J is the Jacobian of the transformation from X to Z, ie.

J (Ψ(z; θ)) =

∣∣∣∣
∂Ψ(z; θ)

∂z′

∣∣∣∣ .

Duan (1994) proves that if the transformation is on an element-by-element basis, ie.

Zj k = Ξj k(Xj k) (and Xj k = Ψj k(Zj k)) for all j ∈ [0, J ] and k ∈ [1, K] 7, then the

first-derivative matrix is diagonal, therefore

J (Ψ(z; θ)) =
J∏

j=0

K∏

k=1

dΨj k(Zj k; θ)

dZj k

.

Furthermore, if X is “joint-Markovian”, ie.

pX(x0,x1, . . . ,xJ ; θ) = pX(x0, t0; θ)
J∏

j=1

pX(xj, tj|xj−1, tj−1; θ)

then upon substitution, the likelihood for Z can be compactly written as

pZ(z0, z1, . . . , zJ ; θ) = pZ(z0, t0; θ)
J∏

j=1

pZ(zj, tj|zj−1, tj−1; θ),

where

pZ(z0, t0; θ) = pX

(
Ψ0(y0), t0; θ

)
×
∣∣∣J
(
Ψ0(z0; θ)

)∣∣∣,

pZ

(
zj, tj|zj−1, tj−1; θ

)
= pX

(
Ψj(zj), tj|Ψj−1(zj−1), tj−1; θ

)
×
∣∣∣J
(
Ψj(zj; θ)

)∣∣∣,

and

J
(
Ψ(zj; θ)

)
=

K∏

k=1

dΨj k(Zj k; θ)

dZj k

(j = 0, 1, . . . , J).

4.3. Full information likelihood for quoted futures prices.

Before deriving the likelihood function, we introduce into the system a measure-

ment error, ie. a deviation of market quoted value and the true model value. We will

assume that on average, this measurement error brings zero return to the trading of

futures contracts. Therefore, a new Wiener process ε̃k, which is independent of the

process driving the uncertainty of the forward rate, is introduced into the evolution of

7This assumption is not restrictive in the financial market context, since each financial instrument is
usually determined by only one particular underlying variable. For example, a bond price at a time is
determined by the interest rate of a particular maturity at that particular time.
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F (t, TFk, TBk), so (3.3) becomes

dF (t, TF , TB)

F (t−, TF , TB)
= α(F )(t, ·)dt + σ(F )(t, ·)dW̃ (t)

+ σεdε̃k(t) +
M∑

m=1

δ(F )
m (t, ·)dNm(t),

We assume that there is no correlation between the return-measurement error on con-

tracts with different maturities (ie. no correlation between dε̃k for k = 1, . . . , K).

Since there is no reason to believe the error in one particular contract is larger than in

others, we use the same error-volatility value σε for all contracts8.

The evolution of our state variable X , incorporating this measurement error, is

X(t, TFk, TBk) = X(0, TFk, TBk) +

∫ t

0

(
µk(u, ·) −

1

2
σ2

ε

)
du

+

∫ t

0

βk(u, ·)dW̃ (u) +

∫ t

0

σεdε̃k(u) +
M∑

m=1

∫ t

0

νm,k(u, ·)dNm(u).

(4.4)

Suppose that the process is sampled at J + 1 discrete points in time t0, t1, . . . , tn

(not necessarily equally spaced apart). Due to the Markovian nature of the system (ie.

the stochastic processes for X(t, TFk, TBk) for k = 1, . . . , K), the likelihood function

for joint observation x9, for a given parameter vector of interest θ ∈ Θ, is

pX(x0,x1, . . . ,xJ ; θ) = pX(x0, t0; θ)
J∏

j=1

pX(xj, tj|xj−1, tj−1; θ).

The specification (4.4) implies that the transitional likelihood function for X will

have a form of a (Poisson) mixture of normal distributions. Our assumption that allows

for only finite (in fact only one) jump size at each jump time, rather than jumps being

8In practice, this error volatility should be small in order and magnitude compared to the diffusion
volatility, so that any attempt to set up an arbitrage portfolio to trade on this uncertainty source will not
result in profits after transaction costs are taken into account.
9Recall that

x = vec (x0 x1 . . . xJ) = vec




X01 X11 . . . XJ1

X02 X12 . . . XJ2

...
...

. . .
...

X0K X1K . . . XJK


 ,

and Xj k ≡ X(tj , TFk, TBk), for j = 0, 1, . . . , J and k = 1, 2, . . . ,K
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drawn from a (normal) distribution, ensures that the transitional likelihood function is

bounded, and therefore, well defined10.

The transitional likelihood function is

pX(xj, tj|xj−1, tj−1; θ)

=
∞∑

n1=0

∞∑

n2=0

. . .
∞∑

nM=0

(
e−λ1∆t (λ1∆t)n1

n1!

)
. . .

(
e−λM∆t (λM∆t)nM

nM !

)
Φ (xj; aj,Ωj) ,

where ∆t = tj − tj−1 and Φ is a multivariate Gaussian density defined by

Φ (xj; aj,Ωj) = (2π)−
K
2

∣∣Ωj

∣∣− 1

2

exp

(
−

1

2
(xj − xj−1 − aj)

′

Ω
−1
j (xj − xj−1 − aj)

)
,

whose mean and variance are

aj = (aj1 aj2 . . . ajK)′,

Ωj =




bj(11) bj(12) . . . bj(1K)

bj(21) bj(22) . . . bj(2K)

...
...

. . .
...

bj(K1) bj(K2) . . . bj(KK)




,

and the matrix elements are defined by

ajk =

∫ tj

tj−1

(
µk(u) −

1

2
σ2

ε +
M∑

m=1

nmνmk(u)

)
du,

bj(kk) =

∫ tj

tj−1

(
β2

k(u) + σ2
ε

)
du, (4.5)

bj(k1k2) =

∫ tj

tj−1

βk1
(u)βk2

(u)du for k1 6= k2. (4.6)

In this paper, rather than using the exact Poisson mixture of Gaussian densities, we

use the approximate Bernoulli mixture of Gaussian densities so as to obtain a prac-

tically and economically implementable model. The approximation is the result of

10For a discussion of the unboundedness of the mixture of normal distributions, the reader is referred
to Kiefer (1978), Quandt and Ramsey (1978), Honoré (1998), chapter 22 of Hamilton (1994) and the
references therein.
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ignoring all of the values of order higher than (dt)2 in the transitional likelihood func-

tion. If the time interval is short (say 1 day) and the Poisson intensity is small, the two

densities are practically indistinguishable. The transitional likelihood function for X

under this Bernoulli approximation becomes

pX(xj, tj|xj−1, tj−1; θ)

=
M∑

m=1

λm∆t Φ(xj; aj(m),Ωj) +

(
1 −

M∑

m=1

λm∆t

)
Φ(xj; aj(0),Ωj),

(4.7)

where

aj(m) = (aj1(m) aj2(m) . . . ajK(m))
′, for m = 0, 1, . . . ,M,

and the matrix elements are defined by

ajk(0) =

∫ tj

tj−1

(
µk(u) −

1

2
σ2

ε

)
du, (4.8)

ajk(m) =

∫ tj

tj−1

(
µk(u) −

1

2
σ2

ε + νmk(u)

)
du for m 6= 0. (4.9)

The log likelihood function for the state variable X , based on the observation x is

LX(θ) =
J∑

j=1

ln
(
pX

(
xj, tj|xj−1, tj−1; θ

))
. (4.10)

Recall that there exists a transformation from X to F (see (4.3)) with inverse func-

tion ζ. It is clear that this transformation is on element-by-element basis. Applying

the transformation formula, the likelihood function for F is

LF (θ) =
J∑

j=1

ln
(
pX

(
ζ(F j), tj|ζ(F j−1), tj−1; θ

))
+

J∑

j=1

ln

∣∣∣∣
∂ζj(F j; θ)

∂F j

∣∣∣∣ . (4.11)

Applying for a second time the transformation from F to G, the quoted futures price

in the market, with the inverse transformation function η (see (4.1)) results in the log

likelihood function

LG(θ) =
J∑

j=1

ln
(
pF

(
η(Gj), tj|η(Gj−1), tj−1; θ

))
+

J∑

j=1

ln

∣∣∣∣
∂ηj(Gj; θ)

∂Gj

∣∣∣∣ . (4.12)

Finally, it should be noted that futures prices at different maturities are less than

perfectly correlated with each other under a stochastic setting. Therefore, the full
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information maximum likelihood method afore-described, which is applied to pooled

time series and cross-sectional data, will allow us to exploit the full information content

along the yield curve.

5. MODELS AND DATA

5.1. Models. The HJM model given by (2.1) is determined once the volatility func-

tions associated with the diffusion and jump processes are specified.

For the diffusion component, we choose the “hump-volatility” curve specification

σ(t, T ) = [σ0 + σ1(T − t)] exp(−κ(T − t)),

which nests the exponential model (Hull and White (1990) extended Vasicek model),

the linear absolute model considered in Amin and Morton (1994) and the absolute

(constant) model of Ho and Lee (1986).

For the jump component, we distinguish between two types of information surprise.

The first one is of the macroeconomic type that will affect the whole yield curve more

or less equally. The second one is less prominent, and will affect some sections of the

yield curve more than the others. Therefore, we choose an exponential form for one

jump volatility and a unit volatility for the other jumps to scale up the two assumed

constant jump intensities under the risk-neutral measure. Mathematically more pre-

cisely, we have set M = 2, λ1 and λ2 constant, δ1(t, T ) = exp(−κ1(T − t)), and

δ2(t, T ) = 1.

Under these specifications, both the diffusion volatility and the jump volatility are

functions of time-to-maturity T −t, but not functions of a specific calender time t. Due

to the independence of T e−κT and the e−κmT , the condition (2.4) for market complete-

ness and uniqueness of the equivalent martingale measure holds. Furthermore, at any

time t, the investment opportunities in the market are spanned by M + 1 basic bonds

with different maturities.

To find the analytical likelihood function for the quoted futures prices, we need to

perform the integrations in (4.8), (4.9), (4.5), and (4.6), ie. find each of the elements in

the drift and covariance matrix, and substitute them into the final likelihood function

(4.7), (4.10), (4.11) and (4.12). Details of these calculations can be found in Appen-

dix D.
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5.2. Data. We carry out our empirical investigation using 3-month futures contracts

traded on 4 major exchanges from different parts of the world. We choose the Eurodol-

lar futures contract traded on the Chicago Mercantile Exchange (CME), the Sterling

futures contract traded on the London International Financial and Futures Exchange

(LIFFE), the 90-day Bank Accepted Bills futures contract traded on the Sydney Fu-

tures Exchange (SFE) and the Euroyen futures contract traded on the Tokyo Interna-

tional Financial Futures Exchange (TIFFE).

All of the data have been obtained from the DatastreamTM database. The sample

period spans 14 years from January 1988 to December 2001, except for the Euroyen

futures contract traded on TIFFE, the available data is from September 1989. We

choose our sample period to start from 1988 since including 1987 in the sample might

bias the result in favour of finding jumps.

Since a futures contract has a relatively short life, we roll over futures contracts

along the 14-year sample period. Take the Eurodollar futures contract on the CME

as an example. Sample observations for the period January 2000 to December 2000

consist of 6 different contracts: March 2001, December 2001, September 2002, June

2003, March 2004 and December 2004; whereas the sample observations for the period

January 2001 to December 2001 consist of a different set of 6 contracts: March 2002,

December 2002, September 2003, June 2004, March 2005 and December 2005 (see

Figure 1). It should be noted that the sets of contracts used are spaced 3 quarters apart

to ensure sufficient variation in the futures prices, and the contracts are selected until

there is no longer sufficient liquidity.

Since each exchange has a different liquidity level, the number of contracts used at

each point in time will be different, and the time span of each set of contracts to be

rolled over will also be different. The Eurodollar contract traded on the CME is the

most liquid one, and therefore we use on average 5 different contracts in our estimation

at each point of time. In the SFE and LIFFE case, we use on average 2 contracts, and

only 1 contract is used in the case of the TIFFE.

6. EMPIRICAL RESULTS

All of our empirical work was carried out using OxTM , a matrix-oriented program-

ming language11.

11See Doornik (1996) for the manual.
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FIGURE 1. Research design - Futures contracts used in sample period
January 2001 - December 2001.
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︸ ︷︷ ︸
Year 2001 sam-
ple period

Time line3/02 12/02 9/03 12/05

End︸ ︷︷ ︸

Maturities of contracts
used in the estimation
(spaced 3 quarters apart)

︸ ︷︷ ︸
Insufficient Liquidity

12/001/00

︷ ︸︸ ︷
Year 2000 sam-
ple period

Time line

3/01 12/01 9/02 12/04

︷ ︸︸ ︷ End
︷ ︸︸ ︷

6.1. The estimated models. We ran the estimation for the 3-month futures contracts

traded on the 4 exchanges. In the case of the TIFFE, we broke the full sample period

into two subsamples, one from 1989-1994, the other from 1996-2001. In 1995, in the

Japanese market, there was a sharp fall of the interest rate from 2.5% to 0.5%. From

1996 to 2001, the level of interest rate remained very low, at an average level of 0.4%.

The empirical results suggested that we did not need two jump processes to capture

the effect of surprises on the market. When two jump processes were present together,

the estimated values of the parameters associated with the jump components became

insignificant. Therefore, we re-estimated our model with only one jump process. The

volatility associated with this jump takes the form of an exponential function, which

nests the unity case. Depending on the value of the decay factor of the exponential

function (ie. significantly different from zero or not), we can distinguish between the

two mechanisms of spreading the effect of surprise shocks.

The model estimated parameters are given in Table 1. The symbol * next to the

estimated parameters indicates a significant value at 95% level of confidence. Table 2

presents the estimation results for more parsimonious models where all of the insignif-

icant parameters have been taken out 12.

12We note that our computer program seems to have difficulty finding the global maxima for λ1. Even
though the significance of the estimate does not change, the point estimate tends to converge to a local
maxima, depending on the starting values.
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TABLE 1. Estimated Parameters for 1 Wiener - 1 Poisson Model

This table reports the estimated parameter values for the model with humped
diffusion volatility and exponential jump volatility. The corresponding robust
asymptotic standard errors are given in square parenthesis under the estimated
values. The * next to the estimated value indicates a significance level lower
than 5%.

Parameter CME SFE LIFFE TIFFE TIFFE
1988-2001 1988-2001 1988-2001 1989-1994 1996-2001

σ̂0 0.0093* 0.0107* 0.0141* 0.0205* 0.0449*
[0.0005] [0.0012] [0.0013] [0.0052] [0.0191]

σ̂1 0.0040* 0.0087* 1.1 × 10−8 -0.0896* -0.1026*
[0.0006] [0.0034] [1.6 × 10−5] [0.0219] [0.0456]

κ̂ 0.2403* 0.3101* 0.0662 2.7053* 2.6569*
[0.0198] [0.1038] [0.0509] [0.3559] [0.6252]

γ̂1 0.0057* 0.0056* 0.0001 0.0013* 6.5 × 10−5*
[0.0009] [0.0006] [0.0013] [0.0005] [7.5 × 10−6]

κ̂1 0.2343* 0.0755 0.1991 0.0978 -5.7900
[0.1415] [0.1470] [0.9190] [0.7183] [2.0179]

λ̂1 1.9993* 2.0001* 1.9991 1.9714 1.9718
[0.6502] [0.7334] [16.331] [3.1780] [2.9737]

σ̂ε 0.0008* 0.0009* 0.0010* 0.0015* 0.0008*
[1.7 × 10−5] [2.4 × 10−5] [6.4 × 10−5] [0.0001] [5.8 × 10−5]

In the CME, SFE and TIFFE markets, the diffusion volatility was found to be

humped-shaped, whereas in the LIFFE we did not find supporting evidence for humped

or exponential shapes. We re-estimated the model for the LIFFE with a constant

volatility specification (ie. with the restriction that σ1 = 0 and κ = 0, and with the

presence of the jump component), the resulting estimated values of parameters associ-

ated with jump component remained insignificant, and there was no significant loss of

likelihood value.
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TABLE 2. Estimated Parameters for Restricted Model

This table reports the estimated parameters value for the restricted jump-
diffusion model. The robust asymptotic standard errors are given in square
parenthesis. The * next to the estimated parameter value indicates a signifi-
cance level lower than 5%. The likelihood ratio statistics are also reported.

CME SFE LIFFE TIFFE TIFFE
1988-2001 1988-2001 1988-2001 1989-1994 1996-2001

σ̂0 0.0093* 0.0107* 0.0132* 0.0200* 0.0436*
[0.0005] [0.0012] [0.0006] [0.0051] [0.0187]

σ̂1 0.0040* 0.0087* – -0.0883* -0.1002*
[0.0006] [0.0034] – [0.0216] [0.0447]

κ̂ 0.2403* 0.3098* – 2.6962* 2.6146*
[0.0198] [0.1039] – [0.3549] [0.6256]

γ̂1 0.0057* 0.0053* – – –
[0.0009] [0.0001] – – –

κ̂1 0.2343* – – – –
[0.1415] – – – –

λ̂1 1.9993* 1.9998* – – –
[0.6502] [0.7051] – – –

σ̂ε 0.0008* 0.0009* 0.0010* 0.0015* 0.0008*
[1.7 × 10−5] [2.4 × 10−5] [6.6 × 10−5] [0.0001] [5.7 × 10−5]

Likelihood – 0.6 – – –
Ratio Stat.

The three parameters γ1, κ1 and λ1 identify the jump component. The magnitude

of the jump volatility is shown via γ1, whereas κ1 indicates the mechanism by which

the effect of jump components are spread across the maturities. The parameter λ1 can

be interpreted as the market price of jump risk, and it should be stressed that λ1 is

not the true jump intensity under the historical measure. However, it is this market
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price of jump risk, not the true intensity, that matters for pricing derivatives (within the

framework of a discrete number of jumps assumed in this paper).

In the CME and SFE markets, both λ̂1 and γ̂1 are significantly different from zero,

supporting the presence of a jump noise component and a market price of jump risk.

However, the mechanism by which a surprise in information impacts on the Australian

market is different from that of the U.S. market. The Australian market is a small mar-

ket which is affected substantially by outside factors, in particular what is happening

in the U.S. market. The insignificant value of κ̂1, and the likelihood ratio test for the

restriction of κ1 = 0 in Table 2, suggest that a surprise in information will affect the

whole of the Australian yield curve more or less equally. On the other hand, in the U.S

market, a surprise in information has a large impact on the volatility of the short-term

section of the yield curve, and this impact dies out gradually along the yield curve to-

wards the longer maturity section. The rate of decrease is reflected in the decay factor

κ̂1. Borrowing a term from the time series analysis literature, as Raj, Sim and Thurston

(1997) have done, we define the half life of the shock as the difference in the time to

maturity of two forward rates, so that one undergoes double the effect of the other from

the same shock, ie.

γ1 exp−κ1(T1−t) = 2γ1 exp−κ1(T2−t),

from which

T2 − T1 =
ln 2

κ1

= 2.96 years.

As calculated above, the two forward rates need to be about 3 years apart in maturity

for the size of the impact (from the same shock) on the volatility level to decrease by a

half.

A totally different picture emerges from the LIFFE and TIFFE markets. We find

that λ̂1 is not significantly different from zero, proving that these two markets do not

price the jump risk. One may ask the question whether the absence of the jump risk

pricing is the result of (i) the absence of a jump process in the market, ie. the market

only experiences smooth changes in volatility, or (ii) the risk is negligible so that the

market does not see the need to price it.

The value of γ1 provides the answer to the above question. We point out that γ1

can be interpreted as the average value of all jump sizes that come from the same

jump noise, and therefore commands the same price of jump risk. Since γ̂1 is not
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significantly different from zero for the LIFFE market, one may infer that the jump

component is absent in the U.K. market. On the other hand, the average jump size

in the TIFFE market is statistically significantly different from zero. To reconcile

with the result of no price of jump risk, it must be the case that the jump risk in this

market is perceived as negligible, and so does not call for a price premium. At first

glance, one might not be convinced that the market does not price a “significant” jump

component. However, if we look at the magnitude of the jump components, the value

of γ1 during the period 1989-1994 was 0.0013, and during the period 1996-2001 was

0.000065. These jump components may have been statistically significant, but they

are not economically meaningful. It is reasonable that the market perceived them to be

negligible.

Even though the absence of jump risk pricing in the U.K. and the Japanese markets

is due to different reasons, what we should observe in reality is that both markets can

be described by pure diffusion processes rather than jump-diffusion processes. Due to

this non-identification of the null hypothesis (either γ1 or λ1 is equal to zero will result

in no jump component), in Table 2 we did not report the likelihood ratio test for the

TIFFE and LIFFE cases, and we did rely on the significance of estimated parameters

in the jump-diffusion specification to draw conclusions about the markets.

Despite the fact that the instantaneous forward rate volatility function in the Japan-

ese market has a humped-shape, we can see that the decay factor is very high, ap-

proximately 2.65 for the 2 periods, ie. the two forward rates need to be only about 3

months apart in maturity for the size of the impact (from the same diffusion shock) on

the volatility level to decrease by a half. The impact of the shock on the long end of

the yield curve, therefore, will be negligible. The instantaneous volatility for the sport

rate is, however, higher than in other markets. It stays at 4.4% in the second period

(1996-2001), which is double the 2% level in the first period (1989-1994). The second

period is, therefore, characterized by a very low interest rate level (0.5%) and high

volatility.

6.2. Model validity check. We test for model validity by the score method. The

score of the jth observation is defined as the derivative of the natural logarithm of the

conditional likelihood with respect to the parameter vector θ, namely

hj(θ) =
∂ ln p(Gj|Gj−1; θ)

∂θ
. (6.1)
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If the model is correctly specified, the score hj(θ0) (evaluated at the true parameter

value θ0) should be impossible to forecast based on any past information, such as

elements of the lagged score hj−k(θ0)(k ≥ 1).

The test for serial correlation in the scores is proposed by White (1987), using the

conditional moment tests of Newey (1985) and Tauchen (1985). Hamilton (1996)

provides an excellent summary of the method, whose notation we use here.

First we collect in an (l × 1) vector cj(θ) those elements of the H × H matrix

[hj(θ)][hj−1(θ)]′ that we want to confirm have a zero mean when evaluated at θ0. If

the model is correctly specified, then
[
J−1/2

J∑

j=1

ct(θ̂)

]′
· Â

22
·

[
J−1/2

J∑

j=1

ct(θ̂)

]
d
→ χ2(l),

where Â22 denotes the (2,2) subblock of the inverse of the partitioned matrix

Â = (1/J) ·

(∑
j[hj(θ̂)][hj(θ̂)]′

∑
j[hj(θ̂)][cj(θ̂)]′∑

j[cj(θ̂)][hj(θ̂)]′
∑

j[cj(θ̂)][cj(θ̂)]′

)

In our first test for the model’s validity, we gathered all of the elements of the matrix

[hj(θ)][hj−1(θ)]′ in the vector cj(θ). The test rejected the assumption of no serial

correlation in the score in all of the cases. It is clear that the model proposed here is

not good enough to capture the movements of the market.

To further investigate the mis-specification, we re-did the test for each element of

the matrix [hj(θ)][hj−1(θ)]′ separately. The p-values for each test are reported in

Table 3. The parameter set can be divided into two subsets, one consisting of σ0,

σ1 and κ which are associated with the Wiener noise, and the other consisting of κ1,

γ1 and λ1 which are associated with the Poisson noise. It can be seen that the serial

correlation in the score mainly comes from the information content of the elements in

each subset about themselves. Thus, the independence assumption between the Wiener

and Poisson noise remains valid.

The score test clearly indicates the need for a better model specification. Some sug-

gestions include (i) to incorporate level dependent diffusion volatility, (ii) to utilize

a more elaborate jump volatility structure and (iii) to consider multi-factor specifica-

tions. We leave analysis of these suggestions for future research.
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TABLE 3. P-value for the score tests

This table reports the p-value for the score tests in the restricted models (ie.
the best model for each exchange). For each test, the vector cj(θ) consists of
only one element, which is the element (ik) - row i, column k - of the matrix
[hj(θ)][hj−1(θ)]′. The p-value for that test is reported in the (ik) position of
the table.

(a) CME case
Humped diffusion volatility - Exponential jump volatility

Lagged variables
σ̂0 σ̂1 κ̂ κ̂1 γ̂1 λ̂1 σ̂ε

σ̂0 0.009 0.005 0.005 0.076 0.196 0.195 0.515
σ̂1 0.016 0.002 0.003 0.043 0.217 0.217 0.113
κ̂ 0.015 0.002 0.002 0.043 0.214 0.214 0.189
κ̂1 0.288 0.150 0.158 0.000 0.000 0.000 0.662
γ̂1 0.401 0.266 0.253 0.000 0.000 0.000 0.654
λ̂1 0.401 0.266 0.253 0.000 0.000 0.000 0.654
σ̂ε 0.036 0.006 0.013 0.394 0.710 0.710 0.002

(b) SFE case
Humped diffusion volatility - Constant jump volatility

Lagged variables
σ̂0 σ̂1 κ̂ γ̂1 λ̂1 σ̂ε

σ̂0 0.005 0.116 0.712 0.030 0.030 0.016
σ̂1 0.036 0.001 0.001 0.006 0.006 0.206
κ̂ 0.307 0.001 0.001 0.032 0.032 0.723
γ̂1 0.237 0.474 0.764 0.029 0.029 0.653
λ̂1 0.237 0.474 0.764 0.029 0.029 0.653
σ̂ε 0.067 0.020 0.076 0.017 0.017 0.000

(c) TIFFE case
Humped diffusion volatility - No jump component

1988-1994 1996-2001
σ̂0 σ̂1 κ̂ σ̂ε σ̂0 σ̂1 κ̂ σ̂ε

σ̂0 0.068 0.039 0.012 0.063 0.000 0.001 0.107 0.341
σ̂1 0.048 0.022 0.008 0.026 0.001 0.005 0.096 0.150
κ̂ 0.026 0.010 0.005 0.005 0.258 0.162 0.094 0.017
σ̂ε 0.084 0.035 0.007 0.027 0.291 0.134 0.022 0.001

(d) LIFFE case
Constant diffusion volatility - No jump component

lagged σ̂0 lagged σ̂ε

σ̂0 0.000 0.010
σ̂ε 0.225 0.200
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7. CONCLUSION

Under the framework of Heath, Jarrow and Morton (1992), we have proposed a gen-

eralized version of the Shirakawa (1991) model to capture the effect of jumps in the

fixed income market. The model is based on an instantaneous forward rate specifica-

tion, that allows the co-existence of a Wiener noise and multiple Poisson noises, each

being associated with a time-deterministic volatility function. This specification with

a finite number of jump components ensures the completeness of the market and the

uniqueness of any contingent claim prices.

Based on this specification, we derive the evolution of futures prices, and prove that

if the underlying instantaneous forward rate evolution contains a jump component, the

jump must also present itself in the evolution of futures prices. This evolution can

be used in the estimation process to determine the model parameters. The advantage

of the approach is that we do not need to markovianize the system that contains the

spot rate of interest or equivalently the bond prices, which may not always be possible.

Instead, we treat the futures contract as a derivative instrument written on the instan-

taneous forward rate, and use the likelihood transformation method of Duan (1994) to

estimate the model parameters.

The proposed approach is sufficiently general to deal with any specification with

time deterministic diffusion and jump volatility functions. However, to illustrate our

method, we choose a humped-shape specification for our diffusion volatility, and a

“binomial” approach to model Poisson noise. We distinguish between information

surprises that affect the whole yield curve more or less equally, and information sur-

prises that are less prominent, and that affect some sections of the yield curve more

than others. We run our estimation for 3-month futures contracts traded on the CME,

SFE, LIFFE and TIFFE, the four large exchanges from different parts of the world.

The empirical results suggest very different jump behaviour in each market. The

U.K market does not contain a jump component. The Japanese market has on average a

positive jump size, and the jump risk must be perceived as negligible, since the market

gives this jump risk zero price. On the other hand, a jump component is an important

part of the U.S. and Australian markets. Given their very different characteristics,

the mechanism by which a jump shock impacts the markets are also different. In the

small Australian market, a shock has its impact spread out equally along the yield

curve. In the U.S market, the impact of a shock dies out gradually along the yield



JUMP COMPONENT - INTEREST RATE FUTURES MARKETS 28

curve, and therefore short term instruments are affected more heavily than longer term

instruments.

However, model diagnostic tests indicate that the specification is still not rich enough

to capture the true market behaviour. Some possible avenues to explore in order to im-

prove the model fit include a level-dependent instantaneous forward rate volatility and

extension to multi-factor noise terms. We intend to explore these issues in subsequent

research.

APPENDIX A. GENERALIZED ITÔ’S LEMMA

Consider a jump diffusion process in terms of the stochastic integral equation

Xt = X0 +

∫ t

0

αsds +

∫ t

0

σsdWs +

∫ t

0

δsdNs,

or in terms of the stochastic differential equation

dX = αtdt + σtdW (t) + δtdNt.

Given a C1,2-function F (t,X), the stochastic differential equation for F is

dF (t,Xt) =

[
Ft(·) + FX(·)αtdt +

1

2
FXX(·)σ2

t

]
dt

+ FXσtdWt +
[
F (t,Xt− + δt) − F (t,Xt−)

]
dNt,

where

Ft(·) =
∂F (t,Xt)

∂t
,

FX(·) =
∂F (t,Xt)

∂X
,

FXX(·) =
∂2F (t,Xt)

∂X2
.

APPENDIX B. THE EXPECTATION OF A “LOG-POISSON” PROCESS

With a view to finding the second expectation in (3.1), we consider a variable X

whose evolution can be described by the stochastic integral equation

X(T ) =

∫ T

t

ζ(u, ·)dN(u),

where N is a Poisson process with intensity λ. We are interested in the value Et

[
exp(X(T ))

]
.
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The value of X(T ) is just the sum of realized jump components, each appearing at

the jump time Li between t and T , ie.

X(T ) =

N(T )−N(t)∑

i=1

ζ(Li, ·).

Using a standard result for conditional expectations we have that

Et

[
eX(T )

]
=

∞∑

n=0

Et

[
eX(T )

∣∣N(T ) − N(t) = n
]

P
[
N(T ) − N(t) = n

]
. (B.1)

First, consider the conditional expectation

Et

[
eX(T )

∣∣∣N(T ) − N(t) = n
]

= Et

[
exp

(
n∑

i=1

ζ(Li, ·)

)]

Lemma B.1. Given that N(T ) − N(t) = n, the n arrival times L1, L2, . . . , Ln have

the same distribution as the order statistics corresponding to n independent random

variables uniformly distributed on the interval (t, T ).

Proof. See theorem 2.3.1 of Ross (1996), page 67. �

The required conditional expectation thus becomes

Et

[
eX(T )

∣∣∣ (N(T ) − N(t)) = n
]

= Et

[
exp

(
n∑

i=1

ζ(Li, ·)

)]

=

{
Et

[
exp

(
ζ(Li, ·)

)]}n

=



∫ T

t

exp
(
ζ(u, ·)

) 1

T − t
du

︸ ︷︷ ︸




n

≡ Ψn.
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Substitute this result back to (B.1)

Et

[
eX(T )

]
=

∞∑

n=0

Ψn
P
[
N(T ) − N(t) = n

]

=
∞∑

n=0

Ψn e−λ(T−t) (λ(T − t))n

n!

= e−λ(T−t) eλ(T−t)Ψ

= exp

{
λ

∫ T

t

[
exp

(
ζ(u, ·)

)
− 1

]
du

}

APPENDIX C. QUOTING CONVENTION OF EXCHANGES FOR FUTURES

CONTRACTS

Let Fjk ≡ F (t, TFk, TBk) be the price at time t of a futures contract maturing at

time TFk(> t). The contract is written on a pure discount instrument which has a face

value of $1 and matures at time TBk(> TFk).

We are considering 3-month futures contracts, and therefore TBk−TFk = τ constant

for all k ∈ [0, K].

The exchanges quote a value Gjk which is linked with Fjk via

Fjk =
1

1 +
(
1 −

Gjk

N

)
τ
≡ η
(
Gjk

)
,

where τ and N vary across exchanges.

The CME and LIFFE have the same quoting convention, where N = 100 and τ =
90
360

. The TIFFE’s quoting convention was the same as the CME and LIFFE for the

period prior to October 1, 1999, after which date N = 1000 has been used. The SFE

also takes N = 100, but uses 365-day-year basis, ie. τ = 90
365

.

APPENDIX D. FULL INFORMATION LOG LIKELIHOOD FUNCTION

FOR QUOTED FUTURES PRICES

The main task in deriving the log likelihood function is to calculate the Jacobian

of the transformation and write out the drift vector and covariance matrix for each

transition log likelihood function. These quantities then can be substituted directly to
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the likelihood formulae in the text (equations 4.7, 4.10, 4.11 and 4.12) to write out the

likelihood function for observable futures prices.

From (4.3)

Xjk = ln(Fjk) ≡ ζ(Fjk)

we have

∂ζ(Fjk; θ)

∂Fjk

=
1

Fjk

.

From (4.2)

Fjk =
1

1 +
(
1 −

Gjk

100

)
τ
≡ η
(
Gjk

)
,

where τ = 90/360 for CME Eurodollar futures, we find that

∂η(Gjk; θ)

∂Gjk

=
− τ

100[
1 +

(
1 −

Gjk

100

)
τ
]2 .

The calculations for other exchanges are very similar, and therefore will be omitted

here.

The variance (4.5) is

bj(kk) =

∫ tj

tj−1

(
β2

k(u) + σ2
ε

)
du

=

∫ tj

tj−1

(∫ TBk

TFk

σ(u, s)ds

)2

du +

∫ tj

tj−1

σ2
εdu

= M2I00 + 2MNI01 + N2I02 + 2MRI11

+ 2NRI12 + R2I22 + σ2
ε(tj − tj−1),
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where

M = σ0(TBk − TFk),

N = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk − e−κTFk

)
−

σ1

κ

(
TBk e−κTBk −TFk e−κTFk

)
,

R =
σ1

κ

(
e−κTBk − e−κTFk

)
,

Iab =

∫ tj

tj−1

τa eκbτ dτ

=

(
− eκbτ

[
1

(−κb)
τa +

a

(−κb)2
τa−1 +

a(a − 1)

(−κb)3
τa−2 + . . .

. . . +
a(a − 1) . . . 2

(−κb)a
τ +

a(a − 1) . . . 1

(−κb)a+1
τ 0

]) ∣∣∣∣∣

tj

tj−1

(D.1)

(use successive integration by part).

The covariance (4.6) is

bj(k1k2) =

∫ tj

tj−1

βk1
(u)βk2

(u)du (for k1 6= k2)

=

∫ tj

tj−1

(∫ TBk1

TFk1

σ(u, s)ds

)(∫ TBk2

TFk2

σ(u, s)ds

)
du

= M1M2I00 + (M1N2 + N1M2)I01 + N1N2I02

+ (M1R2 + R1M2)I11 + (N1R2 + R1N2)I12 + R1R2I22,

where

M1 = σ0(TBk1
− TFk1

),

M2 = σ0(TBk2
− TFk2

),

N1 = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk1 − e−κTFk1

)
−

σ1

κ

(
TBk1

e−κTBk1 −TFk1
e−κTFk1

)
,

N2 = −
(σ0

κ
+

σ1

κ2

) (
e−κTBk2 − e−κTFk2

)
−

σ1

κ

(
TBk2

e−κTBk2 −TFk2
e−κTFk2

)
,

R1 =
σ1

κ

(
e−κTBk1 − e−κTFk1

)
,

R2 =
σ1

κ

(
e−κTBk2 − e−κTFk2

)
,

and Iab are defined as in (D.1).
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The mean term (4.8) is

ajk(0) =

∫ tj

tj−1

(
µk(u) −

1

2
σ2

ε

)
du

= −
1

2
bj(kk) −

M∑

m=1

λm

∫ tj

tj−1

[
exp

(
−

∫ TBk

TFk

δm(u, s)γmds

)
− 1

]
du

= −
1

2
bj(kk) +

M∑

m=1

λm(tj − tj−1)

−
λ1

κ1

(
E1

(
−ck e−κ1tj−1 ,−ck e−κ1tj

) )

− λ2 [exp (−γ2(TBk − TFk)) − 1] (tj − tj−1),

where

ck =
γ1

κ1

(
e−κ1TBk − e−κ1TFk

)
,

and E1(z1, z2) is the exponential integral13 defined by

E1(z1, z2) =

∫ z2

z1

e−u

u
du, (z1z2 > 0).

The mean term (4.9) is

ajk(m) =

∫ tj

tj−1

(
µk(u) −

1

2
σ2

ε + νmk(u)

)
du (for m 6= 0).

Evaluated the integration gives

ajk(1) = ajk(0) + ck
eκ1tj − eκ1tj−1

κ1

,

ajk(2) = ajk(0) − γm(TBk − TFk)(tj − tj−1).
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