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Motivation

Motivation

Researchers often want to estimate a binomial response, or binary
choice, model where one or more explanatory variables are
endogenous or mismeasured.

For instance: in policy analysis, the estimation of treatment effects
when treatment is not randomly assigned.

A linear 2SLS model, equivalent to a linear probability model with
instrumental variables, is often employed, ignoring the binary
outcome.
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Motivation

Several alternative approaches exist:

linear probability model (LPM) with instruments

maximum likelihood estimation

control function based estimation

‘special regressor’ methods

Each of these estimators has advantages and disadvantages, and some of
these disadvantages are rarely acknowledged.
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Motivation

In what follows, we focus on a particular disadvantage of the LPM, and
propose a straightforward alternative based on ‘special regressor’ methods
(Lewbel, J. Metrics, 2000; Dong and Lewbel, 2012, BC WP 604).

We also propose the average index function (AIF), an alternative to the
average structural function (ASF; Blundell and Powell, REStud, 2004), for
calculating marginal effects. It is easy to construct and estimate, as we
will illustrate.
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Binary choice models

Binary choice models

We define D as an observed binary variable: the outcome to be explained.
Let X be a vector of observed regressors, and β a corresponding coefficient
vector, with ε an unobserved error. In a treatment model, X would include
a binary treatment indicator T . In general, X could be divided into X e ,
possibly correlated with ε, and X 0, which are exogenous.

A binary choice or ‘threshold crossing’ model estimated by maximum
likelihood is

D = I (X β + ε ≥ 0)

where I (·) is the indicator function. This latent variable approach is that
employed in a binomial probit or logit model, with Normal or logistic
errors, respectively. Although estimation provides point and interval
estimates of β, the choice probabilities and marginal effects are of interest:
that is, Pr[D = 1|X ] and ∂Pr[D = 1|X ]/∂X .
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Linear probability models

Linear probability models

In contrast to the threshold crossing latent variable approach, a linear
probability model (LPM) assumes that

D = X β + ε

so that the estimated coefficients β̂ are themselves the marginal effects.
With all exogenous regressors, E (D |X ) = Pr[D = 1|X ] = X β.

If some elements of X (possibly including treatment indicators) are
endogenous or mismeasured, they will be correlated with ε. In that case,
an instrumental variables approach is called for, and we can estimate the
LPM with 2SLS or IV-GMM, given an appropriate set of instruments Z .
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Linear probability models

As the LPM with exogenous explanatory variables is based on standard
regression, the zero conditional mean assumption E (ε|X ) = 0 applies. In
the presence of endogeneity or measurement error, the corresponding
assumption E (ε|Z ) = 0 applies, with Z the set of instruments, including
the exogenous elements of X .

An obvious flaw in the LPM: the error ε cannot be independent of any
regressors, even exogenous regressors, unless X consists of a single binary
regressor. This arises because for any given X , ε must equal either 1− X β
or −X β, which are functions of all elements of X .
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Linear probability models

The other, well recognized, flaw in the LPM is that its fitted values are not
constrained to lie in the unit interval, so that predicted probabilities below
zero or above one are commonly encountered. Any regressor that can take
on a large range of values will inevitably cause the LPM’s predictions to
breach these bounds.

A common rejoinder to these critiques is that the LPM is only intended to
approximate the true probability for a limited range of X values, and that
its constant marginal effects are preferable to those of the binary probit or
logit model, which are functions of the values of all elements of X .
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Linear probability models

Consider, however, the LPM with a single continuous regressor. The linear
prediction is an approximation to the S-shape of any cumulative
distribution function: for instance, that of the Normal for the probit
model. The linear prediction departs greatly from the S-shaped CDF long
before it nears the (0,1) limits. Thus, the LPM will produce predicted
probabilities that are too extreme (closer to zero or one) even for
moderate values of X β̂ that stay ‘in bounds’.

Some researchers claim that although predicted probabilities derived from
the LPM are flawed, their main interest lies in the models’ marginal effects,
and argue that it makes little substantive difference to use a LPM, with its
constant marginal effects, rather than the more complex marginal effects
derived from a proper estimated CDF, such as that of the probit model.
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Linear probability models

Example 1

Jeff Wooldridge’s widely used undergraduate text, Introductory
Econometrics: A Modern Approach devotes a section of the chapter on
regression with qualitative variables to the LPM. He points out two flaws:
computation of the predicted probability and marginal effects—and goes
on to state

“Even with these problems, the linear probability model is useful
and often applied in economics. It usually works well for values
of the independent variables that are near the averages in the
sample.” (2009, p. 249)

Wooldridge also discusses the heteroskedastic nature of the LPM’s error,
which is binomial by construction, but does not address the issue of the
lack of independence that this implies.
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Linear probability models

Example 2

Josh Angrist and Steve Pischke’s popular Mostly Harmless Econometrics
give several empirical examples where the marginal effects of a dummy
variable estimated by LPM and probit techniques are ‘indistinguishable.’
They conclude that

“...while a nonlinear model may fit the CEF (conditional
expectation function) for LDVs (limited dependent variable
models) more closely than a linear model, when it comes to
marginal effects, this probably matters little. This optimistic
conclusion is not a theorem, but as in the empirical example
here, it seems to be fairly robustly true.” (2009, p. 107)
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Linear probability models

Angrist and Pischke (AP) go on to invoke the principle of Occam’s razor,
arguing that

“...extra complexity comes into the inference step as well, since
we need standard errors for marginal effects.” (ibid.)

This is surely a red herring for Stata users, as the margins command in
Stata 11 or 12 computes those standard errors via the delta method. AP
also discuss the difficulty of computing marginal effects for a binary
regressor: again, not an issue for Stata 12 users, with the new contrast

command.
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Linear probability models

An alarming example

The most compelling argument against the LPM, though, dismisses the
notion that its use is merely a matter of taste and convenience. Lewbel,
Dong and Yang (2012) provide a simple example in which the LPM cannot
even recover the appropriate sign of the treatment effect. To illustrate
that point, consider the data:

. l R Treated D, sep(0) noobs

R Treated D

-1.8 0 0
-.9 0 1

-.92 0 1
-2.1 1 0

-1.92 1 1
10 1 1
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Linear probability models

In this contrived example, three of the observations are treated
(Treated=1) and three are not. The outcome variable D is generated by
the probit specification

D = I (1 + Treated + R + ε ≥ 0)

with Normal errors, independent of the regressors. The treatment effect
for an individual is the difference in outcome between being treated and
untreated:

I ((2 + R + ε) ≥ 0)− I ((1 + R + ε) ≥ 0) = I (0 ≤ (1 + R + ε) ≤ 1)

for any given R, ε. By construction, no individual can have a negative
treatment effect, regardless of their values of R, ε.
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Linear probability models

In this sample, the true treatment effect is 1 for the fifth individual (who is
treated) and zero for the others, and the true average treatment effect
(ATE) is 1/6. So let’s estimate the ATE with a linear probability model:

. reg D Treated R, robust

Linear regression Number of obs = 6
F( 2, 3) = 1.02
Prob > F = 0.4604
R-squared = 0.1704
Root MSE = .60723

Robust
D Coef. Std. Err. t P>|t| [95% Conf. Interval]

Treated -.1550841 .5844637 -0.27 0.808 -2.015108 1.70494
R .0484638 .0419179 1.16 0.331 -.0849376 .1818651

_cons .7251463 .3676811 1.97 0.143 -.4449791 1.895272

The estimated ATE is −0.16, and the estimated marginal rate of
substitution (β1/β2), via nlcom, is −3.2. Both these quantities have the
wrong sign, and the MRS is more than three times the true value.
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Linear probability models

Thus, even in a trivial model with a minuscule stochastic element, where
every individual has either a zero or positive treatment effect, the LPM
cannot even get the sign right. This is a contrived example, of course, but
illustrative of the dangers of assuming that the LPM will do a reasonable
job.

If a LPM estimated with OLS exhibits these problems, it is evident that a
more elaborate model, such as a LPM estimated with 2SLS or IV-GMM,
would be as clearly flawed. We turn, then, to more reliable alternatives.
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Maximum Likelihood approach

Maximum likelihood estimators

A maximum likelihood estimator of a binary outcome with possibly
endogenous regressors can be implemented for the model

D = I (X eβe + X 0β0 + ε ≥ 0)

X e = G (Z , θ, e)

which for a single binary endogenous regressor, G (·) probit, and ε and e
jointly Normal, is the model estimated by Stata’s biprobit command.

Like the LPM, maximum likelihood allows endogenous regressors in X e to
be continuous, discrete, limited, etc. as long as a model for G (·) can be
fully specified, along with the fully parameterized joint distribution of
(ε, e).
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Control Function approach

Control function estimators

Control function estimators first estimate the model of endogenous
regressors as a function of instruments, like the ‘first stage’ of 2SLS, then
use the errors from this model as an additional regressor in the main
model.

This approach is more general than maximum likelihood as the first stage
function can be semiparametric or nonparametric, and the joint
distribution of (ε, e) need not be fully parameterized.
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Control Function approach

To formalize the approach, consider a model D = M(X , β, ε), and assume
there are functions G , h and a well-behaved error U such that
X e = G (Z , e), ε = h(e, U), and U ⊥ (X , e).

We first estimate G (·): the endogenous regressors as functions of
instruments Z , and derive fitted values of the errors e. Then we have

D = M(X , β, h(e, u)) = M̃(X , e, β, U)

where the error term of the M̃ model is U, which is suitably independent
of (X , e). This model no longer has an endogeneity problem, and can be
estimated via straightforward methods.
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Control Function approach

Given the threshold crossing model

D = I (X eβe + X 0β0 + ε ≥ 0)

X e = Z α + e

with (ε, e) jointly normal, we can first linearly regress X e on Z , with
residuals being estimates of e. This then yields an ordinary probit model

D = I (X eβe + X 0β0 + λe + U ≥ 0)

which is the model estimated by Stata’s ivprobit command. Despite its
name, ivprobit is a control function estimator, not an IV estimator.
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Control Function approach

A substantial limitation of control function methods in this context is that
they generally require the endogenous regressors X e to be continuous,
rather than binary, discrete, or censored. For instance, a binary
endogenous regressor will violate the assumptions necessary to derive
estimates of the ‘first stage’ error term e. The errors in the ‘first stage’
regression cannot be normally distributed and independent of the
regressors. Thus, the ivprobit command should not be applied to binary
endogenous regressors, as its documentation clearly states.

In this context, control function estimators—like maximum likelihood
estimators—of binary outcome models require that the first stage model
be correctly specified. This is an important limitation of these approaches.
A 2SLS approach will lose efficiency if an appropriate instrument is not
included, but a ML or control function estimator will generally become
inconsistent.
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Special Regressor approach

Special regressor estimators

Special regressor estimators were first proposed by Lewbel (J. Metrics,
2000). Their implementation are fully described in Dong and Lewbel
(2012, BC WP 604). They assume that the model includes a particular
regressor, V , with certain properties. It is exogenous (that is, E (ε|V ) = 0)
and appears as an additive term in the model. It is continuously
distributed and has a large support. Any normally distributed regressor
would satisfy this condition.

A third condition, preferable but not strictly necessary, is that V have a
thick-tailed distribution. A regressor with greater kurtosis will be more
useful as a special regressor.
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Special Regressor approach

The binary choice special regressor proposed by Lewbel (2000) has the
‘threshold crossing’ form

D = I (X eβe + X 0β0 + V + ε ≥ 0)

or, equivalently,
D = I (X β + V + ε ≥ 0)

This is the same basic form for D as in the ML or control function (CF)
approach. Note, however, that the special regressor V has been separated
from the other exogenous regressors, and its coefficient normalized to
unity: a harmless normalization.
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Special Regressor approach

Given a special regressor V , the only other requirements are those
applicable to linear 2SLS: to handle endogeneity, the set of instruments Z
must satisfy E (ε|Z ) = 0, and E (Z ′X ) must have full rank.

The main drawback of this method is that the special regressor V must be
conditionally independent of ε. Even if it is exogenous, it could fail to
satisfy this assumption because of the way in which V might affect other
endogenous regressors. Also, V must be continuously distributed after
conditioning on the other regressors, so that a term like V 2 could not be
included as an additional regressor.
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Special Regressor approach

Apart from these restrictions on V , the special regressor (SR) method has
none of the drawbacks of the three models discussed earlier:

Unlike the LPM, the SR predictions stay ‘in bounds’ and is consistent
with other threshold crossing models.

Unlike ML and CF methods, the SR model does not require correct
specification of the ‘first stage’ model: any valid set of instruments
may be used, with only efficiency at stake.

Unlike ML, the SR method has a linear form, not requiring iterative
search.

Unlike CF, the SR method can be used when endogenous regressors
X e are discrete or limited; unlike ML, there is a single estimation
method, regardless of the characteristics of X e .

Unlike ML, the SR method permits unknown heteroskedasticity in the
model errors.
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Special Regressor approach

The special regressor method imposes far fewer assumptions on the
distribution of errors—particularly the errors e in the ‘first stage’ equations
for X e—than do CF or ML estimation methods. Therefore, SR estimators
will be less efficient than these alternatives when the alternatives are
consistent.

SR estimators may be expected to have larger standard errors and lower
precision than other methods, when those methods are valid. However, if a
special regressor V can be found, the SR method will be valid under much
more general conditions than the ML and CF methods.
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The average index function (AIF)

The average index function (AIF)

Consider the original estimation problem

D = I (X β + ε ≥ 0)

where with generality one of the elements of X may be a special regressor
V , with coefficient one. If ε is independent of X , the propensity score or
choice probability is
Pr[D = 1|X ] = E (D |X ) = E (D |X β) = F−ε(X β) = Pr(−ε ≤ X β), with
F−ε(·) the probability distribution function of −ε. In the case of
independent errors, these measures are identical.

When some regressors are endogenous, or generally when the assumption
X ⊥ ε is violated (e.g., by heteroskedasticity), these expressions may differ
from one another.
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The average index function (AIF)

Blundell and Powell (REStud, 2004) propose using the average structural
function (ASF) to summarize choice probabilities: F−ε(X β), even though
ε is no longer independent of X . In this case, F−ε|X (X β|X ) should be
computed: a formidable task.

Lewbel, Dong and Yang (BC WP 789) propose using the measure
E (D |X β), which they call the average index function (AIF), to summarize
choice probabilities.

Like the ASF, the AIF is based on the estimated index, and equals the
propensity score when ε ⊥ X . However, when this assumption is violated
(by endogeneity or heteroskedasticity), the AIF is usually easier to
estimate, via a unidimensional nonparametric regression of D on X β.
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The average index function (AIF)

The AIF can be considered a middle ground between the propensity score
and the ASF, as the former conditions on all covariates using F−ε|X ; the
ASF conditions on no covariates using F−ε; and the AIF conditions on the
index of covariates, F−ε|X β.

Define the function M(X β) = E (D |X β), with derivatives m. The
marginal effects of the regressors on the choice probabilities, as measured
by the AIF, are ∂E (D |X β)/∂X = m(X β)β, so the average marginal
effects just equal the average derivatives, E (m(X β + V ))β.
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The average index function (AIF)

For the LPM, the ASF and AIF both equal the fitted values of the linear
2SLS regression of D on X. For the other methods, the AIF choice
probabilities can be estimated using a standard unidimensional kernel
regression of D on X β̂: for instance, using the lpoly command in Stata,
with the at() option specifying the observed data points. This will
produce the AIF for each observation i , M̂i .

Employing the derivatives of the kernel function, the individual-level
marginal effects m̂i may be calculated, and averaged to produce average
marginal effects:

mβ̂ =
1

n

n

∑
i=1

m̂i β̂

Estimates of the precision of these average marginal effects may be derived
by bootstrapping.
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The Stata implementation

The Stata implementation

My Stata command ssimplereg, which is still being refined, estimates
the Lewbel and Dong simple special regression estimator of a binary
outcome with one or more binary endogenous variables. It is an optimized
version of earlier code developed for this estimator, and provides
significant (8–10x) speed improvements over that code.

Two forms of the special regressor estimator are defined, depending on
assumptions made about the distribution of the special regressor V . In the
first form of the model, only the mean of V is assumed to be related to
the other covariates. In the second, ‘heteroskedastic’ form, higher
moments of V can also depend in arbitrary, unknown ways on the other
covariates. In practice, the latter form may include squares and cross
products of some of the covariates in the estimation process, similar to the
auxiliary regression used in White’s general test for heteroskedasticity.
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The Stata implementation

The ssimplereg Stata command also allows for two specifications of the
density estimator used in the model: one based on a standard kernel
density approach such as that implemented by density or Ben Jann’s
kdens, as well as the alternative ‘sorted data density’ approach proposed
by Lewbel and Schennach (J. Econometrics, 2007). Implementation of the
latter approach also benefited greatly, in terms of speed, by being
rewritten in Mata, with Ben Jann’s help gratefully acknowledged.
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The Stata implementation

Just as in a probit or ivprobit model, the quantities of interest are not
the estimated coefficients derived in the special regressor method, but
rather the marginal effects. In the work of Lewbel et al., those are derived
from the average index function (AIF) as described earlier. Point estimates
of the AIF can be derived in a manner similar to that of average marginal
effects in standard limited dependent variable models. For interval
estimates, bootstrapped standard errors for the marginal effects are
computed.

A bootstrap option was also added to ssimplereg so that the estimator
can produce point and interval estimates of the relevant marginal effects in
a single step, with the user’s choice of the number of bootstrap samples to
be drawn.
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An empirical illustration

An empirical illustration

In this example of the special regressor method, taken from Dong and
Lewbel (BC WP 604), the binary dependent variable is an indicator that
individual i migrates from one US state to another. The objective is to
estimate the probability of interstate migration.

The special regressor Vi in this context is age. Human capital theory
suggests that it should appear linearly (or at least monotonically) in a
threshold crossing model. Migration is in part driven by maximizing
expected lifetime income, and the potential gain in lifetime earnings from
a permanent change in labor income declines linearly with age. Evidence
of empirical support for this relationship is provided by Dong (Ec. Letters,
2010). Vi is defined as the negative of age, demeaned, so that it should
have a positive coefficient and a zero mean.
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An empirical illustration

Pre-migration family income and home ownership are expected to be
significant determinants of migration, and both should be considered
endogenous. A maximum likelihood approach would require an elaborate
dynamic specification in order to model the homeownership decision.
Control function methods such as ivprobit are not appropriate as
homeowner is a discrete variable.

The sample used includes male heads of household, 23–59 years of age,
from the 1990 wave of the PSID who have completed education and are
not retired, so as to exclude those moving to retirement communities. The
observed D = 1 indicates migration during 1991–1993. In the sample of
4689 individuals, 807 were interstate migrants.

Exogenous regressors in the model include years of education, number of
children, and indicators for white, disabled, and married individuals. The
instruments Z also include the level of government benefits received in
1989–1990 and state median residential tax rates.
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An empirical illustration

In the following table, we present four sets of estimates of the marginal
effects computed by ssimplereg, utilizing the sorted data density
estimator in columns 2 and 4 and allowing for heteroskedastic errors in
columns 3 and 4.

For contrast, we present the results from an IV LPM (ivregress 2sls)
in column 5, a standard probit (ignoring endogeneity) in column 6, and
an ivprobit in the last column, ignoring its lack of applicability to the
binary endogenous regressor homeowner.
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An empirical illustration

Table: Marginal effects: binary outcome, binary endogenous regressor

kdens sortdens kdens hetero sortdens hetero IV-LPM probit ivprobit
age 0.0146 0.0112 0.0071 0.0104 -0.0010 0.0019 -0.0005

(0.003)∗∗∗ (0.003)∗∗∗ (0.003)∗ (0.003)∗∗∗ (0.002) (0.001)∗∗ (0.007)

log income -0.0079 0.0024 0.0382 0.0176 0.0550 -0.0089 0.1406
(0.028) (0.027) (0.024) (0.026) (0.080) (0.007) (0.286)

homeowner 0.0485 -0.0104 -0.0627 -0.0111 -0.3506 -0.0855 -1.0647
(0.072) (0.065) (0.059) (0.061) (0.204) (0.013)∗∗∗ (0.708)

white 0.0095 0.0021 0.0021 0.0011 0.0086 -0.0099 0.0134
(0.008) (0.010) (0.007) (0.008) (0.018) (0.012) (0.065)

disabled 0.1106 0.0730 0.0908 0.0916 0.0114 -0.0122 0.0104
(0.036)∗∗ (0.042) (0.026)∗∗∗ (0.037)∗ (0.055) (0.033) (0.203)

education -0.0043 -0.0023 -0.0038 -0.0036 0.0015 0.0004 0.0047
(0.002)∗ (0.003) (0.002)∗ (0.002) (0.004) (0.002) (0.015)

married 0.0628 0.0437 0.0258 0.0303 0.0322 -0.0064 0.0749
(0.020)∗∗ (0.028) (0.013) (0.020) (0.031) (0.017) (0.114)

nr. children -0.0169 -0.0117 0.0006 -0.0021 0.0137 0.0097 0.0502
(0.005)∗∗∗ (0.005)∗ (0.002) (0.003) (0.006)∗ (0.005)∗ (0.023)∗

Note: bootstrapped standard errors in parentheses (100 replications)
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An empirical illustration

The standard errors of these estimated marginal effects are computed from
100 bootstrap replications. The marginal effect of the ‘special regressor’
age of head is estimated as positive by the special regressor methods, but
both the two-stage linear probability model and the ivprobit model yield
negative (but insignificant) point estimates.

Household income and homeownership status do not seem to play
significant roles in the migration decision. Among the special regression
methods, the kernel data density estimator appears to yield the most
significant results, with age of head, disabled status, years of education,
marital status and number of children all playing a role in predicting the
migration decision.
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Conclusions

Conclusions

We have discussed an alternative to the linear probability model for
estimation of a binary outcome with one or more binary endogenous
regressors. This alternative, Lewbel and Dong’s ‘simple special regressor’
method, circumvents the drawbacks of the IV-LPM approach, and yields
consistent estimates in this context in which ivprobit does not.
Computation of marginal effects via the proposed average index function
approach is straightforward, requiring only a single kernel density
estimation and no iterative techniques. Bootstrapping is employed to
derive interval estimates.

A Stata implementation of the simple special regressor method,
sspecialreg, is being refined to take advantage of Stata’s flexibility and
Mata’s potential for speed improvements. The routine will also be
extended to the context of panel data. This routine will soon be made
available to users via the SSC Archive.
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