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Introduction

“From another angle, it is possible to argue that model selection it-
self is a misguided goal. It is quite common to find that confidence
intervals from different plausible models are non-intersecting, rais-
ing considerable inferential uncertainty. Fundamentally, the uncer-
tainty concerning the choice of model is not reflected in conven-
tional asymptotic and bootstrap confidence intervals.

–Hansen (2005)”We introduce ivshrinkwhich is part of a trio of Stata commands, regshrink and
mvregshrinkwhich produce Stein-type shrinkage and model averaging
estimators.

We motivate ivshrink by considering the theoretical difficulty of uniformly
consistent post-model selection inference. Model averaging instead.

Shrinkage estimators are also well-known to have better risk properties, at the
cost of potentially introducing bias.

ivshrink is work in progress, theoretically and Stata-wise. Comments welcome.
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The classical linear simultaneous equations model I

The classical linear simultaneous equations model [CLSEM] which underlies the
instrumental variables estimators and inference procedures can be formulated as

Y1 = Y2β + Z1δ + ε

= Xγ + ε

for which system, the reduced form for the endogenous variables, in terms of the
system exogenous variables Z = [Z1Z2] is

[Y1Y2] = Z [π1π2] + [ϑ1ϑ2]

In the classical case, a (matrix-)normality assumption is made on the reduced
form errors

[ϑ1ϑ2] ∼MN (O,ω, ιN)

where

ω =

[
ω11 ωT

12
ω21 ω22

]
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The classical linear simultaneous equations model II

We can specify the (homoskedastic) error structure of the structural error vector in
terms of the reduced form covariance matrix,

V (ε) = σ2ιN

where

σ2 = ω11 − 2ωT
12β + βTω22β

The relevance and validity assumptions are

E
(
ZT [ϑ1ϑ2]

)
= O

E
(
ZTY2

)
, O

The dimensions of the various objects

N : sample size
G1 : number of endogenous explanatory variables
K1 : number of included exogenous variables
K2 : number of excluded exogenous variables
K : K1 + K2, the total number of exogenous variables in the system
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Basic estimators I

The k-class estimator, γ̂(k) of Theil (1958) depends on the choice of a tuning
parameter k ∈ R, is given as the solution to the system of linear equations[

YT
2 − kϑ̂2

ZT
1

]
Y1 =

YT
2 Y2 − kϑ̂

T
2 ϑ̂2 YT

2 Z1
ZT

1 Y2 ZT
1 Z1

 [̂β(k)
δ̂(k)

]

Note that the k-class estimator contains the usual estimators, including OLS
(k = 0), 2SLS (k = 1), LIML (k = λ0), where

λ0 = min
β

(
Y1 − Y2β

)T MZ1

(
Y1 − Y2β

)(
Y1 − Y2β

)T MZ
(
Y1 − Y2β

)
The k-class estimator is the basic combination estimator since it is continuous in
the parameter k, and every estimator between the OLS and the 2SLS estimator can
be obtained as some choice of k ∈ [0, 1].
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Basic estimators II

The k-class estimator has been generalized to the double k-class estimator by
Nagar (1962), and can be written as[

YT
2 − k∗2ϑ̂2

ZT
1

]
Y1 =

YT
2 Y2 − k∗1ϑ̂

T
2 ϑ̂2 YT

2 Z1
ZT

1 Y2 ZT
1 Z1

 [̂β(k∗)
δ̂(k∗)

]

where

k∗ =

[
k∗1
k∗2

]
=

[
k1 + ζ(λ0 + 1)
k2 + ζ(λ0 + 1)

]
where λ0 is the LIML eigenvalue. In the case that ζ = 0, the tuning parameters of
the estimators are fixed, else, they are sample dependent.

Most of the estimators implemented in ivshrink are implemented using the
function returning the double-k class estimator.
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Classical combination estimators I

In the 70s and 80s estimators with better finite sample properties –
(almost-)unbiased, minimum MSE, maximum concentration probability – were
proposed;

these estimators tended to have the form of non-stochastic combinations of
classical IV estimators;

a nice unified treatment of the theoretical properties of these estimators is given in
Anderson et al. (1986);

To introduce some of these estimators, we define the class of finite linear
combination estimators [̂

β(k,w)
δ̂(k,w)

]
=

3∑
h=1

wh

[̂
β(kh)
δ̂(kh)

]

such that

3∑
h=1

wh = 1

Using this representation, some examples of almost unbiased estimators are given in
table 1
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Classical combination estimators II

Estimator
weights k

w1 w2 w3 k1 k2 k3

Sawa (1973) 0 1 +
K2−G1−1

N−K −
K2−G1−1

N−K · 1 0

Morimune (1978)
K2−G1−2
K2−G1+2

4
K2−G1+2 0 λ0 1 ·

N−K1−G1−1
N−K1−G1

0 1
N−K1−G1

· 1 0

Nagar (1959) 1 0 0 1 +
K2 − G1 − 1

N
· ·

Kadane (1971) 1 0 0 1 +
K2 − G1 − 1
N − K1 − K2

· ·

Fuller (1977) 1 0 0 λ0 +
1

N − K1 − K2
· ·

Table: Almost unbiased combination estimators



IV
shrinkage

Tirthankar
Chakravarty

Basic
estimators

Classical
combina-
tion
estimators

Stein-type
estimators

Post-
model
selection
size
distortion

Large
sample
Stein-type
estimators
Asymptotic
covariance
matrix

Bootstrap
bias
correction
&
t-statistics

Non-
random
Stein-type
estimator

Empirical
results for
Mroz
(1987)

Monte
Carlo
design

References

Stein-type estimators I

The estimators above are not shrinkage estimators in the sense of Stein (1956).

Such a class of shrinkage estimators was introduced by Zellner and Vandaele
(1974), and the following double g-class estimator of Ullah and Srivastava (1988)
is general in this class

β̂U(g1, g2) =

1 −
g1ϑ̂

T
1 ϑ̂1

YT
1 Y1 − g2ϑ̂

T
1 ϑ̂1

 β̂2SLS

where

ϑ̂1 = MZY1

and the optimal values of g1 and g2 lead to the estimator β̂U

(
1

N−G1−K1
, N−G1−K1−1

N−G1−K1

)
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Post-model selection size distortion I

Well known problem that post-model selection estimators do not take the model
selection uncertainty into account.

Literature recently revived in Leeb and Pötscher (2005); Guggenberger (2010);
Andrews and Guggenberger (2009), among others.

We define the asymptotic size of the test based on a test statistic TN under the null
as

asy. size
(
TN ,γ0

)
= lim sup

N→∞
sup
λ∈Λ
Pγ0 ,λ

[
TN(γ0) > c1−α

]
where α is the nominal size of the test, Tn(γ0) is the test statistic and c1−α is the
critical value of the test.

Uniformity over λ ∈ Λ which is built in to the definition of the asymptotic size of
the test is crucial for the asymptotic size to give a good approximation for the
finite sample size.

We recall that the Hausman statistic is given as

HN = N
(
γ̂2SLS − γ̂OLS

)T (
V

(
γ̂2SLS − γ̂OLS

))−1 (
γ̂2SLS − γ̂OLS

)
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Post-model selection size distortion II

The vector of t-statistics in this context is given by

TN (̂γ,γ0) =
√

N
γ̂ − γ0

s. e. γ̂

for the appropriate estimator γ̂. Also, define

T∗N (̂γ2SLS, γ̂OLS,γ0) = TN (̂γ2SLS,γ0)1[
HN>ξχ2

1 ,1−αa

] + TN (̂γOLS,γ0)1[
HN≤ξχ2

1 ,1−αa

]

The two-stage vector of t-statistics is then given by

T†N (̂γ2SLS, γ̂OLS,γ0) =


+T∗N (̂γ2SLS, γ̂OLS,γ0) if upper one-sided test
−T∗N (̂γ2SLS, γ̂OLS,γ0) if lower one-sided test∣∣∣T∗N (̂γ2SLS, γ̂OLS,γ0)

∣∣∣ if symmetric two-sided test
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Post-model selection size distortion III

Then, in order to be nominal size αb standard fixed critical value [FCV] test, it
must be that the test rejects the null hypothesis if

T†N (̂γ2SLS, γ̂OLS,γ0) > c∞,1−αb

where

c∞,1−αb =


ξΦ,1−αb if lower one-sided test
ξΦ,1−αb if upper one-sided test
ξΦ,1−αb/2 if two-sided test

The Hausman test does not have good power to detect local deviations from
exogeneity, however, the OLS bias picks up these exogeneity deviations strongly,
rejecting the second stage null and leading to over-sized test.

Simulation results confirm the theoretical findings are reported in fu Wong (1997);
Guggenberger (2010).

Recent research McCloskey (2012); Cornea (2011) has suggested some ways of
trying to recover the asymptotic size without completely sacrificing power.
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Large sample Stein-type estimators I

Kim and White (2001) provide shrinkage type estimators where a base (unbiased)
estimator is shrunk towards another, possibly biased and correlated estimator
using stochastic or non-stochastic weights.

Under a wide variety of regularity conditions, estimators for parameters γ of a
model are (jointly) asymptotically normally distributed. Consider specifically

√

N
[
γ̂2SLS,N − γ0
γ̂OLS,N − γ0

]
d

[
U1
U2

]
∼ N (ξ,σ)

Allowing for one of the estimators to be asymptotically biased leads to

ξ =

[
0
θ

]
and allowing for full correlation between the estimators leads to

σ =

[
σ11 σ12
σ21 σ22

]
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Large sample Stein-type estimators II

Kim and White (2001) define the natural James-Stein estimator where the
shrinkage factor is random (c1 is fixed)

γJS
(
γ̂2SLS,N , γ̂OLS,N ; c1

)
=

1 −
c1

‖γ̂2SLS,N − γ̂OLS,N‖QN

 (γ̂2SLS,N − γ̂OLS,N

)
+ γ̂OLS,N

where the norm, ‖x‖QN = xTQNx, where QN is a norming matrix such that it
converges to a non-stochastic symmetric p.d. matrix

QN

N
p

q

Here we call the unbiased estimator γ̂2SLS,N the base estimator and the
asymptotically biased estimator γ̂OLS,N the data-dependent shrinkage point.



IV
shrinkage

Tirthankar
Chakravarty

Basic
estimators

Classical
combina-
tion
estimators

Stein-type
estimators

Post-
model
selection
size
distortion

Large
sample
Stein-type
estimators
Asymptotic
covariance
matrix

Bootstrap
bias
correction
&
t-statistics

Non-
random
Stein-type
estimator

Empirical
results for
Mroz
(1987)

Monte
Carlo
design

References

Large sample Stein-type estimators III

We also define the following matrices

ppT = σ

Z = p−1U

∼ N

p−1ξ︸︷︷︸
≡µ

, ι2(G1+K1)


Using these expressions, we can easily write the quadratic forms of of the
standardized variates as

ZTm1Z = (U1 −U2)T q (U1 −U2)

ZTm2Z = UT
1 q (U1 −U2)
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Large sample Stein-type estimators IV

where

m1 = pTjT
1 qj1p

j1 =
[
ιK1+G1 −ιG1+K1

]
m2 = pTjT

2 qj1p

j2 =
[
ιK1+G1 O

]

The question is – when does the JSM estimator dominate the base and the data-dependent
shrinkage point in terms of asymptotic risk and what is the optimal value of c1? The
following theorem, which is adapted from (Kim and White, 2001, Theorem 1)
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Large sample Stein-type estimators V

Theorem

Define

c∗1 ∈ argmin
c1

AR
(
γJS

(
γ̂2SLS,N , γ̂OLS,N ; c1

))
then it must be that

c∗1 =
ν
ω

where

ω =

∫
∞

0

∣∣∣n0(t)
∣∣∣− 1

2 exp
(
−

1
2
µTn1(t)µ

)
dt

and

ν =

∫
∞

0

∣∣∣n0(t)
∣∣∣− 1

2
(
trace

(
m2n0(t)−1

)
+ µTn2(t)µ

)
exp

(
−

1
2
µTn1(t)µ

)
dt

where, the matrix values functions {n0 ,n1 ,n2} : R 7−→ R
d2(G1+K1)×d2(G1+K1) ,

n0(t) = ιK1+G1
+ 2tm1

n1(t) = 2tm1n0(t)−1

n2(t) = n0(t)−1m2n0(t)−1

This infeasible estimator is called the James-Stein mix [JSM] estimator.
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Large sample Stein-type estimators VI

We need estimates of the optimal parameters

ω̂ =

∫
∞

0

∣∣∣̂n0N(t)
∣∣∣− 1

2 dt

ν̂ =

∫
∞

0

∣∣∣̂n0N(t)
∣∣∣− 1

2 trace
(
m̂2Nn̂0N(t)−1

)
dt

where

n̂0N(t) = ιK1+G1 + 2tm̂1N

m̂1N = P̂T
NjT

1 QNj1P̂N

m̂2N = P̂T
NjT

2 QNj1P̂N

This feasible estimator is called the James-Stein combination [JSC] estimator.
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Asymptotic covariance matrix I

Both the estimators above belong to the so-called regular consistent second-order
indexed [RCASOI] class of estimators proposed by Bates and White (1993), and as
such, have a valid first order representations in terms of their scores

√

N
[
γ̂2SLS,N − γ0
γ̂OLS,N − γ0

]
=

[
h2SLS,N O

O hOLS,N

]−1


∑N
i=1 SOLS

i (β0)
N∑N

i=1 S2SLS
i (β0)
N

 + Op (1)

where

S2SLS
i (β) = XiZT

i

(
E

(
ZZT

i

))−1
Zi

(
Yi − XT

i β
)

SOLS
i (β) = Xi

(
Yi − XT

i β
)

and

h2SLS,N =
E

(∑N
i=1 XiXT

i

)
N

hOLS,N =
E

(∑N
i=1 XiZT

i

(
E

(
ZiZT

i

))−1
ZiXi

)
N
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Asymptotic covariance matrix II

By application of a standard CLT (Lindeberg-Feller), we have


∑N

i=1 SOLS
i (β0)
N∑N

i=1 S2SLS
i (β0)
N

 d N


E

(
S2SLS

i (β0)
)

E
(
SOLS

i (β0)
)  ,

E
(
S2SLS

i (β0)S2SLS
i (β0)T

)
E

(
S2SLS

i (β0)SOLS
i (β0)T

)
E

(
SOLS

i (β0)S2SLS
i (β0)T

)
E

(
SOLS

i (β0)SOLS
i (β0)T

) 


= N (ξ,σ)

In particular, this expression allows us to compute the sample analogs of the
required covariance matrices, σ, using the plug-in principle.

We are now in a position to describe choices of the weighting matrix QN

QN =


ιG1+K1 identity matrix of dimension K1 + G1(

σ̂
−1
22,N − σ̂

−1
11,N

)
the non-robust Hausman variance matrix(

σ̂22,N + σ̂11,N − σ̂12,N − σ̂21,N
)−1

the robust Hausman variance matrix

It is well-known that the Hausman variance matrix is rank-deficient by design.
Remedies include generalized inverses, Hausman and Taylor (1981); Wu (1983).
Other solutions are explored in Lütkepohl and Burda (1997); Dufour and Valéry
(2011). Matrix norm regularization methods are required to get the estimator to
behave well.
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Bootstrap bias correction & t-statistics I

Using the results above, the minimum asymptotic risk estimator can be
computed. The estimator however is asymptotically biased and the asymptotic
distribution does not have a closed form expression.
The bootstrap can be used to circumvent both of these difficulties. Following
Judge and Mittelhammer (2004), the bootstrap procedure for testing null
hypotheses of the form

H0 : rγ = r

can be implemented using a double (or, nested) bootstrap, where the outer
bootstrap computes the replicates

T(bo) =
(
r
(
γJS

(
γ̂(bo)

2SLS,N , γ̂
(bo)
OLS,N ; ĉ∗(b

o)
1

)
− b̂ias

(
γJS

(
γ̂(bo)

2SLS,N , γ̂
(bo)
OLS,N ; ĉ∗(b

o)
1

)))
− r

)
�

(
diag

(
rV̂

(
γJS

(
γ̂(bo)

2SLS,N , γ̂
(bo)
OLS,N ; ĉ∗(b

o)
1

))
r
))− 1

2 ; bo = 1, . . . ,Bo

The estimates of the bias and the variance-covariance matrix are computed using
an inner bootstrap

b̂ias
(
γJS

(
γ̂(bo)

2SLS,N , γ̂
(bo )
OLS,N ; ĉ∗(b

o)
1

))
=

1

Bi

Bi∑
bi=1

γJS
(
γ̂(bi )

2SLS,N , γ̂
(bi )
OLS,N ; ĉ∗(b

i)
1

)
− γJS

(
γ̂(bo )

2SLS,N , γ̂
(bo )
OLS,N ; ĉ∗(b

o)
1

)

The covariance matrix is computed using the inner bootstrap resamples in the
usual way.
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Non-random Stein-type estimator I

The JSM estimator allows the shrinkage factor to be stochastic;

we can also derive the optimal (minimum risk) optimal non-stochastic shrinkage
parameter, c2

γNR
(
γ̂2SLS,N , γ̂OLS,N ; c2

)
= (1 − c2)

(
γ̂2SLS,N − γ̂OLS,N

)
+ γ̂OLS,N

The optimal value of c2 is given by the following theorem adapted from (Kim and
White, 2001, Theorem 2).
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Non-random Stein-type estimator II

Theorem

Define

c∗2 ∈ argmin
c2

AR
(
γNR

(
γ̂2SLS,N , γ̂OLS,N ; c2

))
then it must be that

c∗2 =
φ

ψ

where

φ = trace
(
(ω11 −ω12) q

)
and

ψ = trace
((
ω11 +ω22 − 2ω12 + θTθ

)
q
)

This infeasible estimator is called the non-random mix [NRM] estimator.

We need estimates of the optimal parameters, which are easily had from the
asymptotic normality results

φ̂ = trace
((
ω̂N,11 − ω̂N,12

)
QN

)
ψ̂ = trace

((
ω̂N,11 + ω̂N,22 − 2ω̂N,12 + θ̂

T
θ̂
)

QN

)
This feasible estimator is called the non-random combination [NRC] estimator.
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Non-random Stein-type estimator III

Mittelhammer and Judge (2005) define the closely related semiparametric least
squares estimator [SLSE], which has the estimate of the optimal nonrandom
shrinkage parameter

ĉ∗SLSE =
trace

(
θ̂

T
θ̂ + ω̂N,11 − ω̂N,12

)
trace

(
ω̂N,11 + ω̂N,22 − 2ω̂N,12 + θ̂

T
θ̂
)

Lastly, we need an estimate of the bias, θwhich is provided by

θ̂ =

(
XTXT

N

)−1

[, 1..G1]
YT

2

(
Y1 − Xγ̂OLS

)
N
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Estimators implemented in ivshrink

Estimator estimator options

OLS (default) ols
2SLS 2sls
LIML liml
Pre-Test Estimator pte

Ullah and Srivastava (1988) ullah
Sawa (1973) (bias) sawa bias
Sawa (1973) (MSE) sawa mse
Morimune (1978)(bias) morimune bias
Morimune (1978) (MSE) morimune mse
Anderson et al. (1986) anderson
Zellner and Vandaele (1974) zellner
Fuller (1977) fuller bias

Mittelhammer and Judge (2005) slse
Kim and White (2001)(random) white jsc
Kim and White (2001) (nonrandom) white nrc
Kim and White (2001) (optimal) white ows

ivshrink depvar [inclexogvar (endogvar = exclexogvar)] [if] [in],
[( estimator, options) vce(vcetype)]

Table: Estimators implemented in ivshrink



IV
shrinkage

Tirthankar
Chakravarty

Basic
estimators

Classical
combina-
tion
estimators

Stein-type
estimators

Post-
model
selection
size
distortion

Large
sample
Stein-type
estimators
Asymptotic
covariance
matrix

Bootstrap
bias
correction
&
t-statistics

Non-
random
Stein-type
estimator

Empirical
results for
Mroz
(1987)

Monte
Carlo
design

References

Empirical results for Mroz (1987)

Estimator Estimate ( t-statistic ) Estimator Estimate ( t-statistic )

OLS 0.1075 ( 7.5983 ) Morimune (1978) (2SLS) 0.0614 (−0.0091, 0.1234)
2SLS 0.0614 ( 1.9622 ) Morimune (1978) (LIML) 0.0613 (−0.0071, 0.1272)
LIML 0.0612 ( 1.9524 ) Sawa (1973) 0.0614 (−0.0122, 0.1209)
k-class (k = 0.7) 0.0924 ( 4.3757 ) Anderson et al. (1986) .0615 ( −.0099, 0.1214 )
Fuller (1977) (MSE) 0.0632 ( 2.0559 ) JSC 0.1038 ( · )
Fuller (1977) (bias) 0.0617 ( 1.9786 ) NRC 0.0948 ( · )
JIVE 0.0576 ( 1.7463 ) OWS 0.0810 ( · )
PTE 0.1075 ( 7.5983 ) SLSE 0.1040 ( 0.0779, 0.1317 )
Ullah and Srivastava (1988) 0.0613 (−0.0123, 0.1161) ( )

Outcome: lwage
Included exogenous: exper expersq
Endogenous: educ
Excluded exogenous: fatheduc motheduc

Table: Estimates of the effect of education on female labor market outcomes (Mroz, 1987) (N=428)
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Monte Carlo design I

Chmelarova and Hill (2010) construct a very simple just-identified design to assess the
properties of the Hausman pre-test estimator. Their design has the simple form:

Y2i
Z1i
Z2i
εi

 = N

0,


1 0 ρ2 ρ1
0 1 0 0
ρ2 0 1 0
ρ1 0 0 1




The model for outcomes is the just-identified equation

Yi = β0 + β1Y2i + β2Z1i + εi

where the degree of endogeneity is controlled by the correlation between the single
explanatory endogenous regressor and the structural errors, ρ1. The strength of
instruments is controlled by the correlation between the explanatory endogenous
variable and the excluded exogenous variable, ρ2.
In the simplest case, we set the (true) vector of parameters

β0 =

β0
β1
β2


=

010

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Monte Carlo design II

and we set the null hypothesis for computing the rejection frequencies of the testing
procedures under the null as

H0 : β = β0

And in order to compute the rejection frequencies of the testing procedures under a
fixed alternative, we set

Ha : β = βa

where

βa =

001

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ivshrink does more.

At the cost of stepping on ivreg2’s very large shoes, ivshrink has features not directly
related to shrinkage estimation.

Since ivshrink is modular, it is very easy to build on additional features using
already existing features, for example, it implements (not an exhaustive list):

Anderson-Rubin tests;
Kleibergen K-tests (with & without pretesting)
Moreira’s conditional likelihood ratio test
S-test

Some of these features are translated from the Ox (Doornik, 2007) code of Marek
Jarocinski.
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Conclusions

Post-model selection estimators ignore model uncertainty, leading to improper
inference;

Shrinkage estimators are risk optimal and help take model uncertainty into
account;

principle is general – any finite combination of asymptotically normal estimators;

more generally, model averaging estimators, which average moment conditions,
likelihood equations, estimating equations ...
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