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Motivation
-- Focus here is on two-stage optimization estimators (2SOE)
-- Asymptotic theory for 2SOE (correct standard errors) available for many years
-- Both stages are maximum likelihood estimators (MLE)

Murphy, K.M., and Topel, R.H. (1985): "Estimation and Inference in Two-
Step Econometric Models," Journal of Business and Economic
Statistics, 3, 370-379.

-- More general cases

Newey, W.K. and McFadden, D. (1994): Large Sample Estimation and
Hypothesis Testing, Handbook of Econometrics, Engle, R.F., and
McFadden, D.L., Amsterdam: Elsevier Science B.V., 2111-2245,
Chapter 36.

White, H. (1994): Estimation, Inference and Specification Analysis, New
York: Cambridge University Press.
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Motivation (cont’d)
-- Textbook treatments of the subject

Cameron, A.C. and Trivedi, P.K. (2005): Microeconometrics: Methods and
Applications,” New York: Cambridge University Press.

Greene (2008): Econometric Analysis, 6™ Edition, Upper Saddle River, NJ:
Pearson, Prentice-Hall.

Wooldridge, J.M. (2010): Econometric Analysis of Cross Section and Panel
Data, 2" Ed. Cambridge.

-- Nonetheless, applied researchers often implement resampling methods or ignore
the two-stage nature of the estimator and report the uncorrected outputs from

packaged statistical software.



Motivation (cont’d)
--  With a view toward easy software implementation (in Stata), we offer the
practitioner a simplification of the textbook asymptotic covariance matrix
formulations (and their estimators — standard errors) for the most commonly
encountered versions of the 2SOE -- those involving MLE or the nonlinear least
squares (NLS) method in either stage.
-- We cast the discussion in the context of regression models involving endogeneity —

a sampling problem whose solution often requires a 2SOE.



Motivation (cont’d)
-- In the paper -- we detail our simplified covariance specifications (standard errors)
for three very useful estimators in applied contexts involving endogeneity:
1) The two-stage residual inclusion (2SRI) estimator suggested by Terza et al.
(2008) for nonlinear models with endogenous regressors
Terza, J., Basu, A. and Rathouz, P. (2008): “Two-Stage Residual Inclusion
Estimation: Addressing Endogeneity in Health Econometric Modeling,”
Journal of Health Economics, 27, 531-543.
2) The two-stage sample selection estimator (2SSS) developed by Terza (2009)

for nonlinear models with endogenous sample selection

Terza, J.V. (2009): “Parametric Nonlinear Regression with Endogenous
Switching,” Econometric Reviews, 28, 555-580.



Motivation (cont’d)
and

3) Causal incremental and marginal effects estimators proposed by Terza

(2012b).

Terza, J.V. (2012b): "Health Policy Analysis via Nonlinear Regression
Methods: Estimation and Inference from a Potential Outcomes
Perspective, Unpublished manuscript, Department of Economics,
University of North Carolina at Greensboro.

-- In this presentation we will discuss (1) and (2) — 2SRI and Causal Effects

-- We will detail the analytics and Stata code for our simplified standard error

formulae for both of these and give an illustrative example of the latter.



2SOE and Their Asymptotic Standard Errors
-- The parameter vector of interest is partitioned as ®' =[6' Y'] and estimated in
two-stages:
-- First, an estimate of o is obtained as the optimizer of an appropriately

specified first-stage objective function

ENCAD (1)

where V; denotes the relevant subvector of the observable data for the ith

sample individual (i = 1, ..., n); e.g., if the first-stage implements the nonlinear

least squares (NLS) method

q:(0,V;) = —(X}; - Wi5)2



2SOE and Their Asymptotic Standard Errors (cont’d)

-- Next, an estimate of y is obtained as the optimizer of

% 4@, 7, Z;) @)

where Z. is the full vector of observable data, and & denotes the first-stage
estimate of 0; e.g., if the second-stage is MLE

a(, v, Z;) =In £(Y;|X ;, W38, 7)

with 1(Y;|X Wi;g, v) being the relevant conditional density of the dependent

pi°®

variable;.



2SOE and Their Asymptotic Standard Errors (cont’d)
-- It is incorrect to ignore the two-stage nature of the estimator and use the
“packaged” standard errors from the second-stage.
-- Practitioners often opt for resampling methods like bootstrapping, or in the case
of “effect” estimation, the approach suggested by Krinsky, I. and Robb L. (1986,
1990, 1991).
-- A possible reason for this is that the expressions for the correct asymptotic
covariance matrix of the generic 2SOE found in textbooks are daunting.
-- In the following, we offer a substantial and legitimate simplification that may
make implementation of the correct asymptotic standard error formulations more

accessible to practitioners.



2SOE and Their Asymptotic Standard Errors: Some Notation

-- The correct asymptotic covariance matrix of @ is

D, D
D = { '11 12}
Dy, Dy

where
D, = AVAR(S) denotes the asymptotic covariance matrix of 3,
D,, = AVAR(Y)

D,, is left unspecified for the moment.

-- The devil, of course, is in the “D”-tails.
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2SOE and Their Asymptotic Standard Errors: More Notation

-- q, is shorthand notation for q,(9,V)as defined in (1)
-- ( is shorthand notation for q(o, vy, Z)as defined in (2)
-- V,q denotes the gradient of q with respect to parameter subvector s. This is a

row vector whose typical element is 0q/0s;; the partial derivative of q with

respect to the jth element of s
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2SOE and Their Asymptotic Standard Errors: More Notation (cont’d)

-- Vq denotes the Jacobian of V q with respect to t. This is a matrix whose typical
element is 6°q/ Os;0t,,; the cross partial derivative of q with respect to the jth

element of s and the mth element of t — the row dimension of V q corresponds

to that of its first subscript and the column dimension to that of its second

subscript.
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2SOE and Their Asymptotic Standard Errors (cont’d)

-- The typical textbook rendition of the “D”-tails is something like the following

D, =E[V,q, ] E[qu'vﬁql]' E[qu]_l - AVAR(S)E[Vyﬁq]’ E[qu]_l
D,, =AVAR®)=E[V,,q] {E[V,;a]AVARG)E[V 4]’

~E[V,q'Vq, |E[Vsa] E[V,q]

~E[V 50 ]E[Vesa] B[V, a'Voa J}E[V 0]+ AVAR*H)

where AVAR(EA‘)) is the “packaged” and legitimate asymptotic covariance matrix of
P g g ymp

A

the first-stage estimator of 6, and AVAR*(y) is “packaged” but incorrect
covariance matrix of the second-stage estimator of v.

-- No need to define any of the components of this mess at this point. Just wanted to
make a point.

-- We seek simple estimators of D, and D,,.
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Simple Standard Error Formulae — MLE
-- In the paper we show that when the second stage estimator is MLE the correct

formulations simplify as

D,, = AVARG)E| V,q'V;q | AVAR*(7)

D,, = AVAR*(Y)E| V,q'V,q |AVARG)E| V,q'V;q | AVAR * () + AVAR*(7)
where

) > V40, 7.Z,)'V5q(1.Z;)

E[qu'Vaq] = k=l

n

——————

& and ¥ denote the first and second stage estimators, respectively, and AVAR(J)

and AVAR *(y)are the estimated covariance matrices obtained from the first and

second stage packaged regression outputs, respectively.
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Simple Standard Error Formulae — NLS

-- When the second stage estimator is NLS the correct formulations simplify as

’
A A

D,, = - AVARG)E[V 5a] E[V,,q]

A ——— A

D, = E[qu]_l E| V,,q |AVARG)E| V.5q | E[qu]_l + AVAR*(})
where

> V.,54(8,%,Z;) >V..,4(5,%,Z;)

B[V 0] = H B[V, q] =

n

A

where 6 and ¥ denote the first and second stage estimators, respectively, and

AVAR(&Q)) and AVAR *(7) are the estimated covariance matrices obtained from the
first and second stage packaged regression outputs, respectively.
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Simple Standard Error Formulae (cont’d)
So, for example, the “t-statistic” (Y, -7, )/ ﬁ22(k) for the kth element of y is

asymptotically standard normally distributed and can be used to test the hypothesis

that y, = yﬂ for yﬂ, a given null value of v,.
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Example: Two-Stage Residual Inclusion (2SRI)
-- Suppose the researcher is interested in estimating the effect that a policy variable

of interest X | has on a specified outcome Y.

-- Moreover, suppose that the data on X_ is sampled endogenously — i.e. it is

Y

correlated with an unobservable variable X that is also correlated with Y (an

unobservable confounder).
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Example: 2SRI (cont’d)
-- To formalize this, we follow Terza et al. (2008), and assume that

E[Y | X,,X,, X,]=1(X,, Xy, X,3p) and X, = r(W, a) + X,
[outcome regression| [auxiliary regression]

X, denotes a vector of observable confounders (variables that are possibly

correlated with both Y and Xp)

X, is a scalar comprising the unobservable confounders
B and o are parameters vectors

W=[X, W]

W™ is an identifying instrumental variable, and

n( )andr( ) are known functions.
18



Example: 2SRI (cont’d)

-- The (pseudo) regression model in this case is

Y = H(Xpﬁ Xo’ Xu;B) + €

where e is the random error term, tautologically defined as

¢ = Y _ u(Xpﬁ Xo’ Xu;B)‘

-- The P parameters are not directly estimable (e.g. by NLS) due to the presence of

the unobservable confounder X  -- hence, the “pseudo” modifier.
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Example: 2SRI (cont’d)
The following 2SOE is, however, feasible and consistent.

First Stage: Obtain a consistent estimate of a by applying NLS to the auxiliary

regression and compute the residuals as
X, =X, - r(W,a)

where a is the first-stage estimate of a.

Second Stage: Estimate f§ by applying NLS to

_ v . 2SRI
Y_ u(Xp9X09 Xu’B) + €

where e***! denotes the regression error term.
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Example: 2SRI (cont’d)

-- In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast
it in the framework of the generic 2SOE discussed above with o and p playing
the roles of 6 and vy, respectively.

-- This version of the 2SRI estimator implements NLS in its second stage.

-- Therefore the relevant version of q(g, Y, Z) is

A 2
q((l, Ba Y9 Xp,W) = _(Y - H(Xp, Xoa Xu;ﬁ)) .
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Multi-Stage Causal Effect Estimators

-- For contexts in which the policy variable of interest (Xp) is qualitative (binary),

Rubin (1974, 1977) developed the potential outcomes framework (POF) which
facilitates clear definition and interpretation of various policy relevant
treatment effects.

-- Terza (2012b) extends the POF to encompass contexts in which X | is quantitative
(discrete or continuous) and planned policy changes in X, are incremental or

infinitesimal.
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Multi-Stage Causal Effect Estimators (cont’d)
As counterparts to the average treatment effect in the POF, Terza (2012b) defines the
average incremental effect and the average marginal effect, respectively, as

ATE(A)

AIE(A(X})) = EIYy jax )l -ElYx, ] and AME= lim

where X ; denotes the pre-policy version if X, (a random variable)
A(X,;) denotes the policy mandated exogenous increment to the policy variable

Y, denotes the potential outcome (a random variable) -- the version of the
p

outcome that would obtain if the policy variable were exogenously and

counterfactually set at X; .
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Multi-Stage Causal Effect Estimators (cont’d)
-- Terza (2012b) shows that under primitive regression assumptions (e.g. the
outcome and auxiliary models in 2SRI), if we can consistently estimate the

parameters of the model (e.g. T=[a’ p'] in the above 2SRI setup) and can find an

appropriate way to proxy X , AIE and AME can be consistently estimated using

—_— n 1 A ~ A a
AIE(A(Xpli)) = .%;{”(Xpli T Ai(Xpli)aXoiaXui;T) — WXy Xoi’Xui;T)}
— n a X i X i, X i;%
AME=y 12" FXpti> Xoi> Xuis )

i=11 0X

where T is a consistent estimate of 7, X is the proxy value for X,, and the i

pli

A

subscript denotes the ith observation in a sample of sizen (i=1, ..., n).
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Multi-Stage Causal Effect Estimators (cont’d)
-- We now turn to the asymptotic properties of these estimators.
-- We use the notation “PE” to denote the relevant policy effect [AIE or AME] and

rewrite AME and AIE in generic form as

1;1\2 _ i pei(aa B)

~1 n Xoi ’ Xui (&9“/1 )9 B)

lg\ei(&, B) being shorthand for pe(X

pli?®

where

pe(Xpl b XO b Xu ((I’W)Q B) =

u(Xpl + A(Xpl)QX()’Xu (G,W),B) _ u(Xpl ° X(),Xu ((I,W),B) for AIE

or
a u(Xpl b Xo’ Xu ((I,W), B)

and X (G,W,) = X, — (W, 0).

for AME
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l/’il as a 2SOE

-- We can cast l/’E as a 2SOE:

-- First stage... consistent estimation of a and P (e.g. via 2SRI).

-- Second stage... PE itself is easily shown to be the optimizer of the following

objective function

Z q(&a ﬁa PE9 Zi)
i=1

where
o ~ A 2
q(ﬂ, Ba PE, Zl) = _(pei(aa ﬁ)_ PE)

Z. =1Y; X, W]and[a p']is the first-stage estimator of [a' B'].

i i pli

26



PE as a 2SOE — Asymptotic Standard Error

-- Because PE is virtually NLS, using the above results, its correct standard error is

/

( n ~ A A \ ( n P oA \
— o~ Z Vie B’]pei(a9 DN R Z Vie p’]Pei(aa B)
avar(PE) =| = AVAR([6' B']| =L
n n
\ J \ J
n P A o~ 2
> (pe, (@, ) - PE)
+ i=1
n
where

n ~~ A
'Z1V[a, p1P€; (0, B) denotes V. s pe(X,;,X,,X,(0,W),B) evaluated at X, Xois W;,
1=

and [0’ ﬁ’] and

AVAR([@' PB']) is the estimated asymptotic (2SRI?) covariance matrix of [6 B'].
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PE as a 2SOE — Asymptotic t-stat

-- So, for example, the “t-statistic” \/_ n(PE - PE)/\/avar PE) is asymptotically

standard normally distributed and can be used to test the hypothesis that PE = PE’

for PE’, a given null value of PE.
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Smoking and Birthweight: Parameter Estimation via 2SRI
-- Re-estimate model of Mullahy (1997) using 2SRI
Mullahy, J. (1997): "Instrumental-Variable Estimation of Count Data Models:
Applications to Models of Cigarette Smoking Behavior,"” Review of
Economics and Statistics, 79, 586-593.
Y = infant birthweight in lbs

X, = number of cigarettes smoked per day during pregnancy
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AIE of Smoking During Pregnancy on Birthweight

The objective is to evaluate a policy that would bring smoking during pregnancy
to zero.

Pre-policy version of the policy variable: X , = X

Post-policy version of the policy variable: X, = X, + A(X,) where A(X)) = - X

AIE estimator is

1’)1\3 =y pei(ﬁ)
i=1 n

I/)Ei(ﬁ) is pe(X,;,X,,B) evaluated at X;, X,;, and Blo' PB'], with

A

pe(X,;,X,,8) = exp(IX,; + AX)IB, +X,B,) — exp(X,;B, +X,B,)
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AIE of Smoking on Birthweight — Asymptotic Standard Error

a Var(l/)ﬁ) =

Vipe,(B) =1V, pe,(B) Vi pe,(B)]

(n

A

2 Vype,(B)

\

n

\

/

COVomm

( n ~ A
> Ve, (B)

n

\

+

3 (pe,()- PE)

i=1

n

Vi pei(B)= exp(IX,y; + ACDIB, + X)X + AC,)]
— exp(X,;B, + XiB, )X,

P

———

A

v, pe;(B)=

A

[ exp(IXy; + A1, + XoiBy) = exp(X,iB, + X)X,y

and COVgmm is the GMM estimated asymptotic covariance matrix of ﬁ+ .
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AIE Asymptotic Standard Error -- Practical Notes on Stata Implementation

-- MATA code for calculating the AIE estimator

A

B, = BXpGMMC = BGMMC[1]

[ X, +AX) P X, | = XNULL= J(rows(X0),1,0),Xo
X,B, +X,B, = XBGMMC = XC*BGMMC

[X, + ACX,)IB, +X,B,= XBNULLGMMC=XNULL*BGMMC

pe(B) = PeAIEGMM = exp(XBNULLGMMC) : —exp(XBGMMC)

AIE = PEAIEGMM = mean(peAlEGMM)
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Practical Notes on Stata Implementation (cont’d)

-- MATA code for calculating the asymptotic standard error estimate

VBPISE(XP,XO,ﬁ): ppebpA IEGMM=exp (XBNULLGMMC) = *XpC
V;. pe(X,,, X, ,B)=peboAl EGMN=(exp (XBNULLGMMC) : ~exp (XBGMMC) ) : *Xo

V,pe(X,,X,,B) = ppebAIEGMM=ppebpAIEGMM, ppeboAl EGMM

————— —

avar(AIE)=
avarPEAIEGMM=mean(ppebAlEGMM*n :*COVGMMC)*mean(ppebAIEGMM) *
+mean((peAlEGMM: -PEAIEGMM) -"2)

where X, and Vi [/)E(XP,XO,IA}) are n X K matrices; Xp, A(Xp), [/)Z!(ﬁ)and
\L I;E(XP,XO,IAV) are n X 1 vectors; VB[/):!(XP,XO,[AD is an n x (K+1) matrix; AIE
p

———

and avar(AIE) are scalars; and K is the dimension of X .
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Results for Smoking and Birthweight Model

AIE of Eliminating Smoking During Pregnancy w/ Corrected St. Errors

| 100 -2300237 .0726222 3.167401 -0015381
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