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Motivation 

-- Focus here is on two-stage optimization estimators (2SOE) 

-- Asymptotic theory for 2SOE (correct standard errors) available for many years 

 -- Both stages are maximum likelihood estimators (MLE)  
 
 Murphy, K.M., and Topel, R.H. (1985):  "Estimation and Inference in Two-  

  Step Econometric Models," Journal of Business and Economic    
  Statistics, 3, 370-379. 

 
 -- More general cases 
 
 Newey, W.K. and McFadden, D. (1994):  Large Sample Estimation and   

  Hypothesis Testing, Handbook of Econometrics, Engle, R.F., and   
  McFadden, D.L., Amsterdam:  Elsevier Science B.V., 2111-2245,   
  Chapter 36. 

 
 White, H. (1994): Estimation, Inference and Specification Analysis, New   

  York: Cambridge University Press. 



3 
 

Motivation (cont’d) 

-- Textbook treatments of the subject 

 Cameron, A.C. and Trivedi, P.K. (2005):  Microeconometrics:  Methods and  
  Applications,” New York:  Cambridge University Press. 

 
 Greene (2008):  Econometric Analysis, 6th Edition, Upper Saddle River, NJ:   

  Pearson, Prentice-Hall. 
 
 Wooldridge, J.M. (2010): Econometric Analysis of Cross Section and Panel  

  Data, 2nd Ed. Cambridge. 
  
-- Nonetheless, applied researchers often implement resampling methods or ignore 

the two-stage nature of the estimator and report the uncorrected outputs from 

packaged statistical software.  
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Motivation (cont’d) 

--  With a view toward easy software implementation (in Stata), we offer the 

practitioner a simplification of the textbook asymptotic covariance matrix 

formulations (and their estimators – standard errors) for the most commonly 

encountered versions of the 2SOE -- those involving MLE or the nonlinear least 

squares (NLS) method in either stage. 

--  We cast the discussion in the context of regression models involving endogeneity – 

a sampling problem whose solution often requires a 2SOE. 
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Motivation (cont’d) 

-- In the paper -- we detail our simplified covariance specifications (standard errors) 

for three very useful estimators in applied contexts involving endogeneity:  

 1) The two-stage residual inclusion (2SRI) estimator suggested by Terza et al.  

  (2008) for nonlinear models with endogenous regressors 

Terza, J., Basu, A. and Rathouz, P. (2008):  “Two-Stage Residual Inclusion 
Estimation:  Addressing Endogeneity in Health Econometric Modeling,” 
Journal of Health Economics, 27, 531-543. 

 
 2) The two-stage sample selection estimator (2SSS) developed by Terza (2009)  

  for nonlinear models with endogenous sample selection 

Terza, J.V. (2009): “Parametric Nonlinear Regression with Endogenous 
Switching,” Econometric Reviews, 28, 555-580. 
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 Motivation (cont’d) 

and  

 3) Causal incremental and marginal effects estimators proposed by Terza 

 (2012b).   

Terza, J.V. (2012b):  "Health Policy Analysis via Nonlinear Regression 
Methods:  Estimation and Inference from a Potential Outcomes 
Perspective, Unpublished manuscript, Department of Economics, 
University of North Carolina at Greensboro. 

 
-- In this presentation we will discuss (1) and (2) – 2SRI and Causal Effects 

-- We will detail the analytics and Stata code for our simplified standard error 

 formulae for both of these and give an illustrative example of the latter. 
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2SOE and Their Asymptotic Standard Errors 

-- The parameter vector of interest is partitioned as ω [δ γ ]    and estimated in 

 two-stages:  

 -- First, an estimate of δ is obtained as the optimizer of an appropriately   

  specified first-stage objective function 

   
n

1 i
i 1

q (δ,V )

              (1) 

 where iV  denotes the relevant subvector of the observable data for the ith  

 sample individual (i = 1, ..., n); e.g., if the first-stage implements the nonlinear 

 least squares (NLS) method 

   2
1 i pi iq (δ,V ) (X Wδ)    



8 
 

2SOE and Their Asymptotic Standard Errors (cont’d) 

 -- Next, an estimate of γ is obtained as the optimizer of 

  
n

i
i 1

ˆq(δ, γ, Z )

              (2) 

 where iZ  is the full vector of observable data, and δ̂ denotes the first-stage 

 estimate of δ; e.g., if the second-stage is MLE 

     i i pi i
ˆ ˆq(δ, γ, Z ) ln f (Y |X ,W ;δ, γ)  

 with i pi i
ˆf (Y |X ,W ;δ, γ) being the relevant conditional density of the dependent 

 variable iY . 
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2SOE and Their Asymptotic Standard Errors (cont’d) 

-- It is incorrect to ignore the two-stage nature of the estimator and use the 

“packaged” standard errors from the second-stage.  

-- Practitioners often opt for resampling methods like bootstrapping, or in the case 

of “effect” estimation, the approach suggested by Krinsky, I. and Robb L. (1986, 

1990, 1991).  

-- A possible reason for this is that the expressions for the correct asymptotic 

covariance matrix of the generic 2SOE found in textbooks are daunting. 

-- In the following, we offer a substantial and legitimate simplification that may 

make implementation of the correct asymptotic standard error formulations more 

accessible to practitioners. 
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2SOE and Their Asymptotic Standard Errors:  Some Notation 

-- The correct asymptotic covariance matrix of ω̂  is  

 11 12

12 22

D D
D

D D
 

   
 

where  

 11
ˆAVAD R(δ)  denotes the asymptotic covariance matrix of δ̂,  

 22 ˆAVAD R(γ)  

 12D  is left unspecified for the moment. 

 
--  The devil, of course, is in the “D”-tails. 
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2SOE and Their Asymptotic Standard Errors:  More Notation 

-- 1q  is shorthand notation for 1q (δ,V)as defined in (1)  

-- q is shorthand notation for q(δ, γ, Z)as defined in (2)  

-- sq  denotes the gradient of q with respect to parameter subvector s.  This is a 

 row vector whose typical element is jq / s  ; the partial derivative of q with 

 respect to the jth element of s  
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2SOE and Their Asymptotic Standard Errors:  More Notation (cont’d) 

-- stq  denotes the Jacobian of sq  with respect to t.  This is a matrix whose typical 

 element is 2
j mq / s t   ; the cross partial derivative of q with respect to the jth 

 element of s and the mth element of t – the row dimension of stq  corresponds 

 to that of its first subscript and the column dimension to that of its second 

 subscript. 

  



13 
 

2SOE and Their Asymptotic Standard Errors (cont’d) 

--  The typical textbook rendition of the “D”-tails is something like the following  

 12 δδ 1 γ δ 1 γγ γ
1 11

δ γγD q q q q qˆE E E AVAR(δ)E E q
                           

 22 γγ γ γδ
1

δ
ˆˆAVAR(γ) E E AVAR(δ)E 'D q q q


               

   γ δ 1 δδ δ
1

γE E Eq q 'q q            
   γδ δδ γ δ 1 γγ

11q q q q ˆE E E ' E AVAR * (q γ)
                  

 
where ˆAVAR(δ) is the “packaged” and legitimate asymptotic covariance matrix of 
the first-stage estimator of δ̂, and ˆAVAR *(γ) is “packaged” but incorrect 
covariance matrix of the second-stage estimator of γ̂ . 
 
--  No need to define any of the components of this mess at this point.  Just wanted to 
 make a point. 
  
-- We seek simple estimators of 12D  and 22D . 
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Simple Standard Error Formulae – MLE  

-- In the paper we show that when the second stage estimator is MLE the correct 

 formulations simplify as  

 
 

12 γ δ
ˆD δ qAVAR( )E AVAR *(q γ)        

 

 
   

22 γ δ γ δAVAR*(γ)E AVAR( )E 'AVAR*(γ) AVˆD q q δ q q AR*(γ)                
where 

 

n
γ i δ i

i 1
γ δ

ˆq(δ,γ,Z )' q(,γ,Z )
q q

n
E    

 
 

 
   

 
δ̂ and γ  denote the first and second stage estimators, respectively, and AVAR(δ̂) 

and AVAR *(γ) are the estimated covariance matrices obtained from the first and 

second stage packaged regression outputs, respectively. 
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Simple Standard Error Formulae – NLS  

-- When the second stage estimator is NLS the correct  formulations simplify as 
 

 


12 γδ γ
1

γ
ˆ ˆD̂ ˆAVAR( E Eq qδ)

           
 

 
 

22 γγ γδ γ
1

δ γγ
1ˆˆ ˆ ˆ ˆ ˆE E AVAR(δ)E ' ED̂ q q q AVAR*(γq )

 
                  

 
where 

 

n
γδ i

i 1
γδ

ˆ ˆq(δ,γ, )
ˆ

n
E

Z
q  






  
 

n
γγ i

i 1
γγ

ˆ ˆq(δ,γ, )
ˆ

n
E

Z
q  






  

  
where δ̂ and γ̂  denote the first and second stage estimators, respectively, and 

 ˆAVAR(δ) and ˆAVAR *(γ) are the estimated covariance matrices obtained from the 

first and second stage packaged regression outputs, respectively. 
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Simple Standard Error Formulae (cont’d)  

So, for example, the “t-statistic” k k 22(k)ˆ(γ - γ ) D̂/  for the kth element of γ is 

asymptotically standard normally distributed and can be used to test the hypothesis 

that 0
k kγ γ  for 0

kγ , a given null value of kγ . 
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Example:  Two-Stage Residual Inclusion (2SRI) 

-- Suppose the researcher is interested in estimating the effect that a policy variable 

of interest pX  has on a specified outcome Y.   

-- Moreover, suppose that the data on pX  is sampled endogenously – i.e. it is 

correlated with an unobservable variable uX that is also correlated with Y (an 

unobservable confounder).   
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Example:  2SRI (cont’d) 

-- To formalize this, we follow Terza et al. (2008), and assume that 

 p o u p o uE[Y | X , X , X ] μ(X , X , X ;β)     and    p uX  r(W, α) + X  
  [outcome regression]      [auxiliary regression] 
 
 oX  denotes a vector of observable confounders (variables that are possibly   

  correlated with both Y and pX )  

 uX  is a scalar comprising the unobservable confounders  

 β and α are parameters vectors 

 oW = [X W ]  

 W  is an identifying instrumental variable, and  

 μ(   ) and r(    ) are known functions.   
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Example:  2SRI (cont’d) 

-- The (pseudo) regression model in this case is 

 
  p o uY μ(X , X , X ;β) e    

where e is the random error term, tautologically defined as 

p o ue Y μ(X , X , X ;β)  .   

-- The β parameters are not directly estimable (e.g. by NLS) due to the presence of 

the unobservable confounder uX -- hence, the “pseudo” modifier.   
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Example:  2SRI (cont’d) 

The following 2SOE is, however, feasible and consistent.   

First Stage:  Obtain a consistent estimate of α by applying NLS to the auxiliary 

regression and compute the residuals as 

 u p
ˆ ˆX = X  r(W, α)  

where α̂  is the first-stage estimate of α. 

 
Second Stage:  Estimate β by applying NLS to 

 Y = p o uμ(X ,X , X̂ ;β)  + e2SRI 

where e2SRI denotes the regression error term. 
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Example:  2SRI (cont’d) 

-- In order to detail the asymptotic covariance matrix of this 2SRI estimator, we cast 

 it in the framework of the generic 2SOE discussed above with α and β playing 

 the roles of δ and γ, respectively.   

-- This version of the 2SRI estimator implements NLS in its second stage. 

-- Therefore the relevant version of ˆ ˆq(δ, γ, Z) is 

  2
p p o u

ˆX ,W Yˆq(α, β μ(X , X ,Y β), ) X, ;   .  
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Multi-Stage Causal Effect Estimators 

-- For contexts in which the policy variable of interest ( pX ) is qualitative (binary), 

 Rubin (1974, 1977) developed the potential outcomes framework (POF) which 

 facilitates clear definition and interpretation of various policy relevant 

 treatment effects.  

-- Terza (2012b) extends the POF to encompass contexts in which pX  is quantitative 

 (discrete or continuous) and planned policy changes in pX  are incremental or 

 infinitesimal.   
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Multi-Stage Causal Effect Estimators (cont’d) 

As counterparts to the average treatment effect in the POF, Terza (2012b) defines the 

average incremental effect and the average marginal effect, respectively, as 

   p1 p1 p1p1 X (X ) XAIE (X ) E[Y ] E[Y ]  
    

and   
0

AIE(Δ)AME lim
Δ

   

 
where p1X  denotes the pre-policy version if pX  (a random variable) 

 p1(X )  denotes the policy mandated exogenous increment to the policy variable 

 *
pXY  denotes the potential outcome (a random variable) -- the version of the   

  outcome that would obtain if the policy variable were exogenously and   

  counterfactually set at *
pX . 



24 
 

Multi-Stage Causal Effect Estimators (cont’d) 

-- Terza (2012b) shows that under primitive regression assumptions (e.g. the 

outcome and auxiliary models in 2SRI), if we can consistently estimate the 

parameters of the model (e.g. τ [α β ]   in the above 2SRI setup) and can find an 

appropriate way to proxy uX , AIE and AME can be consistently estimated using 

 
  n

p1i p1i i p1i oi ui p1i oi ui
i 1

1 ˆ ˆˆ ˆAIE( (X )) μ(X (X ),X ,X ;τ ) μ(X , X ,X ;τ)
n

      

 

 n p1i oi ui

i 1 p1i

ˆ ˆμ(X , X , X ;τ)1AME
n X


 

   
where τ̂  is a consistent estimate of τ, uiX̂ is the proxy value for uX , and the i 

subscript denotes the ith observation in a sample of size n (i = 1, …, n). 
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Multi-Stage Causal Effect Estimators (cont’d) 

-- We now turn to the asymptotic properties of these estimators.   

-- We use the notation “PE” to denote the relevant policy effect [AIE or AME] and 

rewrite AME and AIE in generic form as 

 
n

i

i 1

ˆˆpe (α, β)
PE

n
 

       


i
ˆˆpe (α, β) being shorthand for p1i oi ui i

ˆˆ ˆpe(X ,X ,X (α,W ),β)  

where 
 

p1 o upe(X , X , X (α,W),β)   = 
 
  p1 p1 o u p1 o uμ(X (X ), X , X (α,W),β ) μ(X , X , X (α,W),β)    for AIE 
or 

  p1 o u

p1

μ(X , X , X (α,W),β)
X




        for AME 

and ui i pi i
ˆ ˆ ˆX (α,W ) X  r(W , α)  . 
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PE as a 2SOE  

-- We can cast PE as a 2SOE: 

 -- First stage... consistent estimation of α and β (e.g. via 2SRI). 

 -- Second stage... PE itself is easily shown to be the optimizer of the following  

  objective function 

       
n

i
i 1

ˆˆq(α, β, PE, Z )

  

  where 

    2

ii
ˆ ˆˆ ˆq(α, β, PE, Z ) α,pe ( Eβ) P     

1i i p i i[Y XZ W ]  and ˆˆ[α β ]   is the first-stage estimator of [α β ]  . 
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PE as a 2SOE – Asymptotic Standard Error 

-- Because PE is virtually NLS, using the above results, its correct standard error is 

 

 





[α β ] [α β ]
n n

i i
i 1 i 1

pe ( ) pe ( )
ˆˆAVAR

ˆ ˆˆ ˆα, β α, β
a var(PE) ([α β ])

n n

   
 

        
    

      
   

    

            
  2n

i
i 1

pe ( )ˆα̂, PEβ

n



  

where 

n

i
i 1

[α β ]
ˆˆpe ( )α, β


  denotes [α β ] p1 o upe(X , X , X (α,W),β)   evaluated at Xpi, Xoi, iW ,

 and ˆˆ[α β ]   and  

 ˆˆAVAR([α β ])   is the estimated asymptotic (2SRI?) covariance matrix of ˆˆ[α β ]  .   
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PE as a 2SOE – Asymptotic t-stat 

-- So, for example, the “t-statistic”    n(PE PE) / a var PE  is asymptotically 

standard normally distributed and can be used to test the hypothesis that 0PE PE  

for 0PE , a given null value of PE. 
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Smoking and Birthweight:  Parameter Estimation via 2SRI 

-- Re-estimate model of Mullahy (1997) using 2SRI 
 
Mullahy, J. (1997):  "Instrumental-Variable Estimation of Count Data Models: 

Applications to Models of Cigarette Smoking Behavior," Review of 
Economics and Statistics, 79, 586-593. 

 
Y = infant birthweight in lbs 
 

pX = number of cigarettes smoked per day during pregnancy 
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AIE of Smoking During Pregnancy on Birthweight 

--  The objective is to evaluate a policy that would bring smoking during pregnancy 
 to zero. 
 
--  Pre-policy version of the policy variable:  p1 pX X  

--  Post-policy version of the policy variable: p2 p pX X Δ(X )   where p pΔ(X ) X   

--  AIE estimator is 
  

 


n
i

i 1

ˆpe (β)
PE

n
 

 
 


ipe ( β̂) is p1 ope(X , X ,β)  evaluated at Xpi, Xoi, and β̂ ˆˆ[α β ]  , with  
 
 p1 ope(X , X ,β)  =  pi pi p o o pi p o o

ˆ ˆ ˆ ˆexp([X (X )]β X β ) exp(X β X β )      
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AIE of Smoking on Birthweight – Asymptotic Standard Error 
 
 

 

 



n n

i i
i 1

β
i

GMM
β

1
pe ( ) pe ( )

COV
n

ˆ ˆβ β
a var(

n
PE)  

        
   
      
   



  2n

i
i 1

pe ( ) PE

n

β̂





 

 
    

p oβ βi i iβ
ˆ ˆ ˆβ βpe ( ) [ pe ( ) pe )]β(   

 
 

  


pβ pi pi p oi o pi pii

ˆ ˆpe ( ) exp([X Δ(X )]β X β )[X Δ(X )β̂ ]          

             pi p oi o pi
ˆ ˆexp(X β X β )X 

 
 

  


oβ pi pi p oi o pi p oi o oii

ˆ ˆ ˆ ˆpe ( ) exp([X Δ(X )]β X β ) exp(X β X β ) Xβ̂          
 
  

and GMMCOV  is the GMM estimated asymptotic covariance matrix of β̂ .  
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AIE Asymptotic Standard Error -- Practical Notes on Stata Implementation 
 

-- MATA code for calculating the AIE estimator 
 

pβ̂  = BXpGMMC = BGMMC[1] 
 

p p o( )   X X X  = XNULL= J(rows(Xo),1,0),Xo 

 

p p o o
ˆ ˆβ βX X  = XBGMMC = XC*BGMMC 

 

p p p o o
ˆ ˆ[ ( )]β β  X X X = XBNULLGMMC=XNULL*BGMMC 

 
 ˆpe(β) = peAIEGMM = exp(XBNULLGMMC):-exp(XBGMMC) 
 
AIE  =  PEAIEGMM = mean(peAIEGMM) 
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Practical Notes on Stata Implementation (cont’d) 
 

-- MATA code for calculating the asymptotic standard error estimate 
 


p pβ o
ˆpe( , ,β) X X = ppebpAIEGMM=exp(XBNULLGMMC):*XpC 

 


o pβ o
ˆpe( , ,β) X X =peboAIEGMM=(exp(XBNULLGMMC):-exp(XBGMMC)):*Xo 

 


β p o
ˆpe( , ,β) X X  = ppebAIEGMM=ppebpAIEGMM,ppeboAIEGMM 

 
 a var(AIE)= 
 avarPEAIEGMM=mean(ppebAIEGMM*n:*COVGMMC)*mean(ppebAIEGMM)' 
   +mean((peAIEGMM:-PEAIEGMM):^2) 
 
where oX  and 

o pβ o
ˆpe( , ,β) X X  are n × K matrices; pX , p( ) X ,  ˆpe(β)and 


p oβ p

ˆpe( , ,β ) X X  are n × 1 vectors; 
β p o

ˆpe( , ,β) X X  is an n × (K+1) matrix; AIE 

and  a var(AIE) are scalars; and K is the dimension of oX . 
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Results for Smoking and Birthweight Model 

 
 

AIE of Eliminating Smoking During Pregnancy w/ Corrected St. Errors 
 

    +-----------------------------------------------------------------------+ 
  1 |  %smoke-decr   incr-effect       std-err        t-stat       p-value  | 
  2 |                                                                       | 

3 |          100      .2300237      .0726222      3.167401      .0015381   


