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1 Introduction

• Dynamic stochastic general equilibrium (DSGE) models are not just attractive from

a theoretical perspective, they are emerging as s useful tool for empirical research in

macroeconomics, forecasting, and quantitative policy analysis.

• The simple models that have been used in the past have a poor forecasting record. For

instance, Schorfheide (2000) computes posterior probabilities, which can be interpreted

as measures of one-step-ahead predictive performance, of cash-in-advance models and

a vector autoregression (VAR). He finds that output growth and inflation data strongly

favor the VAR.

• More recently, Smets and Wouters (2003a), henceforth SW, have developed an elabo-

rate DSGE model with capital accumulation as well as various nominal and real fric-

tions. They evaluate forecasting performance and the posterior odds of their model

versus a VAR based on (detrended) Euro-area data and U.S. data (Smets and Wouters,

2003c). While the Euro-area data prefer the VAR the U.S. data lead to posterior prob-

abilities that strongly favor the DSGE model.

• Del Negro and Schorfheide (2003), henceforth DS, show that forecasts with a simple

three equation New Keynesian DSGE model can be improved by systematically re-

laxing the DSGE model restrictions. In their framework the DSGE model is used to

generate a prior distribution for the coefficients of a VAR. The prior concentrates most

of its probability mass near the restrictions that the DSGE model imposes on the VAR

representation and pulls the likelihood estimate of the VAR parameters toward the

DSGE model restrictions, without dogmatically imposing them. DS document that

the resulting specification, which we will label as DSGE-VAR, outperforms both the

DSGE model itself as well as a VAR in terms of forecasting performance.

• In this paper we use a variant of the SW model to generate a prior distribution for

an eight-variable VAR in output, consumption, investment, hours worked, nominal

wages, money stock, prices, and interest rates. We consider various specifications of

the VAR: in differences, in vector error correction form, and in levels, extending the

DS framework to non-stationary endogenous variables. Our approach is particularly

attractive for Euro area applications in which the the sample size is fairly small com-

pared to the dimensionality of the autoregressive model that is being estimated. The

Bayesian estimation procedure can be interpreted as augmenting the sample of actual
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observations with artificial data generated from the DSGE model.

• Sims (2003) points out that the posterior probabilities computed by SW tend to switch

between the extremes zero and one, depending on the choice of the data set (U.S. versus

Euro-area) and the specification of the VAR prior (Minnesota prior versus training

sample prior). In his view these probabilities do not give an accurate reflection of

model uncertainty and are largely an artifact of a model space that is too sparse.

Following arguments in Gelman, Carlin, Stern, and Rubin (1994), Sims advocates

filling the model space by connecting distinct model specifications with continuous

parameters and characterize the model uncertainty through the posterior probability

distribution of these additional parameters. This posterior will be less sensitive to the

choice of prior distribution than the posterior odds for the original models.

• The DS framework can be viewed as an attempt to connect VAR and DSGE model

using a continuous hyperparameter. This hyperparameter controls the variance and

therefore the weight of the DSGE model prior relative to the sample. For extreme

values of this parameter (zero or infinity) either an unrestricted VAR or the DSGE

model is estimated. Allowing for intermediate values of the hyperparameter is similar

in spirit to Sims’ (2003) notion of completing the model space with one caveat: we do

not have a strict structural interpretation of the specifications that are being estimated

with intermediate values of this parameter. However, we are able to construct DSGE

model-based identification schemes and carry out a structural VAR analysis.

• Empirical findings.

The paper is organized as follows. The DSGE model is presented in Section 2. Section 3

reviews the DS approach of generating a prior distribution from the DSGE model for a

VAR. We discuss extensions to vector autoregressive models with non-stationary endogenous

variables. Empirical results are presented in Section 4 and Section 5 concludes.

2 Model

To generate a prior distribution for the coefficients of a vector autoregression we use a slightly

modified version of the DSGE model developed and estimated for the Euro area in Smets

and Wouters (2003a). In particular, we introduce stochastic trends into the model, so that it

can be fitted to unfiltered time series observations. The DSGE model, largely based on the
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work of Christiano, Eichenbaum, and Evans (2003), contains a large number of nominal and

real frictions and various structural shocks. To make this paper self-contained we provide a

brief description of the model.

2.1 Final and Intermediate Goods’ Production

The final good Yt produced in the model economy is a composite made of a continuum of

intermediate goods i:

Yt =
[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t

.

The final goods producers buy the intermediate goods on the market, package Yt, and resell

it to the households. The parameter λf in the aggregation function is time varying. The

final goods firms maximize profits in a perfectly competitive environment:

maxYt,Yt(i) PtYt −
∫ 1

0
Pt(i)Yt(i)di

s.t. Yt =
[∫ 1

0
Yt(i)

1
1+λf,t di

]1+λf,t

(µf,t)
(1)

Combining the first-order conditions of this maximization problem with the zero profit

condition one obtains the price of the composite good:

Pt =
[∫ 1

0

Pt(i)
1

λf,t di

]λf,t

. (2)

Intermediate goods producers i uses the following technology:

Yt(i) = max {Kt(i)α(ZtLt(i))1−α − Z∗t Φ, 0}, (3)

where Zt is a labor-augmenting stochastic trend and Φ is a fixed cost. We denote the growth

rate of technology by zt = log(Zt/Zt−1) and assume that zt follows an autoregressive process

with mean γ:

(zt − γ) = ρz(zt−1 − γ) + εz,t, (4)

It will turn out that the overall growth rate of the economy is

Z∗t = ZtΥ( α
1−α t), Υ > 1

because we will assume subsequently that investment goods are becoming more efficient

over time. The intermediate goods’ firms period t nominal profits are given by

Pt(i)Yt(i)−WtLt(i)−Rk
t Kt(i), (5)
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where Wt is the nominal wage and Rk
t is the rental cost of capital. Profit maximization

implies that the capital-labor ratio is proportional to the ratio of the factor prices:

Kt(i)
Lt(i)

=
α

1− α

Wt

Rk
t

.

Total variable costs are given by

V C =
(

Wt + Rk
t

Kt(i)
Lt(i)

)
Lt(i) =

(
Wt + Rk

t

Kt(i)
Lt(i)

)
Ỹt(i)Z

−(1−α)
t

(
Kt(i)
Lt(i)

)−α

, (6)

where Ỹt(i) = Kt(i)α(ZtLt(i))1−α is the variable component of output. Hence, the marginal

cost MCt is the same for all firms and equal to:

MCt =
(

Wt + Rk
t

Kt(i)
Lt(i)

)
Z
−(1−α)
t

(
Kt(i)
Lt(i)

)−α

. (7)

Profits can then be expressed as [Pt(i)−MCt]Yt(i)−MCtZ
∗
t Φ. Note that fixed cost compo-

nent does not depend on the firms’ decisions, it can be safely ignored. As in Calvo (1983),

we assume that each firm can readjust prices with probability 1− ζp in each period. Those

firms that cannot adjust their price Pt(i) will increase it at the steady state rate of inflation

π∗. For those firms that can adjust prices, the problem is to choose a price level P̃t(i) that

maximizes the expected present discounted value of profits in all states where the firm is

stuck with that price in the future:

max
P̃t(i)

IEt

∞∑
s=0

[
ζs
pβsQt+s

(
P̃t(i)π∗s −MCt+s

)
Yt+s(i)

]
(8)

s.t. Yt+s(i) =

(
P̃t(i)π∗s

Pt+s

)− 1+λf,t+s
λf,t+s

Yt+s,

where Qt+s is today’s value of a future dollar for the consumers in a particular state of

nature. Under the assumption that households have access to a complete set of state-

contingent claims Qt = Ξp
t in equilibrium, where Ξp

t is the Lagrange multiplier associated

with the consumer’s nominal budget constraint. The first-order condition for intermediate

firm i is:

IEt

∞∑
s=0

ζs
pβsQt+s

(
P̃t(i)π∗s − (1 + λf,t+s)MCt+s

)
Yt+s(i) = 0 (9)

Since expected marginal costs are the same across firms, all firms that can readjust prices

will choose the same P̃t(i), so we can drop the i index from now on. From 2 it follows that

the aggregate price level evolves according to:

Pt = [(1− ζp)P̃
1

λf,t

t + ζp(π∗Pt−1)
1

λf,t ]λf,t . (10)
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2.2 The Household Sector

There is a continuum of households j in the economy. Households differ in that they supply

a differentiated type of labor. Each household maximizes an intertemporal utility function:

IEt

∞∑
s=0

βsbt+s

[
ln(Ct+s(j)− hCt+s−1(j))− ϕt+s

ν + 1
Lt+s(j)ν+1 + χt+s log

(
Mt+s(j)

Pt+s

)]
(11)

where Ct(j) is consumption, Lt(j) is labor supply (total available hours are normalized to

one), and Mt(j) are money holdings. Consumption Ct+s enters the utility function relative

to the habit stock hCt+s−1. ν represents the inverse of the elasticity of work effort with

respect to the real wage. Equation (11) contains three time-varying preference parameters:

bt affects the intertemporal substitution of households, ϕt represents a labor supply shift,

and χt captures fluctuations of the preference for money holdings.

The household’s budget constraint, written in nominal terms, is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) + Bt(j) + Mt+s(j) + Tt+s(j) (12)

≤ Rt+sBt+s−1(j) + Mt+s−1(j) + Πt+s + Wt+s(j)Lt+s(j)

+
(
Rk

t+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))Υ−tK̄t+s−1(j)
)
,

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets from

owning firms (assume household pool their firm shares, so that they all receive the same

profit), Wt(j) is the wage earned by household j. The term within parenthesis represents

the return to owning K̄t(j) units of capital. Households choose the utilization rate of their

own capital, ut(j), and end up renting to firms in period t an amount of “effective” capital

equal to:

Kt(j) = ut(j)K̄t−1(j), (13)

and getting Rk
t ut(j)K̄t−1(j) in return. However, households have to pay a cost of utiliza-

tion in terms of the consumption good which is equal to a(ut(j))Υ−tK̄t−1(j). Households

accumulate capital according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + ΥtµΥ
t

(
1− S(

It(j)
It−1(j)

)
)

It(j), (14)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µΥ
t is a stochastic disturbance to the price of investment

relative to consumption. Due to the trend Υt investment becomes more efficient over time,
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in the sense that the same amount of investment goods leads to a larger increase in the

effective capital stock as time progresses.

Let Ξp
t (j) be the Lagrange multiplier associated with the budget constraint 12. We

assume there is a complete set of state contingent securities in nominal terms, although

we do not explicitly write them in the household’s budget constraint. This assumption

implies that Ξp
t (j) must be the same for all households in all periods and across all states

of nature: Ξp
t (j) = Ξp

t for all j and t. Although we so far kept the j index for all the

appropriate variables, it turns out that the assumption of complete markets lets us drop

the index. In equilibrium households will make the same choice of consumption, money

demand, investment and capital utilization.

2.3 Labor Market

Labor used by the intermediate goods producers Lt is a composite:

Lt =
[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

. (15)

There are labor packers who buy the labor from the households, package Lt, and resell it to

the intermediate goods producers. Labor packers maximize profits in a perfectly competitive

environment. From the first-order conditions of the labor packers one obtains:

Lt(j) =
(

Wt(j)
Wt

)− 1+λw
λw

Lt. (16)

Combining this condition with the zero profit condition one obtains an expression for the

wage:

Wt =
[∫ 1

0

Wt(j)
1

λw di

]λw

, (17)

where λw is a parameter. Given the structure of the labor market, the household has market

power: she can choose her wage subject to 16. However, she is also subject to Calvo-type

nominal rigidities. Households can readjust wages with probability 1 − ζw in each period.

For those that cannot adjust wages, Wt(j) will increase at the steady state rate of inflation

π∗ multiplied by the growth rate of the economy eγΥ
α

1−α . For those that can adjust, the

problem is to choose a wage W̃t(j) that maximizes utility in all states of nature where the

household is stuck with that wage in the future:

max
W̃t(j)

IEt

∞∑
s=0

(ζwβ)sbt+s

[
· · · − ϕt+s

ν + 1
Lt+s(j)ν+1 + . . .

]
(18)

s.t. 12 for s = 0, . . . ,∞, 16, and

Wt+s(j) = (π∗eγΥα/(1−α))sW̃t(j)
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where the . . . indicate the terms in the utility function that are irrelevant for this problem.

The first-order conditions for this problem are:

0 = IEt

∞∑
s=0

(ζwβ)sΞt+s

[
− (π∗eγΥα/(1−α))sW̃t(j)

Pt+s
(19)

+(1 + λw)
bt+sϕt+sL

ν
t+s(j)

Ξt+s

]
Lt+s(j).

In absence of nominal rigidities this condition would amount to setting the real wage equal

to ratio of the marginal utility of leisure over the marginal utility of consumption times

the markup (1 + λw). Under the complete market assumption W̃t(j) = W̃t, all j. Then

from (17) it follows that:

Wt =
[
(1− ζw)W̃

1
λw

t + ζw(π∗eγΥ
α

1−α Wt−1)
1

λw

]λw

. (20)

2.4 Completing the Model

The market clearing condition for the final goods market is

Yt = Ct + It + Gt, (21)

where Gt is exogenous government spending because it has to relate Ct, It, Gt to aggregate

capital and employment. We define the exogenous process gt such that government spending

can be expressed as a fraction of output:

Gt = (1− 1/gt)Yt. (22)

The government adjusts the nominal lump-sum taxes (or subsidies) Tt to ensure that its

budget constraint is satisfied in every period:

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt. (23)

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt

R∗
=

(
Rt−1

R∗

)ρR
[( πt

π∗

)ψ1
(

Yt

Y ∗
t

)ψ2
]1−ρR

(24)

where R∗ is the steady state nominal rate and Y ∗
t is nominal output. The parameter ρR

determines the degree of interest rate smoothing. The central bank supplies the money

demanded by the household to support the desired nominal interest rate. The laws of

motion for the exogenous processes are summarized in Table 1.
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2.5 Model Solution

As in Altig, Christiano, Eichenbaum, and Linde (2002) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, and investment It grow at the rate

Z∗t . Physical capital Kt and effective capital K̄t both grow at the rate ΥtZ∗t . Money stock

Mt and nominal wages Wt grow proportionally to PtZ
∗
t , whereas the growth rate of the

nominal rental costs of capital is PtΥ−t. Nominal interest rates, inflation, and hours worked

are stationary. The model can be rewritten in terms of detrended variables. We find the

steady states for the detrended variables and use the method in Sims (2002) to construct

a log-linear approximation of the model around the steady state. We collect all the DSGE

model parameters in the vector θ and derive a state-space representation for

∆yt = [∆ ln Yt, ∆ln Ct, ∆ln It,∆ln Wt, ln Lt, πt,∆ lnMt, Rt]′,

where ∆ denotes the temporal difference operator and πt is the inflation rate. From the

state-space representation we construct the VAR prior.

3 DSGE Model Priors

A less restrictive moving-average representation for the n×1 vector yt than the one implied

by the DSGE model of the previous section can be obtained from a vector autoregressive

model:

∆yt = Φ0 + Φ1∆yt−1 + . . . + Φp∆yt−p + ut, (25)

where ut is a vector of one-step-ahead forecast errors. VARs have a long tradition in applied

macroeconomics as a tool for forecasting, policy analysis, and business cycle analysis. One

drawback of VARs is that they are not very parsimonious: in many applications, data

availability poses a serious constraint on the number of endogenous variables and the number

of lags that can effectively be included in a VAR without overfitting the data. A solution

to this problem of too many parameters is to use a prior distribution that essentially adds

information to the estimation problem. This prior distribution will be obtained from the

DSGE model presented in the previous section. We use the method developed in Del Negro

and Schorfheide (2003). Subsequently, we sketch the main ideas of the procedure. Loosely

speaking, our prior adds artificial observations from the DSGE model to the actual data

set and leads to an estimation of the VAR based on a mixed sample of artificial and actual

observations.
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3.1 Baseline Specification

Our baseline specification is the VAR in differences given in Equation (25). We assume that

the innovations ut have a multivariate normal distribution N (0, Σu) conditional on past

observations of ∆yt. Let Y be the T × n matrix with rows ∆y′t. Let k = 1 + np, X be the

T ×k matrix with rows x′t = [1, ∆y′t−1, . . . , ∆y′t−p], U be the T ×n matrix with rows u′t, and

Φ = [Φ0,Φ1, . . . , Φp]′. The VAR can be expressed as Y = XΦ + U with likelihood function

p(Y |Φ,Σu) ∝ (26)

|Σu|−T/2 exp
{
−1

2
tr[Σ−1

u (Y ′Y − Φ′X ′Y − Y ′XΦ + Φ′X ′XΦ)]
}

conditional on observations ∆y1−p, . . . , ∆y0. Although the DSGE model presented in Sec-

tion 2 does not have a finite-order vector autoregressive representation in terms of ∆yt, the

VAR can be interpreted as an approximation to the moving-average representation of the

DSGE model. The magnitude of the discrepancy becomes smaller the more lags are included

in the VAR. Since θ is of much lower dimension than the VAR parameter vector, the DSGE

model imposes a restrictions on the (approximate) vector autoregressive representation of

∆yt.

According to our DSGE model, the vector of endogenous variables ∆yt is covariance sta-

tionary and the expected values of sample moments of artificial data
∑

∆y∗t ∆y∗
′

t ,
∑

∆y∗t x∗
′

t ,

and
∑

x∗t x
∗′
t are given by the (scaled) population moments λTΓ∗dydy(θ), λTΓ∗dyx(θ), and

λTΓ∗xx(θ), where, for instance, Γ∗dydy(θ) = IEθ[∆yt∆y′t]. These expected values depends on

the DSGE model parameter θ. Define the functions

Φ∗(θ) = Γ∗
−1

xx (θ)Γ∗xdy(θ) (27)

Σ∗u(θ) = Γ∗dydy(θ)− Γ∗dyx(θ)Γ∗
−1

xx (θ)Γ∗xdy(θ). (28)

The functions Φ∗(θ) and Σ∗u(θ) trace out a subspace of the VAR parameter space and can be

interpreted as follows. Suppose that data are generated from a DSGE model with parameters

θ. Among the p’th order VARs the one with the coefficient matrix Φ∗(θ) minimizes the one-

step-ahead quadratic forecast error loss. The corresponding forecast error covariance matrix

is given by Σ∗u(θ).

Conditional on θ our prior distribution of the VAR parameters is of the Inverted-Wishart

(IW) – Normal (N ) form. It belongs to the same family of probability distributions as

the posterior characterized in Equations (33) and (34) below. This distribution can be
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interpreted as follows. It is the posterior distribution of someone who updates the non-

informative prior p(Φ, Σu) ∝ |Σu|−(n+1)/2 with the sample of artificial observations gener-

ated from the DSGE model. Provided that λT ≥ k+n and Γxx(θ) is invertible, the resulting

probability density is proper (it integrates to one) and non-degenerate (its support is not

restricted to a subspace of the VAR parameter space).

The specification of the prior is completed with a distribution of the DSGE model

parameters, details of which we discuss in Section 4. Overall our prior has the hierarchical

structure

p(Φ,Σu, θ) = p(Φ, Σu|θ)p(θ). (29)

The posterior density is proportional to the prior density and the likelihood function.

In order to study the posterior distribution we factorize it into the posterior density of the

VAR parameters given the DSGE model parameters and the marginal posterior density of

the DSGE model parameters:

p(Φ, Σu, θ|Y ) = p(Φ, Σu|Y, θ)p(θ|Y ). (30)

Let Φ̃(θ) and Σ̃u(θ) be the maximum-likelihood estimates of Φ and Σu, respectively, based

on artificial sample and actual sample

Φ̃(θ) = (λTΓ∗xx(θ) + X ′X)−1(λTΓ∗xdy + X ′Y ) (31)

Σ̃u(θ) =
1

(λ + 1)T

[
(λTΓ∗yy(θ) + Y ′Y )

−(λTΓ∗yx(θ) + Y ′X)(λTΓ∗xx(θ) + X ′X)−1(λTΓ∗xdy(θ) + X ′Y )
]
. (32)

Since conditional on θ the DSGE model prior and the likelihood function are conjugate, it

is straightforward to show, e.g., Zellner (1971), that the posterior distribution of Φ and Σ

is also of the Inverted Wishart – Normal form:

Σu|Y, θ ∼ IW
(

(λ + 1)T Σ̃u(θ), (1 + λ)T − k, n

)
(33)

Φ|Y, Σu, θ ∼ N
(

Φ̃(θ),Σu ⊗ (λTΓ∗xx(θ) + X ′X)−1

)
. (34)

The formula for the marginal posterior density of θ and the description of a Markov-

Chain-Monte-Carlo algorithm that generates draws from the joint posterior of Φ, Σu, and

θ are provided in Del Negro and Schorfheide (2003). The ability to compute the population

moments Γ∗dydy(θ), Γ∗xdy(θ), and Γ∗xx(θ) analytically from the log-linearized solution to the

DSGE model and the use of conjugate priors for the VAR parameters makes the approach

very efficient from a computational point of view.
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The hyperparameter λ determines the effective sample size for the artificial observations,

which is λT . If λ is small the prior is diffuse, and the actual observations dominate the

artificial observations in the posterior. Not surprisingly, the empirical performance of a

VAR with DSGE model prior will crucially depend on the choice of λ. We will choose a grid

Λ = {l1, . . . , lq} for the hyperparameter and assign prior probabilities to these grid points.

Based on the marginal data density

pλ(Y ) =
∫

pλ(Y |θ)p(θ)dθ (35)

We can compute posterior probabilities for the grid points and either average over different

the values of λ or condition on the one that has the highest posterior probability. This

marginal data density can also be used to determine an appropriate lag length for the VAR.

3.2 VEC Specification

The DSGE model implies that the set of variables that we consider for our empirical analysis

has several common trends. For instance, output, consumption, and investment all grow

that the rate Z∗t . The common trend structure suggests to include vector error correction

terms in the specification (25) and to consider the following model:

∆yt = Φ0 + Φβ(β′yt−1) + Φ1∆yt−1 + . . . + Φp∆yt−p + ut, (36)

According to our DSGE model the error correction terms are

β′yt−1 =




ln Ct − ln Yt

ln It − ln Yt

ln Wt − ln Yt − ln Pt

ln Mt − ln Yt − ln Pt




The elements of the vector β′yt−1 are stationary according to our model and the prior can

be constructed as above. However, we now let k = 2+np, X be the T ×k matrix with rows

x′t = [1, (β′yt−1)′, ∆y′t−1, . . . , ∆y′t−p], and Φ = [Φ0, Φβ ,Φ1, . . . , Φp]′.

3.3 VAR in Levels

As a second alternative to the VAR in differences (25) we consider a VAR in levels. Let

yt = [ln Yt, ln Ct, ln It, ln Wt, Lt, Pt, ln Mt, Rt]′,
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and

yt = Φ0 + Φ1yt−1 + . . . + Φpyt−p + Φp+1yt−p−1 + ut. (37)

This level-VAR is consistent with various trend patterns of the endogenous variables. How-

ever, the construction of the DSGE model prior is slightly more difficult since most of

the endogenous variables are non-stationary and do not have time-invariant moments. To

transform the endogenous variables we define the following rotation matrix

DλT =




(λT )−
3
2 0 0 0 0 0 0 0

−(λT )−
1
2 (λT )−

1
2 0 0 0 0 0 0

−(λT )−
1
2 0 (λT )−

1
2 0 0 0 0 0

−(λT )−
1
2 0 0 (λT )−

1
2 0 −(λT )−

1
2 0 0

0 0 0 0 −(λT )−
1
2 0 0 0

0 0 0 0 0 −(λT )−
3
2 0 0

−(λT )−
1
2 0 0 0 0 −(λT )−

1
2 (λT )−

1
2 0

0 0 0 0 0 0 0 (λT )−
1
2




According to the DSGE model

λT∑
t=1

DλT (y∗t−1y
∗′
t−1)D

′
λT

p−→ ΓDyyD(θ) (38)

converges in probability. In order to incorporate the model population moments of the

rotated variables into the mixed estimation of the DSGE model we have to undo the rotation:

Γyy(θ) = D−1
λT ΓDyyD(D′

λT )−1 (39)

This procedure is valid as long as the growth rate of technology and the steady state inflation

rate are strictly positive and can be used to derive the matrices Γxx(θ) and Γxy(θ) that are

needed for the prior.

3.4 Identification

DS propose an identification scheme for the DSGE-VAR, which is described in the remainder

of this section. To achieve identification we need to construct a mapping between the

structural shocks εt and the one-step-ahead forecast errors ut. Let Σtr be the Cholesky

decomposition of Σu. It is well known that in any exactly identified structural VAR the

relationship between ut and εt can be characterized as follows:

ut = ΣtrΩεt, (40)
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where Ω is an orthonormal matrix and the structural shocks are from now on standardized

to have unit variance, that is IE[εtε
′
t] = I. According to Equation (25) the initial impact of

εt on the endogenous variables yt in the VAR is given by
(

∂∆yt

∂ε′t

)

V AR

= ΣtrΩ. (41)

The identification problem arises from the fact that the data are silent about the choice of

the rotation matrix Ω. In our framework, it is quite natural in our framework to use the

structural model also to identify the VAR. Thus, we will now construct a rotation matrix

Ω based on the dynamic equilibrium model.

The DSGE model itself is identified in the sense that for each value of θ there is a

unique matrix A0(θ), obtained from the state space representation of the DSGE model,

that determines the contemporaneous effect of εt on yt. Using a QR factorization of A0(θ),

the initial response of yt to the structural shocks can be can be uniquely decomposed into
(

∂yt

∂ε′t

)

DSGE

= A0(θ) = Σ∗tr(θ)Ω
∗(θ), (42)

where Σ∗tr(θ) is lower triangular and Ω∗(θ) is orthonormal. To identify the VAR, we maintain

the triangularization of its covariance matrix Σu and replace the rotation Ω in Equation (41)

with the function Ω∗(θ) that appears in (42).

The implementation of this identification procedure is straightforward in our framework.

Since we are able to generate draws from the joint posterior distribution of Φ, Σu, and θ,

we can for each draw (i) use Φ to construct a MA representation of yt in terms of the

reduced-form shocks ut, (ii) compute a Cholesky decomposition of Σu, and (iii) calculate

Ω = Ω∗(θ) to obtain a MA representation in terms of the structural shocks εt.

4 Empirical Results

(So far only the baseline version has been implemented. Results are very preliminary.)

• Data set: we are using time series from the database for the (euro) Area-wide model,

maintained by the European Central Bank. The database has been constructed from

euro area Monthly Bulletin data and Eurostat data where available. It has then been

backdated with aggregated country data from various sources. The database covers

a wide range of quarterly euro area macroeconomic time-series. We use data starting

in the first quarter of 1986, as at that time inflation had come down to a relatively
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low level. A description can be be found in Fagan, Henry, and Mestre (2001). We are

using the following series in our empirical analysis: log real GDP per capita (lgdprpc),

log nominal consumption deflated by GDP deflator per capita (lconrpc), log nominal

investment deflated by GDP deflator per capita (linvrpc), log hours worked per capita

(lhoursuppc) log hourly nominal wage (lhupwin), log GDP deflator (lyed), log nominal

M2 per capita (lm2pc) nominal short-term interest rate (3 months) (stn).

• Figure 1 presents time series plots of various ratios: consumption-output ratio appears

fairly stable over time. Fluctuations of investment-output ratio are fairly persistent,

slight downward trend. Very persistent movement of hours, peaks in the 1991 and

decreases throughout the 90’s, rises again in 1997. Velocity is falling from 1986 to

1992, and rising afterwards. Real wage as fraction of output is falling throughout the

sample period.

• We fit our DSGE-VAR to unfiltered data. DSGE model implies that consumption-

output ratio, investment-output ratio, hours worked, velocity, and the ratio of ratio of

real wage to GDP are stationary. These “long-run” implications are to some extend at

odds with the data. If DSGE is fitted to the data directly we expect the autocorrelation

estimates for some of the exogenous shocks to be close to unity. In order to fit the

data well there is need to relax DSGE model restrictions.

• We consider a VAR with 3 lags, specified in growth rates. Since we have 8 endogenous

variables, our VAR has 8 + 3 ∗ 64 + 8 ∗ 9/2 = 236 parameters. Estimation period:

1986:I to 2002:IV. We are using 68 observations per equation. Each equation has 25

parameters (plus variances and covariances). Need informative prior distribution to

estimate a VAR of this size with a fairly short sample of observation. The DSGE

model is more tightly parameterized. It has 47 parameters.

• Tables 3 and 4, columns 2 and 3 contain information on prior distribution for structural

parameters. Some of the parameters are fixed. Overall priors are tight, mainly for

numerical reasons at this point.

• Table 2: we use a modified harmonic mean estimator (Geweke, 1999) to approximate

the log marginal data density defined in 35. The marginal data density can be used

to calculate posterior odds. Let πi,0 and πi,T denote prior and posterior probabilities

of specification Mi. Then

π1,T

π2,T
=

π1,0

π2,0
exp[ln p(Y |M1)− ln p(Y |M2)].
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If we are assigning equal prior probability to the λ grid points

Λ = {0.6, 0.75, 1, 2, 5, 10}

then we find that λ = 0.75 has the highest posterior probability. Interpretation: the

mixed sample that is used to estimate VAR consists of 51 artificial and 68 actual

observations.

We also report marginal data densities for a VAR(4). These are generally lower than

for a VAR(3) (except for λ = 5). Conditional on four lags the optimal choice of λ is

1. Since a VAR(4) has more coefficients, the data prefer more artificial observations

from the DSGE model to pin down the additional parameters. Overall, VAR(3) with

λ = 0.75 has highest posterior probability.

• Parameter estimates are reported in Tables 3 and 4. Due to numerical difficulties we

are fixing a number of parameters at this stage: α, δ, λw, L∗, χ, λf , and g∗. We

also impose the absence of serial correlation for a number of exogenous processes:

zt, λf,t, bt. Since priors are fairly tight, posterior estimates stay close to prior mean.

However, there are a few exceptions: for λ = 5 the posterior mean of the wage stickiness

parameter ζw is substantially smaller than the prior mean, indicating less wage rigidity.

The posterior distribution for the habit parameter h indicates a smaller role for habit

formation than implied by the prior. The data also shift our beliefs about the policy

parameter ψ2. The prior mean is 0.13, whereas the posterior means are 0.28, and 0.32,

respectively.

• How important is price stickiness? We increase the probability that the firm is able to

adjust its price, that is we choose a prior for ζp that concentrates near zero. The log

marginal data densities for this specification are −466.71(λ = 0.6), −473.89(λ = 0.75),

and −486.35(λ = 1). A comparison with the results reported in Table 2 suggests that:

the fit of the DSGE-VAR deteriorates if we remove the price stickiness from the model,

conditional on the flexible price version our criterion implies that we should add fewer

artificial observations to the mixed sample than under the sticky-price specification.
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Table 1: Exogenous Processes

Interpretation Law of Motion

Technology growth zt = γ(1− ρz) + ρzzt−1 + εz,t

Price mark-up shift ln(λf,t/λf ) = ρλ ln(λf,t−1/λf ) + ελ,t

Capital adjustment costs ln µt = ρµ ln µt−1 + εµ,t

Intertemporal preference shift ln bt = ρb ln bt−1 + εb,t

Labor supply shift ln(ϕt/ϕ) = ρϕ ln(ϕt−1/ϕ) + εϕ,t

Money demand shift ln(χt/χ) = ρχ ln(χt−1/χ) + εχ,t

Government spending ln(gt/g) = ρg ln(gt−1/gt) + εg,t

Monetary policy εR,t

Table 2: Choice of Hyperparameter

λ Log Marg. Data Density

VAR(3) VAR(4)

0.60 -334.61 -392.42

0.75 -332.94 -366.41

1.00 -351.05 -364.99

2.00 -420.08 -426.23

5.00 -597.45 - 589.21

10.00 -726.24 - 737.64

Notes: The ratio exp[ln pλ1(Y ) − ln pλ2(Y )] can be interpreted as posterior odds of λ1

versus λ2 if the prior odds are equal to one. Filenames: m21100682002753mh and

m21100682002754mh. Sample range: 1986:I to 2002:IV.
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Table 3: Prior and Posterior of DSGE Model Parameters

Parameter Prior Posterior, λ = 0.75 Posterior, λ = 5

Mean Stdd Mean 90 % Intv. Mean 90 % Intv.

α 0.25

ζp 0.75 0.10 0.75 0.72 0.77 0.70 0.68 0.72

δ 0.03

Υ 0.10 0.05 0.12 0.07 0.17 0.16 0.09 0.22

Φ 0.50 0.25 1.36 1.31 1.43 1.14 1.01 1.24

s′ 4.00 1.50 3.73 3.66 3.77 3.93 3.83 4.03

h 0.80 0.10 0.47 0.41 0.55 0.44 0.41 0.47

a′ ′ 0.20 0.08 0.12 0.04 0.20 0.05 0.03 0.08

ν 2.00 0.75 2.54 2.48 2.58 2.49 2.43 2.61

ζw 0.75 0.10 0.74 0.70 0.77 0.59 0.54 0.64

λw 0.30

r∗ 0.90 0.10 0.96 0.90 1.03 1.06 0.93 1.16

ψ1 1.70 0.10 1.59 1.53 1.63 1.61 1.53 1.68

ψ2 0.13 0.10 0.28 0.20 0.36 0.32 0.25 0.38

ρr 0.80 0.10 0.91 0.89 0.93 0.88 0.86 0.90

π∗ 0.65 0.05 0.67 0.65 0.71 0.78 0.67 0.89

γ 0.50 0.25 0.56 0.51 0.61 0.50 0.46 0.54

L∗ 0.00

χ 0.10

λf 0.30

g∗ 0.15

Ladj 5.00 1.00 5.70 5.64 5.76 5.56 5.47 5.64

Notes: We report posterior means and 90% probability intervals based on the out-

put of the Metropolis-Hastings Algorithm. Sample range: 1986:I to 2002:IV. Filename:

m21100682002753mom.
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Table 4: Prior and Posterior of DSGE Model Parameters

Parameter Prior Posterior, λ = 0.75 Posterior, λ = 5

Mean Stdd Mean 90 % Interval Mean 90 % Interval

ρz 0.00

ρφ 0.85 0.10 0.62 0.57 0.67 0.39 0.31 0.46

ρχ 0.85 0.10 0.90 0.86 0.94 0.74 0.67 0.80

ρλf
0.00

ρµ 0.85 0.10 0.70 0.60 0.76 0.81 0.75 0.86

ρb 0.00

ρg 0.90

σz 0.40 2.00 0.29 0.26 0.33 0.51 0.44 0.56

σφ 1.00 2.00 1.77 1.71 1.85 2.04 1.98 2.12

σχ 1.00 2.00 1.88 1.85 1.92 1.92 1.83 1.96

σλf
1.00 2.00 6.84 6.75 6.93 6.76 6.72 6.80

σµ 1.00 2.00 1.38 1.32 1.42 1.35 1.31 1.41

σb 0.20 2.00 0.27 0.22 0.31 0.48 0.43 0.55

σg 0.30 2.00 0.17 0.15 0.19 0.29 0.27 0.32

σr 0.10 2.00 0.04 0.03 0.04 0.07 0.06 0.09

Notes: We report posterior means and 90% probability intervals based on the out-

put of the Metropolis-Hastings Algorithm. Sample range: 1986:I to 2002:IV. Filename:

m21100682002753mom.



 
Figure 1: TIME SERIES PLOTS OF SELECTED RATIOS 
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