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Abstract

A simple backward-looking Taylor rule is estimated in a time-varying coefficient framework

with quarterly German data for the period 1975-1998. Markov switching models and the

Kalman filter are used to extract the unobservable paths of the coefficients. The main

finding is that the inflation aversion of the Bundesbank was not constant over time and

exhibits some sudden and large shifts during the period of monetary targeting. There are

phases with low and with high inflation aversion. This could for example explain why the

estimated value of the inflation coefficient in backward-looking Taylor rules often does not

exceed one and so violates the implications of theoretical monetary policy models. More-

over, the results provide evidence that the Bundesbank followed the so-called ”opportunistic

approach” to disinflation.
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1 Introduction

Over the last decade the new-keynesian models with microeconomic background gained a lot of

popularity. This recent development leads also to growing interest in issues of optimal design

of monetary policy and theoretically founded monetary policy rules. In small new-keynesian

models monetary policy rules often have structure, which is very similar to the well known rule

of Taylor (1993).

In the Taylor rule the interest rate is a function only of inflation gap and output gap. Taylor

(1993) found that this very simple rule is able to describe the behavior of the Fed in the

period 1987-1992 relatively well. Plenty of papers followed the publication of Taylor (1993),

whose authors reported econometric estimations of Taylor-like monetary policy rules for dif-

ferent countries. Econometric research in this area raised the questions of structural stability

of the estimated monetary policy rules, because structural breaks in the estimated policy rules

may reflect changes in operating procedures and design of monetary policy. Clarida, Gali,

Gertler (1999), for example, estimate a monetary policy rule for the samples before and

after the Volcker disinflation period and find that the reaction function of the Fed has remark-

ably changed after the Volcker disinflation period. The estimation results show that since the

Volcker period the Fed reacts much more aggressively to the changes in the inflation gap. Also

Sims (2001) estimates a monetary policy reaction function of the Fed, permitting for several

possible patterns of time variation in both its coefficients and its disturbance variances. The

variation is estimated using Markov switching models as evolving in a stochastic, repeating

pattern, not as evolution from one style of policy to another. In contrast to Clarida, Gali,

Gertler (1999) the regime shifts estimated by Sims (2001) do not last very long and appear

to reflect temporary shifts in the level of policy activism, not systematic improvement. De-

mers, Rodrguez (2001) investigate the stability of the Taylor rule under the period 1963(2)

to 1999(4) using Canadian data. They show that the monetary rule cannot be evaluated over

this period without taking into account parameter instability and structural changes, reflecting

changes in monetary policy preferences. Using Kalman filter to estimate the monetary rule,

evidence is found that the parameters are suffering from important changes during the period

of the first oil shock, the late seventies and early eighties, thus capturing the adoption of the

explicit inflation targeting policy by the Bank of Canada.

The aim of this paper is to investigate the possible changes of the monetary policy of the
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Bundesbank in the period of monetary targeting. The focus of the Bundesbank policy on the

inflation control is well known and therefore the emphasis of the current econometric analysis is

put only on the changes in the reaction to inflationary developments. The research strategy is

very simple. Firstly, a linear Taylor-like reaction function with partial adjustment is estimated.

The linear specification with dynamic adjustment serves as a benchmark for the following state

space specifications. Secondly, the coefficient, which is responsible for the Bundesbank reaction

to inflationary development, is allowed to vary over time in the state space framework. Then

the results of the linear and state space estimations are compared. The variation of only one

coefficient in the equation makes the estimation more stable and easy to interpret than the

variation of all coefficients. In particular the Markov switching models and Kalman filter are

used to estimate the changes in the inflation aversion of the Bundesbank.

The reason for the choice of Markov switching models and Kalman filter in the current em-

pirical investigation is the extraordinary flexibility of this class of models. In both models the

dynamics of state variables is assumed to be exogen, which allows to avoid the choice of an

explicit transition function and transition variables like in STR- or in SETAR-models. Thus,

no explicit assumptions about how the Bundesbank changes the design of its own policy over

time are necessary in the empirical investigation. In the case of this paper this is not a disad-

vantage, because no estimation of a model with any predictive power in relation to the changes

in the monetary policy is purposed.

The layout of the article is as follows. Section 2 describes the model and econometric tools used

for its estimation. Section 3 provides a brief description of the data used for the estimations

and its properties. The empirical results are collected in section 4. The final section provides

a possible interpretation of the results and some concluding remarks.

2 The model and econometric tools

2.1 The model

The structure and parameters of the Taylor rule are well known:

it = r̄ + πt + 0.5(πt − π̄) + 0.5xt (1)

or in other form

it = r̄ + π̄ + 1.5(πt − π̄) + 0.5xt (2)
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where r̄ and π̄ are the constant values of the real interest rate and the inflation target of the

central bank under consideration. it is the short-term nominal interest rate, which is assumed

to be monetary policy instrument of a central bank under consideration. Finally πt and xt are

inflation and output gap. Taylor (1993) shows that this monetary policy rule yields a good

performance describing the behavior of the Fed in the period 1987-1992.

The functional structure of the Taylor rule is supported through theoretical implications of the

new-keynesian models. For example, Clarida, Gali, Gertler (1999) assume a quadratic

loss function of a central bank and forward looking behavior of economic agents and show that

the optimal policy rule has the following form

it = γπEtπt+1 + γggt (3)

where γπ > 1, γg > 0 and πt describes the deviation of inflation from the target of the central

bank.1 gt could be interpreted as a demand shock. The result that γπ > 1 has crucial empirical

implications and means that a rise of the short nominal rate in response to a rise of the inflation

gap is high enough to cause also a rise in the real interest rates. Thus the estimated value of

γπ can be used as a very simple measure of the monetary policy ”quality”. A good monetary

policy should put emphasis on fighting inflation and so lead to an estimated value of γπ > 1.

The version of the equation (2), which can be estimated, has three unknown parameters

it = α + β(πt − π̄) + γxt + ut (4)

where α = r̄ + π̄. No forward-looking specification are considered and estimated in this paper.

The reason for this restriction is the concentration on the estimation of time-varying coeffi-

cients, while most empirical studies incorporating forward-looking behavior are accomplished

under the assumption of parameter constance.

The assumption of the constant inflation target π̄ often turns out to be not very realistic.

This assumption is slightly relaxed in the context of the current analysis. The inflation goal

published officially by the Bundesbank is used as a measure for π̄, denoted below by π̄t. The

equation (4) is rewritten accordingly

it = r̄ + π̄t + β(πt − π̄t) + γxt + ut (5)

where the real interest rate r̄ is estimated directly. The problem is that the estimated residuals

ût often contain strong autocorrelation of the first order. This phenomenon is called interest
1In this case it denotes the deviation from the long-run equilibrium value of the nominal short rate.
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rate smoothing. There is no satisfactory theoretical explanation for this effect and therefore

in most econometric estimations the problem is solved simply by adding a lagged interest rate

as a regressor. The equation (5) is transformed as follows to incorporate the interest rate

smoothing:

it = [r̄ + π̄t + β(πt − π̄t) + γxt] · (1− ρ) + ρit−1 + ut (6)

In the case of the autocorrelation of an order higher than one (6) is easily generalized in the

following way:

it = [r̄ + π̄t + β(πt − π̄t) + γxt] · (1− ρ) + ρ1it−1 + . . . + ρpit−p + ut (7)

where ρ =
∑p

j=1 ρj is a persistence measure. The specification (6) or its generalized version

(7) is estimated with different econometric methods. The results are reported in section 4.

2.2 Markov switching models

In the Markov switching framework a subset of the parameter set of an econometric model is

modelled as a function of a real valued discrete unobservable Markov chain. Thus, one cannot

say with certainty, in which state the system is at an assigned time t. Only a probability

to be in state j at the time t can be inferred. A good introduction about the theory and

application of Markov switching model is available for instance in Hamilton (1994). On

the other side Krolzig (1997) provides a very deep and detailed discussion of this class of

econometric models. In the remaining part of the subsection a brief formal description of the

Markov switching framework is provided.

Let {st}∞t=1 be a sequence of discrete random variables with sample space Ω = {1, 2, . . . , N}.
The sequence {st}∞t=1 is called to be a Markov chain of the first order, if the following statement

is true:

Pr{st = j|st−1 = i, st−2 = k, . . .} = Pr{st = j|Ft−1} = Pr{st = j|st−1 = i} = pji

where Ft−1 denotes the information set available until t − 1. The Markov chain is called a

Markov chain of the first order, because, like in case of an autoregressive process of order one,

only the first lag of the state influences the future of the process. The set of all transition

probabilities pji can be summarized into the so called transition matrix {pji}1≤j,i≤N , where
∑N

j=1 pji = 1.
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A Markov switching model posseses the following structure

yt = x′tϕ(st) + ut, ut ∼ i.i.d.(0, Σ(st)) (8)

where st is an unobservable first order Markov chain discussed above and the vector xt includes

all exogenous and lagged endogenous regressors. An important assumption is exogenity of the

Markov chain st. Under assumption of known or any given parameters Θ some extraction

algorithm is needed to gain some information about the evolution of the state st over time. We

denote Ys = {y1, . . . , ys, x1, . . . , xs} as all available information until s for this purpose. The

probabilities Pr{st = j|Yt−1, Θ}, Pr{st = j|Yt, Θ} and Pr{st = j|YT , Θ} are called forecasted,

filtered and smoothed probabilities respectively. These probabilities are calculated for each data

point t and collected into time series, which can be used for economic interpretation of the

empirical results. These time series contain all information about the state of model (8) condi-

tional on s and parameter values Θ. Obviously, the smoothed probabilities Pr{st = j|YT , Θ}
are the best inference about the unobserved state st, because they contain all information

available to an econometrician. A nonlinear recursive algorithm for the extraction of filtered

probabilities can be derived using the calculation rule for conditional probabilities:

Pr{A|B} =
Pr{A ∩B}

Pr{B}

Another recursive algorithm uses the filtered probabilities as input to calculate smoothed proba-

bilities. For the derivation and deeper discussion of both algorithms it is referred to Hamilton

(1994) or Krolzig (1997) to keep the extent of the current paper within a limit.

The forecasted probabilities Pr{st = j|Yt−1, Θ} can be used to derive the conditional density

of the dependent variable

f(yt|Yt−1, Θ) =
N∑

j=1

Pr{st = j|Yt−1, Θ} · f(yt|st = j, Yt−1, Θ) (9)

which leads to the conditional likelihood function

L(Θ) =
T∏

t=1

f(yt|Yt−1, Θ). (10)

The ML-estimates are now obtained through the maximization of the conditional loglikelihood

logL(Θ) =
T∑

t=1

log
N∑

j=1

Pr{st = j|Yt−1, Θ} · f(yt|st = j, Yt−1Θ). (11)
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To perform the estimations, the equation (6) under assumption of normality of ut is directly

used for the evaluation of the loglikelihood (11). As mentioned above, only the coefficient

responsible for the reaction of a central bank to inflation gap is allowed to vary over time. So

the model (6) in the Markov switching case is written as follows

it = [r̄ + π̄t + β(st)(πt − π̄t) + γxt] · (1− ρ) + ρit−1 + ut, ut ∼ N(0, σ2) (12)

where st is a first order Markov chain as stated above. The number of regimes is assumed to

be two, st ∈ {1, 2}. The BFGS maximization procedure implemented in Ox2 is used to obtain

the ML-estimates of specification (12).

2.3 Kalman filter

In the remaining part of the section a brief formal description of Kalman filter and corre-

sponding state space framework is provided. The concept of Kalman filter was developed by

Kalman (1960, 1963) and is based on the state space representation of dynamic systems.

In the state space framework it is possible to extract the moments of unobservable stochastic

components from observable stochastic processes.

Let yt be a vector of observable variables and αt an unobservable vector of state variables.

Then the state space representation of a linear dynamic system can be written down as follows

yt = ct + Ztαt + εt (13)

αt+1 = dt + Ttαt + vt (14)

where ct, dt are vectors and Zt, Tt matrices, which are also allowed to be time dependent. εt

and vt are i.i.d. errors processes allowed to be correlated. Equation (13) is called the signal

equation and equation (14) is the corresponding state equation. Because the vector process

αt is unobservable, statistical inference about αt is needed. The terminology used below is

similar to the case of Markov switching. The set of all available information until the time s

is denoted by Ys = {y1, . . . , ys, x1, . . . , xs}, where xt is the vector of exogenous variables at the

time t. Given some value of the population parameter vector Θ and Ys, the Kalman filter and

smoother allows to calculate conditional moments of the state vector at the time t. According

2The programming language Ox 3.30 Console was used to write the estimation procedures, downloaded

from http://www.nuff.ox.ac.uk/Users/Doornik/
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to the formal description of the Markov switching framework we distinguish between forecasted,

filtered and smoothed inference about the state αt, denoted as follows

at|t−1 = E[αt|Yt−1, Θ] (15)

at|t = E[αt|Yt, Θ] (16)

at|T = E[αt|YT , Θ]. (17)

Conditional covariance matrices can be assigned to each expectation term above

Pt|t−1 = V ar[αt|Yt−1, Θ] (18)

Pt|t = V ar[αt|Yt, Θ] (19)

Pt|T = V ar[αt|YT , Θ]. (20)

For the derivation and deeper discussion of Kalman filter, it can referred for example to Hamil-

ton (1994) or Durbin, Coopman (2001). As in the case of Markov switching the filtering

algorithm can be used for the evaluation of the likelihood function under some distributional

assumption, for example normal distribution

yt|Yt−1 ∼ N(at|t−1, Pt|t−1)

which leads to the loglikehood function

logL(Θ) =
T∑

t=1

logf(yt|Yt−1, Θ). (21)

For the empirical purposes of this paper it is assumed that the coefficient β follows a random

walk. Now the equation (6) can be written as follows

it = [r̄ + π̄t + βt(πt − π̄t) + γxt] · (1− ρ) + ρit−1 + ut (22)

βt+1 = βt + vt, E[utvt] = 0 (23)

No correlation between ut and vt is allowed, otherwise the unsystematic monetary policy would

influence the parameters of systematic monetary policy in the long run, which is not a very

feasible assumption. The ML-estimation is performed using EViews 4.1, which allows the

estimation of a relatively large class of state space models.
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3 Data

All estimations are performed for the period 1975(1)-1998(4) with quarterly German data.

The day-to-day German market rate (so called overnight rate) is considered as the monetary

policy instrument of the Bundesbank and is the dependent variable in all equations.

The output gap is an unobservable time series and has to be extracted from the available

observable time series of the German GDP. The time series of the GDP used for the calculation

of the output gap is seasonally adjusted by using X12-ARIMA (adjusted for outliers and

calender effects) and is based on the ESVG 95 standard for GDP calculation. This time

series, which was calculated backwards for West Germany until 1970, is available from the

German Statistical Office since August 2003. From 1970 to 1990 the data are West German

data, from 1991 onwards the data for Germany until the second quarter 2003 is used. The

time series were chained using the relationship of the 1991 values of German real GDP to

West German real GDP as a conversion factor. To calculate the output gap, the time series

of the real GDP in logs is filtered using Hodrick-Prescott filter with the smoothing parameter

λ = 1600. The difference between the real GDP in logs and the potential output is the resulting

output gap. As a measure of inflation one-year growth rates3 of the the German CPI time

series are employed.

To perform the estimation of the policy rule with time dependent inflation target π̄t, the

inflation target of the Bundesbank is used. It can be derived from the Bundesbank’s formulation

of its target for monetary growth as published in its monthly reports. These figures until 1993

are for example collected in Clarida (1996) and were also employed in this paper. The period

from 1994 until 1998 was filled with figures from the monthly reports of the Bundesbank. Both

time series, πt and π̄t, are displayed in figure (1).

4 Empirical Results

As outlined above three specifications are estimated. The first specification is a special case of

term (7) and is estimated with nonlinear least squares. Then, the Markov switching specifica-

tion (12) and the state space model (22) follow. The results are reported below. Durbin-Watson

test statistic, Breusch-Godfrey Serial Correlation LM test statistic, Q-statistic and Jarque-Bera

3Calculated as one-year percentage changes, πt =
Pt−Pt−4

Pt−4
· 100
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Figure 1: Inflation rate and inflation target

test statistic are denoted by DW , LM , Q and JB. The corresponding p-values are in braces.

Standard errors, which corresponds to the estimated coefficients, can be found in brackets.

Firstly, the estimated version of (7) is presented. The first and fourth lagged interest rate are

found to be significant.

Estimation sample : 1976(1)− 1998(4)

ît = [3.09
(0.41)

+ π̄t + 0.65
(0.31)

(πt − π̄t) + 1.00
(0.40)

xt] · 0.15 + 1.00
(0.06)

it−1 − 0.15
(0.05)

it−4

R2 = 0.94, AIC = 1.80, DW = 2.04, LM(4) = 1.14[0.89], JB = 113.71[0.00]
(24)

The estimated value of the inflation coefficient is smaller than one, β̂ < 1. This result is

unsatisfactory from the theoretical point of view. It indicates, that the Bundesbank does

not sufficiently rise the short nominal rate it in response to a rise in the inflation gap and

therefore no rise in the real interest rates results. Furthermore, the Jarque-Bera test statistic

indicates nonnormality of residuals, which can be explained through the presence of outliers

in the residuals.

Now, the Markov switching estimation is presented. In this case only the first lag of the short

rate was significant and sufficient to remove the autocorrelation structure from the residuals.

Estimation sample : 1975(2)− 1998(4)
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ît =





[2.44
(0.42)

+ π̄t + 0.24
(0.33)

(πt − π̄t) + 1.64
(0.40)

xt] · 0.13 + 0.87
(0.03)

it−1, if st = 1

[2.44
(0.42)

+ π̄t + 9.34
(2.37)

(πt − π̄t) + 1.64
(0.40)

xt] · 0.13 + 0.87
(0.03)

it−1, if st = 2

logL = −71.15, AIC = 1.67, P̂ =


0.94 0.50

0.06 0.50




Q(1) = 2.67[0.10], Q(4) = 4.90[0.30], JB = 0.75[0.69]

(25)

The estimated transition matrix is denoted by P̂ . The examination of the estimated coefficients

shows, that the estimated regimes are very different. First of all, there is huge difference in the

inflation aversion of the Bundesbank between these two regimes. In regime 1 (st = 1) there is

no significant reaction to inflationary development at all. In contrast, regime 2 (st = 2) exhibits

a very strong reaction to the inflation gap. Also a remarkable difference in the persistence of

two regime is apparent. The conditional probability to stay in regime 1, Pr{st = 1|st−1 = 1},
is 0.94 and in regime 2, Pr{st = 2|st−1 = 2}, only 0.50. That means a much shorter expected

duration of the high inflation aversion regime. It is also worth noting that in contrast to the

nonlinear least squares estimation the Jarque-Bera test statistic indicates normality of the

residuals. Obviously, the estimation of regime 2 with short duration removes some outliers

from the residuals and on the other hand it simplifies the lag structure of the estimated policy

rule. The fourth lag of the short-term interest rate is no more significant. In the figure (2)

the time series of smoothed probabilities for regime 2 are displayed. However, the smoothed

probabilities should be compared with the macroeconomic variables used in the estimation to

obtain a possible economic interpretation. Overnight rate, inflation and rescaled smoothed

probabilities from the previous figure are collected in figure (3). Obviously, the switches to the

regime of high inflation aversion corresponds very well with the periods of strong interest rate

rises: two times in the end of seventies and begin of eighties and one time in the end of eighties.

Moreover, the figure (3) shows that these switches could have been caused by the sharp rises

of inflation. Surprisingly, the deflation period in the second half of eighties does not lead to

any sharp rise of the smoothed probabilities of regime 2. This leads to the conclusion, that the

Bundesbank reacted asymmetrically to the fluctuations in the inflation gap. The Bundesbank

pays a lot of attention to the positive deviations from the inflation target. On the other hand

there are no signs, that the Bundesbank is very concerned about the negative deviations from

its own target.
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Figure 2: Smoothed probabilities for regime 2 from the equation (25)

The state space modelling with Kalman filter supports the results of the Markov switching

estimation presented above. As outlined before it is assumed that the inflation coefficient in

the monetary policy rule, according to the specification (22), follows a random walk (without

drift). The model was estimated also with some other specifications for the state variable, like a

stationary AR(1)-process, however, the estimation became unstable as the parameter number

in the state equation growths while the the results remain equivalent from the qualitative point

of view. Thus, only the estimated specification with a random walk as the state variable is

presented in (26) below.

Estimation sample : 1975(2)− 1998(4)

ît|T = [2.18
(0.48)

+ π̄t + β̂t|T (πt − π̄t) + 0.61
(0.39)

xt] · 0.15 + 0.85
(0.05)

it−1

σ̂2
signal = eγ̂1 , γ̂1 = −1.53

(0.16)

β̂t+1|T = β̂t|T + v̂t|T , σ̂2
v = eγ̂2 , γ̂2 = 0.37

(0.68)

logL = −90.58, AIC = 2.01

Q(1) = 0.18[0.67], Q(4) = 5.29[0.26], JB = 17.83[0.00]

(26)

First of all, the notation has to be explained. The smoothed state variable βt given the esti-

mated parameters is denoted by β̂t|T . In other words, β̂t|T can be described as the estimated

conditional expectation E[βt|YT , Θ̂] in termini of definition (18). Accordingly, the adjusted
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Figure 3: Overnight rate, inflation (boxes) and smoothed probabilities (pluses).

value of the nominal rate ît is denoted by îi|T if the smoothed state β̂t|T is used to calculate

it. In the same manner, β̂t|t−1 and β̂t|t lead to îi|t−1 and îi|t.

Obviously, only a graphical illustration of the smoothed state β̂t|T permits an economic in-

terpretation of the estimated model (26). In the figure (4) the smoothed state variable β̂t|T ,

its confidence bounds and the smoothed probabilities (in other scaling) from (25) for com-

parison purposes are displayed. The confidence bounds of the smoothed state in the figure

(4) are calculated as follows. Firstly, squared root of the diagonal elements of the estimated

state covariance matrices P̂t|T is calculated. P̂t|T is defined as an estimated version of (18),

P̂t|T = V ar[βt|YT , Θ̂]. The square root of the diagonal elements can be interpreted as root

mean squared errors of β̂t|T . Secondly, the confidence bounds themselves are calculated as

β̂t|T ± 2RMSE. The confidence bounds calculated in such way tend to underestimate the un-

certainty of the extracted state variable, because the uncertainty of the parameter estimation

is not included.

The resulting accordance of the Markov switching and Kalman filter results is apparent. The

fluctuations of the smoothed probabilities and smoothed state variable β̂t|T are very similar.

As in the case of the Markov switching specification there are two periods, when the reaction of

the Bundesbank to inflationary developments is very strong: the time around 1980 and around

1990. Also the Kalman filter results can be interpreted in termini of an asymmetric reaction
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Figure 4: Smoothed state β̂t|T from (26), smoothed probabilities from (25).

function of the Bundesbank. No significant rise of the smoothed state β̂t|T is observed during

the deflation phase in the second half of the eighties.

5 Concluding Remarks

The main empirical result of this paper is the instability of the Bundesbank reaction to infla-

tionary developments in Germany. But there is evidence from both empirical methods used

in the paper, that this is an instability only from a linear point of view because structural

breaks found in the data do not have any irreversible nature and seem to be caused through

the nonlinearity of the Bundesbank reaction function.

The instability and possible nonlinearity in the estimations can be interpreted as an asymme-

try in the reaction function of the Bundesbank. In this case the Bundesbank strongly reacts

to the positive deviation from its own inflation target. On the other hand during the deflation

phase in the second half of the eighties no significant reaction to this development could be

found.

The results in some other papers supports the results of the current work. For example, Clar-
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ida, Gertler (1996) found the estimated policy rule of the Bundesbank to be asymmetric.

Clarida, Gertler (1996) estimate a Taylor-like reaction function with monthly German

data and use the German industrial production to perform the output gap. They construct a

dummy, which is one if the inflation gap is positive and zero otherwise. The estimated value

of the inflation coefficient is β̂ = 1.60 in the periods of high inflation and β̂ = 0.28 otherwise.

There are some possible economic explanations for the asymmetric reaction to the inflation

fluctuations. For example, for some reasons the Bundesbank could have asymmetric prefer-

ences for fighting inflation. From the theoretical point of view the loss function has in this

case no quadratic symmetric form. The implications of such theoretical setup can be found,

for example, in Nobay, Peel (1998), Cuckierman (1999) or Gerlach (1999).

An asymmetry of the Bundesbank reaction function in respect to the inflationary developments

may be caused by the existence of short-run nonlinear convex Phillips curve. The convexity of

the Phillips curve implies that at any given point on the curve, the inflation increase associated

with an incremental decline in the unemployment rate exceeds the inflation decline associated

with an equal rise in the unemployment rate. The main difference between the linear and

convex Phillips curves that in case of convexity, the short-run tradeoff facing policymakers is

a function of the state of the economy: a one percentage point decline in the unemployment

rate leads to a smaller increase in inflation given high unemployment rates than in case of

low unemployment rates. There is some theoretical evidence that the convexity of Phillips

curve may induce an asymmetric form of the loss function that the central bank chooses to

minimize, which could result in the so called ”opportunistic approach” to disinflation. The

”opportunistic approach” to disinflation is a monetary policy strategy in which the central

bank is fighting against any incipient rise in inflation, but waits for the next favorable inflation

shock to lower inflation toward the target, rather than seeking to actively lower inflation in a

manner that pushes the unemployment rate higher. The results of this paper may suggest the

theoretical result. As outlined above the switches to the high inflation aversion regime could

be caused by the sharp or long rises of inflation.4 On the other hand there are no significant

reaction to inflation during the phases of of its decline.

Some remarkable examples for the ”opportunistic approach” can be found in Blinder (1997).

A theoretical model of monetary policy incorporating opportunistic disinflation strategies was

4See figure (3).
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introduced by Orphanides at al. (1996a, b). The implications of the short-run convex

Phillips curve are also investigated by Tambakis (1998) and Schaling (2000). Dolado

(2001) estimates a monetary policy rule under assumption of the convex Phillips curve.

An estimation with monthly data or a forward-looking specification could provide a starting

point for further research. Another possibility to extend the current work is a comparison with

the estimated monetary policy rules in other countries.
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