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1 Introduction

Financial institutions holding large positions in derivatives need to calculate prices effi-

ciently for trading purposes; for risk-management they are interested in Greeks and for

risk-measurement in tail probabilities (VaR,“Value-at-Risk”), expected tail losses or prices

of market value insurance against losses 1 . One of several advantages of the Black-Scholes

setup is that pricing formulas for many derivatives are known in closed-form so that the

before-mentioned calculations can be performed efficiently. However, the lognormal distri-

bution does not fit well the distribution of the underlying security; common extensions of

the Black-Scholes setup that incorporate jumps or stochastic volatility have better statistical

properties 2 but typically closed-form expressions are not available and calculations are cum-

bersome. This paper constructs sequences of mixed lognormal distributions that approximate

their marginal distributions and retain the computational tractability of the Black-Scholes

setup.

We construct approximations for the Merton model (Black-Scholes with jumps) and models

of stochastic volatility. These common extensions of the Black-Scholes setup provide a rich

framework for pricing and risk-management purposes. Our approximations are based on the

observation that price changes are approximately lognormal over each period; in the Merton

model we assume that over each period at most one jump occurs; for stochastic volatility

models we first construct a Markov chain for the volatility process in the spirit of Nelson

and Ramaswamy (1990) and then extend it to the securities’ process. For both setups we

prove that the resulting sequence of mixed lognormal distributions converges to the terminal

distribution in the corresponding continuous-time model.

Many techniques have been developed to price derivatives in jump-diffusion and stochastic

volatility models. The most versatile among these are Monte-Carlo methods, see Glasser-

man (2004) for a recent overview, and generalizations of the Cox-Ross-Rubinstein binomial

models. Among others, Amin (1993) and Hilliard and Schwartz (2003) provide approxima-

1 We refer to Hull (2000) for a discussion of the Greeks (“The Greek Letters,” Chapter 13) and to
Jorion (2001) for a discussion of risk-measures and VaR in particular.
2 For a discussion, see, e.g. Campbell, Lo, and MacKinlay (1997), Bates (2000) and Eraker, Jo-
hannes, and Polson (2003).
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tions for jump-diffusions, and Hilliard and Schwartz (1996), Ritchken and Trevor (1999),

Duan and Simonato (2001), and Leisen (2000) construct approximations for GARCH and

stochastic volatility models. However, these techniques do not leverage on our knowledge of

closed-form expressions in the Black-Scholes model to provide efficient approximations for

prices and Greeks.

Recently, the computational advantages 3 of mixed lognormal distributions have been pointed

out by Brigo and Mercurio (2002) and Alexander, Brintalos, and Nogueira (2004). Brigo and

Mercurio (2002) study conditions under which a terminal distribution based on a generalized

Black-Scholes setup (time and state-dependent volatility, constant mean) is given by a mix-

ture of lognormals. Alexander, Brintalos, and Nogueira (2004) provide an extension of this

approach where the volatility path is driven by an ad-hoc binomial tree. Our contribution

to the literature is to construct sequences of mixed lognormal distributions that converge to

the jump-diffusion models currently used in the literature.

The remainder of the paper is organized as follows: the following section introduces mixed

lognormal distributions and the concept of weak convergence. The third section constructs

sequences of mixed lognormal distributions for the Merton model (Black-Scholes model with

jumps) and discusses efficiency of the numerical schemes. The fourth section parallels that

of the third one but looks at the Black-Scholes model with stochastic volatility. The fifth

section concludes the paper.

2 Mixed Lognormal Distributions

Definition 1 A mixed lognormal distribution is a random variable A with

A
d
= A0

M∑
i=0

1C=iXi,

where A0 ∈ IR+, and each Xi is lognormally distributed, i.e. Xi
d
= exp (µi + σiYi), µi ∈

IR, σi > 0, Yi independent standard normal random variables under the probability measure

3 Mixed lognormal distributions have been used mainly in the literature to find a marginal distri-
bution that consistently prices traded derivatives, see, e.g. Gemmill and Saflekos (2000) and Melick
and Thomas (1997).
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Q; the random variable C is assumed independent of the Xi and takes values on {0, 1, . . . , M}
with Q[C = i] = γi ≥ 0 (i = 0, . . . ,M),

∑M
i=0 γi = 1.

Throughout we denote by “
d
=” equality in distribution of random variables on the probability

space (Ω,F , Q) and by 1F the indicator random variable for F ∈ F , i.e. the random variable

1F (ω) is equal to 1 if ω ∈ F , and zero otherwise. The interest rate r is always constant over

time.

We are interested in pricing European-style derivatives with maturity T > 0 written on a

single underlying security; according to Harrison and Kreps (1979), and Harrison and Pliska

(1981) we price derivatives as discounted expected payoffs under a so-called risk-neutral prob-

ability measure. Here we assume Q describes that probability measure, and calculate the price

of the derivative with payoff f(A) at time T as e−rT E[f(A)]. For lognormal distributions,

closed-form expressions are known for many derivatives prices. These can be generalized to

price under A = e−rT E[f(A)] =
n∑

i=1

Q[C = i]e−rT E[f(A0Xi)] (1)

= weighted sum of prices under A0Xi. (2)

Since differential operators are linear, we can write the Greeks for A(n) also as a weighted

average of the Greeks in A0Xi, e.g.,

∆ under A =
∂e−rT E[f(A)]

∂A0

=
n∑

i=1

Q[C = i] · ∂e−rT E[f(A0Xi)]

∂A0

= weighted sum of ∆’s under A0Xi.

For example, in the Black-Scholes setup the price of the underlying security is (under Q)

ST = S0 exp{(r − σ2/2)T + σWT}, the standard call option with strike K is the pay-

off f(A) = (A − K)+ and has price given by the Black-Scholes (call option) formula

BS
(
S0, K, (r − σ2/2) T, σ

√
T
)
, where 4

4 This is an extension of the formula of Black and Scholes (1973): here we defined µ, σ to contain
the maturity T , whereas the original keeps these parameters separate; furthermore the original
takes µ = (r − σ2/2)T .
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BS(A0, K, µ, σ) = A0Φn

(
d(K,µ, σ)

)
− K · exp

(
−µ − σ2

2

)
· Φn

(
d(K,µ, σ) − σ

)
, (3)

d(K,µ, σ) =
ln(S0/K) + µ + σ2

σ
, (4)

and Φn(·) denotes the standard normal distribution function. The derivatives price for a call

option is then

e−rT E[(A − K)+] = e−rT
n∑

i=1

Q[C = i] · E[(Xi − K)+] (5)

= e−rT
N∑

i=1

γi · exp

(
µi +

σ2
i

2

)
· BS(A0, K, µi, σi). (6)

Also, e.g., the ∆ in the Black-Scholes model is Φn

(
d(K, (r − σ2

2
)T, σ

√
T )
)

and so the ∆ for

the mixed lognormal is

n∑
i=1

Q[C = i] Φn

(
(K,µi, σi)

)
.

Other derivatives for which prices and their Greeks can be calculated easily are, e.g., chooser,

exchange, compound and binary options.

In the following sections we construct approximations for the distribution ST of prices of

the underlying security at time T using sequences of mixed lognormal distributions A(n). We

assume each A(n) is characterized using C(n), X
(n)
i (i = 1, . . . ,M (n); n = 1, 2, . . .) and calcu-

late e−rT E[f(A(n)]. We are here interested in the convergence of “prices” e−rT E[f(A(n))]
n−→

e−rT E[f(ST )] or equivalently E[f(A(n))]
n−→ E[f(ST )] for any European-style derivative

payoff function f . When this holds for all bounded payoff functions f this is equivalent to the

mathematical concept of convergence in distribution A(n) d
=⇒ ST . In the following sections

this will be the convergence concept we strive for 5 .

5 The “boundedness” condition excludes some payoffs, e.g. call options. It excludes payoffs like call
options. However, for example for the call options put-call parity and the fact that the put option
is bounded implies this property.
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3 Mixed Lognormal Distributions as an Approximation to Black-Scholes with
Jumps

3.1 Continuous-time Dynamics

The model of Merton (1976) is an extension of the Black-Scholes setup that incorporates

jumps; we assume that on a finite interval [0, T ] the dynamics of security S under the risk-

neutral pricing measure Q is

St = S0 · exp {µt + σWt}
Nt∏
i=1

Ui, where µ = r − σ2

2
− λ · (ν − 1), ν = exp

(
α +

β2

2

)
, (7)

and (Wt)0≤t≤T is a standard Wiener process, µ ∈ R, σ > 0, (Nt)0≤t≤T is a Poisson process

with constant parameter λ > 0, (Ui)i a sequence of serially independent lognormal random

variables, i.e. each Ui
d
= exp (α + βYi) with Yi a standard normal random variable and

α ∈ IR, β > 0. The processes N,W and the random variables Ui (respectively Yi), i = 1, 2, . . .

are assumed to be mutually independent of the each others.

Securities prices in this model follow a geometric Brownian motion from one jump time until

the next jump time τ of the Poisson process. If N then changes from, say, i to i+1 we observe

a per-cent change Ui−1, i.e., the security changes value from Sτ− before the jump to Sτ− ·Ui.

Therefore, the first part in equation (7) models the evolution of the security in “normal”

times, and the second part
∏Nt

i=1 Ui models the additional dynamics in “extraordinary” times.

Note that the Poisson process is “memoryless;” therefore the expected waiting time for the

next shock is equal to 1/λ, independent of current time.

We write the continuous-time price as e−rT E[(ST − K)+] = E
[
e−rT E[(ST − K)+|NT ]

]
and calculate then, based on equations (5, 6, 7), E[(ST − K)+|NT = j] = E[E[(ST −
K)+|U1, . . . , Uj]|NT = j] = E[BS(S0 exp(−λ · (ν−1)T )

∏j
k=1 Uk, K, r− σ2

2
, σ2)|NT = j]. This

gives the continuous-time price e−rT E[(ST − K)+] as, see Merton (1976),

e−λT
∞∑

j=0

(λT )j

j!
E

⎡
⎣BS

⎛
⎝S0 exp

(
− λ · (ν − 1)T

) j∏
k=1

Uk, K, r − σ2

2
, σ2

⎞
⎠
⎤
⎦ .

We restrict ourselves to lognormal Ui, while Merton (1976) studies also more general cases.
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With our assumptions we can then write the call option price as

e−λT
∞∑

j=0

(λT )j

j!
E

[
BS

(
S0 exp

(
− λ · (ν − 1)T + j · (α + βYj )

)
, K, r − σ2

2
, σ2

)]
. (8)

3.2 Constructing a Sequence of Mixed Lognormal Distributions Based on an Approximation
of the Process N

In this subsection we construct sequences of mixed lognormal distributions based on an

approximation of the process (Nt)t over time. We start with a sequence Yk (k = 0, 1, 2, . . .) of

serially independent standard normal random variables and for given integer n we discretize

the interval [0, T ] into n equidistant time spots t
(n)
k = k∆t(n), ∆t(n) = T

n
(k = 0, . . . , n).

The processes
(
N

(n)
k , S

(n)
k

)
k=0,...,n

will be constructed by forward induction: First, we set

N
(n)
0 = N0 and S

(n)
0 = S0. Then we assume that the processes have been defined for all dates

0 to k. The distribution of N
t
(n)
k+1

conditional on N
t
(n)
k

= N
(n)
k is

Q
[
N

t
(n)
k+1

= N
(n)
k + i

∣∣∣∣Nt
(n)
k

= N
(n)
k

]
= exp

{
−λ∆t(n)

}
·
(
λ∆t(n)

)i

i!
.

Note that, for “small” ∆t(n), Q[N
t
(n)
k+1

= N
(n)
k |N

t
(n)
k

= N
(n)
k ] = exp

{
−λ∆t(n)

}
≈ 1 − λ∆t(n),

and Q[Ntnk+1
> N

(n)
k |N

t
(n)
k

= N
(n)
k ] ≈ λ∆t(n). Our idea is to approximate N

t
(n)
k+1

by a bivariate

random variable taking value N
(n)
k or N

(n)
k+1 with probabilities 1−λ∆t(n), λ∆t(n), respectively.

The distribution of the security at time t
(n)
k+1 is, conditional on S

t
(n)
k

= S
(n)
k and N

t
(n)
k

= N
(n)
k ,

S
(n)
k · exp

{
µ∆t(n) + σ ·

(
W

t
(n)
k+1

− W
t
(n)
k

)}
·

Ntnk+1∏
i=N

(n)
k

Ui.

Here the random variable W
t
(n)
k+1

−W
t
(n)
k

is normal distributed with mean 0 and variance ∆t(n)

and is independent of S
(n)
k . Therefore we define random variables

Z
(n)
k,0 = exp

{
µ∆t(n) +

√
σ2∆t(n) Yk

}
, Z

(n)
k,1 = exp

{
µ∆t(n) + α +

√
σ2∆t(n) + β2 Yk

}
,

and set, conditional on
(
N

(n)
k , S

(n)
k

)
,
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(
N

(n)
k+1, S

(n)
k+1

)
=

⎧⎪⎨
⎪⎩
(
N

(n)
k + 1, S

(n)
k · Z(n)

k,1

)
with probability λ∆t(n)(

N
(n)
k , S

(n)
k · Z(n)

k,0

)
with probability 1 − λ∆t(n)

.

Doing this for k = 0, . . . , n − 1 defines random variables (N (n)
n , S(n)

n ) at date n. For our

purposes we are only interested in the properties of S(n)
n :

Theorem 2 6 The sequence of random variables S(n)
n at time T converges in distribution

to the distribution of securities price ST in the continuous-time model of equation (7), i.e.

S(n)
n

d
=⇒ ST .

To prove theorem 2 note that the Central Limit Theorem implies
√

∆t(n)
∑n−1

k=0 Yk
d

=⇒ WT ;

therefore

S0

n−1∏
k=0

Zn,k,0 = S0 exp

((
r − σ2

2

)
T + σ

√
∆t(n)

n−1∑
k=0

Yk

)
d

=⇒ S0 exp

((
r − σ2

2

)
T + σWT

)
.

Since Zn,k,1
d
= Zn,k,0 · Uk and since N (n)

n
d

=⇒ NT we conclude S(n)
n

d
=⇒ ST .

[Fig. 1 about here.]

Over two periods, figure 1 provides a snapshot of our approximation for the Poisson process

and the resulting random variables that describe the terminal distribution of securities prices

conditional on the total number of jumps between dates 0 and 2. It is important to note

that the resulting random variables that describe the terminal securities price distribution

are equal (in distribution), independent of the actual path.

It remains to write S(n)
n as a mixed lognormal distribution. For i = 0, 1, . . . , n we set

X
(n)
i = exp

{
µT + αi +

√
σ2T + iβ2 · Yi

}
and A(n) = S0

n∑
i=0

1N(n)=iX
(n)
i . (9)

For S(n)
n only the total number of jumps between 0 and T is relevant to determine its

6 The processes
(
N (n), S(n)

)
we constructed are discrete-time processes; we could use them to

define continuous-time process N
(n)
t = N

(n)

�t/∆t(n)�, S
(n)
t = S

(n)

�t/∆t(n)� and then conjecture that(
N

(n)
t , S

(n)
t

)
0≤t≤T

d=⇒ (N, S). We refrain from doing so, since our focus in this paper is on termi-

nal distributions to price European-style derivatives. We refer the interested reader to Jacod and
Shiryaev (1987) for background material.
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distribution at the terminal date; therefore

S(n)
n

d
= S0 ·

N
(n)
n∏

k=0

Z
(n)
k,1 ·

n−N
(n)
n∏

k=0

Z
(n)
k,0

d
= S0

n∑
i=0

1
N

(n)
n =i

X
(n)
i

d
= A(n), (10)

i.e. A(n) is mixed lognormal distribution. Note that by theorem 2 the sequence A(n) of mixed

lognormal distribution converges in distribution to S(n)
n .

3.3 Accuracy and Efficiency

We discuss accuracy and efficiency to price call options for the mixed lognormal distribution

of equation (9). The distribution of N (n) is that of the n-step binomial distribution on

{0, . . . , n} where over each step the probability is λ∆t(n) for an increase by 1 and 1−λ∆t(n)

to remain unchanged, i.e. Q[A(n)
n = i] =

(
n
i

)
(λ∆t(n))i(1−λ∆t(n))n−i. Therefore, according to

equations (5, 6) the n-th approximation e−rT E[(A(n) − K)+] of the call price is equal to 7

n∑
j=0

(
n

j

)(
λ∆t(n)

)j ·
(
1 − λ∆t(n)

)n−j
exp

(
(µ − r)T + αj +

σ2T + jβ2

2

)

·BS
(
S0, K, µT + αj,

√
σ2T + jβ2

)
. (11)

[Table 1 about here.]

Table 1 calculates call price approximations when S0 = 100, r = 0.05, T = 1, σ = 0.1 varying

the strikes K = 90; 100; 110, varying parameters α = −0.2;−0.5, β = 0.1; 0.3 that describe

“mean” and “variance” of the jump sizes and varying the frequency of jumps λ. We chose

only cases with negative α because we connect market “crashes” and other stress periods

with jumps and so downward jumps seemed more natural for us than upward jumps. MLD

presents price approximations for n = 20 according to equation (11) and Merton presents

price approximations calculated using Merton’s integration formula (8) for n = 20 using an

integral approximation of the expectation on the interval [0, 6] with step size 0.00001. For us,

7 Cox and Rubinstein (1985), p. 370, simplify the call pricing formula in the Merton model with
lognormal random variable Ui and derive an equation similar to this; but they do not link it to
the general properties of mixed lognormal distributions, efficiency and approximations for other
processes.
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Merton’s integration formula serves as a benchmark and we expect prices calculated using

it to be accurate to the penny presented.

When λ tends to 0, we tend to the Black-Scholes setup. Prices in that setup are 14.6288;

6.8050; 2.1739 respectively for the three options. When λ is 0.01, i.e. small, prices should

be, and they are in fact, close to Black-Scholes prices. The larger α, β are in absolute terms

the stronger are jumps; we see that prices become then larger. This is an effect known since

Merton (1976): the risk-neutral probability is set such that the expectation is always fixed

but these parameters increase the overall variance in prices and call prices are larger the

larger the price variation in the underlying security.

All prices calculated using our approach differ at most one penny from our benchmark

prices; the only exceptions occur where λ = 0.2 and β = 0.3, i.e. when jumps are frequent

and exhibit a large variance. The maximal error in these cases is 17 cents. Our approximation

was based on the product λ∆t(n) being small; this discrepancy therefore shows us that for λ

of this size we should perform calculations using a larger n than n = 20 in the calculations

of table 1. We do not present these results here because we believe the results presented are

convincing that with sufficiently small n we can achieve sufficient accuracy for derivatives

pricing purposes.

To assess the efficiency of our method we point out that we needed to evaluate the Black-

Scholes formula only 20 times, whereas the numerical integration scheme we used evaluated

them 600,000 times. Therefore our approach based on mixed lognormals provided a results

of similar accuracy but using much less of computational intense calculations. Therefore our

method we believe our method is computationally more efficient. These gains carry over to

calculations of and prices and their Greeks for other derivatives, as well.

10



4 Mixed Lognormal Distributions as an Approximation to Stochastic Volatility
Models

4.1 The Continuous-Time Dynamics

An important extension of the Black-Scholes setup is the bivariate diffusion, where the

dynamics under the risk-neutral probability measure Q is given (jointly) by

dVt = µv(Vt)dt + ϕ(Vt)dW1t, dSt = rStdt + ψ(Vt)StdW2t. (12)

Here (W1,W2) is a bivariate independent Wiener process with instantaneous correlation ρ.

The process S describes the securities dynamics and V plays the role of the process that

drives volatility. For simplicity we refer throughout to the term V as volatility.

[Table 2 about here.]

The functions ϕ, ψ are mappings from the positive real line into the positive real line and

the function µv is a mapping from the positive real line into the real line. Using functions

ϕ and ψ instead of concrete parametrizations, the models that are common in the literature

can be treated in a unified way (see table 2) 8 . We will not impose specific functional forms

for these functions but adopt throughout the following two assumptions:

Assumption 3 With probability 1, a solution of the stochastic differential equation (12)

exists, is distributionally unique and Q [min0≤t≤T Vt > 0] = 1.

We refer the reader to the theory of stochastic differential equations for conditions that ensure

assumption 3; see, e.g. Karatzas and Shreve (1991), Protter (1990) or Oksendal (1995). We

denote by f a function on the positive real line with f ′(x) = 1
ϕ(x)

and by g the inverse of f .

Assumption 4 The functions ϕ, ψ are twice continuously differentiable, g is three times

differentiable and the volatility drift µv is strictly positive on the interval [0, ε) for suitable ε.

[Table 3 about here.]

8 The literature typically takes a mean-reverting dynamics for V under the objective measure; we
allow for a general function µv to capture, among others, that the risk-neutral probability measure
contains a drift-adjustment.

11



Table 3 provides the functions f, g for those stochastic volatility models that are common in

the literature. They fulfill assumptions 3 and 4.

4.2 Constructing a Sequence of Mixed Lognormal Distributions

For given integer n we discretize the interval [0, T ] into n equidistant intervals [t
(n)
k , t

(n)
k+1)

(k = 0, . . . , n− 1) with t
(n)
0 = 0 and t

(n)
k+1 = (k + 1)∆t(n), ∆t(n) = T

n
. We will now construct a

bivariate Markov chain (V
(n)
k , S

(n)
k )k=0,...,n that takes values at times t

(n)
k = k∆t(n); from this

we then derive a bivariate Markov process setting

(
V

(n)
t , S

(n)
t

)
=
(
V

(n)

�t/∆t(n)�, S
(n)

�t/∆t(n)�
)

. (13)

Note that
⌊
t
(n)
k /∆t(n)

⌋
= k and that at times t with t

(n)
k ≤ t < t

(n)
k+1 this parameter gives

us the “last” date k before t. Therefore the processes in (13) are right-continuous with left-

hand limits; they move in steps, and are constant on intervals (t
(n)
k , t

(n)
k+1). The continuous-

time versions of these processes form a sequence and our goal is to construct them such

that (V (n), S(n))
d

=⇒ (V, S) under Q. The actual convergence of processes will be stated as

theorem 5 below and proven in the appendix after additional technical conditions have been

checked; as a direct corollary we then have S(n)
n

d
=⇒ ST . Throughout, our goal is to construct

the discrete processes such that local mean and co-variances of the discrete-time Markov

chain converge to their continuous-time counterpart.

We proceed in two steps: in the first we construct an approximation of the volatility process

(V
(n)
k )k=0,...,n and in the second step we then extend this to the securities price process.

For the construction of the volatility process we follow the idea of Nelson and Ramaswamy

(1990): Since f ′(V ) = 1
ϕ(V )

, Itô’s formula implies that

df(V )t =

{
µv(Vt)

ϕ(Vt)
+

1

2
f ′′(Vt)ϕ

2(Vt)

}
dt + dW1t, (14)

i.e. the dynamics of the transformed process f(V ) is homoscedastic. Further following Nelson

and Ramaswamy (1990) we then define the points

C
(n)
i = f(V0) + i

√
∆t(n) , D

(n)
i = g

(
C

(n)
i

)
, i an integer, (15)

and define the process (V
(n)
k )k by forward induction: we set V

(n)
0 = V0. Then we assume that

12



the volatility process has been defined at all dates from 0 to k. Conditional on V
(n)
k = D

(n)
i ,

we define the random variable V
(n)
k+1 to take the value D

(n)
i+1 with probability q

(n)
i and D

(n)
i−1

with probability 1 − q
(n)
i , where we set

q
(n)
i = Q

[
V

(n)
k+1 = D

(n)
i+1|V (n)

k = D
(n)
i

]
= min

⎧⎨
⎩

µv

(
D

(n)
i

)
∆t(n) −

(
D

(n)
i−1 − D

(n)
i

)
D

(n)
i+1 − D

(n)
i−1

, 1

⎫⎬
⎭ . (16)

The truncation here is necessary to ensure that q
(n)
i is a probability 9 , i.e. that 0 ≤ q

(n)
i ≤ 1.

This defines a process (V
(n)
k )k=0,...,n; note that it corresponds to a recombining binomial tree

with transition probability conditional on the position in the tree.

We next extend this to the process (S
(n)
k )k=0,...,n; our construction will use a sequence Yk

(k = 0, 1, . . .) of serially independent, standard normal random variables and proceeds by

forward induction: First we set S
(n)
0 = S0; then we assume that the discrete security process

has been defined for all dates from 0 to k. When the volatility that enters into the security

process (equation (12)) would be constant at V
(n)
k over the time period [t

(n)
k , t

(n)
k+1) then S

(n)
k+1

would be equal to

S
(n)
k exp

⎧⎨
⎩
⎛
⎝r − ψ2

(
V

(n)
k

)
2

⎞
⎠ t

(n)
k + ψ

(
V

(n)
k

)
·
(
W

2,t
(n)
k+1

− W
2,t

(n)
k

)⎫⎬
⎭ .

We define a process ε(n) by setting for k = 0, . . . , n − 1

ε
(n)
k = f

(
V

(n)
k+1

)
− f

(
V

(n)
k

)
−
⎧⎨
⎩

µv

(
V

(n)
k

)
ϕ
(
V

(n)
k

) +
1

2
ϕ2
(
V

(n)
k

)
f ′′ (V (n)

k

)⎫⎬
⎭∆t(n). (17)

Our goal is V (n) d
=⇒ V , and if this convergence holds then it suggests that

∑�t/∆t(n)�
k=1 ε

(n)
k

d
=⇒

W1t and

⎛
⎜⎝
�t/∆t(n)�∑

k=1

ε
(n)
k ,

�t/∆t(n)�∑
k=1

(
ρε

(n)
k +

√
(1 − ρ2)∆t(n) Yk

)⎞⎟⎠ d
=⇒ (W1t,W2t).

9 Nelson and Ramaswamy (1990) introduce multiple jumps to ensure the transition probability
that “matches” its continuous-time counterpart is between 0 and 1. Our construction permits us
to choose an “arbitrary” transition probability in those events. Negativity is not an issue and so
we only truncate q

(n)
i above.

13



This remains to be proved, but it motivates ρε
(n)
k +

√
(1 − ρ2)∆t(n) Yk as an approximation

for W
2,t

(n)
k+1

− W
2,t

(n)
k

. We set

S
(n)
k+1 = S

(n)
k exp

⎧⎨
⎩
⎛
⎝r − ψ2

(
V

(n)
k

)
2

⎞
⎠∆t(n) + ψ

(
V

(n)
k

)
·
(
ρε

(n)
k +

√
(1 − ρ2)∆t(n)Yk

)⎫⎬
⎭ .(18)

This ends our construction of the bivariate Markov chain
(
V

(n)
k , S

(n)
k

)
k=0,...,n

. The appendix

proves:

Theorem 5 The sequence of processes (V
(n)
t , S

(n)
t )0≤t≤T (based on equation (13)) converges

in distribution to the process (Vt, St)t∈[0,T ] of equation (12).

In particular this implies S(n)
n

d
=⇒ ST . It remains to write the distribution at time T (date

n) as a mixed lognormal distribution: Let us denote by Γ(n) = {γ = (γ0, . . . , γn−1)|γi ∈
{+1,−1}} the set of volatility paths between 0 and T , and for γ ∈ Γ by δ0(γ) = 0 and

δk(γ) =
∑k−1

i=0 γi (for k > 0) the current tree node at date k when the volatility path is γ.

We define for α = −1, +1

η
(n)
i,α = α ·

√
∆t(n) −

⎧⎨
⎩

µv

(
D

(n)
i

)
ϕ
(
D

(n)
i

) +
1

2
ϕ2
(
D

(n)
i

)
f ′′ (D(n)

i

)⎫⎬
⎭∆t(n), (19)

Note that f
(
D

(n)
i+1

)
− f

(
D

(n)
i

)
= C

(n)
i+1 −C

(n)
i =

√
∆t(n) and similarly f

(
D

(n)
i−1

)
− f

(
D

(n)
i

)
=

−
√

∆t(n). Therefore, according to equation (17) and conditional on V
(n)
k = D

(n)
i , ε

(n)
k adopts

η
(n)
i,+1 with probability q

(n)
i and η

(n)
i,−1 with probability 1 − q

(n)
i . Denote for α = −1, +1

Z
(n)
k,i,α = exp

⎧⎨
⎩
⎛
⎝r − ψ2(D

(n)
i )

2

⎞
⎠∆t(n) + ρψ(D

(n)
i )η

(n)
i,α + ψ(D

(n)
i )
√

(1 − ρ2)∆t(n) Yk

⎫⎬
⎭. (20)

When the volatility moves up, the product of the current securities price with Z
(n)
k,i,1 deter-

mines next periods securities prices; similarly Z
(n)
k,i,−1 for a down move in volatility.

[Fig. 2 about here.]

Figure 2 illustrates this; it describes the volatility tree over two periods. Over the first period

volatility can increase from D
(n)
0 to D

(n)
1 or decrease to D

(n)
−1 . Over the second period volatility

14



can further increase or decrease; there are three potential values for the volatility at date 2:

D
(n)
−2 , D

(n)
0 and D

(n)
2 . The figure also depicts at each node the two lognormal variables that

will be mixed over each period.

By construction, a volatility decrease followed by an increase leads to the same volatility

D
(n)
0 as an increase followed by a decrease. But the individual lognormal random variables

in the final product depend on the volatility path leading there; here a volatility decrease

followed by an increase will lead to a securities price determined by S0 · Z(n)
0,0,−1 · Z(n)

1,−1,1 and

this is not equal in distribution to the securities price determined by S0 ·Z(n)
0,0,1 ·Z(n)

1,1,−1 when

we see a volatility increase followed by a decrease.

We also define a random variable A(n) on Γ(n), setting for γ ∈ Γ(n)

Q[A(n) = γ] =
n−1∏
k=0

(
q
(n)
δk(γ) · 1γk=+1 +

(
1 − q

(n)
δk(γ)

)
· 1γk=−1

)

the probability of that volatility path. Note that each of the product terms is either q
(n)
δk(γ) or

1 − q
(n)
δk(γ). Furthermore we denote Θ

(n)
1 (γ) the average of the squared (“effective”) volatility

for the security S and by Θ
(n)
2 (γ) the total contribution to the volatility of security S due to

its correlation with the volatility process, i.e.

Θ
(n)
1 (γ) =

1

n

n−1∑
k=0

ψ2
(
D

(n)
δk(γ)

)
, Θ

(n)
2 (γ) =

n−1∑
k=0

(
η

(n)
δk(γ),γk

· ψ
(
D

(n)
δk(γ)

))
,

For a set of independent standard normal random variables Yγ (γ ∈ Γ) we then define random

variables

Z(n)
γ =

∏
γ∈Γ

exp

⎧⎨
⎩
⎛
⎝r − Θ

(n)
1 (γ)

2

⎞
⎠T + ρΘ

(n)
2 (γ) +

√
(1 − ρ2)Θ

(n)
1 (γ) Yγ

⎫⎬
⎭ . (21)

Then
∏n−1

k=0 Z
(n)
k,δk(γ),γk

d
= Z(n)

γ which implies S(n)
n

d
=
∑

γ∈Γ 1A(n)=γZ
(n)
γ . Hence the distribution of

S(n)
n at date n is a mixed lognormal distribution 10 and according to theorem 5, S(n)

n
d

=⇒ ST .

10 Formally, to fit into our definition of mixed lognormal distributions at the beginning of this page,
we need to associate each path with an integer number and then define A(n) on those number and
index the lognormal random variables based on them.
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4.3 Accuracy and Efficiency — Implementing the Hull and White Model

The Hull-White model is given by ϕ(V ) = σV, ψ(V ) =
√

V , where σ is a constant. In

the following discussion we assume that µv(V ) = −κV ; then VT is a lognormal distributed

random variable, i.e. ln(VT /V0) is normal distributed with mean
(
−κ − σ2

2

)
T and variance

σ2T . We have f(x) = ln x
σ

and g(z) = exp(σz); therefore our grid points are

C
(n)
i =

ln V0

σ
+ i

√
∆t(n), D

(n)
i = exp

(
σC

(n)
i

)
= V0 · exp

(
iσ
√

∆t(n)
)
.

A series expansion of the exponential function around σC
(n)
i reveals that D

(n)
i+1 − D

(n)
i =

D
(n)
i σ

√
∆t(n) + 1

2
D

(n)
i σ2∆t(n) +O

(√
∆t(n)

3 )
, D

(n)
i−1−D

(n)
i = −D

(n)
i σ

√
∆t(n) + 1

2
D

(n)
i σ2∆t(n) +

O
(√

∆t(n)
3 )

so that D
(n)
i+1 − D

(n)
i−1 = 2D

(n)
i σ

√
∆t(n) + O

(√
∆t(n)

3 )
. Therefore we calculate

for q
(n)
i of equation (16)

q
(n)
i =

D
(n)
i σ

√
∆t(n) − 1

2
D

(n)
i σ2∆t(n) − κD

(n)
i ∆t(n) + O

(√
∆t(n)

3 )
2D

(n)
i σ

√
∆t(n) + O

(√
∆t(n)

3 )

=
1

2
+

−κ − σ2

2

2σ

√
∆t(n) + O

(
∆t(n)

)
,

uniformly on compact sets. (Note that, for sufficiently large n, this is always between 0 and

1 and so the truncation in equation (16) will never come into effect.) We calculate based on

equation (19) that η
(n)
i,α = α

√
∆t(n) − −κ−σ2/2

σ
∆t(n) since f ′′(x) = − 1

σV 2 . Also, we have, for

γ ∈ Γ(n), Θ
(n)
1 (γ) = 1

n

∑n−1
k=0 D

(n)
δk(γ), and we set Θ

(n)
2 = −−κ−σ2/2

σ
T +

∑n−1
k=0

(
αD

(n)
δk(γ)

)√
∆t(n).

Using Zγ, A
(n) of the previous subsection this can be implemented in computer code using a

recursive procedure.

[Fig. 3 about here.]

To assess the accuracy of our approximation we assume that the processes for the securities

price and volatility are uncorrelated, i.e. ρ = 0. Under this assumption, call prices are

given as e−rT E[(ST −K)+] = e−rT E[E[(ST −K)+|VT ]] = E
[
BS

(
S0, K, rT − VT /2,

√
VT

)]
;

therefore we calculate prices as a numerical integration over Black-Scholes prices weighted

by a lognormal density function. (A parameter ρ 
= 0 would considerably complicate our

calculation of continuous-time prices.) Here we take a step size of 0.00001 and 600,000 steps,
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i.e. we integrate over the interval (0, 6); a further decrease of step sizes did not increase

further the accuracy and the interval (0, 6) should capture almost all the probability mass

of the volatility lognormal distribution for the cases we study below.

Figure 3 presents for n = 5, 6, . . . , 20 the price approximation for a call option calculated by

our mixed lognormal; the underlying parameters are κ = 0; σ = 0.4; S0 = 100; r = 0; T = 1;

K = 100 and v0 = 0.32. (This corresponds to an initial volatility of ψ(v0) = 0.3.) The figure

also presents the continous-time price as a flat line. We see that the convergence behavior

is very smooth and the approximation approaches fast the continuous-time price. For com-

parison we also calculated Monte-Carlo price approximations by simulating 1,000,000 paths

for the same time-refinements. The Monte-Carlo numbers fluctuate somewhat, reflecting the

randomness of the approximation. However, overall these numbers seem to converge slower

than those of our mixed lognormal to the continuous-time price.

[Fig. 4 about here.]

These figures are indicative of the efficiency of our mixed lognormal approximation. However

to nail down the actual gains we carry out the following test: we calculate price approxi-

mations for three strikes K = 90, 100, 110, varying the dispersion of the volatility process

σ = 0.3, 0.4, 0.5 and the interest rate r = 0.05, 0.1, 0.15. (The other parameters are as in

the previous figure.) This gives 27 prices and errors to their continuous-time price. We de-

termine the average computing time needed for a MATLAB implementation on a Pentium

M 1.30 GHz machine, the average error and plot them in figure 4 on a logarithmic scale.

Approximations for the mixed lognormal are based on varying n = 5, 6, . . . , 19 and those

for Monte-Carlo are based on 215 = 32, 768; 216; . . . ; 220 = 1, 048, 576 simulated paths and 10

time-steps.

Figure 4 exhibits that the Monte-Carlo is relatively inefficient in approximating call prices:

for the same computing time its error is up to ten times as high than that for our mixed

lognormal; put differently to achieve the same level of accuracy the figure suggests we need

initially 10000 times as much computing time.

Further investigations into the convergence pattern of our mixed lognormal approach revealed

that pricing errors seemed to be of the order 1/n2. Since figure 3 shows a very smooth
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convergence pictures, we implemented an extrapolation; the extrapolated price for given n

defined as (n+1)2pn+1−n2pn

(n+1)2−n2 , where pn, pn+1 denotes prices calculated directly based on our

mixed lognormal approach 11 . The extrapolation further improves our method relative to

the Monte-Carlo approach. We conclude that the mixed lognormal is an efficient method

to calculate call prices. Therefore we believe that prices and their Greeks can be efficiently

calculated using our technique.

5 Conclusion

This paper constructed sequences of mixed lognormal distributions that converge in distri-

bution to the Black-Scholes setup with jumps (Merton model) and of the Black-Scholes with

stochastic volatility model, respectively. We explained how to calculate derivatives prices

and their Greeks and discussed efficiency and accuracy. The techniques should be of interest

for derivatives pricing and risk-management in financial institutions with large derivative

positions.

A Proof of Theorem 5

We define for all t ∈ [0, T ], k = 0, . . . , n − 1, N
(n)
k = f

(
V

(n)
k

)
, Nt = f(Vt), R

(n)
k = ln S

(n)
k ,

Rt = ln St, and

X
(n)
k =

(
N

(n)
t , R

(n)
k

)
, Xt = (Nt, Rt) .

Instead of proving (V (n), S(n))
d

=⇒ (V, S), our goal is to prove that the continuous-time

version 12 of X(n) converges in distribution to X. Since the function g and the exponential

function are continuous this is sufficient to prove theorem 5.

Based on the definition of f we calculate directly that f ′(V ) = 1
ϕ(V )

and f ′′(V ) = ϕ′(V )
ϕ2(V )

.

Therefore, by equation (14) and Itô’s Lemma,

11 Denote p∞ the continuous-time price. If pn = p∞ + c
n2 for some suitable constant c and pn+1 =

p∞ + c
(n+1)2

for the same constant c, then a linear transformation gives our extrapolation rule. The
assumptions here are motivated by the observed (quadratic) convergence rate.
12 The continuous-time version of the processes in X are defined analogously to those in equation
(13), see theorem 6 below.
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dNt = df(V )t =

{
µv(Vt)

ϕ(Vt)
− 1

2
ϕ′(Vt)

}
dt + dW1t, dRt =

(
r − ψ2(Vt)

2

)
dt + ψ(Vt)dW2t.

Also, by equations (17, 18),

N
(n)
k+1 − N

(n)
k =

⎧⎨
⎩

µv

(
V

(n)
k

)
ϕ
(
V

(n)
k

) − 1

2
ϕ′ (V (n)

k

)⎫⎬
⎭+ ε

(n)
k ,

R
(n)
k+1 − R

(n)
k =

⎛
⎝r − ψ2

(
V

(n)
k

)
2

⎞
⎠∆t(n) + ψ(V

(n)
k ) ·

(
ρε

(n)
k +

√
(1 − ρ2)∆t(n)Yk

)
.

(For simplicity of exposition we write these depending on V
(n)
k = g(N

(n)
k ) ). We then define

a transition function Qn(x,M) on IR2 by setting Qn ((x1, x2)), (M1,M2)) equal to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(n)
i · Q

[
x2 + ln Z

(n)
k,i,1 ∈ M2

]
if x1 = D

(n)
i and D

(n)
i+1 ∈ M1(

1 − q
(n)
i

)
· Q
[
x2 + ln Z

(n)
k,i,−1 ∈ M2

]
if x1 = D

(n)
i and D

(n)
i−1 ∈ M1

q
(n)
i · Q

[
x2 + ln Z

(n)
k,i,1 ∈ M2

]
+
(
1 − q

(n)
i

)
· Q
[
x2 + ln Z

(n)
k,i,−1 ∈ M2

]
⎫⎬
⎭ if x1 = D

(n)
i and D

(n)
i−1, D

(n)
i+1 ∈ M1

1 otherwise

.

Note that Qn(x,M) is the transition function for the discrete-time Markov Chain
(
X

(n)
k

)
k

and that Q
[
x2 + ln Z

(n)
k,i,1 ∈ M2

]
does not depend on k. We then define for x = (x1, x2),

µ(n)(x) =
1

∆t(n)

∫ ∞

0
(y − x)Qn(x, dy), σ(n)(x) =

1

∆t(n)

∫ ∞

0
(y − x)t(y − x)Qn(x, dy),

where “t” denotes the vector transpose. Note that µ(n) is a function IR2 → IR2 and σ(n) is a

function IR2 → IR2×2. We also define

µ(x) =

(
µv(x1)

ϕ(x1)
− ϕ′(x1), r − ψ2(x1)

2

)
, σ(x) =

⎛
⎜⎝ 1 ρψ(x1)

ρψ(x1) ψ2(x1)

⎞
⎟⎠

the local mean vector and local covariance matrix function of process X. To prove Theorem

5 we apply the martingale central limit theorem of Ethier and Kurtz (1986), p. 354 in the

form of their corollary 4.2, p. 355; for our problem it reads:

Theorem 6 Suppose for each θ > 0 and ϑ > 0, that sup|x|≤θ |µ(n)(x) − µ(x)| → 0, that

sup|x|≤θ |σ(n)(x) − σ(x)| → 0 and sup|x|≤θ
1

∆t(n) Qn(x, {y; |y − x| ≥ ϑ}) → 0. We define the
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continuous-time version of X(n) by setting for all 0 ≤ t ≤ T , X
(n)
t = X

(n)

�t/∆t(n)�. Then

(
X

(n)
t

)
0≤t≤T

d
=⇒ (Xt)0≤t≤T .

It is therefore sufficient to check the conditions of this theorem. The conditions are that

uniformly on compact sets the local mean and covariances converge to their continuous-time

counterpart and that for each ϑ the probability for moves greater than that converge to 0

uniformly on compact sets. A Taylor series expansion gives

D
(n)
i+1 − D

(n)
i = g′ (C(n)

i

)√
∆t(n) +

1

2
g′′ (C(n)

i

)
∆t(n) + O

(√
∆t(n)

3 )
, and

D
(n)
i−1 − D

(n)
i =−g′ (C(n)

i

)√
∆t(n) +

1

2
g′′ (C(n)

i

)
∆t(n) + O

(√
∆t(n)

3 )
, so that

D
(n)
i+1 − D

(n)
i−1 = 2g′ (C(n)

i

)√
∆t(n) + O

(√
∆t(n)

3 )
.

Since g is the inverse of f and f ′(V ) = 1
ϕ(V )

we find g′
(
C

(n)
i

)
=
(
f ′
(
D

(n)
i

))−1
= ϕ

(
D

(n)
i

)
=

ϕ
(
g
(
C

(n)
i

))
. Therefore g′′

(
C

(n)
i

)
= ϕ′

(
g
(
C

(n)
i

))
· g′
(
C

(n)
i

)
= ϕ′

(
D

(n)
i

)
·ϕ
(
D

(n)
i

)
. Based on

this we calculate

µv

(
D

(n)
i

)
−
(
D

(n)
i−1 − D

(n)
i

)
D

(n)
i+1 − D

(n)
i−1

=
g′
(
C

(n)
i

)√
∆t(n) +

{
µv

(
D

(n)
i

)
− 1

2
g′′
(
C

(n)
i

)}
∆t(n) + O

(√
∆t(n)

3 )
2g′
(
C

(n)
i

)√
∆t(n) + O

(√
∆t(n)

3 )
This implies that

µv

(
D

(n)
i

)
−
(
D

(n)
i−1 − D

(n)
i

)
D

(n)
i+1 − D

(n)
i−1

=
1

2
+

1

2

⎧⎨
⎩

µv

(
D

(n)
i

)
g′
(
C

(n)
i

) − g′′
(
D

(n)
i

)
2g′
(
C

(n)
i

)
⎫⎬
⎭
√

∆t(n) + O
(
∆t(n)

)

=
1

2
+

1

2

⎧⎨
⎩

µv

(
D

(n)
i

)
ϕ
(
D

(n)
i

) − 1

2
ϕ′ (D(n)

i

)⎫⎬
⎭
√

∆t(n) + O
(
∆t(n)

)

uniformly on compacts. Therefore, on compact sets and for sufficiently large n, this number

is always between 0 and 1 and in equation (16)
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Since f ′(V ) = 1
ϕ(V )

implies f ′′(V ) = ϕ′(V )
ϕ2(V )

we write, based on equation (19), for α = +1,−1,
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i (or equivalently, conditional on N
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; in all three

terms the bounds are uniformly on compact sets. Since E[Yk] = 0 these terms imply directly
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uniformly on compact sets. Also, E
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uniformly on compact sets. Therefore, for all x2 ∈ IR we have |µ(n)
2 (x) − µ2(x)| → 0 and

|σ(n)
2 (x)−σ2(x)| → 0, uniformly on compact sets. Furthermore sup|x|≤θ

1
∆t(n) Qn(x, {y; |y−x| ≥

ε}) → 0, since jumps of ε(n) are bounded on compacts and the standard deviation in the

normal distribution shrinks to 0. Therefore all conditions of theorem 6 are fulfilled and this

ends our proof of theorem 5.
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Fig. 1. Dynamics of the Poisson process over two periods and the resulting random variables that
describe the securities price for our approximation.
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Fig. 2. A two-period description of the volatility dynamics and the lognormal random variables
that describe the securities price.
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refinement.

26



10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Error 

Time 

MLD Extrapolated 

MLD 

Monte Carlo 

Fig. 4. Efficiency of our mixed lognormal (MLD), its extrapolation and Monte-Carlo.

27



λ = 0.01

K = 90 K = 100 K = 110

Merton MLD Merton MLD Merton MLD

α = −0.2, β = 0.1 14.68 14.68 6.87 6.87 2.22 2.22

α = −0.2, β = 0.3 14.73 14.73 6.91 6.91 2.25 2.25

α = −0.5, β = 0.1 14.85 14.85 7.01 7.01 2.29 2.28

α = −0.5, β = 0.3 14.85 14.85 7.01 7.01 2.29 2.29

λ = 0.05

K = 90 K = 100 K = 110

Merton MLD Merton MLD Merton MLD

α = −0.2, β = 0.1 14.89 14.89 7.14 7.14 2.39 2.39

α = −0.2, β = 0.3 15.12 15.11 7.34 7.33 2.56 2.55

α = −0.5, β = 0.1 15.71 15.71 7.86 7.86 2.78 2.78

α = −0.5, β = 0.3 15.71 15.70 7.84 7.83 2.77 2.76

λ = 0.20

K = 90 K = 100 K = 110

Merton MLD Merton MLD Merton MLD

α = −0.2, β = 0.1 15.61 15.58 8.11 8.09 3.07 3.07

α = −0.2, β = 0.3 16.60 16.43 9.02 8.86 3.88 3.73

α = −0.5, β = 0.1 18.48 18.46 11.04 11.03 5.09 5.08

α = −0.5, β = 0.3 18.63 18.56 11.00 10.95 5.02 4.98
Table 1
Approximations of call prices based on Merton’s integration formula (Merton) and on our mixed
lognormal distributions (MLD).
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Model µv(V ) ϕ(V ) ψ(V )

Hull and White (1987) ν − V σV
√

V

Heston (1993) ν − V σ
√

V
√

V

Stein and Stein (1991) ν − V σ V

Chesney and Scott (1989) ν − V σ exp{V }
Table 2
Parameter specifications for various models. (ν, σ are constants.)
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Model f(x) g(z)

Hull and White (1987) ln x
σ exp(σz)

Heston (1993) 2
√

x
σ

(σz)2

4

Stein and Stein (1991) x
σ σz

Chesney and Scott (1989) x
σ σz

Table 3
The transformation functions f, g for the models from the literature (σ as in table 2)
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