
Solution Methods for Markov Perfect Nash Equilibria

of Continuous-time, Finite-state Stochastic Games

Ulrich Doraszelski

Hoover Institution

Kenneth L. Judd

Hoover Institution

National Bureau of Economic Research

April, 2004 - Very Preliminary; do not quote without permission

1

1 Introduction

Discrete-time stochastic games with discrete states have been usefully applied in industrial

organization, often using the algorithm presented in Pakes-McGuire (1994) (PM1) or more

recent adaptations. However, the range of applications of these methods is limited by the

large computational burden of computing Markov perfect equilibria (MPE) of these dynamic

games. Pakes-McGuire (2001) (PM2) points out that computing the players� expectations

over future states is subject to a �curse of dimensionality� since the computational costs

are exponential in the number of states. This paper examines the alternative of continuous-

time stochastic games with discrete states, and shows that continuous-time games have

several advantages over discrete-time games. First, there is no curse of dimensionality with

continuous-time games. The key fact is that there are no simultaneous changes in states

in continuous-time whereas there are in discrete-time models, and this implies that the

multidimensional integrals in discrete-time games are replaced by much smaller sums in

continuous-time games. Furthermore, space management, a topic of considerable importance

for stochastic games, can also be made more efficient for continuous-time games, resulting in

a further 20% to 40% increase in speed. The absence of a curse of dimensionality implies that

we can examine far more complex problems than is feasible with discrete-time models. For

example, we solve a 13-state example, a case where our continuous-time approach uses 1.76

seconds per iteration whereas the corresponding discrete-time example uses over 35 hours

per iteration, more than 36,000 times slower. Second, continuous-time games have many

conceptual advantages. In particular, continuous-time games avoid unnatural and artiÞcial

features that arise in models with both discrete time and discrete states. Finally, there is no

reason to not use continuous-time games since they are no more complex to describe than

discrete-time models once one uses techniques for controlled continuous-time, Þnite-state

Markov processes.

The key fact is easy to see. Consider a discrete-time game with N players and where

each player can be in one of K states tomorrow. Computing the expected value of a player

will require the summation of KN numbers. In contrast, in a continuous-time process, this

large sum is replaced by a Þnite sum of N(K − 1) numbers, a dramatically smaller sum.
Furthermore, one will need to look up each of the KN numbers using a complex indexing

scheme; see Gowrisankaran (1999) for a discussion of this problem. Furthermore, since

(K − 1)N is often small, one can precompute and store their locations, avoiding the costly

index computations executed in PM1, PM2, and Gowrisankaran (1999). Because of the curse

2

of dimensionality, PM1 choose small values for N and/or K; in contrast, the efficiencies of

the continuous-time case allows more freedom in specifying K, the transition processes of

players, and the number of players.

Discrete-time Þnite-state stochastic games have been used frequently in industrial or-

ganization. Ericson and Pakes (1995) (EP) develop a general dynamic model of oligopoly.

In each period, incumbent Þrms compete in the product market, and decide how much to

invest and even whether to remain in the industry, and potential entrants decide whether to

enter the industry. The EP model captures two key Þndings of the empirical literature on

industry dynamics (e.g., see Dunne et al, 1988), and Davis and Haltiwanger, 1999). First,

entry and exit occur simultaneously. Second, there is heterogeneity among Þrms, and this

heterogeneity evolves endogenously in response to random occurrences, for example, in the

investment process. Since the stochastic games are too complex to be solved analytically,

(PM1) and (PM2) provide algorithms to compute a Markov perfect equilibrium (MPE) of

this stochastic game.

More recent work has used stochastic games to model a wide range of topics in industrial

organization, including advertising (Doraszelski, 2003) capacity accumulation (Besanko and

Doraszelski), collusion (Fershtman and Pakes, 2000, de Roos, 2004), competitive convergence

(Langhor, 2003), consumer learning (Ching, 2002) learning by doing (Benkard, 2000, Besanko

et al., 2003), mergers (Gowrisankaran, 1999), network externalities (Markovich, 1999), and

R&D (Auerswald, 2001, Song, 2002). Most recently, stochastic games have been applied in

Þelds other than industrial organization, e.g., international trade (Erdem and Tybout, 2003)

and Þnance (Goetler et al., 2004).1

Since the computational burden of a discrete-time model increases exponentially in the

number of state variables, existing applications are limited to a handful of Þrms and restrict

Þrm heterogeneity to a few dimensions. For example, in the typical application Þrms may

differ from each other either in terms of their production capacity or in product quality, but

not in both. Breaking the curse of dimensionality opens the way to compute the equilib-

ria of much richer stochastic games. Moreover, the reduced computational costs gives the

researcher the ability to compute equilibria for many different parameterizations and learn

how equilibrium varies with the parameters. Moreover, if the goal is to conduct policy ex-

periments based on the parameter estimates, then the researcher again needs to compute

the equilibrium as fast as possible.

1A survey of several applications of stochastic games in industrial organization can be found in Pakes

(2000).

3

Avoiding the curse of dimensionality has several substantive advantages for modelers.

allows us to specify a richer range of stochastic outcomes over Þnite intervals of time. For

example, can easily accommodate more than one investment choice per Þrm. Also, depreci-

ation can be modelled in a more natural manner - constant relative depreciation instead of

constant absolute depreciation. Discrete-time models often specify a small discount factor,

implicitly assuming that the period of time is on the order of a year or two. We can separate

discount rate from period length; no need to use small β; the rate of convergence of the

algorithm is naturally related to the stochastic properties of the transition process and not

dictated by the discount rate. This is clear since a continuous-time model is equivalent to

a β very close to 1, but the continuous-time algorithm does not take forever to converge.

easier to parameterize. We propose a computational strategy for solving continuous-time

models and describe their massive computational advantages.

The continuous-time model also allows us to pursue coding strategies that are not possible

for discrete-time. We present a data storage method which substantially improves speed.

This is an example of how there are often synergies in algorithm development: improving

one aspect of an algorithm often leads to new opportunities to further improve efficiency.

This paper describes the basic elements of continuous-time Þnite-state games and com-

pares the computational burdens of discrete-time and continuous-time games. Section 2

reviews the basic discrete-time stochastic game and the Gauss-Jacobi (PM1) and Gauss-

Seidel algorithms used to solve such games. Section 3 follows with a description of the

basic continuous-time stochastic game and the comparable Gauss-Seidel algorithm. Section

4 presents both the discrete-time and continuous-time formulations of the example used in

PM1. Section 6 presents computational details and compares the performance of the two

models. Section 7 argues that continuous-time models have several conceptual advantages as

well as the computational advantages. Section 8 discusses some generalizations of the model

and algorithm. Section 9 concludes.

2 Discrete-time Model

We Þrst review the canonical discrete-time stochastic game with discrete states. This type

of game is used in EP and is generally called a �stochastic game� (Filar and Vrieze, 1997,

and Basar and Olsder, 1999) in the dynamic game literature. We let Ω be the Þnite set

of possible states; the state of the game in period t is ωt ∈ Ω. We assume that there are
N players. Player i�s control (action) in period t is xit ∈ Xi (ωt) where Xi (ω) is the set of

4

feasible actions for player i if the game is in state ω. We make no speciÞc assumptions about

Xi (ω), which may be a scalar or a vector, continuous or discrete. The collection of player
actions at time t is xt =

¡
x1t , . . . , x

N
t

¢
. We follow the usual convention of letting x−it denote¡

x1t , . . . , x
i−1
t , xi+1t , . . . , xNt

¢
.

The state follows a controlled Þrst-order Markov process. More speciÞcally, if the state

is ω and the players choose actions x at time t then the probability that ω0 is the time t+ 1

state is Pr(ω0|ω, x). In many applications, the state ω is a vector and is partitioned into
(ω1, . . . , ωN), where ωi denotes the (one or more) coordinates of the state vector that are

controlled by player i, and that the transition process of each player�s states is independent

of the other players� states and actions; in this case, the law of motion can be written as

Pr (ω0|ω, x) =
NY
i=1

Pri
¡
ω0|ωi, xi¢ .

where Pri (ω0|ωi, xi) is the transition probability law for the states controlled by player i.
The special case of independent transitions allows us to easily illustrate the advantages of

continuous over discrete time but, as we will point out below, the insights are not limited to

this case.

We decompose payoffs into two components. First, player i receives a per-period payoff

equal to πi(xt, ωt) when the current state is ωt and the players choose actions xt. The term

πi(xt, ωt) captures the ßow of proÞts that depend solely on the current state and current

controls. For example, if ωt is a list of Þrms� capacities and xt are their output decisions

and investment efforts, then πi(xt, ωt) represents earnings from product market competition

net of ongoing investment expenses that don�t depend on whether or not a transition has

occurred. Sometimes, a payoff will depend on the lagged state and payoff. Therefore, we

assume a second part to the payoff, Φi (xt, ωt, ωt+1), that equals the change in the wealth of

player i at the beginning of period t+1 if the state moves from ωt to ωt+1 and controls were

xt. The Φi (xt, ωt, ωt+1) term allows us to model events such as the sale of equipment. For

example, a Þrm may spend money searching for a buyer for equipment it wants to sell; this

cost does not depend on whether a buyer is found and is included in π. When it succeeds

in Þnding a buyer and the state changes, Þrm i receives a payment equal to Φi(xt, ωt, ωt+1).

In general, the payment Φi (xt, ωt, ωt+1) depends on the nature of the transition (e.g., selling

some or all capacity) and may be affected by the sales effort of the incumbent Þrm, xit, just

prior to the sale. Our representation of the model�s payoffs allows us to model many features

of a dynamic model, including entry and exit.

5

Players discount future payoffs using a discount factor β ∈ [0, 1). The objective of player
i is to maximize the discounted sum of cash ßows

E

(∞X
t=0

βtπi (xt, ωt) +
∞X
m=1

βTmΦi (xTm−1, ωTm−1, ωTm)

)
(1)

where Tm is the random time of the m�th change in the state, xTm−1 is the players� strategy

choice vector just before the m�th change, ωTm−1 is the state just before the m�th change,

and ωTm is the state just after the m�th change.

Following the tradition in dynamic games, we will assume that each player�s actions

depends only on the current state of the game. Let V i(ω) denote the expected net present

value to player i if the current state is ω. Suppose that player i�s opponents use the strategies

X−i (ω). Then the Bellman equation for player i is

V i (ω) = max
xi
πi
¡
xi, X−i (ω) , ω

¢
+ βEω0

©
Φi
¡
xi, X−i (ω) , ω, ω0

¢
+ V i (ω0) |ω, xi, X−i (ω)

ª
where ω denotes the current state. The Bellman equation for player i adds his current cash

ßow πi(xi, X−i (ω) , ω) to his discounted expected future cash ßow,

Eω0
©
Φi(xi, X−i (ω) , ω, ω0) + V i (ω0) |ω, xi, X−i (ω)

ª
,

over all possible future states ω0. Player i�s strategy is the solution to

Xi (ω) = max
xi
πi
¡
xi,X−i (ω) , ω

¢
+ βEω0

©
Φi
¡
xi, X−i (ω) , ω, ω0

¢
+ V i (ω0) |ω, xi, X−i (ω)

ª
,

(2)

Each player has his own version of (1) and (2). The system of equations deÞned by the

collection of (1) and (2) over all players deÞnes a Markov Perfect Equilibrium (MPE). See

Doraszelski and Satterthwaite (2001) for conditions under which a MPE exists.

2.1 Symmetry, Anonymity and Storage Issues

Many applications of dynamic games assume symmetric payoffs and costs. Symmetric games

assume that the payoff functions πi and Φi and the transition law Pr(ω0i|ω, x) for Þrm i

depends only on Þrm i�s state and the distribution of the other Þrms� states. Many authors

then assume that there exists a similarly symmetric Markov Perfect Equilibrium, and search

for policy and value functions with the same symmetries. Symmetric games are easier to

solve, a fact emphasized in PM1 and related work, but is not essential for most of our results.

6

The curse of dimensionality is present in any discrete-time model but not in the continuous-

time model we describe below. Our examples will be symmetric but only to make easy

comparisons with the existing literature.

However, we will also note below that continuous-time models can better exploit symme-

try. Therefore, we need to discuss some details for solving symmetric games. In a symmetric

MPE, if V 1(ω) denotes Þrm 1�s value in state ω, then Þrm i�s value is given by

V i(ω1, . . . , ωi−1, ωi, ωi+1, . . . , ωN) = V 1(ωi, . . . , ωi−1, ω1, ωi+1, . . . , ωN)

and similarly for Þrm i�s policy. Therefore, symmetry and anonymity allow us to focus on the

problem of Þrm 1. Furthermore, anonymity says that Þrm 1 does not care about the identity

of its competitors, only their distribution. Hence, for all permutations π on {2, 3, . . . ,N}

V 1(ω1, ωπ(2), ωπ(3), . . . , ωπ(N)) = V 1(ω1, ω2, ω3, . . . , ωN)

and similarly for the policy function. Therefore, we need only examine states of the form¡
ω1, ω2, ω3, . . . , ωN

¢
where ω1 ≤ ω2 ≤ . . . ≤ ωN . This means that there are far fewer distinct

states in symmetric games than in the corresponding asymmetric games. More precisely,

the number of distinct states is (N +M − 1)!/(N !(M − 1)!), whereas the number of distinct
states is MN without symmetry.

To understand the importance of this we need to discuss the problem of computer storage.

Any algorithm solving for the Nash equilibrium values of V i (ω) and X i (ω) must store these

values in some table that we denote M. Table 1 displays such a table. Each row of M
stores the information related to a state ω; let ψ (ω) denote that row. Table 1 displays

a simple example for a three-Þrm game. Row ψ (ω) contains the information for state

ω, with the Þrst three columns listing the components of ω, the second triple of columns

listing the three values, (V 1 (ω) , V 2 (ω) , V 3 (ω)), and the last three rows listing the strategies

(X1 (ω) ,X2 (ω) , X3 (ω)).

Table 1: Canonical Tabular Storage Scheme in M
Column

1 2 3 4 5 6 7 8 9
...

...
...

...
...

...
...

...
...

row ψ (ω) : ω1 ω2 ω3 V 1 (ω) V 2 (ω) V 3 (ω) X1 (ω) X2 (ω) X3 (ω)
...

...
...

...
...

...
...

...
...

7

Any algorithm needs to know how to Þnd the information for an arbitrary state ω.

For example, the integral E {V 1 (ω0) |ω, x} needs to access all values of V j (ω) that could
correspond to Þrm one�s value in the successor states ω0. More precisely, E {V j (ω0) |ω, x} is
the sum X

ω0∈Ω(ω,x)
Pr (ω0|ω, x)V j (ω0)

where

Ω (ω, x) ≡ {ω0|Pr (ω0|ω, x) > 0}
is the set of states ω0 that occur with positive probability in the next period if the current

state is ω and the current players� actions are x. To compute this sum, the algorithm must

Þnd the rows and columns with the relevant information, implying that the sum is reallyX
ω0∈Ω(ω,x)

Pr (ω0|ω, x)M (ψ (ω0) , J (1, ω0, ω)) (3)

where J (1, ω0, ω) is the column in row ψ (ω0) that contains the next period�s value for Þrm

1 if the current state is ω and ω0 occurs next. This expression displays all the computation

that must occur.2

Any algorithm needs to use an efficient storage scheme; in particular, the function ψ (ω)

needs to be easy to compute. This is easy in some cases. If, for example, there areM possible

states for each Þrm and we needed to examine all possible permutations of {1, 2, 3, . . . ,M}
(as would be the case in asymmetric games) then we could use

ψ (ω) = ω1 + (ω2 − 1)M + (ω3 − 1)M2 + ...+ (ωN − 1)MN−1 (4)

where ω is nothing more than the base M representation of ψ (ω). In this case, the Þrst row

of the table contains the information for state (1, 1, 1), the second row represents (2, 1, 1), and

the successive rows represent (3, 1, 1), (4, 1, 1), ..., (M, 1, 1), (1, 2, 1), (2, 2, 1), ..., (M, 2, 1),

etc. This choice of ψ allows us to easily Þnd the information related to state ω. This is

essentially the type of storage scheme used by default for arrays in programming languages

like Fortran and C.
2One should not that J (ω0, 1) is not a constant. Suppose that the current state is (1, 1, 3) and that Þrm

one jumps to state 2. The state in the next period is ω0 = (2, 1, 3) which has its information stored in

the state (1, 2, 3). Therefore, Þrm one tomorrow has the same value that Þrm two has in the state (1, 2, 3).

Therefore, J (ω0, 1) = 2. Keeping track of this indexing adds some complexity to the programming, but this
detail is in all algorithms. Therefore, we will focus on other details that are more important nad central to

the distinction between discrete- and continuous-time models.

8

Symmetric games, however, are more difficult to represent. Symmetry can be exploited

to reduce the number of distinct states that are examined, but ψ will not be a simple function

like the one in (4). We could use (4) but then most rows inM would be ignored and the space

advantages of symmetry would be lost. PM1 use one scheme to store the value functions

efficiently whereas Ericson and Pakes (1995) and Gowrisankaran (1999) propose different

schemes. All methods have the structure we display above in Table 1 where Ω̄ is the set of

distinct states,
¯̄
Ω̄
¯̄
be the number of such states, and ψ : Ω̄→ ¯̄

Ω̄
¯̄
.

Equation (3) displays all the computation that must occur in evaluatingE {V j (ω0) |ω, x}.and
emphasizes that there are two kinds of computational costs involved in computing the in-

tegral E {V j (ω0) |ω, x}. The Þrst is the summation of each term and the second is the

computation of the addresses. No matter how we store the states, some time will be used to

compute addresses, and in complex cases such as the case of symmetric games the address

computation will be even more costly than displayed in (4).

2.2 Algorithms for Discrete-time Games

PM1 uses a value function iteration approach to compute the equilibrium value and policy

functions; in the mathematics literature, it is called a (block) Gauss-Jacobi method. We will

describe the PM1method, but we will also describe the more popular and often superior block

Gauss-Seidel scheme that we use for both continuous- and discrete-time models. First, we

make initial guesses for the value functions, V i(ω), and policy functions, X i(ω), i = 1, . . . ,N ,

at each state ω. Then these guesses are updated as the algorithm proceeds through the state

space in some order. At each state ω ∈ Ω, we update the value and policy functions for
each player i, i = 1, . . . , N , in either a Gauss-Seidel or Gauss-Jacobi fashion. That is, given

current guesses V i and xi for the value and policy functions, we compute updated guesses,

which we label �V i and �xi, as follows

�X i (ω) ← argmax
xi
πi
¡
xi, X−i (ω) , ω

¢
+βE

©
Φi
¡
xi, X−i(ω), ω, ω0

¢
+ V i (ω0) |ω, xi, X−i (ω)

ª
(5)

�V i (ω) ← max
xi
πi
¡
xi,X−i (ω) , ω

¢
+βE

©
Φi
¡
xi, X−i(ω), ω, ω0

¢
+ V i (ω0) |ω, xi, X−i (ω)

ª
(6)

where i = 1, . . . ,N . Note that the old guesses for opponents� strategies, X−i(ω), and the old

guess for player i�s value at ω, V i (ω), are used when computing the new guesses �V i (ω) and
�X i (ω). This procedure is, therefore, a Gauss-Jacobi scheme at each state ω ∈ Ω.

9

There are two ways to update the V i(ω) and Xi(ω) functions. PM1 and Gauss-Jacobi

methods would compute �V i (ω) and �X i (ω) for all ω before replacing the old guesses for

V i(ω) and X i(ω) with their new values. In contrast, our Gauss-Seidel scheme Þrst computes
�V i (ω) and �X i (ω) for each player i, i = 1, . . . , N , and them immediately replaces the old

guesses for state ω with the new guesses for state ω, as in

X i (ω) ← �Xi (ω)

V i (ω) ← �V i (ω)

This updating procedure is executed for each state ω ∈ Ω in the speciÞed order. This

algorithm is an example of what is called block Gauss-Seidel in the literature on nonlinear

equations, where the block is the set of V i(ω) andX i(ω) for all Þrms at an ω. (See Judd, 1999,

for a more extensive discussion of these Gaussian methods for solving nonlinear equations.)

The Gauss-Seidel algorithm cycles through the states ω ∈ Ω until the changes in the value
and policy functions are deemed small.

Some type of Gaussian scheme is probably necessary since the size of the problem is

so large that alternatives, such as Newton�s method, are probably infeasible for the whole

problem. However, there are many possible adaptations of the block Gauss-Seidel algorithm,

and there are surely better ones than this. This is the most commonly used approach and we

will use it for both discrete- and continuous-time algorithms. This paper focusses on issues

related to computing expectations. Future work will examine alternative speciÞcations of

the blocks, methods within blocks, and acceleration methods.

2.3 The Curse of Dimensionality

The key difficulty is computing the conditional expectations in the updates in equations (5)

and (6). Setting Φi(x, ω, ω0) = 0 to simplify the notation, the conditional expectation is

E
©
V i (ω0) |ω, xª =X

ω0
V i (ω0)Pr (ω0|ω, x) .

Note that this involves summing over all future states ω0 such that Pr (ω0|ω, x) 6= 0.
Perhaps the simplest case arises when transitions are independent and each transition is

restricted to going one step up, one step down, or not moving, i.e. ωi0 ∈ {ωi − 1, ωi, ωi + 1}.
Then the expectation consists of 3N terms,

E
©
V i (ω0) |ω, xª = X

{ω0∈Ω:|ωi0−ωi|≤1,i=1,...,n}
V i (ω0)

NY
i=1

Pri
¡
ωi0|ωi, x¢ .

10

More generally, if a player can be at one ofK states tomorrow and transitions are independent

across players, then the expectation involves summing over KN terms. Since KN grows

exponentially with N , computing the expectation over future states is subject to a curse of

dimensionality.

3 Continuous-time Model

We now describe the continuous-time stochastic game model with discrete states that we

will study. The only substantive difference is that time is now continuous. As with the

discrete-time model, the horizon is inÞnite, the state at time t is ωt ∈ Ω where Ω ⊂ ZM is

the state space, there are N players, and player i�s control (action) at time t is denoted by

xit.

The key difference is that the state evolves probabilistically according to a controlled

continuous-time, Þnite-state Markov process. In discrete time the time path of the state is a

sequence. In the continuous-time model, it is a piecewise-constant, right-continuous function

of t ≥ 0. Jumps occur at random times according to a Poisson process which depends on the
controls and the state. At time t, the hazard rate of some jump occurring is φ(xt, ωt). When

a jump occurs, the state changes according to the transition probability f (ω0|ωt, xt), where
ω denotes the old state and ω0 = lims→t+ ωs is the new one. That is, f (ω0|ω, x) characterizes
the transitions of the Þrst-order Markov process. We assume f (ω|ω, x) = 0, which says that
any jump will alter the state. Since a jump from a state to itself does not change the game,

we simply ignore it and instead adjust, without loss of generality, the hazard rate of a jump

so that f (ω|ω, x) = 0.
We will often use a differential notation to express the transition dynamics. Over a short

interval of time of length h > 0, the law of motion is

Pr (ωt+h 6= ωt|ωt, xt) = φ (xt, ωt) h+ o
¡
h2
¢

Pr (ωt+h = ω0|ωt, xt, ω0 6= ωt) = f (ω0|ωt, xt) + o
¡
h2
¢

In the special case of independent transitions, the coordinates of the state that are controlled

by player i evolve according to

Pri (ωt+h 6= ωt|ωt, xt) = φi (xt, ωt) h+ o
¡
h2
¢

Pri
¡
ωit+h = ω

0|ωit, xit, ω0 6= ωit
¢
= f i

¡
ω0|ωit, xit

¢
+ o

¡
h2
¢

11

Here φ (x, ω) =
PN

i=1 φ
i (xi, ωi) is the hazard rate of a jump occurring, i.e., the total hazard

of a change in the state.

This notation displays the critical fact about continuous-time Markov processes on Þnite

states: during a small time interval dt, there will be (with probability inÞnitesimally close

to one) at most one jump. In the discrete-time model where Þrms follow independent jump

processes, we must keep track of all possible combinations of players� state transitions be-

tween time t and time t+1. The possibility of more than one Þrm changing states disappears

in the continuous-time model and results in simpler, and computationally more tractable,

models.

The remaining aspects of the continuous-time model are essentially the same as in the

discrete-time model. The payoff to player i consists of two components. First, player i

receives a payoff ßow equal to πi (xt, ωt). Second, Φi(xT−m , ωT−m , ωT+m) is the instantaneous

change in the wealth of player i when the state moves from ωT−m to ωT+m at a random time

Tm and controls were xT−m . Similar to discrete time, π
i(xt, ωt) captures proÞts from product

market competition net of investment and Φi(xT−m , ωT−m , ωT+m) things like the scrap value a

Þrm receives upon exiting the industry or the setup cost that a Þrm pays upon successful

entry into the industry. In the continuous-time model, there is a stock and ßow distinction

between πi and Φi since πi represents a ßow of money and Φi is a change in the stock of

wealth.

Players discount future payoffs at the common rate ρ > 0. The objective of player i is

E

(Z ∞

0

e−ρtπi (xt, ωt) dt+
∞X
m=1

e−ρTmΦi
¡
xT−m , ωT−m , ωT+m

¢)
,

where Tm is the random time of the m�th jump in the state, xT−m is the control just before

the m�th jump, ωT−m is the state just before the m�th jump, and ωT+m is the state just after

the m�th jump.The Bellman equation for player i is similar to the one in discrete time. Let

X (ω) represent the players strategies. Over a short interval of time of length ∆t > 0, player

i solves the dynamic programming equation

V i (ω) = max
xi
πi
¡
xi, x−i, ω

¢
dt+ (1− ρ∆t) ¡1− φ ¡xi, X−i (ω) , ω

¢
∆t− o ¡∆t2¢¢ V i (ω)

+ (1− ρ∆t) ¡φ ¡xi, X−i (ω) , ω
¢
∆t+ o

¡
∆t2

¢¢
×E ©Φi ¡xi,X−i (ω) , ω, ω0

¢
+ V i (ω0) |ω, xi,X−i (ω)

ª
,

12

which, as ∆t→ 0, simpliÞes to the Bellman equation

ρV i (ω) = max
xi

πi
¡
xi, X−i (ω) , ω

¢− φ ¡xi, X−i (ω) , ω
¢
V i (ω)

+φ
¡
xi, X−i (ω) , ω

¢
E
©
Φi(xi,X−i (ω) , ω, ω0) + V i (ω0) |ω, xi,X−i (ω)

ª
.

Hence, V i(ω) can be interpreted as the asset or option value (to player i) of participating in

the game. This option is priced by requiring that the opportunity cost of holding it, ρV i(ω),

equals the current cash ßow, πi(xi, X−i (ω) , ω), plus the expected capital gain or loss ßow.

The latter is given by the expected capital gain or loss conditional on a jump occurring,

E {Φi(xi,X−i (ω) , ω, ω0) + V i (ω0) |ω, xi,X−i (ω)}− V i(ω), times the likelihood of doing so,
φ(xi, X−i (ω) , ω).

In the special case of independent movements, player i solves the problem

V i (ω) = max
xi
πi
¡
xi,X−i (ω) , ω

¢
dt

− (1− ρdt) ¡1− φ ¡xi,X−i (ω) , ω
¢
dt
¢
V i (ω)

+ (1− ρdt)E ©Φi ¡xi, X−i (ω) , ω, ωi0, ω−i
¢
+ V i

¡
ωi0, ω−i

¢ |ωi, xiªφi ¡xi, ωi¢ dt
+(1− ρdt)

X
j 6=i
E
©
Φi
¡
xi, X−i (ω) , ω, ωj0, ω−j

¢
+ V i

¡
ωj0, ω−j

¢ |ωj , xjªφj ¡xj , ωj¢ dt,
Πi
¡
ω, xi

¢
= πi

¡
xi,X−i (ω) , ω

¢
dt− (1− ρdt) ¡1− φ ¡xi,X−i (ω) , ω

¢
dt
¢
V i (ω)

+ (1− ρdt)E ©Φi ¡xi,X−i (ω) , ω, ωi0, ω−i
¢
+ V i

¡
ωi0, ω−i

¢ |ωi, xiªφi ¡xi, ωi¢ dt
+(1− ρdt)

X
j 6=i
E
©
Φi
¡
xi, X−i (ω) , ω, ωj0, ω−j

¢
+ V i

¡
ωj0, ω−j

¢ |ωj, xjªφj ¡xj, ωj¢ dt,
which simpliÞes to the Bellman equation

ρV i (ω) = max
xi

πi
¡
xi, x−i, ω

¢− φ ¡xi,X−i (ω) , ω
¢
V i (ω)

+φi
¡
xi, ωi

¢
E
©
Φi
¡
xi,X−i (ω) , ω, ωi0, ω−i

¢
+ V i

¡
ωi0, ω−i

¢ |ωi, xiª
+
X
j 6=i
φj
¡
xj , ωj

¢
E
©
Φi
¡
xi, X−i (ω) , ω, ωj0, ω−j

¢
+ V i

¡
ωj0, ω−j

¢ |ωj , xjª .
3.1 Computational Strategy

In its basic form, our computational strategy adapts the Gauss-Seidel algorithm to a continuous-

time setting. That is, to compute the equilibrium value and policy functions, we combine a

block Gauss-Seidel scheme across states with a Gauss-Jacobi scheme for computing players�

13

values at each states. More speciÞcally, given a state ω ∈ Ω, we replace equations (5) and
(6) by

�X i (ω) ← argmax
xi
πi
¡
xi, X−i (ω) , ω

¢
−φ ¡xi,X−i(ω), ω

¢
V i
¡
xi, X−i(ω), ω

¢
+φ

¡
xi, X−i(ω), ω

¢
E
©
Φi
¡
xi, X−i(ω), ω, ω0

¢
+ V i (ω0) |ω, xi, X−i (ω)

ª
, (7)

�V i (ω) ← 1

ρ+ φ
³
�X i(ω), X−i(ω), ω

´πi ³ �X i(ω), X−i (ω) , ω
´

+
φ
³
�X i(ω), X−i(ω), ω

´
ρ+ φ

³
�X i(ω), X−i(ω), ω

´ (8)

×E
n
Φi
³
�X i(ω),X−i(ω), ω, ω0

´
+ V i (ω0) |ω, �X i(ω),X−i (ω)

o
,

where i = 1, . . . , N , to update the value and policy functions for each player i. The remainder

of the algorithm proceeds as before. Note that by dividing through by ρ+φ(�xi(ω), x−i(ω), ω),

we ensure that equation (8) is contractive for any one Þrm (holding Þxed the strategies of

the other Þrms) since
φ(�X i(ω),X−i(ω), ω)

ρ+ φ(�Xi(ω),X−i(ω), ω)
< 1

is a contraction factor as long as φ is bounded above. The equations in (7) and (8) is the

continuous-time analog of the discrete-time Bellman map but with a key difference. In the

discrete-time case, the discount rate β is a constant contraction factor whereas here the

contraction factor depends on the strategy.

3.2 Breaking the Curse of Dimensionality

The main advantage of continuous-time models now becomes clear. The simplest case arises

when transitions are independent and each transition is limited to going one up or down.

When the transitions are independent, the multidimensional integral representing the ex-

pectation over future states decomposes into N one-dimensional integrals over future states.

Moreover, each of these conditional expectations now consist of only 2 terms representing

the two possible transitions for each Þrm. Here we exploit the fact that, unlike discrete time,

there is no need to explicitly consider the possibility of remaining in the same state. In fact,

14

setting Φi(x, ω, ω0) = 0 to simplify the notation, we have

E
©
V i
¡
ωj0, ω−j

¢ |ωj , xjª = X
{ω0∈Ω:|ωj0−ωj |=1}

V i
¡
ωj0, ω−j

¢
f j
¡
ωj0|ωj, xj¢ . (9)

In this continuous-time model, we need to sum over 2N terms rather than the 3N terms neces-

sary in the discrete-time model. More generally, if a player can be at one ofK states tomorrow

and transitions are independent across players, then the expectation in the continuous-time

model involves summing over (K − 1)N terms whereas the discrete-time model cause this

expectation to consist ofKN terms. Since (K−1)N grows linearly rather than exponentially

with N , computing the expectation over future states is no longer subject to the curse of

dimensionality as we increase the number of players.

This observation is still relevant in many cases where the Þrms experience a common

shock. Suppose, for example, that there are both Þrm-speciÞc states, such as Þrm-speciÞc

productivity or capacity, as well as aggregate states, such as industry demand, which affect

all players. Then the conditional expectation E {V i (ωj0, ω−j) |ωj , xj} can be decomposed
into changes in the aggregate states and changes in the Þrm-speciÞc states. Again, in a

continuous-time model, we will not have changes in both the aggregate and Þrm-speciÞc

states. Therefore, the pieces of E {V i (ωj0, ω−j) |ωj , xj} representing no change in aggregate
states will be as in (9). The changes in aggregate states will just add some more summands

to (9) where the number of additional terms is just the number of possible successor states

for the aggregate variables.

3.3 Exploiting Symmetry with Precomputed Pointers

The Þrst advantage of continuous time is that we avoid the curse of dimensionality when

computing conditional expectations. We next make a second improvement possible only

in the continuous-time case. Table 1 displays the typical storage scheme used to store

equilibrium values and strategies, and noted that considerable effort is necessary to compute

addresses via the ψ (ω) function. Each time we compute a sum or expectation at a state

ω we will need to compute the addresses of the neighbors of ω. One way to economize on

this repeated computation of neighbors� addresses is by precomputing the addresses of the

neighbors of ω and storing them along with values and strategies on the row that contains the

other information for state ω. For example, in the case of a two-player game in continuous

time, we could augment M, the array containing the game�s information, with six extra

15

columns as in the following matrix

Table 2: Storage with precomputed pointers
Row Column

1 2 3 10 11 . . . 15
...

...
...

...
...

... . . .
...

i ω1 ω2 ω3 . . . ψ (ω + e1) ψ (ω + e2) . . . ψ (ω − e3)
...

...
...

...
...

... . . .
...

where e1 = (1, 0, 0), e2 = (0, 1, 0), etc. For N players, each row will contain 4N numbers: the

N states for each player (listed in ascending order when we have a symmetric game), the N

values of the players, the N strategies, and the 2N numbers indicating the location of the 2N

possible successor states3. This is a reasonable demand on space. A simple storage scheme

would only double the space needs relative to the standard procedure. A more sophisticated

approach would use only half a computer word to store each address, and thereby use only

half as much space on the precomputed addresses.

This storage scheme reduces running times since the addresses of successor states are

computed once and stored. A casual examination of the ψ (ω) functions used indicates that

the savings should be substantial. We will explore the savings in an example below.

This approach could also be done in theory for discrete-time games but is generally not

feasible since the number of successor states would be 3N instead of 2N . The space demands

would exceed available space except for small discrete-time games. Therefore, this is another

advantage that is essentially available only to continuous-time games.

4 Example: The Pakes-McGuire Quality LadderModel

We will use the quality ladder model described in PM1 to test our computational points.

This is a very particular model that we use only because it was used in PM1. Some of

our points are model independent, but some will depend on PM1 model. However, it is a

sensible example since experience with other models is similar. We begin with the original

discrete-time model and then reformulate it in continuous time. We want to focus on a

simple and clear example that highlights the computational issues. We also want to avoid

existence problems that may arise with entry and exit and the complexities that may be

3For some ω there are fewer states. In that case, we insert a nonsensical value, such as a negative number,

indicating that there is no such state.

16

introduced to solve these issues (see Doraszelski and Satterthwaite, 2001, for details and a

way to resolve these difficulties). Therefore, we eliminate the entry and exit aspects in PM1,

and set Φi(x, ω, ω0) = 0. This will allow us to make clean comparisons between the Gauss-

Seidel method now typically used for discrete time games and our continuous-time methods.

In a later section we will describe how to introduce entry and exit into our continuous-time

model.

4.1 Discrete-time Model

The quality ladder model assumes that there are N Þrms with differentiated products en-

gaged in price competition. Each product also has a quality dimension that may change

with Þrm investment or with depreciation. Therefore, Þrm i will produce good i which will

have quality ωi. We Þrst describe product demand and then turn to the investment process.

Demand Quality is assumed to be discrete with ωi ∈ {1, 2, ..., L}. The state space is thus
Ω = {1, ..., L}N ⊂ ZN . Each consumer purchases at most one unit of one good. The utility
consumer k derives from purchasing good i is g(ωi) − pi + Aik, where Aik represents taste
differences among consumers. g(ωi) maps product quality into the consumer�s valuation

according to

g(ωi) =

(
ωi, ωi ≤ ω∗,
ω∗ + ln

³
2− e−(ωi−ω∗)

´
, ωi > ω∗.

There is an outside good, good 0, which has utility A0k. We assume that the idiosyncratic

taste parameters A0k, A1k, ...,ANk are independently and identically extreme value distributed

across individuals; therefore, the demand for Þrm i�s product is

qi(p1, . . . , pN ;ω) = m
exp (g(ωi)− pi)

1 +
PN

j=1 exp (g(ω
j)− pj) ,

where m > 0 is the size of the market (the measure of consumers).

Price competition In each period, Þrm i knows the quality of his and his opponents�

goods, and chooses the price pi of good i to maximize proÞts, thereby solving

max
pi≥0

qi(p1, . . . , pN ;ω)
¡
pi − c¢ ,

where c ≥ 0 is the unit cost of production. The Þrst-order condition is of Þrm i is

0 = qii(p
1, . . . , pN ;ω)

¡
pi − c¢+ qi(p1, . . . , pN ;ω).
17

It can be shown that there exists a unique Nash equilibrium
¡
p1∗(ω), . . . , pN∗(ω)

¢
of the prod-

uct market game; see Caplin and Nalebuff (1991). The Nash equilibrium at any particular

state ω can be computed easily by numerically solving the system of Þrst-order conditions,

but we will not do so here.

Law of motion The state ωi represents the quality of the product sold in the current

period. However, the quality in the next period is determined by xi ≥ 0, Þrm i�s investment
in quality improvement, and depreciation. The outcome of the investment and depreciation

processes is assumed to be stochastic, and make the game dynamic.

In each period, Þrm i spends xi ≥ 0 to increase future product quality. If the investment
is successful, then the quality increases by one level. Expenditures in investment increase the

probability of quality improvement; in particular, we assume that the probability of success

is p(xi) = αxi

1+αxi
, where α > 0 is a measure of the effectiveness of investment. If a Þrm is hit

with a depreciation shock, quality will decline by one level; we assume that a Þrm is hit by

a depreciation shock with probability δ ∈ [0, 1].
We differ from the PM1 quality ladder model in that our depreciation is Þrm-speciÞc

and independent across Þrms whereas PM1 assume an industry-wide depreciation shock.

We do this to focus on the key computational details related to the curse of dimensionality

in discrete-time models. Aggregate shocks can be added to continuous-time as easily as

discrete-time models, but there is no difference in their impact on computational issues. The

key problems arise with Þrm-speciÞc changes and so we focus on those.

Combining the investment and depreciation processes, the quality of Þrm i�s product

changes according to the transition function Pri(ω0|ω, x). The transition function Pri(ω0|ωi, xi)
is the probability that Þrm i will have product quality ω0 tomorrow given that it has product

quality ωi today. Assume

Pri(ω0|ωi, xi) =

(1−δ)αxi
1+αxi

, ω0 = ωi + 1,
1−δ+δαxi
1+αxi

, ω0 = ωi,
δ

1+αxi
, ω0 = ωi − 1

if ωi ∈ {2, . . . , L − 1}. Clearly, Þrm i cannot move further down (up) from the lowest

18

(highest) product quality. We therefore set

Pri(ω0|ω1, xi) =

(
(1−δ)αxi
1+αxi

, ω0 = ω2,
1+δαxi

1+αxi
, ω0 = ω1

Pri(ωi0|ωL, xi) =

(
1−δ+αxi
1+αxi

, ω0 = ωL,
δ

1+αxi
, ω0 = ωL−1

.

Payoff function The per-period payoff of Þrm i is derived from the Nash equilibrium of

the product market game and given by

πi(x, ω) ≡ qi(p1(ω), . . . , pN(ω);ω)(pi(ω)− c)− xi,

where we have subtracted investment xi from the proÞt from product market competition.

Parameterization. We parameterize our example using the values in PM1. The effective-

ness of investment is α = 3, the depreciation probability is δ = 0.7, market size is m, and

the marginal cost of production is c = 5. We will examine various discount factors, including

the choice β = 0.925, which corresponds to a yearly interest rate of 7.5 percent, made in

PM1. Finally, we will Þrst let L = 18 with ωl = 3l − 10, l = 1, . . . , L, and ω∗ = 12, as done
in Pakes et al. (1993), but will also examine other cases.

4.2 Continuous-time Model

In the interest of brevity, we start by noting that the details of product market competition

remain unchanged. In the continuous-time model we can thus reinterpret πi(x, ω) as the

payoff ßow of Þrm i.

Law of motion. Next we turn to the state-to-state transitions. We want to compare

discrete-time and continuous-time games. Therefore, we will use the same transition process

as described for our discrete-time model. Therefore, the hazard rate for the investment

project of Þrm i is successful is given by the hazard rate h(xi) = αxi/(1+αxi), the same choice

as our probability function in the discrete-time model. This is the appropriate choice since the

expected time to the Þrst success is h (x)−1 in both discrete and continuous time. Similarly,

we take δ > 0 to be the depreciation hazard where δ was the depreciation probability in the

discrete-time model.

19

Jumps in the i�th coordinate of the state thus occur according to a Poisson process with

hazard rate

φi(xi) =
αxi

1 + αxi
+ δ,

and when a jump occurs, the ith coordinate of the state changes according to the transition

probability

f i(ω0|ωi, xi) =
(

φi(xi)

δ+φi(xi)
, ω0 = ωl+1,

δ
δ+φi(xi)

, ω0 = ωl−1

if ω0 = ωl, where l ∈ {2, . . . , L − 1}. Since Þrm i cannot move further down (up) from the

lowest (highest) product quality, we set

φi(xi) =
αxi

1 + αxi

f i(ω2|ω1, xi) = 1

and

φi(xi) = δ,

f i(ωL−1|ωL, xi) = 1.

Parameterization. We can easily match the parameters of the continuous-time model to

those of the discrete-time model. First, if ∆ is the unit of time for one period in the discrete-

time model, then β and ρ are related by β = e−ρ∆ and ρ = − (lnβ)∆−1. Second, if the
discrete-time depreciation rate is e−δ∆ then the continuous-time hazard rate for depreciation

rate is δ.

5 Stopping Rules

Since we are using Gauss-Seidel schemes to compute equilibria, convergence is linear and the

choice of stopping rule is generally important. A fair comparison between the discrete- and

continuous-time methods requires a careful application of accuracy estimates and stopping

rules. In this section we discuss the standard adaptive approach to error estimation as

applied to our models

Let V i(ω) (Xi(ω)) denote the value to (strategy of) player i = 1, . . . , N in state ω ∈ Ω at
the beginning of an iteration and let �V i(ω) (�X i(ω)) denote the value (strategy) at the end

20

of iteration i. DeÞne the L∞-norm of a set of value functions V i(ω) to be

kV k∞ = max
i=1,...,N

max
ω∈Ω

|V i(ω)|.

and the L2-norm to be

kWk2 =
Ã

1

|Ω|S
NX
i=1

X
ω∈Ω

¡
V i(ω)

¢2!1/2
.

We need a measure of when two value functions are close. We also want it to be unit-free and

to describe the relative difference. Therefore, we deÞne the L∞-relative difference between
�V and V to be

E∞
³
�V , V

´
=

°°°°° �V − V1 + |�V |

°°°°°
∞
.

and the L2-relative difference to be

E2

³
�V , V

´
=

°°°°° �V − V1 + |�V |

°°°°°
2

.

We similarly deÞne E∞
³
�X,X

´
and E2

³
�X,X

´
.

In practice, we compute E∞
³
�V , V

´
(or E2

³
�V , V

´
) and stop when E∞

³
�V , V

´
(or

E2

³
�V , V

´
) falls below some target. However, we really want to know E∞

³
�V , V∞

´
(and

E2
³
�V , V∞

´
where V∞ is the limit of our sequence of guesses and, presumably, a solution. To

do this we need to apply some ideas from the theory of sequences. If a sequence of points,

xt, satisÞes the contraction relation

kxt+1 − xtk ≤ θ kxt − xt−1k

then the distance to the limit x∞ satisÞes

kxt+1 − x∞k ≤ kxt − xt−1k / (1− θ)

DeÞne ∆t = kxt − xt−1k and suppose that ∆t+1 = θ∆t. Then, for all t and s, θs = ∆t/∆t−s
which implies that

θ =

µ
∆t
∆t−s

¶1/s
(10)

In our computations, we are often in the position of observing ∆t without knowing θ. Equa-

tion (10) gives us a way to estimate θ at iterate t using the previous s iterates since it is a

21

long run average of the recent rate of convergence. A more conservative approach would be

to use

max

(µ
∆τ
∆τ−s

¶1/s
|t1 < τ < t

)
which is the worst s-iterate performance over the previous t− t1 − s iterations.
Next, deÞne ε = kxt − x∞k. Then, approximately, we have

εt = ∆t/ (1− θ) (11)

Our task is to Þnd some iteration s such that we have achieved a target accuracy ε̄. If our

current value of kxt − xt−1k is ∆t then we need s more iterations to achieve an error of ε̄
where s satisÞes

ε̄ = θs∆t/ (1− θ)
This implies that s is given by

S (θ) =
ln (ε̄/∆t) + ln (1− θ)

ln θ
(12)

A common practice is to stop when ∆t is below some target ∆̄. However, the true error

could be a factor (1− θ)−1 greater than ∆̄. This factor is 10 if θ = .9 or 100 if θ = .99. A
careful strategy would examine the history of ∆t to estimate θ and then proceed at least s

extra steps. So, suppose that the objective is to reduce error to ε̄. Then if ∆t = ε̄, S (θ) more

iterates to push error below Table 3 gives some examples of what this requires for alternative

values of θ.

Table 3: Necessary Extra Iterations

θ .9 .95 .97 .98 .985 .99

s 22 58 115 194 278 458

6 Computational Performance Comparisons

This section presents computational results for the discrete- and continuous-time examples.

We will look at N-Þrm cases of the quality ladder model. Even though this is one speciÞc

example of a stochastic game, it is useful for many purposes. First, the results related

to the curse of dimensionality are clearly robust since they simply involve ßoating point

operations related to computing a multidimensional integral. The computational burden

of such computations depends on neither the functional form nor the parameter values.

22

Also, the N -Þrm results should be viewed as results for games with N states since the

dimensionality in the integrals is the key feature. Therefore, a game with three Þrms, each

with two products and each product having its own capacity and quality corresponds to a 12-

Þrm game in our set of examples. Second, the results related to the speed of convergence may

depend on parameter values but there is no reason to believe that our example is atypical.

Also, our approach to dealing with convergence issues is also a contribution to the economics

literature on solving dynamic games. Third, we will discuss the performance of alternative

stopping rules, and test our adaptive strategy on our example.

6.1 Computation Time per Iteration

We Þrst examine the computational performance of computing one iteration in the Gauss-

Seidel schemes we use. These results will also be the same for Gauss-Jacobi approaches since

they are both a Þxed number of state-wise computations.

Table 4 displays the results. We report running times for both code that was optimized

by the compiler and code for which the optimization was turned off. We do this since the

no-optimization code is more likely to correspond to basic intuition, but optimized code is

what one should deÞnitely use in practice. Since optimized code will substantially reduce

the cost of computing large sums, it is important to document that the continuous-time

approach still enjoys a substantial advantage even when code is optimized. Running times.

Table assumes that there are N Þrms, each with one state that can have M=9 values.

Table 4 reports the number of resulting distinct states and the number of unknowns, which

equals one value and one policy per Þrm per state. Table 4 reports the time used to compute

one iteration of the Gauss-Seidel scheme for one Þrm. We report the percentage of time used

to compute each sum for both continuous and discrete time. We also report the percentage

of time per iteration used to compute the sum. This was essentially 100% when we solved the

discrete-time model without code optimization, but was substantially less for the continuous-

time cases with and without code optimization. In all continuous-time games, less than

half the computer time was spent on computing the sums that arise in the Þrms� Bellman

equations. We Þnd that code optimization substantially accelerates computation but does

not produce an advantage for the discrete-time model.

We also examine the importance of time used to compute addresses. We compare the

usual approach where all addresses are repeatedly computed versus the precomputed address

approach we describe above. We Þnd that the precomputed pointers substantially reduce

23

the amount of time used to compute the sums; in fact, this feature alone reduced time by

about 20 to 40%.

24

Table 4: Time per state per form per iteration
Compiler Optimization Off, M=9

Time per sum (10−6 seconds)

Discrete Cont. time: pointers

N Distinct Un- Compute Store Disc./ P�ter Total

states knowns time % time % time % Cont. gain gain

2 45 90 .98 34 .50 23 1.9 15 1.3 1.16 1.5

3 165 495 2.4 58 .54 25 1.8 15 1.9 1.21 2.2

4 495 1980 6.2 79 .64 28 1.8 17 3.5 1.26 4.4

5 1287 6435 17 91 .72 31 1.8 18 7.9 1.29 10

6 3003 18018 46 96 .80 33 1.8 19 20 1.31 26

7 6435 45045 130 100 .96 38 1.9 22 52 1.32 68

8 1.3(4) 1.0(5) 360 100 1.0 40 1.9 24 140 1.34 187

9 2.4(4) 2.2(5) 1000 100 1.1 42 2.0 26 380 1.36 517

10 4.4(4) 4.4(5) 2900 100 1.2 43 2.0 27 1036 1.38 1430

11 7.6(4) 8.3(5) 8100 100 1.3 45 2.1 29 2846 1.39 3961

12 1.2(5) 1.5(6) 2.3(4) 100 1.4 46 2.1 30 7864 1.41 1.1(4)

13 2.0(5) 2.6(6) 6.6(4) 100 1.4 48 2.2 33 2.1(4) 1.40 3.0(4)

Compiler Optimization On, M=9

Time per sum (10−7 seconds)

Discrete time Cont. time: pointers Disc./

N Distinct Un- Compute Store Cont. P�ter total

states knowns time % time % time % time gain gain

2 45 90 5.3 55 2.9 42 1.9 35 1.42 1.22 1.7

3 165 495 11 74 2.8 44 1.9 35 2.32 1.22 2.8

4 495 1980 26 87 3.0 48 2.0 43 4.60 1.34 6.2

5 1287 6435 67 97 3.4 53 2.2 46 10.6 1.37 14.6

6 3003 1.8(4) 178 100 3.8 55 2.2 45 26.3 1.39 36.4

7 6435 4.5(4) 526 100 3.9 53 2.4 48 69.9 1.44 101

8 1.3(4) 1.0(5) 1310 100 4.3 55 2.6 50 176.2 1.43 251

9 2.4(4) 2.2(5) 3840 100 4.8 62 2.8 53 492 1.44 709

10 4.4(4) 4.4(5) 1.1(4) 100 5.4 64 2.6 44 1.3(3) 1.52 1950

11 7.6(4) 8.3(5) 3.0(4) 100 5.6 67 3.2 56 3.5(3) 1.48 5179

12 1.2(5) 1.5(6) 8.2(4) 100 5.8 68 3.6 60 9.5(3) 1.44 1.4(4)

13 2.0(5) 2.6(6) 2.4(5) 100 6.3 69 3.8 61 2.6(4) 1.39 3.6(4)

14

25

Except for the case of a few states, the continuous-time model was signiÞcantly faster.

Even when there are only Þve Þrms (states) the continuous-time approach is more than 10

times faster. Most of the gain is from avoiding the curse of dimensionality in discrete-time

integrals, but the precomputed addresses, a strategy that is feasible only for continuous-time

games, also makes a signiÞcant contribution.

6.2 Number of Iterations

Table 4 showed that the curse of dimensionality is severe for discrete-time games but not for

continuous-time games, and that each iteration of the continuous-time games is far faster

than the corresponding discrete-time game. However, this does not prove that continuous-

time games are faster to solve since a game is not solved until the iterations in (7,8) converge.

We next discuss the difference in the rate of convergence of the Gauss-Seidel method for the

two models.

There are good reasons to think that the continuous-time game will need more iterations

before convergence. Suppose that the strategic elements in our games were eliminated; in

that case, our problem reduces to a disjoint set of dynamic programming problems. In that

case, normal value function iteration (a Gauss-Jacobi scheme) would converge at rate β in

discrete time. The continuous-time algorithm would not have a uniform contraction factor

but would have a different contraction factor at each state. Equation (8) implies that at

state ω the contraction factor would be

η(ω,X) =
φ (X(ω), ω)

ρ+ φ (X(ω), ω)

The quantity η(ω,X) has a simple interpretation: it is the expected present value of a dollar

delivered at the next time the state changes if the current state is ω and the players follow

the strategies in X. The case of ρ¿ φ = 1 illustrates this case since then

η =
1

ρ+ 1
≈ 1− ρ = 1 + ln β ≈ β

If the hazard rate φ (ω,X (ω)) is small, then η(ω,X) will also be small and there will be a

strong contraction aspect to a value function iteration approach. However, η(ω,X) could be

close to one if the hazard rate is large, in which case value function iteration would be very

slow.

These facts leads us to worry about the performance of our Gauss-Seidel algorithm.

We will use the quality ladder example to display the relative performance of the Gauss-

Seidel algorithm for discrete- and continuous-time models, and to illustrate some basic ideas

26

regarding stopping rules. The only way to learn about these methods is to examine an

example. The results we Þnd will depend somewhat on the example. However, our discussion

of the approach to stopping rules is a robust strategy for diagnosing convergence for any

algorithm, discrete or continuous time.

Tables 5, 6, and 7 display convergence results for our example. We Þrst executed (7,8)

until the L∞ errors E∞ (Xt, Xt+1) and E∞ (Vt+1, Vt) failed to decrease any further. In all

cases, the iterations continued until E∞ (Xt, Xt+1) < 10−13and sometimes continued until

E∞ (Xt, Xt+1) < 10−15. The Þnal iterates were considered �true� solutions, V∗ and X∗, since

they satisÞed the equilibrium equations to better than 12 signiÞcant digits.

We then computed the error measure E∞ (Vt, V∗) and the other error measures for each

iterate t. Each row corresponds to the error value �tol�. The Linf-iter column corresponds to

the value of E∞ (Vt, Vt+1) and the Linf-truth column corresponds to E∞ (Vt, V∗). The L2-inf

and L2-truth columns correspond to the L2 criterion. The tables report the iterate when

these various error criterion were satisÞed.

Table 5 displays results for the case of N = 3 Þrms, each having M = 18 possible values

for its quality state, and for β = 0.925, 0.98, 0.99, 0.995. Table 6 displays results for the

case of N = 6 Þrms, with M = 9, and for β = 0.925, 0.98, 0.99. The discrete-time model

took too long to converge to our required target of 12 digit accuracy for β = 0.995. Table 7

displays the performance of the continuous-time model for those cases.

We see that the continuous-time model needs more iterations to converge, and that this

gap increases slightly as we increase β (decrease ρ). This is because the η factors in the

continuous-time model substantially exceed the β parameter in the discrete-time games.

Even though the continuous-time model needs more iterations, the increase in the number

of iterations is small relative to the other advantages of continuous-time formulations. In

particular, When we compare the results in these tables with Table 4, we see that the

advantage in total time for the continuous-time model in the six-Þrm cases is about 10.

6.3 Convergence Criterion and Error Tests

We always want to continue the iterations in (7,8) until the distance from the true solution,

E∞ (Vt, V∗), is small. In practice, we will not know E∞ (Vt, V∗). Therefore, in practice we

must continue until E∞ (Vt, Vt+1) satisÞes some criterion that uses information from iteration

t and earlier. Examination of the results in Tables 5, 6, and 7 show that the convergence

formulas we presented above do an excellent job once we get below a modest convergence

27

Table 5: Convergence: Dependence on Discount Factors - M=18, N=3,

Number of Iterations to Prespecified Tolerance in Discrete Time:

Dtime b=0.925 b=0.98 b=0.99 b=0.995

tol Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

E-01 27 52 4 33 13 189 6 142 14 324 7 272 18 605 10 546
E-02 54 74 35 57 149 261 92 219 167 469 97 419 244 895 63 837
E-03 76 95 59 78 228 331 185 289 358 608 307 559 580 1175 520 1117
E-04 97 115 80 99 298 401 256 359 500 747 450 698 873 1453 814 1395
E-06 136 154 120 139 437 539 395 498 778 1025 729 976 1431 2010 1373 1952
E-08 176 194 161 179 576 678 534 637 1056 1303 1007 1253 1988 2567 1930 2509

Number of Iterations to Prespecified Tolerance in Continuous Time:

Ctime r =-ln 0.925 r =-ln 0.98 r =-ln 0.99 r =-ln 0.995

tol Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-iter L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

E-01 16 47 4 14 35 180 6 94 46 324 7 208 60 598 17 450
E-02 31 124 16 85 53 437 29 349 67 832 40 719 85 1618 53 1475
E-03 97 183 49 145 147 679 95 591 144 1322 101 1209 149 2602 123 2459
E-04 160 241 121 203 432 919 345 832 672 1810 558 1697 988 3582 843 3439
E-06 276 357 238 319 915 1401 828 1314 1651 2785 1538 2672 2966 5542 2823 5399
E-08 392 473 354 435 1397 1883 1309 1795 2626 3760 2513 3647 4926 7502 4783 7359

Ratio of Discrete to Continuous Time

D/C b=0.925 b=0.98 b=0.99 b=0.995
tol Linf-

iter
Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

Linf-
iter

Linf-
truth

L2-
iter

L2-
truth

E-01 1.69 1.11 1.00 2.36 0.37 1.05 1.00 1.51 0.30 1.00 1.00 1.31 0.30 1.01 0.59 1.21
E-02 1.74 0.60 2.19 0.67 2.81 0.60 3.17 0.63 2.49 0.56 2.43 0.58 2.87 0.55 1.19 0.57
E-03 0.78 0.52 1.20 0.54 1.55 0.49 1.95 0.49 2.49 0.46 3.04 0.46 3.89 0.45 4.23 0.45
E-04 0.61 0.48 0.66 0.49 0.69 0.44 0.74 0.43 0.74 0.41 0.81 0.41 0.88 0.41 0.97 0.41
E-06 0.49 0.43 0.50 0.44 0.48 0.38 0.48 0.38 0.47 0.37 0.47 0.37 0.48 0.36 0.49 0.36
E-08 0.45 0.41 0.45 0.41 0.41 0.36 0.41 0.35 0.40 0.35 0.40 0.34 0.40 0.34 0.40 0.34

Table 6: Convergence: Dependence on Discount Factors - M=18, N=6,

Number of Iterations to Prespecified Tolerance in Discrete Time:

 b=0.925 b=0.98

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iterL2-truth
E-01 28 53 11 31 41 255 6 202
E-02 54 73 34 52 216 327 143 279
E-03 75 94 54 72 294 396 246 349
E-04 95 114 74 92 364 465 317 418
E-06 135 154 113 132 501 602 454 555
E-08 176 194 153 172 639 740 592 693

Number of Iterations to Prespecified Tolerance in Continuous Time:

 r =-ln 0.925 r =-ln 0.98

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iterL2-truth
E-01 20 82 3 26 34 671 4 391
E-02 42 169 12 105 64 1089 25 834
E-03 123 250 65 194 556 1492 249 1239
E-04 207 329 145 275 991 1894 734 1641
E-06 367 488 312 434 1798 2698 1545 2445
E-08 526 648 471 593 2601 3501 2348 3248

Ratio of Discrete to Continuous Time:

 b=0.925 b=0.98

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iter L2-truth
E-01 1.40 0.65 3.67 1.19 1.21 0.38 1.50 0.52
E-02 1.29 0.43 2.83 0.50 3.38 0.30 5.72 0.33
E-03 0.61 0.38 0.83 0.37 0.53 0.27 0.99 0.28
E-04 0.46 0.35 0.51 0.33 0.37 0.25 0.43 0.25
E-06 0.37 0.32 0.36 0.30 0.28 0.22 0.29 0.23
E-08 0.33 0.30 0.32 0.29 0.25 0.21 0.25 0.21

Table 7: Convergence: Low Discount Factors - M=18, N=6,

Number of Iterations to Prespecified Tolerance in Discrete Time:

 b= 0.99 b= 0.995

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iterL2-truth
E-01 88 535 10 437
E-02 400 670 188 586
E-03 571 800 480 717
E-04 703 930 620 847
E-06 962 1188 880 1106
E-08 1221 1447 1139 1365

Number of Iterations to Prespecified Tolerance in Continuous Time:

 r =-ln 0.99 r =-ln 0.995

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iter L2-truth
E-01 50 1335 5 879 68 2507 7 1905
E-02 81 2234 27 1802 99 4365 28 3788
E-03 699 3101 219 2672 246 6157 151 5582
E-04 1729 3965 1289 3536 2724 7942 2128 7367
E-06 3470 5692 3040 5263 6355 11511 5780 10936
E-08 5197 7419 4767 6990 9924 15080 9350 14505

Ratio of Discrete to Continuous Time:

 b= 0.99 b= 0.995

tol Linf-iter Linf-truth L2-iter L2-truth Linf-iter Linf-truth L2-iter L2-truth
E-01 1.76 0.40 2.00 0.50
E-02 4.94 0.30 6.96 0.33
E-03 0.82 0.26 2.19 0.27
E-04 0.41 0.23 0.48 0.24
E-06 0.28 0.21 0.29 0.21
E-08 0.23 0.20 0.24 0.20

criterion. The estimate of θ in (10) is nearly constant after the Þrst several iterations.

Combining the θ estimate in (10) with the error estimate in (11) did an excellent job in

estimating the true error. Furthermore, equation (12) does an excellent job in predicting

how many more iterations are necessary to achieve the error target ε̄ once the changes in

successive guesses fall below ε̄. The results also indicate that the strategy of stopping when

the iterates change by less than ε̄ can produce very large errors. Users of these techniques

should deÞnitely use estimates of θ to justify their stopping criterion.

The L2 criterion is satisÞed sooner than the tougher L∞ test. In some cases, the L2
criterion is perhaps adequate. In particular, if one just cares about having an approximate

solution which is good on average then L2 is perhaps Þne. Table 5 shows that the same

adaptive approach will produce good results for the L2 criterion.

Unfortunately, few authors inform the reader of their stopping rule. This is practice is

comparable to empirical papers neglecting to inform the reader of conÞdence intervals, stan-

dard errors, posterior variance, or p values. Every numerical calculation has some error and

the reader should be told what diagnostic is used in judging whether the error is acceptably

small.

7 Conceptual Advantages of Continuous Time

We have emphasized the computational advantages of continuous-time models. There are

also conceptual advantages of continuous-time speciÞcations. We discuss some of these ad-

vantages in this section.

7.1 No ArtiÞcial Discreteness in Time

Discrete-time speciÞcations often have difficulty modeling dynamic elements of a model and

sometimes introduce artiÞcial elements. Consider, for example, depreciation of equipment.

In a deterministic model, it is common to specify either a constant rate of depreciation or

specify a Þxed life for a piece of capital. The later approach creates a vintage problem that

greatly increases the size of the state space, so we typically want to assume a constant rate

of depreciation, also called exponential depreciation. However, this is difficult to do in a

Þnite-state model. Suppose we assume an integer number of machines and want to model

an annual 20% depreciation rate of machinery. If we have Þve machines today, then that

means we will have four next year. The case of, say, seven machines is not easy to model.

28

Since the state space is integers, the state cannot move to 5.6 units. One could assume that

tomorrow�s stock is either 5 or 6 and set the probabilities so that the expected depreciation

equals the 20% rate. However, that implies that the variance of depreciation depends on the

state, an odd assumption.

Another alternative is to assume that each machine has a 20% probability of dying and

that machine death is independent across machines. This is a natural way to interpret 20%

depreciation but it aggravates the curse of dimensionality in discrete-time models. Again,

suppose that we have seven machines in the current period. Then the number of machines

in the next period could be anything from zero to seven. If this is true of each of N Þrms,

the integral in the discrete-time model is a sum over 8N values, an even worse curse of

dimensionality. In general, a discrete-time speciÞcation forces one to choose between odd

assumptions about the nature of transitions like depreciation or tackle a very bad curse of

dimensionality.

In continuous time, it is easy to model a constant rate of depreciation. We just say that

the hazard rate of depreciation during a period of dt years is 0.20 n dt if we have n machines.

This exactly models a stochastic exponential depreciation rate. In our speciÞc of hazard

rates above, we see that the depreciation hazard rate is easily incorporated in the stochastic

transition process. Our continuous-time model cannot not allow for a constant deterministic

rate of depreciation, but any such model would require a continuum of allowable states and

take us outside the more common framework of Þnite-state games.

7.2 More Realistic Strategic Reactions

The continuous-time approach also is more sensible from a dynamic strategic perspective.

For example, suppose investment proceeds at a stochastic rate and two Þrms are both trying

to expand capacity but both would want to cease this investment effort once the other

succeeds. In discrete-time models, particularly if the period of time is large, there is some

chance that both will succeed at the same time. This will lead to a condition of excessive

investment and perhaps effort to disinvest. This will not happen in a continuous-time game

since only one Þrm will succeed at any particular moment and the other could immediately

cease his effort. There will be no �mistakes� in a continuous-time model. In many contexts,

this speciÞcation is a more realistic description of players� abilities to react to a change in

the situation.

29

7.3 Richer Range of Stochastic Outcomes

A continuous-time model allows for a richer range of stochastic outcomes over Þnite intervals

of time. Many discrete-time models make the assumption that

Pri
¡
ωi − 1|ωi, xi¢+ Pri ¡ωi|ωi, xi¢+ Pri ¡ωi + 1|ωi, xi¢ = 1

This translates into our continuous-time model as

f i
¡
ωi − 1|ωi, xi¢+ f i ¡ωi + 1|ωi, xi¢ = 1

implying that all jumps are either one state up or one state down. This imposes a sense

of continuity (you can�t go from state 3 to state 5 without passing through state 4) to

the problem even though it has a discrete state. This is a natural assumption to make in

many models but it has different consequences for continuous and discrete-time models. In

discrete-time model this implies that there will be at most a unit change in the state over one

period. This means that the minimum amount of time to change the state by n steps is n

periods. Discrete-time models have limited ßexibility in modelling speed of change without

stumbling on either the curse of dimensionality or problems associated with a β close to one.

In continuous-time models, this �continuity� assumption just says that the state changes

one unit at a time but does not limit the distribution of jumps over any Þnite period of time.

The speed of change is set by parameters other than the unit of time. Figure 1 illustrates

the difference in value function for the discrete- and continuous-time versions of the same

model. Note that they differ substantially because the problem is stuck at low values of the

state variable for long periods of time.

1 5 10 15 18
0

100

200

300

400

i

V
(i)

Discrete Time

1 5 10 15 18
0

100

200

300

400

i

V
(i)

Continuous Time

Figure 1: Richer range of stochastic outcomes.

30

7.4 Distinguish Between Discount Rate and Period Length

A continuous-time speciÞcation allows us to separate the discount rate from the period

length. Discrete-time models choose a value of β, and that choice models both features of

the game. In many cases, we would like to take β close to 1 to represent a short unit of

time. However, algorithms such as Gauss-Jacobi and Gauss-Seidel often slow considerably as

we increase β towards 1. In fact, value function iteration, which is a Gauss-Jacobi method,

converges at exactly the rate β. The following table presents our experience with the number

of iterations necessary as β increases. We see that taking β close to 1 is not a practical way

to model a short unit of time. In contrast, our continuous time games converged much more

rapidly for all but the case of a few Þrms even though the unit of time is essentially zero.

7.5 Functional Form Flexibility

Continuous-time speciÞcations have more ßexibility in specifying a model. For example, in

discrete time the transition probabilities cannot exceed one. This forces one to look for

tractable and interpretable functional forms. On popular choice is p(x) = αx
1+αx

which is

highly stylized. In the continuous-time speciÞcation, one need only to impose nonnegative

hazard rates; for example h(x) = αxγ is a familiar constant elasticity functional form which

can be used in continuous-time models but not in discrete-time models.

8 Generalizations

In this section we discuss some generalizations of our model and algorithm.

8.1 Multiple States per Firm

Most analyses assume just one state per Þrm. Suppose that there are N Þrms and the state

of each Þrm is described by D state variables, each havingM possible values. This is similar

to assuming ND Þrms each described by one state variable with M possible values except

that there is less symmetry - a Þrm is not indifferent among permutations among its own

states nor among another Þrm�s states.

31

8.2 Common Shocks

Common shocks can be easily accommodated by appropriate deÞnition of the state. Since

these shocks are common, they affect discrete- and continuous-time models in the same

manner. [MORE TO COME]

8.3 Entry and Exit

Entry and exit can be easily accommodated by appropriate deÞnition of the state and

controls. These changes affect discrete- and continuous-time models in the same manner.

[MORE OBVIOUS STUFF TO COME]

8.4 Stochastic Algorithm (PM2)

The curse of dimensionality in integration is recognized as an important problem in numerical

analysis in general. PM2 uses a stochastic approximation algorithm to reduce the impact

of dimensionality on computing equilibrium to stochastic games. PM2 uses three ideas.

The Þrst idea is to create approximations of the key integrals which are then updated using

a small amount of computation each time a state is visited. The second idea is to visit

states via simulations instead of some predetermined order, and focus on states that recur

frequently under the equilibrium dynamics. The third idea is to keep track of only states

that appear to be in the recurrent class under the equilibrium laws of motion, and not even

store information about other states. The Þrst and second ideas could be used jointly or

separately in our model and may result in some speedup. The idea of focussing on the

recurrent class may be useful but is very sensitive to the size of the recurrent set of states

in the equilibrium. In many cases, all states are recurrent states; see, for example, Besanko

and Doraszelski (2004) and Doraszelski and Markovitch (2003). Since we want to focus on

generic cases, we visit states in a deterministic and nondiscriminatory fashion. However, to

give the reader some basis for comparison, we note that PM2 reports that their procedure

cuts running time down by about half in the case when there are six Þrms in their test

model, and a reduction by a factor of at most 25 for the case of ten Þrms. Since this idea is

orthogonal to our considerations, it is highly likely that a combination of this aspect of PM2

and our continuous-time model would result in a comparable speedup.

The third piece of PM2 would be useful if the state space is so large that storage con-

siderations forces one to economize on states. However, our precomputed pointer scheme

32

makes it less likely that this consideration is important if one can store the whole game since

the memory allocation and garbage collection steps involved in PM2 could become a serious

drag on performance.

9 Conclusions

We have described a continuous-time model of dynamic games on Þnite states. This spec-

iÞcation has considerable qualitative advantages as well as large computational advantages

over discrete time. The advantages will be multiple orders of magnitude for games with more

than a few states. This advantage will make it possible to examine far more complex and

realistic models than currently feasible.

33

References

[1] Aguirregabiria, V. &Mira, P. (2002). Sequential simulation-based estimation of dynamic

discrete games, Working paper, Boston University, Boston.

[2] Auerswald, P. (2001). The complexity of production, technological volatility and inter-

industry differences in the persistence of proÞts above the norm, Working paper, Harvard

University.

[3] Bajari, P., Benkard, L. & Levin, J. (2003). Estimating dynamic models of imperfect

competition, Working paper, Stanford University, Stanford.

[4] Basar, T. & Olsder, J. (1999). Dynamic Noncooperative Game Theory, 2nd edn., Society

for Industrial and Applied Mathematics, Philadelphia.

[5] Benkard, L. (2000). A dynamic analysis of the market for wide-bodied commercial

aircraft, Working paper no. 7710, NBER, Cambridge.

[6] Besanko, D. and Doraszelski, U. (2004). Capacity dynamics and endogenous asymme-

tries in Þrm size, Rand Journal of Economics 35(1): 23�49.

[7] Besanko, D., Doraszelski, U., Kryukov, Y. & Satterthwaite, M. (2003). Learning-by-

doing, organizational forgetting, and industry dynamics, Working paper, Northwestern

University, Evanston.

[8] Caplin, A. & Nalebuff, B. (1991). Aggregation and imperfect competition: On the

existence of equilibrium, Econometrica 59(1): 26�59.

[9] Ching, A. (2002). A dynamic oligopoly structural model for the prescription drug markt

after patent expiration, Working paper, Ohio State University, Columbus.

[10] Davis, S. & Haltiwanger, J. (1999). Gross job ßows, in O. Ashenfelter & D. Card (eds),

Handbook of Labor Economics, Vol. 3, Elsevier, Amsterdam, pp. 2711�2805.

[11] de Roos, N. (2004). A model of collusion timing, International Journal of Industrial

Organization 22: 351�387.

[12] Doraszelski, U. (2003). An R&D race with knowledge accumulation, Rand Journal of

Economics 34(1): 19�41.

34

[13] Doraszelski, U. & Satterthwaite, M. (2001). Foundations of Markov-perfect industry

dynamics: Existence, multiplicity, and incomplete information, Working paper, North-

western University, Evanston.

[14] Dunne, T., Roberts, M. & Samuelson, L. (1988). Patterns of Þrm entry and exit in U.S.

manufacturing, Rand Journal of Economics 19(4): 495�515.

[15] Erdem, E. & Tybout, J. (2003). Trade policy and industrial sector reponses: Using evo-

lutionary models to interpret the evidence, Working paper no. 9947, NBER, Cambridge.

[16] Ericson, R. & Pakes, A. (1995). Markov-perfect industry dynamics: A framework for

empirical work, Review of Economic Studies 62: 53�82.

[17] Fershtman, C. & Pakes, A. (2000). A dynamic oligopoly with collusion and price wars,

Rand Journal of Economics 31: 294�326.

[18] Filar, J. & Vrieze, K. (1997). Competitive Markov decision processes, Springer, New

York.

[19] Goettler, R., Parlour, C. & Rajan, U. (2004). Equilibrium in a dynamic limit order

market, Working paper, Carnegie Mellon University, Pittsburgh.

[20] Gowrisankaran, G. (1999). A dynamic model of endogenous horizontal mergers, Rand

Journal of Economics 30(1): 56�83.

[21] Gowrisankaran, G. (1999). Efficient representation of state spaces for some dynamic

models, Journal of Economic Dynamics and Control 23: 1077�1098.

[22] Judd, K. (1998). Numerical Methods in Economics, MIT Press, Cambridge.

[23] Kulkarni, V. (1995). Modeling and Analysis of Stochastic Systems, Chapman and Hall,

London.

[24] Langohr, P. (2003). Competitive convergence and divergence: Capability and position

dynamics, Working paper, Northwestern University, Evanston.

[25] Markovich, S. (1999). Snowball: The evolution of dynamic oligopolies with network

externalities, Working paper, University of Chicago, Chicago.

35

[26] Pakes, A. (2000). A framework for applied dynamic analysis in I.O., Working paper no.

8024, NBER, Cambridge.

[27] Pakes, A., Gowrisankaran, G. & McGuire, P. (1993). Implementing the Pakes-McGuire

algorithm for computing Markov perfect equilibria in Gauss, Working paper, Yale Uni-

versity, New Haven.

[28] Pakes, A. & McGuire, P. (1994). Computing Markov-perfect Nash equilibria: Numerical

implications of a dynamic differentiated product model, Rand Journal of Economics

25(4): 555�589.

[29] Pakes, A. & McGuire, P. (2001). Stochastic algorithms, symmetric Markov perfect equi-

librium, and the �curse� of dimensionality, Econometrica 59(5): 1261�1281.

[30] Pakes, A., Ostrovsky, M. & Berry, S. (2003). Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples), Working paper, Harvard University,

Cambridge.

[31] Pesendorfer, M. & Schmidt-Dengler, P. (2003). IdentiÞcation and estimation of dynamic

games, Working paper no. 9726, NBER, Cambridge.

[32] Song, M. (2002). Competition vs. cooperation: A dynamic model of investment in the

semiconductor industry, Working paper, Harvard University, Cambridge.

36

