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Abstract. Solving large economic models requires large amounts of compu-
tational e�ort, as the complexity of these models increases the computational
e�ort required in their solution increases dramatically. To examine the nature
of these solutions researchers need to repeatedly solve models using di�erent
parameter sets, this compounds the need for computational e�ort. This pa-
per examines the use of distributed computing as a way of providing large
amounts of computational e�ort. It examines distributed computing projects
such as \SETI@Home" which uses millions of computers supplied by volun-
teers to process recorded radio telescope data, the Distributed.NET project
that deciphered the 64-bit RC5-64 cipher in 2002 and the BOINC project that
allows volunteers to specify the projects that their PC time can be used in.
The paper proposes a technique that will use distributed computing to solve
dynamic models. A sample model is presented. The model can be solved using
a shooting algorithm which requires a search over many candidate solutions.
In the distributed approach, a central server will use a database to log poten-
tial search areas and pass these on to the distributed computers who will then
run algorithms to search over candidate solutions. Once complete the results
of the search will be reported back to the server.

1. Introduction

Computers have helped to revolutionise the way economists and scientists look
at the world, they have allowed the production of ever more complex mathematical
models that model the physical universe. These models range from the modeling
of molecules and their behavior to the modeling of the Earth's complete weather
systems. They can be used to predict the future, prove or disprove theories and all
without the need to resort to the more traditional laboratory techniques.

Up until the 1990's if you wanted to do any work on complex mathematical mod-
els at the end of the day you would have to access some high powered computer and
the more complex your model the higher the power of the computer needed to solve
it. In the 1990's, because of Moore's Law [10] which states, that computing power
doubles every 18 months, computing power had become cheaper and more available
and as a result desktop personal computers had the power of supercomputers of
a few years previously. Along with this extra available processing power the im-
proved communication facilities o�ered to computer network designers by the early
wide area networks protocols allowing the Internet to begin it's massive rise, has
allowed these powerful computers to be connected together to share information.
The combination of processing power and much improved communication has also
allowed researchers to connect computers together via these networks to provide
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computational capabilities equivalent to supercomputer facilities for use in research
projects.

In 1996 the idea of using these fast, connected, cheap computers in major research
projects occurred to many people independently at about the same time, but all the
projects had many similarities. They all shared the fact that they were based on
client server architecture i.e. clients got some task from a server, the server handled
the data distribution and central management jobs. The task was delivered across
the communication media from the server to the client, the client worked on the
task and returned the result to the server at a later time. The server updated a
database of completed tasks and kept track of the tasks that did not return.

2. Distributed computing projects - a brief history

Distributed computing has been around for a long time in the scienti�c world,
scientists by nature have often collaborated on projects and as such have been keen
to use computers to help them in these collaboration tasks. However the use of
distributed computing involving the Internet and the general public is a relatively
recent event. It �rst appeared in the early 1990's as a solution to a lack of computing
power available to researchers. These days this form of distributed computing is
showing that it can provide signi�cantly more CPU power than existing Super
Computers [2].

How then has this distributed Computing evolved into the position it is in today?
One problem that has been of interest to Mathematicians for hundreds of years is the
factoring of large integers. To do this as quickly as possible two things are needed: a
large amounts of processing power and an e�cient algorithm to factor the numbers.
In 1988 Lenstra, Lenstra Jr.,Manasse and Pollard used their new algorithm [1] to
reduce substantially the amount of time taken to factor large numbers of the form
re ± s. To help speed the process of factoring further, the software based on their
algorithm distributed the factoring tasks over a number of workstations within the
DEC laboratory where they worked at the time. In order for the project to expand
they needed access to more computing power and they calculated that they could
\get the equivalent performance from 300 workstations or 1200 PCs or a single high

speed factoring computer" [9]. Obviously if they could get the processing power for
free then why bother with buying expensive hardware? With this in mind they
extended the project to include computers outside the laboratory and as this was
in the time before the widespread use of the Internet they communicated with the
computer users via email. In 1990 they had about 100 CPU time donators and
they were working together to factor numbers with 100 digits. This project led
on to the Number �eld sieve project where the number of collaborating computers
grew to several hundred and they were used to factor numbers in the 100+ digit
range. As the number of contributing computers grew the problems associated
with work distribution grew and the distribution of work via email, whilst �ne for
small numbers of distributed computers, became a major problem. They solved
this by using a server computer to handle the distribution and collection of work
and so this project became the �rst distributed computing project to make use of
free computer time.

Another project along similar lines to the factoring of large numbers project
is the search for very large prime numbers of the form 2n − 1, these numbers
are called Mersenne primes after the French monk Marin Mersenne. In his paper
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Cogitata Physica-Mathematica (1644) Mersenne stated that the numbers 2n − 1
were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 He had tested up to n =
19 but the numbers above this were not tested in his lifetime. It was over 100 years
later when Euler veri�ed the next number on the list, 231 − 1, was prime. Another
hundred years later in 1876, Lucas veri�ed 2127 − 1 was prime. Seven years later
still, Pervouchine showed 261−1 was prime, but this was not on Mersenne's original
list. In the early 1900's Powers showed that Mersenne had also missed the primes
289− 1 and 2107− 1. And �nally it was in 1947 that the Mersenne's list of numbers
where n ≤ 258, had been completely checked and it was determined that the correct
list is:

n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

The number 2257 − 1 was not prime and therefore not on the list after all.
Work continued on the search for other larger Mersenne primes using more and
more powerful computers, right up until 1996 the search for these numbers was
restricted to the most powerful computers of the time. On 3rd September 1996
the number 21257787 − 1 (known as M1257787) was the last Mersenne prime to
be found using a supercomputer, it was found by Slowinski and Gage [11] using
a Cray T94 supercomputer. This was not the end of the Mersenne prime hunt
though, merely a change in the type of tools used in the hunt. It was, however,
the end of the use of supercomputers in the search, as the last six Mersenne primes
have been found by distributed computing. The Great Internet Mersenne Prime
Search project (GIMPS) has been leading the hunt for these primes. It was set up
by George Woltman and was started in 1996 to continue the search for this type
of prime. In November that year the 35th Mersenne prime number was discovered.
The project continues to this day and the latest number to be found was on 15th
May 2004, if con�rmed the number will be the 41st Mersenne prime. If you would
like to help with a donation of some of your unused CPU time you can �nd them
at http://www.mersenne.org/prime.htm.

Why go to all this e�ort to �nd these prime numbers? Mersenne primes are used
in cryptography to generate the keys used in the encryption process, the ability to
�nd these keys faster means that the codes produced by the encryption process are
not so secure. At the moment there are two competing encryption standards for
public key encryption; the RSA (Rivest, Shamir, Adelman) standard and the Fast
Elliptic Curve Encryption (FECE) which is based upon Mersenne primes and was
developed by Richard Crandall [8]. The RSA standard has been around for over 20
years, but FECE although much more recent, has already gained the recognition
of standard organizations such as IEEE, ANSI and ISO. The recent progress in
the factorisation algorithms and the success of projects like GIMPS has forced
a signi�cant increase in the key size for the RSA algorithm. The large key size
means that software implementations of RSA are slow and are not good in certain
applications. Hardware implementations of the RSA algorithms require large areas
of silicon to impliment and are therefore expensive and not very well suited for
applications such as smart cards which rely on the fact that they are small and
cheap.

The FECE algoritm is an emerging class of cryptosystems that o�ers more se-
curity per key bit than any other known public key scheme. With FECE the same
security is obtained using an almost ten times smaller key than for RSA. This
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leads to fast software implementations and fast and area-e�cient hardware imple-
mentations. Additionally, FECE is not a single algorithm but rather a family of
algorithms. The user can choose a particular transformation from this family as a
tradeo� between the speed and the security of the cipher.

The GIMPS project attracted about 4000 volunteers contributing their unused
CPU time to the project, however this large number was dwarfed by the RSA code
breakers project. In the late 1990's RSA, in a bid to test it's own products issued a
number of challenges based on a direct attack on encrypted text using various types
of encryption. In one challenge a standard cipher used by the U.S government in
the 1970's was used to code a message. The key needed to unlock the message was a
56-bit binary number. There are various ways to tackle this problem but the brute
force method to unlocking the message is to try all 256(7x1016) di�erent binary
numbers. In June 1997 a public distributed computing project called DESCHALL
managed by Verser, Curtin and Dolske [14] hit on the correct key after only trying
20% of the available possibilities, they were rewarded by RSA a prize of $10,000.
Later that year another RSA challenge which also employed a 56-bit key but using
the RC5 encryption algorithm was deciphered. This time almost 50% of the key
space was searched before the correct key was found. The key was found by the
Bovine project organized by Beberg, Lawson and McNett [3]. This project made
history by enthusing the general public in a way never seen in distributed computing
up until that point. The massive response could be something to do with the
fact that peoples imaginations were �red because they were using their computers
to try to break Government codes, league tables of key statistics were also used
to encourage the competitive spirit of contributors. The project attracted 4000
teams who, between them, contributed 26,000 pentium computer equivalents, all
this computing e�ort was processing 7 billion keys per second at the height of the
project. RSA still has contests running and the latest number to be factored was
RSA-576 and it was factored in December last year. The current number being
worked on is RSA-640.

In 1996 another project making use of the Internet and unused computing time
was proposed. The Search for Extra Terrestrial Intelligence at home or SETI@home
project was launched, like the previous projects it was also designed to make use
of the unused capacity on ordinary desktop PCs connected via the Internet, it
also built on the successes of the RSA code cracking project in that it employed
techniques to encourage participation by the general public. In general the SETI
project was set up to analyse data recorded from the Arecibo radio telescope looking
for signs of intelligent life. In their paper \A new major SETI project based on
Project Serendip data and 100,000 personal computers" Sullivan, Werthimer et
al [13] proposed the use of \massively parallel computation on desktop computers
scattered around the world". They were aware that to be able to attract the large
numbers of people they needed for their project to be successful they needed to
make the project attractive to the general public. In the words of the authors the
project would;

(1) be the �rst time ordinary computer users will be able to participate in a
major scienti�c experiment.

(2) be the largest distributed computation ever undertaken.
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(3) provide for each participant the slight but captivating possibility that his
or her computer may be instrumental in the detection of another technical
civilization in the Milky Way.

The project is similar to GIMPS and the RSA code cracking projects in that it
relied on interested users donating their free CPU time to the project. To make the
client software more attractive it makes use of the fact that most computer users
have some sort of screen saver running on their computer to preserve the life of the
CRT displays. So the client software, as well as a performing the data analysis task
required by the project also performed the relatively mundane but attractive task
of screen saver. All participants in the project had to do was download the SETI
client, load it onto their machines, con�gure it and leave it. The SETI client detects
when the computer is not being used and runs its screen saver and data analysis,
the program processes recorded radio telescope data from project Serendip IV. The
data is a continuous tape-recording of a 2MHz signal centered on 21cm HI line.
This data is broken into small chunks of 50 seconds of 20KHz bandwidth. These
chunks are stored on a server and given out to client computers over the Internet
to process. The project expected 100,000 computer clients to download the chunks,
this would give them the computing power of a fraction of a supercomputer. In
all the recording amounts to 25GBytes of data to process every 11 hours. It was
expected that each chunk of data would be processed in approximately `several
days' after which the client computer would report the results. In 1997, when the
project was conceived, it was envisaged that with 180,000 users they could process
43% of the data recorded. The project actually attracted millions of participants
and is still running today, but under the banner of a more general project called
Berkeley Open Infrastructure for Network Computing or BOINC for short. To date
SETI@home has used 1.5 million years of CPU time [2] and has shown just how
successful Public Computing can be. They have, however, not found any evidence
of extra terrestrials!

It is still di�cult for researchers to make use of this distributed computing re-
source, one way this problem may be solved has been outlined by the BOINC
project. In his paper \Public Computing: Reconnecting People to Science" [2],
Anderson outlines the attractions to scientist and researchers of tapping into the
massive amount of CPU time out there on the Internet. He also points out the
social and technical aspects of public computing. Socially public computing is only
successful if people participate, SETI@home attracted 4.6 million participants and
as such can be described as being very successful. The technical aspects of public
computing require \adapting an application program to various platforms, imple-
menting server systems and databases, keeping track of user accounts and credit,
dealing with redundancy and error conditions" [2]. The BOINC project is an at-
tempt to o�er researchers a tool kit of parts to enable them to convert existing
projects to a public computing project and as such is worth exploring if you are
hoping to make use of public distributed computing.

To sum up: to convert a computing problem into a public distributed computing
successfully the problem needs to be broken down so that {

(1) the processing is not sequential
(2) it does not require large amounts of bandwidth to transmit it over the net.
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3. Solution of dynamic models

The distributed computing technique has been very successful at solving a num-
ber of scienti�c problems. In the rest of this paper we consider it for solving dynamic
economic models. We use a particular continuous-time di�erential equation model.

As we have seen for a problem to be successfully converted into a distributed
computing problem it must not be sequential and it must not require large amounts
of bandwidth to transmit over a network. The model we are interested in described
in Section 4 falls into this category. The model has a stable state and we are
interested in how the model moves from one stable state to another when the model
is exogenously shocked. The problem is to �nd the transient dynamics of the model
to the new steady state. The model has `jumping' variables which jump the model
onto the stable manifold and the transient dynamics are on this manifold. We know
the initial conditions of the non-jump variables, and the terminal conditions of the
jumping variables. To �nd the solution trajectory we use a shooting algorithm i.e.
we turn the two-point boundary value problem into a initial value problem. The
shooting algorithm works by searching or taking a `guess' at the initial conditions
of jumping variables. Once these conditions have been found we have the trajectory
of the stable solution of the model. If the initial condition values we guessed do
not give a trajectory to the stable steady state then the guess was wrong and we
must try again. As you can imagine the amount of guessing or searching necessary
to solve this model will vary but it could be very large. The biggest part of solving
this problem is the searching and as can be seen this can easily be parallelised.
The bandwidth needed to transmit the problem over the network is small, the
initial model, containing search algorithm and di�erential equation solver can be
transmitted over a network in no more the a few hundred kilobytes. The results of
searches and computations will be small and possibly not more than a few kilobytes.

Many computers searching over di�erent areas reporting their success or oth-
erwise to a central server is a very good use of the distributed computing model
discussed earlier. As such using the this model for the solution of dynamic models
looks to be ideal. The next section of this paper examines the dynamic model that
we are interested in examining.

4. The Dynamic Model

The dynamic model we use as a test model is that presented in [7]. The model
concerns the investment decision of a pro�t-maximizing �rm with n types of capital.
The �rm faces a Cobb-Douglas production technology, and has adjustment costs
associated with the installation of new capital. The magnitude of these adjustment
costs is governed by the magnitude of parameters, bi. The decision of the �rm can
then be summarized as follows: Choose the Ii's to maximize:

(4.1) V =

∫ ∞

0
e−rt[F (K1,K2, · · ·Kn)−

n∑
i=1

Ii]dt

subject to:

_Ki = Ii − bi(
I2i
Ki

)(4.2)

F (K1,K2, · · ·Kn) = a
∏n

i=1 Kαi
i(4.3)
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with initial capital stocks Ki = Ki,0 for the i = 1, 2, · · · , n capital stocks, and
where: ∑n

i=1 αi < 1;
Ki represents the real stock of capital of type i;
Ii represents the real level of investment of type i;
F (K1,K2, · · ·Kn) represents real output;
r represents real interest rate (assumed exogenous); and
a, bi and αi represent exogenous parameters.

The dynamics of capital accumulation reduces to:

_qi = [r − bi(�(bi, qi))
2]qi − Fi, for i = 1, 2, , · · · , n(4.4)

_Ki = �(bi, qi)[1− bi�(bi, qi))]Ki, for i = 1, 2, , · · · , n(4.5)

where:

Fi = FKi(4.6)

=
aαi

Ki

n∏
i=1

Kαi
i(4.7)

�(bi, qi) =
qi − 1

2biqi
(4.8)

Note that the initial conditions for the capital stocks (Ki's) are known, but that
the initial conditions for the co-state variable (qi's) are not. These variables must
`jump', when the model is shocked, so that the model's solution trajectory is on
the stable manifold for the solution. For more details see [6, 12, 5, 7].

With di�erent numbers of capital stock and di�erent values of the parameters,
it is possible to generate many di�erent parameterised models. The models can
be divided into classes of interest depending upon such features as dimensionality
(parameter n) and degree of nonlinearity (the bi's and αi's).

Solving each model for an exogenous shock to interest rates (r) is a two-point
boundary value problem that requires the solution to many possible candidates to
the dynamic model given by equations 4.4 and 4.5. Each candidate solution will
have a di�erent `guess' for the initial conditions of the co-state variables.

The solving of each candidate model is computational intensive and requires
an algorithm. Most algorithm's require a numeric search as well as a numeric
di�erential equation solver. But once the solution is found only a small amount of
information is required to replicate the solution trajectory. This information is the
initial conditions for the co-states (qi's) and together with the initial conditions for
the capital stocks (Ki's) they de�ne the model as an initial value problem that can
be easily solved with a single pass of a numeric di�erential equation solver.

Thus the model is an ideal test model for a distributed computing technologies as
low bandwidth is needed for the results, but the calculation of the results requires
substantial computing e�ort.

5. Setting up a distributed system to solve dynamic models

How are we going to set up a system that will allow computers connected via the
Internet to donate their un-used CPU time to a project that will use distributed
computing to solve dynamic models? It is the intention of this research to show
that the idea of using this method of solving dynamic models is feasible and useful,
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as such an o�-the-shelf solution would be the quickest way to do this. To this end,
the �rst stage in the implementation of this work will be to set-up a BOINC [4]
based project. On their web site, the BOINC team setout the requirements for
creating the server platform for a distributed computing project using volunteer
computer resources. An overview of those requirements is presented here.

The operating system (OS) required for the central server is Unix or Linux,
many versions of these OS are supported. Once the correct OS has been set up
on the server a web server that will allow the project web site to be hosted on
the this machine must be con�gured, this is the visible part of the project that
will be seen by project contributors on the Internet. Any web server software
can be used but the most likely will be the Apache web server which comes free
with most versions of Linux. The BOINC software supplied, needs to be com-
piled and con�gured, this requires the installation of the correct compiler (please
see http://boinc.berkeley.edu/software.php),again, with most versions of Linux this
compiler is free. The project database is based on MySQL database software
(http://www.MySQL.com) which can again be obtained free under the GNU gen-
eral public licence agreement. This software must also be installed on the project
server. When the database up and running the next thing to do is to set up the ap-
plication, in our case this will need to be written, this will be the search algorithm,
di�erential equation solver and communication with the server software. The ap-
plication can be written in any language but the BOINC web site gives examples
of how to include FORTRAN applications with the native C++ language that the
sample project is written in. As our application software is not available at the
moment we will test the software set up using the sample application supplied with
the BOINC software.

With the Web site up and the application software available it just remains to
create work units for the client computers to process, in our case this will involve
de�ning the parameter-sets and search areas for the client computers to work on,
these are stored in the project database using the tools provided. With the work
units de�ned the setup of the basic project server is complete all that remains to to
create the clients, initially this can be done on the server computer, but ultimately
the clients will obviously be on di�erent computers. The clients will need to setup
accounts on the project server and be assigned work by the server. Once con�gured
the client will process the test �les and credit will build up on the server showing
that the clients are processing work.

The time scale involved in setting up and testing the above server/client systems
will be of the order of a few weeks. To write, optimise and test our own application
software would be approximately six months. It then remains to recruit helpful
members of the public to provide those free CPU cycles we need to show that
Distributed Technology Techniques for Solving Dynamic Models is a useful way
forward in providing more computing power for the investigation of Dynamic Model
behavior.

6. Conclusion

In this paper we have presented an approach to the distributed solution to dy-
namic economic models. The paper contains a discussion of how distributed com-
puting has successfully been used in a number of scienti�c projects, for example the
1.5 million years of free CPU time have been made available to the SETI project.
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We have put forward a sample dynamic model problem that we intend to solve
using this approach. The paper gives details of the how we intend to solve the
problem. If you would like to be involved in the project by denoting your free
computer time then email paul@itb.edu.bn.
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