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Abstract

This paper considers a discrete-time model of a financial market with one
risky asset and one risk-free asset, where the asset price and wealth dynamics
is determined by the interaction of two groups of agents, fundamentalists and
chartists. In each period each group allocates its wealth between the risky as-
set and the safe asset according to myopic expected utility maximization, but
the two groups have heterogeneous beliefs about the price change over the next
period: the chartists are trend extrapolators, while the fundamentalists expect
that the price will return to the fundamental. We assume that investors have
CRRA utility, so that their optimal demand for each asset depends on wealth.
A market maker is assumed to adjust the price at the end of each trading
period, on the basis of the excess demand and according to particular stabiliz-
ing policies. The model results in a three-dimensional nonlinear discrete-time
dynamical system, with growing price and wealth processes, but it is reduced
to a stationary system in terms of asset returns and wealth shares of the two
groups. It is shown that the long-run market dynamics is highly dependent
on the parameters which characterize agents’ behavior (in particular the risk
aversion coefficient and the chartist extrapolation parameter) as well as on the
initial condition (in particular the initial wealth shares of fundamentalists and
chartists). It is also shown that for wide ranges of the parameters a (locally)
stable fundamental steady state may coexist with a stable “nonfundamental”
steady state, where price grows faster than fundamental and only chartists sur-
vive in the long-run. In such cases, the role played by the initial condition is
analyzed by means of numerical investigation and graphical representation of
the basins of attraction. Other dynamic scenarios include limit cycles, periodic
orbits or more complex attractors, where in general both types of agents survive
in the long run, with time varying wealth fractions.



1 Introduction

In recent years several models of asset price dynamics based on the interaction
of heterogeneous agents have been proposed (Day and Huang (1990), Kirman
(1991), Brock and Hommes (1998), Lux (1998), Gaunersdorfer (2000), Chiarella
and He (2001a), (2003). These models assume a one risky/one riskless asset
market, and focus on the effect of heterogeneous beliefs and trading rules on
the dynamics of the price of the risky asset. Most of these models, some of
which allow the size of the different groups of agents to vary according to the
relative profitability of the adopted trading rules, are of necessity not very math-
ematically tractable. In Chiarella et al (2002), whose antecedents are Chiarella
(1992), Beja and Goldman (1980), and Zeeman (1974), a two-dimensional dis-
crete time model of asset price dynamics has been developed, which contains
the essential elements of the heterogeneous agents paradigm whilst still remain-
ing mathematically tractable. In that paper, a financial market with a risky
asset and an alternative riskless asset has been assumed, consisting of two types
of traders, fundamentalists and chartists, and of a market maker, who adjusts
prices in each period depending on excess demand. In Chiarella et al (2002),
as well as in most studies on heterogeneous agents’ interaction, the evolution of
agents’ wealth and its effect on price dynamics is left in the background; indeed,
in those papers the underlying assumptions about agents’ portfolio allocation
follow the framework of Brock and Hommes (1998), where optimal demand for
the risky asset is independent on agents’ wealth, as a result of the underlying
CARA utility functions.

In general these assumptions are unrealistic: a more realistic framework,
where investors’ optimal decisions depend on their wealth, has been proposed
and analyzed through numerical simulation by Levy et al (1994, 1995). This
framework is consistent with the assumption of CRRA utility functions. More
recently, Chiarella and He (2001b), (2002) have proved analytically the existence
of multiple steady states, as well as of more complex dynamic scenarios, in
heterogeneous agents models with wealth dynamics.

The present paper aims to contribute to the development and analysis of such
models, by analyzing the dynamics of asset price and agents’ wealth within a
fundamentalists/chartists framework similar to the one developed in Chiarella
et al 2002. In addition, we allow for a trend in the fundamental price of the risky
asset, due to an assumed growing dividend process. As a consequence, the model
that we develop results in price and wealth being determined simultaneously over
time, as in real markets, which gives rise to interdependent growing wealth and
price processes. In order to obtain analytical results about the dynamics of the
growing system, to fully understand the range of dynamic scenarios generated by
the model, and to discuss the role played by the key parameters and by the initial
conditions in the long-run evolution, the nonstationary model is reformulated
in terms of returns and wealth shares and reduced to a stationary system.

The structure of the paper is as follows. Section (2) presents the general
framework of the model. In particular Section (2.1) derives the optimal agents’
demand for the risky asset in a general setting, as a function of agents’ beliefs



about the risky return, under the assumption of myopic expected utility maxi-
mization with CRRA (power) utility of wealth function. Section (2.2) derives a
benchmark notion of fundamental solution, which plays a role in fundamental-
ist expectations formation. Section (2.3) describes the schemes used by funda-
mentalists and chartists to revise their expectations.Section (2.4) describes how
demands are aggregated by a market maker, who sets the price depending on ex-
cess demand and with a view to long-run market stability. Section (3) presents
the resulting (growing) nonlinear dynamical system for the dynamic evolution
of fundamental value and price, agents’ expected returns, and wealth of the two
groups; this is reduced to a stationary map (Section (3.1)) in terms of actual
and expected capital gain of the risky asset, fundamental to price ratio, and
wealth shares of the two groups. The steady states are determined and their
properties are discussed in Section (3.2). Numerical simulation of the global
behavior and discussion of the main dynamic scenarios is contained in Section
(4). Section (5) contains some conclusions and discussion of future research.

2 The model

We consider a discrete-time model of a financial market with one risky asset and
one riskless asset, two types of interacting agents, fundamentalists and chartists
(denoted by j € {f,c}), and a market maker. Each group has CRRA utility of
wealth function.

The starting point is Chiarella, Dieci and Gardini (2002), whose antecedents
are Chiarella (1992), Beja and Goldman (1980), and Zeeman (1974).

We denote, at time ¢, by P, and Y; the market price and the fundamental
price of the risky asset, respectively, by ng ) and Zt(j ) the wealth of agent type
j and the fraction of wealth invested in the risky asset, by r the (constant) risk-
free rate, by D; the (random) dividend, while D, 1/P; is the dividend yield in
(t,t+1). The fundamental price is assumed to be known to the fundamentalists
and to the market maker.

We denote by Egj ), Vart(J ) the “beliefs” of investor type j about expectation
and variance.

Wealth of agent j evolves according to

ol = oY+ z0) (Pt“ ha 1;:“ — Pt) +oP (1 - 20y =
b [11e4 2 (Rat P —leony)

where (Pyy1 + Dyy1 — (14 r)P;)/P; represents the excess return in (¢,¢ + 1).



2.1 Asset demand

Each agent is assumed to have a CRRA power utility of wealth function of the
type
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where x > 0 and the parameter A0 > represents the relative risk aversion
coefficient. 4

Each agent seeks the investment fraction Zt(J ) maximizing the expected util-
ity of wealth at time ¢ + 1:

max B [u(Q),)]

Z0)

Under simplifying assumptions (see e.g. Chiarella and He (2001b) the opti-
mal investment fraction in the risky asset is approximately given by:

Z(j) _ Egj)[(PtJrl + Diy1 — Pt)/Pt — T]
t - . T
A(j)vargj) [(Pi41+ Diy1 — P)/ P
or
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where p, 1 = (Poy1 — P)/P; and 6441 = Dyy1/P; denote the capital gain and

)

the dividend yield, respectively. Therefore, Zt(j is proportional to agent j’s

“risk-adjusted” expected excess return

2.2 Market clearing price and fundamental solution

Following the framework of Brock and Hommes (1998), the concept of fun-
damental solution which we use refers to the price that would be obtained if
the agents were homogeneous with regard to their expectation of the excess re-
turn. Furthermore this price is assumed to satisfy a long-run stability condition,
namely the “no bubbles” condition.

To get a benchmark notion of fundamental solution in this framework, denote
by Nt(j ) = Qij )Zt(j ) / P; the number of shares demanded by agent type j at time
t and by N/ the supply of shares at ¢. Let us consider the market equilibrium
condition at time ¢

N, = N?



where Ny =3 Nt(j ). Rewrite the above equilibrium condition as

= Ntspt2 (2)
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Now assume for simplicity that agents have constant (not necessarily homoge-
neous) beliefs about the variance of the excess return in (¢,¢ 4+ 1) and denote
by o20) = Varlgj)[pprl + 8441 — 7] these beliefs (j = f,c). Denote also by

=2 Q(j ) the total wealth and by wij ) = Q,Ej ) /€2 the wealth proportion of

agent j, with w(c) =1- wgf ). Assume that all agents have homogeneous beliefs
about the expected excess return. Then eq. (2) can be rewritten as

Ei[Piy1 4 Diy1 — (14 17) P Zw )\(J) 2G) = QP (3)

where Q; = N7 P,/ represents the value of the supply of shares over total
agents’ wealth. Finally

Ei[Pit1+ Diy1 — (14 7)P] = Qi&, P (4)
where
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Therefore eq. (4) can be rewritten as
B[Py + Do = (L+ 1) By (5)

where rf = r + @£, represents the expected return that would be required
n (t,t + 1) under homogeneous beliefs about tomorrow’s expected price and
dividend. In other words the quantity

NPt (n__ 1 M1 17
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represents the required risk-premium in (¢,¢ + 1), under the same assumption.

Here we focus on the particular case of zero supply of shares (similarly to
Brock and Hommes (1998), Chiarella and He (2001a) ), and we leave the general
case to the Appendix. For Nf =0, V ¢, eq. (4) becomes

Et[Pt+1 + Dt+1] = (1 + T)Pt (6)

where the required expected return is equal to the risk-free rate. As it is well
known, the unique “fundamental” solution to the expectational equation (6)
which satisfies the “no-bubbles” transversality condition

i BPs] _
k—too (1+7)k



is given by

[o.o]
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In particular, in the case of an i.i.d. dividend process {D;} with E;[D; 1] = D,
k = 1,2, ..., the fundamental solution (7) is constant, given by Y; =Y = D/r,
while in the case of a dividend process described by Ei[Diy1] = (1 + ¢)*Dy
k=1,2,..., ¢ > 0 (Gordon growth model) the fundamental solution is given by

Yi=(1+¢)D:/(r—¢) (8)

We will use the latter specification of the dividend process: as one can easily
check this implies that the fundamental evolves over time according to

EyYita] = (1+¢)Y; 9)

and that along the fundamental path the expected dividend yield and the capital
gain are given respectively by
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while the expected return is the risk free rate r = Ey[p; 1] + E¢[0¢41].

Throughout this paper it will be assumed that agents share the same beliefs
about the dividend process, while they form different beliefs about the “price”
component of the return.

2.3 Expectation formation

The two groups differ in the way they update their “beliefs” about the price
change over the next period.

The fundamentalists believe that the price will return to the (known) fun-
damental in the future, so that their expected price change is given by

Eff) [Piy1— P = nY:—P)+ Eff) [Yis1 — Y] =
= nY;— P)+ ¢Ys

The fundamentalist rule is based on the expected change in the underlying
fundamental and includes a correction term, proportional to the difference be-
tween fundamental and current price, which depends on their beliefs about
the speed of mean reversion (captured by the parameter n, 0 < n < 1). We
also assume that fundamentalist conditional variance is constant over time,

Va’"gf) [Pri1 + 0i1] = o2(f)



The fundamentalist demand function becomes

1 9(Yi = P)+ ¢Yi + (1+ ¢)D; — 1P,
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The chartists’ conditional expected price change evolves over time according
to a weighted average (with geometrically declining weights) of past capital
gains, which results in the adaptive rule

mgc) = ELSC) [Pt+1] = Et(c) [ J2)

c P —-P_
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where the parameter ¢, 0 < ¢ < 1, represents the weight given to the most
recent price change.

In order to set an upper bound to chartists’ trend extrapolation, we assume
(similarly to Chiarella et al (2002)) that chartists also increase their estimate of
the variance according to the magnitude of the expected excess return, af(c) =
v (2 |) where 2, = B\ [p, 4 + 8141 — 1] = B [(Prys + Dipr — (1+7)P,) /Py,
so that their demand for the risky asset results in a nonlinear sigmoid function
of the expected risk premium.

In our simulations we use the following specification, similar to Chiarella et
al (2002).

Zt(c) = %Tcmh {9E§C) [Pri1 + 041 — r]} (11)
= %Tcmh {G[mgc) + (14 ¢)D:/P; — 7"]}

where the parameter v = 1/(A9v(9)(0)) represents the strength of chartist de-
mand when the expected excess return is zero (slope of the chartist demand
function computed at the origin).

Remark

Using eq. (8) we get (1 + ¢)Dy = (r — ¢)Y;, and the demand functions (10)
and (11) can be rewritten as

o _ m+rV—P)/P
Z = AN g2(5) (12)
Zt(c) = %Tanh {G[mgc) +(r—¢)Y:/P — 7"]} (13)



2.4 Price setting rules

Price adjustment are operated by a market maker, who is assumed to know the
underlying fundamental.

The market maker clears the market at the end of period t by taking an off-
setting long or short position and announces the next period price depending
on agents’ excess demand. We assume that market maker price setting rule also
includes a correction term aimed at ensuring long-run market stability.

The assumed price setting rule is given in general by

Piy1— P =a(Y, — P) + B[V — Vi) + P, Hy(N — N (14)

where Et(m) [Yie1 — Y] = Eff ) [Yii1 — Y] = @Y} is the market maker’s expected
change in the underlying fundamental, Nt(d) = (Ql(kf )Zt(f ) 4 Qﬁ“) Zt(c)) /P; is the
total agents’ demand at time ¢ (number of shares), Nt(s) is the supply of shares
at time ¢, and Hy(-) is a strictly increasing function, with H¢(0) = 0. In eq. (14)
the term Pth(Nt(d) — Nt(s)) represents the price change due to excess demand,

while a(Y; — P;) + Etm) [Yi+1 — Y] is a corrective term to prevent the price from
moving too far away from the fundamental path.

Notice that total agents’ demand Nt(d) (number of shares) can be rewritten
as Nt(d) = Z;Q4/P;, where Q; = ng) + fo) is the total wealth and Z; =
(ng)Zt(f) + Qgc)Zt(C))/Qt is the fraction of total wealth invested in the risky
asset at time ¢t. Denoting by Q: = N, S)Pt /€ the value of the supply of shares
as a fraction of total agents’ wealth, we also obtain INV; 9 = Q+Q4/ Py, so that

N = N = (20— Qo)

We assume that the market maker reaction to the excess demand is invariant
under changes in the level of ;/P; (“real” wealth), i.e. we assume

Hy (N = Ny = H (N = N/ (u/P)| = H(Zi - Q)

where H is strictly increasing with H(0) = 0. We will assume a linear specifi-
cation in our numerical simulations

H(Zy — Qi) = B(Z: — Q) (8>0)

In particular, in the case of zero supply we get H(Z; — Q¢) = H(Z;) = 8Z;.

3 The dynamical system

Under the assumption of noisy dividend and fundamental processes, the dy-
namics of the model will be given in general by a random nonlinear dynamical



system. In this paper we explore the dynamics of the “deterministic skeleton” of
the model, i.e. we assume that dividends evolve in a deterministic way according
to their (commonly shared) expected value. The dynamics can be summarized
as:

Pyw = Pi+aYy—P)+ oY+ PBZ
mile = (1- c)m,gc) + (P41 — P)/ Py
Yin = (1+9)Y
. . 5 (Pt + Dy — (L+7)P
o) = |:1+T+Zt(ﬂ) ( i1 1 Hll%s (1+r) t)] Jje{fc}
where:
Q = of) 1o
z = (@27 + 0 2{) /0
g0 _ +r)Yi - PP
t - AN g2(5)
79 = %Tanh {G[mgc) +(r—o)Y/P — 7’]}

Although the system results in growing price and wealth processes, it is pos-
sible to obtain a stationary system in terms of capital gain p,; = (Pry1—P;)/P;,
fundamental /price ratio y; = Yi/P;, and wealth shares of fundamentalists and
chartists wﬁj) = ng)/Qt, j € {f,c}, with wéc) =(1- wéf)).

Moreover, we denote by

, j) ( Peyr+ Diga — (1 +7)P,
w§21r+2§”< G H]lgt L+7) t) jelf.ch

the growth rate of wealth of agent-type j over (¢,¢+ 1), and by

Pii14+ D1 — (L+7)B c
2 ol 1l

wt+17’+Zt(

the rate of growth of total agents’ wealth. Notice also that (in the deterministic
skeleton of the model) the actual return on the risky asset in (¢,¢ + 1) can be
rewritten as

P14+ Dy —(1+1)P, Pt+1—Pt+(T—¢)Yt
P, P, P,
= pt(r—Qy—r

—r =

In particular, a dynamic equation for the wealth shares is obtained by rewrit-
ing the wealth recurrent equations (1) for j = f, c as
(

w1 = w01+ wil))



i.e.

Q

ol = w0
c (& i Q
W = el

By summing up the above equations and recalling that wg_{_)l + ng_)l =1 we
obtain

Q c c
“EL = w1+ ) + w1+ wiy)

Q
and therefore
O
wg_{_)l = wgf)(l + wgi)l) s =
] o0+ off) et
w1 +od)+ 1w +ul?) O t+wm)

The stationary system is thus given by

pre1 = oy —1)+ ¢y +BZ; (capital gain)
1
Yt+1 (1(4‘;:0:?1)% (fundamental /price ratio)
m§21 = (1- c)mgc) +cp;pq  (chartist expected cap. gain)
(f) (f)
1+
wi_{_)l = M (wealth shares)
(1 +wit1)
where:
Z = wz + (1 -w)z"
20 _ +r)y -1
¢ AN g20H)
2 = GTanhlf(mi +(r = o)y~ r)]
Wgr)l = r+ Zt(f) (Prg1 + (r—)ye — 1)
wirr = T4 Zi(pa + (1 — )y — 1)

3.1 The map

The time evolution of the stationary system is given by the iteration of the
following nonlinear map T : (p,y, m?), w) — (p',y/,m w’), where the

10



symbol ’ denotes the unit time advancement operator:

pl=aly—1)+¢y+pZ
. ) ¥V =y1+9)/(1+p)
N m =1 —=c)ml +¢p
W' = w47+ ZD( + (r =)y =)/ +7+ Z(p + (r = @)y —7)]

(15)
where
zn - -1
A g2
z) = %Tanh[@(m(c) +(r—¢)y—r)]
Z = whHzl) 4 (1— w(f))z(c)

Although in (15) we have 4 dynamic variables, the map T is in fact a 3-D
map, being p’ a function of y, m(?), and w/).

3.2 Steady states

As one can check, the map (15) has two types of steady states, that we de-
note by “fundamental steady states” and by “nonfundamental steady states”,
respectively. The map also presents other important “invariant” subsets of the
phase-space.

“Fundamental” steady states

Fundamental steady states are characterized by

y = L p=mld=¢
w(f) — m(f)7 @(f)e 071}

i.e. by the price being at the fundamental (P, = Y;, for any ¢) and growing
at the fundamental rate ¢, and by zero excess demand, Z = 0. The long-run
wealth distribution (wf), 1 —w)) at a fundamental steady state may be given,
in general, by any w'/) € [0,1] (numerical simulation of the dynamical system
will confirm that the steady state wealth distribution depends on the initial
condition).

“Non fundamental steady states”

It is easy to check that the “fundamental steady states” are not the only
steady states of the model formulated in terms of returns and wealth shares.

11



Depending on the parameters, the map may have other “steady states”, coex-
isting with the fundamental ones, characterized by

y = 0 w =0 p=mlP=p>¢

P ; % = ITanhl(p - )

It can be easily shown that the “nonfundamental” growth rates 7 which come
out as (positive) solutions of the above equation are higher than the risk free rate
r (and than the fundamental growth rate ¢). Nonfundamental steady states are
thus characterized by price growing faster than fundamental, p = m(®) =75 >
r > ¢, fundamental /price ratio converging to 0, y = 0, i.e. limy_,o, P;/Y; = 400,
market dominated by chartists, w(f) = 0, and permanent positive excess demand
Z =7 = (v/0)Tanh0(p —r)] > 0.

where p solves

The map also presents other important “invariant” subsets of the phase-
space, that are represented by the cases where only fundamentalists (w(f ) = 1)
or only chartists (w() = 0) populate the market.

In particular, in the case w() = 0 (market dominated by chartists) the
dynamics is driven by the lower dimensional map

p=oaly—1)+¢y+ B2
T o =

y(1+¢)/(1+0)
m( = (1 —c)ml® + ¢p/

In this particular case it can be proved that

e the “fundamental equilibrium” y = 1, p = m(® = ¢, is locally asymp-
totically stable for low values of ¢ (chartists extrapolation rate), 3 (price
reaction parameter) and v (i.e. for high agents’ risk aversion).

e for higher values of ¢, § and v the system converges to an attracting limit
cycle (with long-run fluctuations of the price around the fundamental)
or to a “non fundamental” equilibrium (with permanent and increasing
deviation of the price away from the fundamental).

e numerical simulations show that the attractors of the map 7°() (limit cycle,
nonfundamental steady state) are in general attractors also for the map

T, i.e. they can be reached also starting from initial points with w(()f ) > 0.
Thus the analysis of the lower dimensional case with no fundamentalists
helps to understand the dynamics of the system in the general case.

4 Numerical simulation of the global dynamics

This section contains numerical experiments aimed at gaining some insight into
the global dynamics of the model. Overall, these simulations show the range

12



of dynamic scenarios that the dynamic model is able to generate. In particular
the analysis will focus on the situations of coexistence of fundamental and non-
fundamental steady states, with an analysis of the role of initial conditions and
basins of attraction of coexisting equilibria.

Although the model is described by a 3-D system, all the phase-space rep-
resentations will be obtained by means of projections in the p — y plane, except
for the basins of attraction of Fig. 6 (where the initial condition are taken in
the w() —y plane).

Fig. 1 is devoted to the dynamic behavior of the model restricted to the
lower dimensional invariant manifold w(/) = 0 (i.e. when market is dominated
by chartists). As remarked in the previous Section, when the (chartist) risk
aversion coefficient A is decreased (the parameter v is increased) the funda-
mental steady state F' changes from stable (Fig. 1a) to unstable focus (Fig. 1b)
through a (supercritical) Neimark-Hopf bifurcation, which creates a stable limit
cycle. The size of fluctuations becomes wider for lower risk aversion (Fig. 1c)
until a stable non fundamental steady state N F' appears, to which the system
converges with a persistent deviation of the price away from the fundamental
(Fig. 1d). Similar phase-space transitions can be obtained by increasing the
extrapolation parameter ¢ or the price adjustment parameter 8. The attrac-
tors (limit cycle and non fundamental steady state) which exist for the subcase
w) = 0 may be reached also starting from initial conditions with w() > 0.
This is shown in the following Fig. 2 (where starting from w(()f ) = 0.45 the
market ends up in the same limit cycle as in Fig. 1c¢) and Fig. 8 (which shows
convergence to the nonfundamental equilibrium represented in Fig. 1d, starting
with wl) = 0.56).

While at a fundamental steady states typically both types of agents survive
in the long-run, with constant stationary wealth shares, Figs. 2,8 represent
situations where fundamentalists are out of the market in the long-run, because
their average profits are lower than chartists’ profits. This is not the only
possible outcome associated with disequilibrium dynamics: depending on the
parameters, more complex attractors exist, where both types of agents survive
in the long-run, with fluctuations of wealth shares. An example is the strange
attractor whose projection is represented in Fig. 4a. Figs. 4b,c show that
the motion on the strange attractor has alternating phases, with price much
higher than fundamental when the market is dominated by chartists, whereas
the fundamentalist wealth proportion increases when the price returns close to
the fundamental.

Figs. 5, 6 explore the dynamic behaviour under coexistence of fundamental
and non fundamental steady states. Small differences in the initial condition
(e.g. initial wealth shares) may change the asymptotic dynamics of the system
(compare Figs. 5a,c, where w(()f) = 0.56, with Figs. 5b,d, where w(()f) = 0.57).
Fig. 6a represents the basins of attraction associated with the numerical ex-
ample of Fig. 5: the basins are obtained by letting the initial values of funda-
mentalist wealth share w(()f ) and fundamental /price ratio yo vary in the w(/) —y
plane, for fixed initial values of the other dynamic variables, and by representing

13



in blue (red) the region of initial points which generate trajectories converging to
the fundamental (nonfundamental) equilibrium. Of course, the basins’ structure
depends on the particular parameter set used in the simulation. For instance,
higher values of the chartist parameter ¢ determine an increase of the size of the
basin of the nonfundamental steady state (compare Fig. 6a, where ¢ = 0.25,
with Fig. 6b, where ¢ = 0.75).

Figs. 6a,b show that for sufficiently high values of the initial fundamentalist
wealth share, the system converges to the fundamental (no matter how far is
the initial price from the fundamental). However, for low initial fundamentalist
wealth share, the system may converge to the non fundamental steady state:
surprisingly, this occurs when the initial price is close to the fundamental, while
when the initial price is far enough from fundamental, the price is capable to
return to the fundamental. A possible explanation of this phenomenon is that
when the price is far from the fundamental, a higher fundamentalist demand
(proportional to the deviation from fundamental price) acts as a stronger mean
reverting force.

Figs. 7, 8 show that increasing values of the chartist extrapolation rate c
can destabilize the price and produce a negative effect on fundamentalist profits
and wealth. The numerical experiment is obtained by starting with the same
initial condition, with wéf ) = 40%, and simulating the system under increasing
values of c. In the cases of convergence to the fundamental steady state (Fig.
7 and Figs. 8a,b) the higher is the chartist extrapolation rate, the lower is the
stationary fundamentalist wealth share which is reached by the system in the
long-run, as shown by Figs. 7b,d,f and 8b; this happens because the higher
is ¢, the longer is the transient characterized by price fluctuations around the
fundamental, with fundamentalists’ average profits lower than chartists’ (Figs.
7a,c,e and Fig. 8a). When ¢ becomes higher than a certain threshold, then the
system is completely destabilized and no longer converges to the fundamental
price but ends up in a limit cycle, with zero fundamentalist wealth share and
market dominated by chartists (Figs. 8c,d)

Fig. 9 shows another example of an attractor which “allows” both groups to
survive in the long-run, with time varying wealth shares. This is a periodic orbit
(F'ig. 9c) on which the fundamentalist wealth fraction fluctuates approximately
in the range [35%, 43%)| (Fig. 9d). For slightly different initial wealth shares, the
same figure shows a different trajectory converging to a (coexisting) fundamental
equilibrium, with much higher stationary fundamentalist wealth proportion (see
also Fligs. 9a,b).

5 Conclusions and further research

Following the framework of Chiarella (1992), Chiarella et al (2002), Chiarella
and He (2001a, 2003) and Brock and Hommes (1998), the interaction of funda-
mentalists and chartists has been incorporated in a market maker model of asset
price and wealth dynamics. The resulting dynamical system for asset price and
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wealth turns out to be nonstationary, and a stationary system is developed by
expressing the laws of motion in terms of capital gain, fundamental/price ratio
and wealth proportions (among the two types of agents). It is found that the
presence of fundamentalists and chartists leads the stationary model to have
two kinds of steady states, which often coexist in the phase-space, with differ-
ent long-run stationary returns and wealth distributions: fundamental steady
states, where the price is at the fundamental level, and nonfundamental steady
states, where price grows faster than fundamental, while fundamentalist wealth
proportion ultimately converges to zero.

The chartists’ extrapolation parameter c, together with the chartists’ risk
aversion \(¢ = 1 /7 and the market reaction coefficient 3, play an important
role in the local asymptotic stability of the fundamental steady states, and for
sufficiently high values of ¢, 3, v the price and return dynamics become unstable
due to a Neimark-Hopf bifurcation of the fundamental steady states.

The main impression gained from the numerical simulation of the global
dynamics (Section 4) is that the model is able to generate a wide range of
different dynamic scenarios, with a strong dependence on small changes of the
parameters and of the initial conditions: limit cycles, periodic orbits, strange
attractors, cases of coexistence of multiple steady states, or coexistence of a
steady state with a cyclic attractor. In particular, in the case of coexistence of
fundamental and nonfundamental steady states, the initial wealth distribution
and the initial distance of the price from the fundamental play an important
role in determining the long-run evolution.

Another important feature of this model is that it considers explicitly the
dynamic interdependence between price and wealth distribution among agent-
types: it is found that in general fundamentalists’ average profits are lower than
chartists’ profits (and thus fundamentalist wealth proportion tends to vanish)
when the system moves on a limit cycles or is at a nonfundamental steady state;
on the other hand both types of agents survive in the long-run when the market
is at a fundamental equilibrium, or when it fluctuates on periodic orbits or
strange attractors.

Our analysis in this paper is based on a simplified model, and some exten-
sions are needed in order to develop a more realistic one. First the analysis
here has focused on a deterministic dynamic model which can be interpreted
as the deterministic skeleton of a stochastic model with a noisy growing divi-
dend process: particularly interesting seems the interaction of a noisy dividend
process with the basins’ structure of the underlying deterministic scenarios with
coexisting attractors. Second, although the dynamic modelling of the wealth
proportions “keeps track” of realized profits of the two types of agents and de-
termines endogenously time varying “weights” of fundamentalists and chartists,
this model is one with fixed agents’ proportions, in the sense that agents do
not “switch” amongst different strategies on the basis on their realized profits
or wealth (according to the adaptive belief system introduced by Brock and
Hommes (1997, 1998)). The introduction of “switching” mechanisms and time
varying proportion (similar to Chiarella and He (2002)) would be a very inter-
esting extension of this model. Third, the introduction of a more flexible and
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realistic price setting rule, where the market maker inventory position is also
taken into account, is likely to lead to more realistic dynamics of returns and
wealth fractions.
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Appendix

Derivation of the dynamic model under the assumption of posi-
tive supply of shares

In this Appendix we show how the model can be extended to the case of
positive supply of shares.

Again we derive a benchmark notion of fundamental solution, which refers
to the price that would be obtained if agents were homogeneous with regard
to their expectation of the excess return, and which satisfies a long-run “no
bubbles” condition. o

Denote by Nt(j ) = ng )Zt(J ) /P: the number of shares demanded by agent
type j at time ¢ and by N} the supply of shares at ¢, and consider the market
equilibrium condition at time ¢ (see Section 2.2)

3 Q) EP[Pis1 + Disa — (1 +7)P)

: _ — NsP2
COAVarPpy -]

J

Now denote by 020 = Varl?[p, 41 + 6141 — 7] the belief of agent j about the
variance of the excess return in (¢,2+1), by Q¢ = 3, Q,gj) the total wealth and by
ng ) = ng ) /2 the wealth share of agent j, with wﬁc) =1- wgf ). Assume that
all agents have homogeneous beliefs about the expected excess return. Then
the above market clearing condition can be rewritten as

Ei[Piy1 4 Diyr — (14 7) P = Qi Py

where Q; = N P,/ represents the value of the supply of shares as a fraction
of total agents’ wealth and

1 1
() Lt +—w®)

= - = —_— 16
gt zj:wt /\(J)Jg(j) Wy )\(f)O'?(f) ( )

A& g2(0)

is a (time varying) weighted harmonic mean of the “risk-adjustment coefficients”
)\(j)af(j), j = f,c. Finally

Ey[Pi1 + Dysa] = (L+17) P, (17)

where 7} = r + Q+£; may be interpreted within this framework as the required
expected return on the risky asset in (¢,¢ 4 1), while

-1

_ NP1 (Hy__ 1
T =@, = o, | W )\(f)gg(f)Jr(l*wt )/\(T'?(C) (18)

represents the required risk-premium.
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The case of zero supply (N7 = 0) has already been considered in the pa-
per. Here we consider the case of positive supply, and we make the additional
assumption that in this market (characterized by growing wealth process) the
value of the supply of shares as a fraction of total agents’ wealth is constant
over time, Qt = Ntspt/Qt = Q, Y t.

Same risk aversion and homogeneous beliefs about variance

First assume that agents have the same risk aversion and share the same
(constant) beliefs about the variance, A o2(f) = \()g2(e) = \g2 In this case
the (constant) required risk premium 7; = 7 and the required expected return
Ty =7* turn out to be

T =QMo?

™ =r+r=r+Q\?
and the market clearing condition yields
Et [Pt+1 —+ Dt+1] = (1 + T*)Pt

Assuming homogeneous beliefs about dividends and a dividend process which
evolves according to Fi[Diir] = (1 + @)*Dy, k = 1,2,..., ¢ > 0, the unique
fundamental solution Y; is given by

(40D (40D,
=S e -9 1

where Y; evolves over time according to
EYi] = (1+0)Y:

At the fundamental solution the expected dividend yield and capital gain are
given respectively by

D _
Ei[b141] = Ey { }tjl} =r"—¢=0
t

Y1 - Y,
Eilpi1] = By [%} =9

while the expected return is 7* = r + QAo? = Ey[p, 1] + Ei[6141].
Following similar steps as in the case of zero supply, we obtain the following
dynamical system

Py = P+oaY;—P)+ oY+ PB(Z — Q)
m = (1 —em +[(Py1 — P)/P)]
Yip = (1+9)%;
: : 5 (P Dit1—(1+7)P,
Q,EQI = an) {1+r+zt(a)( t+1 + t+113t (1+7) t)] je{f,ct
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where:

0 = 9P+

7 = "7 +902)/0

g0 _ 1n—P)+ oY+ (1+¢)D — 1P
! Py o2

S0 _ m A (L )DP —r
t /\U?(C)

and we may again assume that chartists increase their estimate of the variance
according to the magnitude of the expected excess return, o7(9) = v(©)(|z4|)
where x; = Et(c) [Dr41 + 61 — 1] = mgc) + (1+ ¢)D/P; — r (so that their de-
mand for the risky asset results in a nonlinear sigmoid function of the expected
risk premium). Consistently with our assumption that agents have homoge-
neous beliefs about variances in equilibrium (where x; = r* —r) we also assume
v (r* — 1) = 02 = g2,
Notice that from (19) we get

(1+¢)Dy = (r" — )Y,

so that agents’ demand functions can be rewritten as (recall also that (r* —r) =

QAo?)

20 = WA -PR)R+ " VR M- PR oY
t Ao2 o2 P,
20 _ m + (= 9)i/Pi—r _m{ + (- )Vi/P—1 Q%Y
t )\05(0) )\0?(0) O’f(c) P,

A stationary system can be obtained through the same changes of variables
used in the simplified zero-supply case, and similar results about the steady
states hold. Notice that, at the fundamental steady states, the total agents

demand is exactly equal to the supply, 79 7V _7_ Q= (r"—r)/ 2

Different risk aversion and heterogeneous beliefs about variance

Consider the market clearing condition, rewritten in the form (17). In this
case it is not immediate to obtain the fundamental solution in closed form,
unless we make simplifying assumptions about future risk premia 71, 712,

. In the derivation of the fundamental price we assume, for simplicity, that

the risk premium computed at time ¢ according to (18) is believed to hold at
all future times ¢ 4+ 1, t + 2, ..., but the estimate of m; and r} is revised at each
point in time.

The fundamental price at time ¢ turns out to be

(1+¢)Dy

e

(20)
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and the expectation (taken at time t) of the fundamental in (¢4 1) will be again
given by.

EiYin] = (14 ¢)Y;

Since the dividend growth rate ¢ is assumed constant, but 7}, ; will be different
from r} (unless the system is at a steady state), the fundamental at (¢ + 1) will
be

(14 ¢) Dty
(7':+1 )

and this implies that the law of motion of the fundamental (in the deterministic
skeleton of the model) is now given by

Yip1 =

T —¢
Y1 = (1+¢)Y*t7
t trtH—ng

It is convenient to consider in the general model a dynamic equation which
accounts for the time evolution of the dividend, instead of the fundamental. We
obtain the following dynamical system

Py1 = P+alYi—P)+ oY+ PS(Z: — Q)
mYy = (1-om{ +c[(Py1 — P)/P]
Dipv = (1+¢)Dy
: : N (P Dyrq — (14+7)P,
Q,EQI = an) {1+r+zt(a)( t+1 + t+113t (1+7) t)] je{f,ct
where:
0 = o)+l
Z, = (P2 + 097/
o0 _ 1t -PR)+6Yi+(A+¢)D — 1P
K P, AN G20
g0 _ mo (L o)D/P -
t /\(C)U?(C)
(ri —¢)
(f) (c) -1
o= riQ Q! 1 Q! 1

—_— + —_—
% AD2(0) O AOg20

and the fundamentalist and chartist estimates of the variance Uf £

allowed in general to depend on the state of the system at time t.

2 )
and o} ©are
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Also in the general case a stationary system can be obtained in terms of
capital gain py = (Piy1—Pt)/ Py, fundamental/price ratio vy, = Yy /Py, dividend
to price ratio ¢, = D;/P;, and wealth shares wﬁj) = Q,@/Qt, j € {f,c}, with
wgc) =(1- wif )). The stationary system is the following

piy1 = alye—1)+ oy + B(Z; — Q) (capital gain)
(1+ @)y - . .
= — dividend to price ratio
Yen (L4 pr41) ( )
m§21 = (1- c)mg ) 4 cpyr1  (chartists expected cap. gain)
(f) (f)
fn _ W (1+wiy) lth shares
Wy —(1 o) (wealth shares)
where:
7z, = (f)Z(f) +(1- t(f))ng
70 _ Ny =D 4oy + (4G —r
t o A g2(5)
S0 _ mO 0o, -
t )\(c 2(0)
1
Y = 4+, (fundamental /price ratio)
(rf — 9)
-1
* ) ! (L
Ty =T + Q — + (1 Wy )L—
/\(f)ag(f) A\ (©) o2(c)
ngl = 7+ Zt(f) (Pry1 + (L + @)Yy —7)
wit1 = T+ Zi(pgr + (1 + ), — 1)

The dynamic behavior of this dynamical system will be different, in general,
from the one of the simplified cases considered above. The main difference is
due to the time varying risk premium (which depends on time varying wealth
shares and risk perceptions) that causes in general the fundamental to grow at
a rate different from the dividend growth rate.

We leave to future research a detailed analysis of the general case.
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The case with w®= 0 (market with no fundamentalists) Fig' 1
Effect of decreasing the chartist risk aversion
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Role of initial condition (initial wealth shares and .
fundamental/price ratio) in the long-run dynamics Fig.
Basins of attraction of fundamental and nonfundamental steady states

and their dependence on chartist extrapolation parameter(c)

initial condition: P, =0.01 m,©= 0.015
w, and y,: varying in the (w @, y) plane

- 1.c. converging to fundamental steady state

- 1.c. converging to non fundamental steady state

2

¥

iritial condition:

pg =001
mylsi= 0015
“"um_ and ¥
Varying
=)
parameters
c=0.75000
eta=0.30000
lamf =20 , 000
uf =0 . 0020
bheta=0.05000
alpha=0,000
r=0 02000
hi=0.0100¢
eltazg.01000
lamc=6,50
=0 . BO20
AM=MTE .92

=]
h=x100 .000

iritial condition: (b)
pg=001

moif-"= nais

woll and ¥

varying




FUHDAMEHTAL#FRICE

FUHDAMEHT AL#FRICE

FUNDAMEHTAL#FRICE

Effect of the chartist extrapolation rate (¢) on transient dynamics and
on long-run wealth shares, starting from the same initial condition Fig. 7

P, = 0.01; m,©@= 0.015; y,=0.8; w,D=40%

c =0.01

steady state wealth share
wE=0 . 425344

-]

- 42|

FUHD. WEALTH SHARE

o0 00 20
-]

@
@

SROOD QO
S

(a) fundamental/price ratio (b) fundamentalist wealth share

= « 36
o 400 200 F00 400 a 100 200 300 400
TIHE TiME
e .44
u
c=0.1 :
. g
=
parameters =
oo lesso [}
eta=0. 100
TamE =310 . 000 =1
1.1 wE 0. 50 ET
2
0 5O
- 01000
279688 steady state wealth share
gh /5330§§4 wf=0.4047932
1 .4
i.c.
rho=0.010000
y=9 ,.800000
mne=9 . 015000
wi =0 .400000¢
kl PRei=]
(C) fundamental/price ratio (d) fundamentalist wealth share
= PE-]
o 100 200 00 400 o 100 200 300 400
TIME TIME
1.2 aa

c=02

parameters
cQ . 200900
eta=Q. 190909
1amf =10 ,000
1.1 uf =0, 00460
beta 0 05000

.42

FUHD. WEALTH SHARE

steady state wealth share
wf=0.388130

« 38

(e) fundamental/price ratio (f) fundamentalist wealth share

o 100 200 300 400 0 100 200 300 a0
TINE Time




FUHDAMEHT AL#FRICE

FUHDAMENTAL#PRICE

Effect of the chartist extrapolation rate (c) on the asymptotic dynamics and Fig. 8
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High values of agents’ reaction coefficients (n = 0.8, ¢ = 0.8) Fig. 9
Existence of periodic orbits with long-run fluctuations in wealth shares
Role of initial condition
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