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Abstract

Correlations of returns on various assets play a central role in financial theory and
also in many practical applications. From a theoretical point of view, the main in-
terest lies in the proper description of the structure and dynamics of correlations,
whereas for the practitioner the emphasis is on the ability of the models to provide
adequate inputs for the numerous portfolio and risk management procedures used
in the financial industry. The theory of portfolios, initiated by Markowitz, has suf-
fered from the ”curse of dimensions” from the very outset. Over the past decades a
large number of different techniques have been developed to tackle this problem and
reduce the effective dimension of large bank portfolios, but the efficiency and relia-
bility of these procedures are extremely hard to assess or compare. In this paper we
propose a model (simulation)-based approach which can be used for the systemati-
cal testing of all these dimensional reduction techniques. To illustrate the usefulness
of our framework, we develop several toy models that display some of the main char-
acteristic features of empirical correlations and generate artificial time series from
them. Then, we regard these time series as empirical data and reconstruct the cor-
responding correlation matrices which will inevitably contain a certain amount of
noise, due to the finitness of the time series. Next we apply several correlation matrix
estimators and dimension reduction techniques introduced in the literature and/or
applied in practice. As in our artificial world the only source of error is the finite
length of the time series and, in addition, the ”true” model, hence also the ”true”
correlation matrix, are precisely known, therefore in sharp contrast with empirical
studies, we can precisely compare the performance of the various noise reduction
techniques. One of our recurrent observations is that the recently introduced fil-
tering technique based on random matrix theory performs consistently well in all
the investigated cases. Based on this experience, we believe that our simulation-
based approach can also be useful for the systematic investigation of several related
problems of current interest in finance.
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1 Introduction

Correlation matrices of financial returns play a crucial role in several branches
of modern finance such as investment theory, capital allocation and risk man-
agement. For example, financial correlation matrices are the key input pa-
rameters to Markowitz’s classical portfolio optimization problem [1], which
aims at providing a recipe for the selection of a portfolio of assets so that risk
(quantified by the standard deviation of the portfolio’s return) is minimized
for a given level of expected return. For any practical use of the theory it
would therefore be necessary to have reliable estimates for the correlations
of returns (of the assets making up the portfolio), which are usually obtained
from historical return series data. However, if one estimates a n×n correlation
matrix from n time series of length T each, with T bounded for evident prac-
tical reasons, one inevitably introduces estimation error, which for large n can
become so overwhelming that the whole applicability of the theory becomes
questionable.

This difficulty has been well known by economists for a long time (see e.g.
[2] and the numerous references therein). Several aspects of the effect of noise
(in the correlation matrices determined from empirical data) on the classical
portfolio selection problem have been investigated e.g. in refs. [3]. One way
to cope with the problem of noise is to impose some structure on the correla-
tion matrix, which may certainly introduce some bias in the estimation, but
by effectively reducing the dimensionality of the problem, could, in fact, be
expected to improve the overall performance. The best-known such structure
is that imposed by the single-index (or market) model, which has stimulated
strong interest in the academic literature (see e.g. [2] for an overview and
references) and has also become widely used in the financial industry (the
coefficient ”beta”, relating the returns of an asset to the returns of the cor-
responding wide market index, has long been a widespread tool in the finan-
cial community). On economic or statistical grounds, several other correlation
structures have been experimented with in the academic literature and finan-
cial industry, for example multi-index models, grouping by industry sectors,
macroeconomic factor models, models based on principal component analysis
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etc. Several studies (see e.g. refs. [4]) attempt to compare the performance
of these correlation estimation procedures as input providers for the portfo-
lio selection problem, although all these studies have been restricted to the
use of given specific empirical samples. More recently, additional procedures
to impose some structure on correlations (e.g. Bayesian shrinkage estimators)
or bounds directly on the portfolio weights (e.g. no short selling) have been
explored, see e.g. refs. [5]. The general conclusion of all these studies is that
reducing the dimensionality of the problem by imposing some structure on
the correlation matrix may be of great help for the selection of portfolios with
better risk–return characteristics.

The problem of estimation noise in financial correlation matrices has been put
in a new light by the application of results from random matrix theory [6–8].
These studies have shown that empirical correlation matrices deduced from
financial return series contain such a high amount of noise that, apart from a
few large eigenvalues and the corresponding eigenvectors, their structure can
essentially be regarded as random. In [7], e.g., it is reported that about 94%
of the spectrum of correlation matrices determined from return series of the
S&P 500 stocks can be fitted by that of a random matrix. Furthermore, two
subsequent studies [9,10] have shown that the risk–return characteristics of
optimized portfolios could be improved, if prior to optimization one filtered
out the lower part of the eigenvalue spectrum of the correlation matrix in
an attempt to remove (at least partially) the noise, a procedure similar to
principal component analysis. Other approaches inspired by physics and aimed
at extracting information from noisy correlation data have been introduced in
[11,12]. It is important to note that all the above studies have used (given)
empirical datasets, which in addition to the noise due to the finite length of
the time series, also contain several other sources of error (caused by non-
stationarity, market microstructure etc.).

The motivation of our previous study [13] came from this context. In order
to get rid of these additional sources of error, we based our analysis on data
artificially generated from some toy models. This procedure offers a major
advantage in that the ”true” parameters of the underlying stochastic process,
hence also the correlation matrix is exactly known. The key observation of [13]
is that the effect of noise, e.g. in the context of a simple portfolio optimization
framework, strongly depends on the ratio T/n, where n is the size of the
portfolio while T is the length of the available time series. Moreover, in the
limit n → ∞, T → ∞ but T/n = const. the suboptimality of the portfolio
optimized using the ”noisy” correlation matrix (with respect to the portfolio

obtained using the ”true” matrix) is (1− n/T )−1/2 exactly. Therefore, since
the length of the time series T is limited in any practical application, any
bound one would like to impose on the effect of noise translates, in fact, into
a constraint on the portfolio size n.
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The aim of this paper (besides extending the analysis of the previous study)
is to introduce a model (simulation)-based approach that can be generally
used for systematically testing and comparing the various noise (or dimension)
reduction techniques that have been introduced in the literature and applied
in practice. As an illustration of the usefulness of this approach, we introduce
several toy models with the goal to progressively incorporate the relevant
features of real-life financial correlations and, in the world of these models,
we study the effect of noise (due here solely to the estimation error caused by
the finiteness of the surrogate time series generated by the models) on a very
simple form of the classical portfolio optimization problem. More precisely, we
compare the performance of different correlation matrix ”estimation” methods
(the filtering procedure introduced in [9,10] among them) in providing inputs
for the selection of portfolios with optimal risk characteristics. Our findings re-
confirm the usefulness of techniques that effectively reduce the dimensionality
of the correlation matrix for portfolio optimization. The approach we adopt
here is, in fact, very common in physics, where one starts with some bare
model and progressively adds finer and finer details in order to study the
behavior of the ”world” embodied by the model by comparing it to real-
life (experimental) results. We believe that our model-based approach can be
useful for the systematic study of several other problems in which financial
correlation matrices play a crucial role.

2 Results and Discussion

We keep to the following simplified version of the classical portfolio opti-
mization problem used already in [13]: the portfolio variance

∑n
i,j=1wi σij wj

is minimized under the budget constraint
∑n
i=1wi = 1, where wi denotes the

weight of asset i in the portfolio and σij the covariance matrix of returns. That
is, we look for the minimal risk portfolio, thereby eliminating the additional
uncertainty arising from the return constraint 3 (or any other constraint that
may be present). This simplified form provides the most convenient laboratory
for testing the effect of noise in correlations. The weights of the minimal risk
portfolio are:

w∗i =

∑n
j=1 σ

−1
ij∑n

j,k=1 σ
−1
jk

. (1)

3 The portfolio optimization problem without contraints on expected returns (i.e.
finding the portfolio with minimal risk) is in fact meaningful even in its own, for
example the problem of replicating (tracking) a benchmark with given instruments
can be exactly mapped into it by considering the excess returns of the instruments
over the benchmark (see e.g. Chan et al from Ref. [4]).
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Starting from a given ”true” covariance matrix σ
(0)
ij (n × n) we generate

surrogate time series yit (of finite length T ), yit =
∑n
j=1 Lij xjt, with xjt ∼

i.i.d. N(0, 1) and Lij the Cholesky decomposition of the matrix σ
(0)
ij . In this

way we obtain ”return series” yit that have a distribution characterized by the
”true” covariance matrix σ

(0)
ij . In order to mimic real-life situations (where the

true covariance matrix is not known), we calculate different ”estimates” σ
(1)
ij

for the covariance matrix based on several competing procedures and then
use these estimates in our portfolio optimization. Finally, we compare the
performance of these procedures using measures related to the risk (standard
deviation) of the ”optimal” portfolios constructed on the basis of the corre-
sponding estimates. The main advantage of this simulation-based approach
is that the ”true” covariance matrix can be incorporated in the evaluation,
which is certainly much cleaner than using, as in empirical studies, some proxy
for it (which will inevitably introduce an additional source of noise).

In our previous study [13] we used a very simple structure (”model”) for σ
(0)
ij

(namely the identity matrix) and we studied the effect of noise when the

”estimated” matrix σ
(1)
ij is the sample (or historical) covariance matrix. In

this paper we introduce several other ”models” (proposals for the structure

of σ
(0)
ij ) which are intended to incorporate progressively the most relevant

characteristics of real-life financial correlations (the models are given in terms

of the corresponding correlation matrix ρ
(0)
ij ):

(1) ”Single-index”, ”market” or ”average correlation” model. The correla-
tion matrix has 1’s in the diagonal and a constant ρ0 (0 < ρ0 < 1)
off-diagonal (all correlations are the same, hence the name of ”average
correlation” model). The eigenstructure of such a matrix consists of one
large (O(n)) 4 eigenvalue with the corresponding eigenvector in the di-
rection of (1, 1, . . . , 1) and a (n−1)-fold degenerate small eigenvalue. The
eigenvector corresponding to the large eigenvalue can be thought of as de-
scribing a broad ”index” composed of all the stocks (the ”market”), hence
the name of ”single-index” or ”market” model. This model is motivated
by a similar feature (namely the presence of a single dominant eigenvalue)
of stock market correlations found by numerous research studies (see e.g.
[2] for references).

(2) ”Market+sectors” model. A very simple structure intended to incorporate
this much debated 5 feature of real-life financial correlations can be based
on a correlation matrix composed of n1×n1 blocks (with 1 in the diagonal
and ρ1 off-diagonal) and ρ0 outside the blocks (0 < ρ0 < ρ1 < 1 and n

n1

integer). In this model there is still a strong influence of the ”market”,

4 λ1 = 1+(n−1)ρ0, which for the usual values of the parameters is large compared
to λ2 = λ3 = . . . = λn = 1− ρ0.
5 See e.g. refs. [14].

5



but stocks from the same block (”industrial sector”) display additional
common correlations. On the other hand, the eigenspectrum of such a
matrix 6 is closer to the eigenspectrum of real-life financial correlation
matrices as described e.g. in [10]. This correlation structure also fits better
the findings of [11,12], which, using a hierarchial tree approach, found also
that stocks tend to be coupled according to their belonging to the same
industrial sector.

(3) ”Semi-empirical” (bootstrapped) model. Starting from a large set of em-
pirical financial data 7 for each portfolio size n, we select randomly (boot-
strap) n time series from the set of empirical return data and an n × n
covariance matrix is calculated using the full length of the available se-
ries. This matrix is then used as σ

(0)
ij in the simulations (to generate the

surrogate data). In order to examine the sensitivity of our results with
respect to the choice of the n time series, we repeat the simulations sev-
eral times (with different bootstrapped empirical series) and we compare
the results. The correlation structure of this model is hoped to be the
closest to real-world financial correlations, although the disadvantage of
its use is that, similar to empirical studies, it is based on a given set of
empirical data which may be representative in certain situations, and less
so in others.

In the framework of each of the models introduced above, we investigate the
performance of three alternative choices for the ”estimated” covariance matrix
σ

(1)
ij :

(1) Sample (historical) covariance matrix.
(2) ”Single-index” covariance matrix, i.e. the matrix obtained from the sam-

ple covariance matrix by a simplified filtering procedure similar to the
one described below, but considering only the largest eigenvalue (and the
corresponding eigenvector), which is believed to correspond to a broad
market index covering all stocks, see e.g. [10].

(3) Filtered covariance matrix using the procedure based on random matrix
theory [9,10]. For this, one starts with the sample correlation matrix and
keeps only the eigenvalues and the corresponding eigenvectors reflecting
deviations from random matrix theory predictions (those outside the ran-
dom matrix noise-band) and then constructs a ”cleaned” correlation ma-
trix such that the trace of the matrix is preserved. The intuition behind

6 The eigenstructure is formed of a large eigenvalue λ1 = 1+(n1−1)ρ1 +(n−n1)ρ0,
a n
n1
− 1-fold degenerated subspace corresponding to medium-size eigenvalues λ2 =

λ3 = . . . = λ n
n1

= 1 + (n1 − 1)ρ1 − n1ρ0 and a n − n
n1

-fold degenerated subspace
with eigenvalues λ n

n1
+1 = λ n

n1
+2 = . . . = λn = 1− ρ1.

7 The same dataset as in [13] has been used (daily return series on 406 major US
stocks during the period 1991–1996, 1308 observations for each stock). We thank
again J.-P. Bouchaud and L. Laloux for making their data [7,9] available to us.
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this procedure is that deviations from random matrix theory predictions
should correspond to ”information” and describe genuine correlations in
the system, while the eigenstates corresponding to random matrix the-
ory predictions should be manifestations of purely random ”noise”. The
filtered covariance matrix is then obtained from the filtered correlation
matrix and sample standard deviations. This procedure is very much rem-
iniscent of principal component analysis, although classical multivariate
analysis generally gives no hints about how many components (factors)
are to be included in the matrix constructed using the principal com-
ponents (see e.g. [15]). The filtering procedure based on random matrix
theory can therefore be thought of as a theoretically sound indication for
the number of principal components to be included in the analysis.

To study the effect of noise on the portfolio optimization problem we use
metrics based on the following quantities:

(1)
∑n
i,j=1w

(0)∗
i σ

(0)
ij w

(0)∗
j , the ”true” risk of the optimal portfolio without

noise, where w
(0)∗
i denotes the solution to the optimization problem with

σ
(0)
ij ;

(2)
∑n
i,j=1w

(1)∗
i σ

(0)
ij w

(1)∗
j , the ”true” risk of the optimal portfolio determined

in the case of noise, where w
(1)∗
i denotes the solution to the optimization

problem with σ
(1)
ij ;

(3)
∑n
i,j=1w

(1)∗
i σ

(1)
ij w

(1)∗
j , the ”predicted” risk (cf. [9,10,13]), that is the risk

that can be observed when the optimization is based on the ”empirical”
series;

(4)
∑n
i,j=1w

(1)∗
i σ

(2)
ij w

(1)∗
j , the ”realized” risk (cf. [9,10,13]), that is the risk

that would be observed if the portfolio were held one more ”period”,
where σ

(2)
ij is the covariance matrix calculated from the returns in this

second period.

To facilitate the comparison, we calculate the ratios of the square roots of
the three latter quantities to the first one, and denote these by q0, q1 and q2,
respectively. That is q0, q1 and q2 represent the ”true”, the ”predicted” resp.
the ”realized” risk, expressed in units of the ”true” risk in the absence of
noise. In other words, q0 directly describes the ability of a given estimation
procedure to provide the correct input for portfolio optimization, q1 describes
the bias one makes if one uses the estimated matrix for the calculation of the
risk of the optimal portfolio, while q2 is the risk measured if one waits in time
and uses the information from the new series for risk measurement (see also
[13]).

We start with presenting the simulation results when the series have been
generated using the ”market” model (for σ

(0)
ij ). Since the main feature of the

correlation structure (one outstanding large eigenvalue) is, at least for the
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parameter values used in our simulations, preserved also in the correlation
matrix obtained from the generated series (σ

(1)
ij ), the results for the filtering

based on the largest eigenvalue and on random matrix theory are in fact the
same. Therefore, we proceed with comparing the performance of the historical
and filtered estimation procedures for different values of the model parameters
n, T and ρ0 using the evaluation metrics q0, q1, q2 and q2/q1. A summary of
our simulation results is presented in Table 1.

Table 1
Optimal portfolio risk and performance indicators for the historical (h) and market
(m) correlation matrix estimators for different values of the parameters of the model
(σ(0)
ij ).

ρ0 n T T/n q
(h)
0 q

(m)
0 q

(h)
1 q

(m)
1 q

(h)
2 q

(m)
2 q2/q

(h)
1 q2/q

(m)
1

0.2 200 300 1.5 1.77 1.11 0.56 0.78 1.77 1.13 3.16 1.46

0.2 1000 1500 1.5 1.73 1.12 0.59 0.78 1.71 1.11 2.96 1.42

0.6 1000 1500 1.5 1.75 1.11 0.58 0.77 1.75 1.12 3.01 1.45

0.2 1000 2000 2 1.42 1.11 0.71 0.82 1.43 1.11 2.00 1.35

0.2 1000 5000 5 1.11 1.07 0.89 0.91 1.12 1.07 1.26 1.18

0.2 1000 500 0.5 - 1.12 - 0.57 - 1.12 - 1.92

It turns out that, for sufficiently large n and T , the value of the q’s depends
strongly only on T/n (and, interestingly, does not seem to depend on ρ0). This
can be seen also from the results presented in Table 1 (the variation in the
first 3 rows is in fact within the usual standard deviation bounds). This is not
very surprising in view of the results for the historical matrix, which has been
studied in our previous paper [13]. The strong dependence on T/n seems to be
valid, however, also when the filtered matrix is used. One important difference
to note is, however, the significant improvement in the risk characteristics
of the optimal portfolio when the filtering procedure is used for estimation:
e.g. for T/n = 2 instead of obtaining a portfolio with risk more than 40%
larger than the truly optimal one (see q0), using the filtering procedure one
can get portfolios with only 10% larger risk. Furthermore, as it can also be
seen from the table, using the filtered matrix one can obtain portfolios close
to the optimal one even for T ≤ n when the sample (historical) matrix is
singular and completely useless for the optimization. This improvement in
performance is not difficult to understand, since with the filtering procedure
one implicitly incorporates into the ”estimation” the additional information
about the structure of the correlation matrix. Note also that q2 is very close to
q0 for all parameter values, therefore the risk measured in the second ”period”
seems to be a good proxy for the ”true” risk of the optimal portfolio.

We now present the results when the series are generated with the ”mar-
ket+sectors” model, for different values of the parameters n, T , n1, ρ0 and
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Table 2
Optimal portfolio risk and performance indicators for the historical (h), market (m)
and random matrix theory (r) correlation matrix estimators for different values of
the parameters of the model (σ(0)

ij ).

ρ0 ρ1 n1 n T q
(h)
0 q

(m)
0 q

(r)
0 q

(h)
1 q

(m)
1 q

(r)
1 q2/q

(h)
1 q2/q

(m)
1 q2/q

(r)
1

0.2 0.4 25 200 300 1.71 1.27 1.13 0.58 0.77 0.76 2.93 1.65 1.47

0.2 0.4 25 1000 1500 1.75 1.28 1.13 0.58 0.77 0.76 3.07 1.63 1.46

0.2 0.6 25 1000 1500 1.74 1.64 1.13 0.59 0.78 0.76 2.94 2.09 1.47

0.4 0.6 25 1000 1500 1.73 1.36 1.13 0.58 0.77 0.76 2.96 1.77 1.49

0.2 0.4 50 1000 1500 1.71 1.42 1.12 0.58 0.77 0.77 2.96 1.84 1.46

0.2 0.4 25 1000 2000 1.42 1.24 1.12 0.70 0.82 0.81 1.99 1.50 1.37

0.2 0.4 25 1000 5000 1.11 1.16 1.07 0.89 0.91 0.90 1.24 1.27 1.17

0.2 0.4 25 1000 500 - 1.24 1.19 - 0.58 0.55 - 2.14 2.17

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5

(h)  0.2  0.4  25
(h)  0.2  0.6  25
(h)  0.2  0.4  50
(m)  0.2  0.4  25
(m)  0.2  0.6  25
(m)  0.2  0.4  50
(r)  0.2  0.4  25
(r)  0.2  0.6  25
(r)  0.2  0.4  50

Fig. 1. q0 as a function of T/n for different values of the parameters ρ0, ρ1 and n1 and
different values of n and T . In the case of the historical and random matrix theory
estimator (h and r, resp.) the points line up approximately on a line (solid and
dotted, resp.). For the market estimator (m), however, the dependence on virtually
all the parameters is clear from the figure (e.g. the increase in either ρ1 or n1 leads
to the increase of q0).
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ρ1. Our results are summarized in Table 2. The values for q2’s are again very
close to q0 and therefore have been left out from the table. We have found that
the value of the q’s in the case of the historical and random matrix theory-
based estimators, again, depends strongly on T/n and not on the value of
the other parameters, while this is not true for the estimator based on the
largest eigenvalue only. This is illustrated in Fig. 1, where q0 in the case of
the three estimators is represented as a function of T/n for different value
of the parameters n, T , n1, ρ0 and ρ1. The dependence of q0 for the ”single-
index” estimator on the parameters ρ0, ρ1 and n1 can be easily understood,
since either the increase of ρ1 or n1, or the decrease of ρ0 can be thought
of as the increase in the relative strength of ”inter-sector” correlations (rela-
tive to the overall correlation corresponding to the ”market”) and therefore
an estimator taking into account only the ”market” component of correla-
tions (and ignoring the ”sector” component) is of course expected to perform
worse in this case. Another important point to note is that, in most cases, the
random-matrix-theory-based filtering outperforms the single-index estimator
which in turn outperforms the historical estimator. Moreover, the first two
estimators can be used even when the latter one provides a singular matrix
totally inappropriate for input to the portfolio optimization (for T ≤ n).

Finally, we analyze the performance of the three correlation matrix estimators
in the case of the ”semi-empirical” model for σ

(0)
ij (the matrix is bootstrapped

from the empirical matrix of a given large set of financial series). More pre-
cisely, for each value of the parameter n, we select at random n series from the
available dataset and we calculate the historical matrix which is then used as
σ

(0)
ij in our simulations 8 . Our results are summarized in Table 3 (the values for
q2’s have been again left out of the table.) In this case, the q’s for the two fil-
tering matrix estimations do not depend so strongly on T/n, some dependence
on n (and T ) can also be observed (see Fig. 2). It can be said again that, in
general, the filtering procedures outperform significantly the historical matrix
estimation, with the filtering based on the random matrix theory approach
performing best.

In conclusion, our simulation study provides a more general argument for the
usefulness of techniques for ”massaging” empirical correlation matrices before
using them as inputs for portfolio optimization as suggested e.g. by [4,5,9,10].
In particular, it confirms the fruitfulness of the random matrix theory-based
filtering procedure for portfolio selection applications.

8 Since most of the values for the length T of the time series used in our simulations
is small compared to the lengths of the original dataset from which σ(0)

ij is computed,

the noise due to the ”measurement error” of σ(0)
ij can be hoped to be small compared

to the noise (deliberately) introduced by the finiteness of T .
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Table 3
Optimal portfolio risk and performance indicators for the historical (h), market (m)
and random matrix theory (r) correlation matrix estimators for different values of
the parameters of the model (σ(0)

ij ).

n T T/n q
(h)
0 q

(m)
0 q

(r)
0 q

(h)
1 q

(m)
1 q

(r)
1 q2/q

(h)
1 q2/q

(m)
1 q2/q

(r)
1

200 300 1.5 1.70 1.30 1.20 0.58 0.78 0.83 3.03 1.67 1.44

300 450 1.5 1.74 1.48 1.24 0.58 0.76 0.84 2.99 1.94 1.45

300 600 2 1.41 1.50 1.21 0.71 0.77 0.90 2.02 1.95 1.35

300 1500 2 1.12 1.53 1.15 0.89 0.80 0.96 1.26 1.92 1.21

300 150 0.5 - 1.41 1.33 - 0.76 0.73 - 2.02 1.85

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5

(h)
(m)
(r)

Fig. 2. q0 as a function of T/n for different values of n and T . In the case of the
historical estimator (h) the points line approximately on a line. For the market and
random matrix theory estimator (m and r, resp.), however, the dependence on n
and T is clear from the figure.

There are several possibilities to extend the analysis of this paper. First, ”mod-
els” that incorporate more subtle features of financial returns (such as the
dynamics of volatility and correlations or the non-Gaussian nature of returns)
could be used for generating the surrogate time series data. Second, our model-
based approach can be used for evaluating the performance of several other
correlation matrix ”estimators” introduced in the literature and/or used in
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practice (e.g. the Bayesian shrinkage estimator of Ledoit et al of Ref. [5], or
the estimator of RiskMetrics [16], where the covariance matrix is obtained by
exponentially weighting the square returns so that returns further in the past
get lower weights 9 ). Third, our simulation-based approach can also be applied
when a more sophisticated risk measure (e.g. expected shortfall/Conditional
Value-at-Risk) is used. For example, when expected shortfall is chosen as risk
measure, the target function becomes piecewise linear in the weights of the
assets and the optimization problem can be reduced to linear programming,
see e.g. [18]. However, the parameters of the target function have to be esti-
mated from empirical financial data (return series) again, therefore they will
be noisy and one can expect that in the case of a large number of assets the
effect of noise may be significant. The study of all these problems listed above
remains the subject of future work.

The implications of successful noise filtering of correlation matrices used for
portfolio optimization are enormous. Correlation matrices are not only at the
heart of modern finance and investment theory, but they also appear in most
practical risk management and asset allocation procedures used in the financial
industry. In particular, most implementations of practical risk–return portfo-
lio optimization or benchmark tracking involve either correlation matrices or
”scenarios” usually generated using correlation matrices, see e.g. [19]. A short
overview on the techniques used by practitioners for reducing noise and esti-
mation error in correlation matrices can be found in [20]. On the other hand,
from a purely academic point of view, understanding the structure and dy-
namics of correlations in financial markets is of central interest in finance and
related fields, therefore any study that makes it possible to reveal finer and
finer details of this structure could be of significant importance.

3 Conclusion

In this paper we described a model (simulation)-based approach which can
be used for a systematic investigation of the performance of various noise re-
duction procedures applied in portfolio selection and risk management. To
demonstrate the usefulness of this approach we developed several toy models
for the structure of financial correlations and, by considering only the noise
arising from the finite length of the model-generated time series, we analyzed
the performance of several correlation matrix estimation procedures in a sim-
ple portfolio optimization context. Our results agree well with the findings of
previous empirical studies. The effect of noise in correlation matrices deter-

9 This technique is widely utilized in practical risk management for assesing the
market risk of portfolios, for example using the parametric Value-at-Risk (VaR)
method.
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mined from financial series can indeed be large. However, most practitioners
use techniques that, by generally reducing the effective dimensionality of the
problem, can very efficiently suppress the effect of noise. We found that the fil-
tering based on random matrix theory is particularly powerful in this respect.
The success of dimensional reduction procedures goes a long way to explain
how correlation matrices that contain a huge amount of noise can nevertheless
remain useful in practice.
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