
Complex dynamics in a Pasinetti-Solow model of Growth and 

distribution 

 

Abstract 
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growth and distribution proposed by Pasinetti (1962) and Samuelson and Modigliani (1966) with a 
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propensities to save which are not necessarily equal (this is a generalisation firstly proposed by 

Chiang, 1973). Capitalists’ saving originates only from capital income. The resulting model is two-

dimensional. Differently from Böhm and Kaas (2000), distributive processes occur not only 

between factor shares but also between the two groups existing in the economy. We explore through 

simulations the large variety of dynamic behaviours that emerge from this formulation. 
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Complex dynamics in a Pasinetti-Solow model of Growth and 

distribution 

Pasquale Commendatore 

 

1. Introduction 

As it is well known, the standard one-sector neoclassical growth model (Solow, 1956, Swan, 1956) 

is able to generate only simple dynamics, that is, monotonic convergence to a steady state. The 

dynamic properties of the Solow model follows from the assumptions on the saving behaviour, the 

average propensity to save is constant, and on the neoclassical technology, represented usually by a 

Cobb-Douglas production function. As shown by Day (1982, 1999), when average savings are 

allowed to vary with the capital/labour ratio, under specific assumptions the discrete-time version of 

the Solow model is able to generate chaotic dynamics. More recently, Böhm and Kaas (2000) 

investigate the dynamics of a discrete-time Solow growth model modified by introducing different 

but constant saving propensities attached to factor shares, wages and profits, and a concave 

production function with more general properties than the standard neoclassical ones.  Their 

assumption on saving behaviour corresponds to that proposed by Kaldor’s (1956) in his model of 

equilibrium growth and distribution. The Solow model so revised is able to generate dynamic 

behaviour of capital and income per worker which is not limited to monotonic convergence to a 

steady state but it may also involve instability and chaos.  

The hypothesis of constant saving propensities attached to income shares, which characterises 

Kaldor’s (1956) model of growth and distribution, differs from that proposed in Pasinetti’s (1962) 

and Samuelson and Modigliani’s (1966) analyses according to which different saving propensities 

characterise two separate groups (or classes), workers and capitalists or pure shareholders. 

Following Pasinetti (1962), the former assumption cannot be used to interpret saving behaviour of 

separate groups in the economy since it implies that workers do not receive any revenue out of their 

savings. Other authors, considered that Kaldor’s assumption on saving is logically coherent if one 

assumes that workers, in their quality of shareholders, behave like capitalists, applying to profits the 

same propensity to save as the latter group. However, it can be shown (see i.e. Maneschi, 1974, Fazi 

and Salvadori, 1981) that, following the latter interpretation, as long as workers’ saving behaviour 
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is the one postulated by Kaldor (1956), in equilibrium growth the two types of agents cannot both 

own a positive share of capital.1 

We study some of the properties of a discrete-time version of the two-class model of growth 

and distribution proposed by Pasinetti (1962) and Samuelson and Modigliani (1966) with a convex 

production technology of the CES type. We assume two distinct groups of agents, workers and 

capitalists.2 The first group saves out of wages and profits by applying to these income sources 

propensities to save which are not necessarily equal (this is a generalisation of Pasinetti’s, 1962, 

and Samuelson and Modigliani’s, 1966, analyses firstly proposed by Chiang, 1973; see also Faria 

and Teixeira, 1999, and Faria, 2000, for a dynamical analysis framed in continuous time). 

Capitalists’ saving originates only from capital income. The resulting model is two-dimensional. 

Differently from Böhm and Kaas (2000), distributive processes occur not only between factor 

shares but also between the two groups existing in the economy. We explore through simulations 

the large variety of dynamic behaviours that emerge from this formulation. 

 

 

2. The model 

The economy 

Consider a single good economy. Production involves only two factors, capital and labour, and a 

CES production function of the form:  

 ( )
1

( )f k a bk ρ ρ= +  (1) 

                                                

1 Fazi and Salvadori (1981) show that a steady growth equilibrium, in which workers’ and pure 

capitalists’ propensities to save out of profit are equal and they both own positive shares of capital, 

is possible if workers and pure capitalists earn different rates of return on their assets. 

2 Woodford’s (1986, 1989) model of optimal growth cycles also involves two groups of agents, 

workers and capitalists, with differentiated saving behaviour. However, due to the presence of a 

financial constraint, workers do not save and, consequently, do not accumulate wealth.   
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where k is the capital/labour ratio and where 0 < b ≤ 1 – a < 1 and – ∞ < ρ < 1 (with ρ ≠ 0).3 

The only sources of income in the economy are wages and profits. Perfectly competitive labour and 

capital markets ensure for each short run equilibrium equality between wage rate and marginal 

product of labour and between profit rate and marginal product of capital. The wage share and the 

profit share are respectively ( ) ( )f k f k k′−  and ( )f k k′ .  

The economy is also characterised by the existence of two distinct groups of agents, workers and 

capitalists. Both groups may save and accumulate capital, kw and kc representing respectively 

workers’ and capitalists’ capital per worker, where 0 ≤ kc ≤ k, 0 ≤ kw ≤ k and k = kw + kc. The only 

income source of capitalists is profits out of which they save ( )c cs f k k′ , where 0 < sc ≤1 is 

capitalists’ invariant propensity to save. 

Workers’ income is composed of wages and capital revenues 

 ( ) ( )( ) ( ) ( )w cf k f k k f k k f k f k k′ ′ ′− + = −  (2) 

Workers principal source of income is wages, ( ) ( )f k f k k′− , from which they save the constant 

proportion 0 ≤ sww ≤ 1. Workers’ savings generate capital revenues ( ) wf k k′  from which the 

constant fraction 0 ≤ swp ≤ 1 is saved. We assume that workers’ saving propensities are not 

necessarily equal, that is, sww � swp.4  

 ( )( ) ( ) ( )ww wp ws f k f k k s f k k′ ′− +  

Aggregate savings corresponds to  

 ( )( , ) ( ) ( ) ( ) ( )c w ww wp w c cs k k s f k f k k s f k k s f k k′ ′ ′= − + +  (3) 

                                                

3 It is easy to show that the production function (1) has the properties: f (0) > 0, (0) 0f ′ > , and 

(0) 0f ′′ <  

4 It is not possible to establish a priori if swp is larger, smaller or equal to sww. swp could exceed sww 

because of the more uncertain nature of capital income. However, when savings mainly originates 

from wages, capital revenues may be treated as windfall income out of which only a comparatively 

smaller proportion is saved. 
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where sc > max(sww, swp).5 

Assuming a constant growth rate of the labour force, n,6 capital per worker accumulates according 

to the rule: 

 [ ]1
( ) (1 ) ( )

1
G k k s k

n
δ= − +

+
 (4) 

where δ is the (constant) depreciation rate of capital, with 0 < δ ≤ 1. 

Short-run equilibrium 

Using (3), the accumulation rule (4) becomes  

 ( )1
( , ) (1 ) ( ) ( ) ( ) ( )

1c w ww wp w c cG k k k s f k f k k s f k k s f k k
n

δ ′ ′ ′� �= − + − + +� �+
 (5) 

By disaggregating equation (5), we are able to describe separately capitalists’ and workers’ process 

of capital accumulation:7 

 ( )1
( , ) (1 ) ( ) ( ) ( )

1w c w w ww wp wG k k k s f k f k k s f k k
n

δ ′ ′� �= − + − +� �+
 (6) 

 [ ]1
( , ) (1 ) ( )

1c c w c c cG k k k s f k k
n

δ ′= − +
+

 (7) 

                                                

5 The assumption sc > max(sww, swp) follows from the fact that capitalists are typically more 

concerned than workers to control production. 

6 In our analysis we assume that the relative size of the two groups in the population does not vary 

through time. It follows that n is also the rate of population growth.  

7 Setting swp = sc expression (5) is equivalent to the one presented in Böhm and Kass (2000, p. 968): 

 ( )1
( ) (1 ) ( ) ( ) ( )

1 ww wpG k k s f k f k k s f k k
n

δ ′ ′� �= − + − +� �+
  

Böhm and Kass (2000) confine their analysis to the above one-dimensional map, which describes 

the accumulation of the overall capital in a Kaldor type model. What follows, instead, is concerned 

with the two-dimensional system (6) and (7), which allows for a separate description of capitalists’ 

and workers’ capital accumulation. 
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Steady growth equilibrium 

The stationary growth solutions are obtained by solving the following equations 

 ( ) ( )c c cn k s f k kδ ′+ =  (8) 

 ( )( ) ( ) ( ) ( )w ww wp wn k s f k f k k s f k kδ ′ ′+ = − +  (9)  

It is possible to envisage two different types of non-trivial equilibria. A Pasinetti equilibrium 

involves capitalists owning a positive share of capital. A dual equilibrium allows only workers to 

own capital.8 The two types of equilibria, which may coexist, are defined as follows: 

Pasinetti equilibrium 

 ( )P

c

n
f k

s
δ+′ =    

1 ( )
1

( )

P
fP Pww

c P
c wp f

e ks
k k

s s e k

� �−
= −� �� �−	 


   
1 ( )

( )

P
fP Pww

w P
c wp f

e ks
k k

s s e k

−
=

−
 

Dual equilibrium 

 
( )

(1 ( )) ( )

D

D D D
ww f wp f

f k n
k s e k s e k

δ+=
− +

   0D
ck =    D D

wk k=  

where 1( ) ( ) ( ) ( )fe k f k k f k b ak bρ− −′= = +  denotes the output elasticity of capital. From the 

properties of f(k), it follows that 0 ( ) 1fe k< ≤ . 

The existence of Pasinetti or dual equilibria is verified as follows. We first define a function that 

relates the inverse capital/output ratio and e f (k): 

 
( )

( ( ))f

f k
e k

k
ϕ=   

where 

1

( )
b

x
x

ρ
ϕ � �= � �

	 

. The function ϕ (•) is plotted in Figure 1 for a) ρ > 0, b) –1 < ρ < 0 and c) ρ < –

1. 

A Pasinetti equilibrium in which both workers and capitalists own a positive share of capital, 

0 P P
ck k< < , exists if and only if:9 

                                                

8 The existence of a ‘trivial’ equilibrium, k0 = 0, is excluded as long as sww ≠ 0.  



 7 

 0 ( ) 1P
f fe e k< < <�  (10) 

where 
( )

ww
f

c wp ww

s
e

s s s
≡

− −
�  and 

1 1
1( )P

f
c

n
e k b

s

ρ
ρ

ρ δ −
− � �+= � �
	 


. 

In Figure 1, the intersection between the straight line at e f (kP) and the curve ϕ (e f (k)) identifies the 

unique Pasinetti equilibrium. Such an equilibrium is characterised by a positive share of capitalists’ 

capital (e f (kP) is on the right of the dotted line plotted at fe� ) and by a positive share of workers’ 

capital  (e f (kP) < 1 and sww > 0). 

As far as the dual equilibrium is concerned, we define also the following relationship  

 
( )

( ( ))f

f k
e k

k
θ=  

where ( )
(1 )ww wp

n
x

s x s x
δθ +=

− +
.  

As shown in Figure 2, which has been plotted for ρ < –1 and a) sww = swp, b) sww < swp and c) 

sww > swp, an unique Dual equilibrium exists if  

 
( ) 0 ( ) 1
lim ( ( )) (0) (1) lim ( ( )) 0

f f
f fe k e k

e k e kϕ θ θ ϕ
→ →

� � � �− − >� �� �� �� �
 (11) 

otherwise two or none of such equilibria exists, where (0)
ww

n
s

δθ +=  and (1)
wp

n
s

δθ += .10 Note that 

condition (11) can be written as: 

 
1

0
wp

n
b

s
ρδρ

� �+ − >� �� �
	 


 (12) 

Local stability analysis 

                                                                                                                                                            

9 A special case of a Pasinetti equilibrium, the ‘anti-dual’ case, occurs when sww(1 – e f (k)) = 0 and 

0P
wk = . 

10 A dual equilibrium collapses to a trivial equilibrium, kD = 0, when sww = 0. 
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The Jacobian of the system (6) and (7) evaluated at the Pasinetti equilibrium ( , , )P P P
c wk k k  is 

 11 12

21 22

( , )P P
c w

J J
J k k

J J
� �

= � �
� �

 (13) 

where  

( )11

1
1 ( ) ( ) ( ) ( )

1
P P P P P

wp ww wp cJ s s f k k s f k f k k
n

δ� �′′ ′ ′′= − + − + −� �+
 

12

1
( ) ( ) ( )

1
P P P P

wp ww wp cJ s s f k k s f k k
n

′′ ′′� �= − −� �+
 

21

1
( )

1
P P

c cJ s f k k
n

′′=
+

 

( )22

1
1 ( ) ( )

1
P P P

c cJ s f k f k k
n

δ� �′ ′′= − + +� �+
 

The corresponding trace is:  

 
( ) ( )2(1 )

( , ) 1 ( )
1 ( )

P P
wp f ww fP P P

c w f P
c f

s e k s e kn
T k k e k

n n s e k
δ δ

δ
′

′

� �� �−+ −= + + +� �� �� �+ +� �	 
� �
 (14) 

and the corresponding determinant is:  

 
2 2( )( )1 1

( , ) ( , )
1 1 1

P
f wp ww wpP P P P

c w c w
c

e k s s s n
D k k T k k

n n s n
δ δ δ′ − +− − +� � � � � �= − +� � � � � �+ + +	 
 	 
 	 


 (15) 

where 1( ) ( ) ( ) (1 )( )fe k f k k f k a a bk ρρ −
′ ′′ ′= = − − + . 

The stability conditions for the Pasinetti equilibrium are the following: 

(i)  1 ( , ) ( , ) 0P P P P
c w c wT k k D k k+ + > ; 

(ii) 1 ( , ) ( , ) 0P P P P
c w c wT k k D k k− + > ; 

(iii)  1 ( , ) 0P P
c wD k k− > . 

Conditions (i) to (iii) ensure that the eigenvalues of the Jacobian ( , )P P
c wJ k k  are both confined 

within the unit circle. An unstable fixed point ( , )P P
c wk k corresponds to a violation of at least one of 
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these conditions.11 Each violation gives rise to a different bifurcation process. That is, if condition 

(i) does not hold stability is lost trough a Flip Bifurcation process; the failing of condition (ii) 

determines a Saddle Node bifurcation process; and the failing of condition (iii) generates a Hopf 

bifurcation process. 

Condition (i) corresponds to 

 
( 2 ) ( )1

( ) ( ) 2 ( )
( 2 )( ( ) ) ( )( )

P P Fc ww
f f fP

c f ww wp ww

n s n sn
e k e k e

n n s e k s n s s
δ δ

δ δ δ′ ′
+ − + ++� �> < − ≡� �+ + − − + + −	 


 

The direction of the inequality sign depending on: 

 
( 2 ) ( )( )

( ) ( )
( 2 )

ww wp wwP
f f

c

s n s s n
e k e

s n

δ δ
δ

+ − − − +
> < ≡

+ −
 

Note that  

 ( ) 1P F
f f fif e k e then e ′> < −  and  ( ) 0P F

f f fif e k e then e ′< >   

Condition (ii) can be reduced to condition (10). 

Finally, condition (iii) corresponds to 

 ( ) ( ) ( ) 0P H H
f f fe k e for e′ ′ ′< > > <  (16) 

where 
( )( )(1 )

( )( )( ) (1 )( ( ) )

P
f c wpH

f P P
f wp ww c f ww

e k s s n
e

e k s s n s e k sδ δ′

− +
≡

− + + − −
. 

If condition (10) holds, 0H
fe ′ > for sww ≤ swp and 1H

fe ′ > −  for sww > swp.  

The Jacobian of the system (6) and (7) evaluated at a dual equilibrium ( , , )D D D
c wk k k  is 

 

1 1
1 ( ) ( ) ( ) ( ) ( )

1 1( , )
1

0 1 ( )
1

D D D D D
wp ww wp wp ww

D D
c w

D
c

s s f k k s f k s s f k k
n nJ k k

s f k
n

δ

δ

� �′′ ′ ′′� � � �− + − + −� � � �� �+ += � �
� �′� �− +� �� �+� �

 (17) 

                                                

11 For a detailed analysis on the stability conditions of two and higher dimensional difference 

equations systems, see Gandolfo (1997). 
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The two eigenvalues of the system, λ1 and λ2, lie along the principal diagonal of the triangular 

matrix (17), with  

 2

1
1 ( )

1
D

cs f k
n

λ δ ′� �= − +� �+
   and   1

1
1 ( ) ( ) ( )

1
D D D

wp ww wps s f k k s f k
n

λ δ ′′ ′� �= − + − +� �+
. 

The occurrence of a Hopf bifurcation is excluded. Only a Flip bifurcation (one of the roots passing 

through –1) or a Saddle node bifurcation (one of the two roots passing through 1) may occur. 

Stability requires –1 < λ1 < 1 and –1 < λ2 < 1.  

We may distinguish three cases  

1st case sww = swp. We have 0 < λ1 < λ2 and λ2 < 1 for kD > kP. 12 

2nd case sww < swp. We have λ2 > max(λ1, 0), λ2 < 1 for kD > kP and λ1 > –1 for 

2
( )

( ) 1
wp D

D
f

wp ww

s
f k

e k
s s

δ

′

� �−+� �′	 
> − < −
−

. 

3rd case sww > swp. We have λ2 > 0, λ1 > 0; and, when kD > kP, λ2 < 1 and λ1 < 1 for 

( )( ) 1
wpD

D
f

ww wp

n
s

f ke k
s s

δ

′

+ −
′> − < −

−
.13 It follows that, for this case, stability can be lost only through a 

Saddle node bifurcation process.  

According to the above analysis, , as long as kP > kD, the condition ( ) 1fe k′ ≥ −  ensures 

stability to the Pasinetti equilibrium and, as long as kP < kD, it also ensures stability to a Dual 

equilibrium, where the elasticity ( )fe k′  measures the curvature of the production function. The 

inequality ( ) 1fe k′ ≥ −  follows from the Inada conditions. For example, it holds for the well-known 

Cobb-Douglas production function, f(k) = Akα, where 0 < α < 1: for any k, ( ) 1 1fe k α′ = − > − . 

                                                

12 In the appendix we prove formally that when condition (10) fails to hold and sww ≤ swp, it must be 

kD > kP. 

13 It can be shown that a trivial equilibrium k0 is never stable for kP ≥ k0 = 0. 
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However, it does not hold for a larger class of concave production functions.14 For example it does 

not necessarily hold for the equally widely-used CES technology.15 Specifically, for the production 

(1), the condition  

 1( )
( ) ( 1)( ) 1

( )f

f k k
e k a a bk

f k
ρρ −

′
′′

= = − + > −
′

  

is always true only for 0 < ρ < 1. In the next section, we turn to the numerical analysis of the 

associated dynamical system (6) and (7) when such a technology is assumed. 16 

 

3. Numerical explorations  

The significance of workers’ propensities to save 

We choose the constellation of parameters: a = 0.7, b = 0.3, ρ = –50, n = 0.05, δ = 0.2, sc = 0.75 and 

initial values: kc, 0 = 0.5, kw, 0, and kc, 0  = kc, 0 + kw, 0 = 1. The Pasinetti equilibrium value of the 

capital/labour ratio is given by  

 

1

1 1

0.997P

c

n
k a b

s b

ρ ρ
ρ

ρ δ
−

−
� �
� �+� �= − ≅� �� �	 
� �� �

 (18) 

From condition (10), 0P
ck > , if and only if 

( )
( )

1 ( )

P

ww ww c wp P

e k
s s s s

e k
< ≡ −

−
� . wws�  represents, 

therefore, a critical value above which a Pasinetti equilibrium cannot exist.  

                                                

14 The inequality ( ) 1fe k′ > −  is not always satisfied even by concave production functions with 

slightly more general properties than the Cobb-Douglas production function (see Böhm and Kaas, 

2000, p. 969).  

15 As it is well known (See Varian, 1992, pp. 19-20), the CES production function approximates a 

Cobb-Douglas production function for ρ → 0.  

16 Böhm and Wenzelburger (2000) explore some of the dynamic properties of a Pasinetti type 

model with neoclassical features but their analysis is confined to some of the local stability 

properties of the case sww = swp. 
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It is not always possible to derive an explicit form for a dual equilibrium, depending on the 

workers’ propensities to save out of wages and profits. From condition (12), a dual equilibrium 

exists and it is unique if 0.244wp wps s> ≅ , where 
1

( )wps n b ρδ
−

≡ + . 

We consider first the case sww = swp. Figure 3 presents bifurcation diagrams which study the long 

term behaviour of k, kc/k and kw/k with respect to sww for 0 ≤ sww ≤ 0.3.17 Figure 4(a), instead, will 

help us to follow, for this case, the creation and the destruction of equilibria as sww increases. For 

0 ww wws s< < � , a Pasinetti equilibrium kP exists, involving a positive share of capitalists’ capital, 

0ck k > , with ( ) 0.249P
ww c fs s e k= ≅� . Moreover, for P

ww ww wws sσ < < � , kP is stable with both 

eigenvalues of the Jacobian ( , )P P
c wJ k k  lying inside the unit circle, where  

 

1
( ) 2

( ) 0.186
1

2 ( ) ( )
2

P
f

P P
ww c f

P P
f f

n
e k

ns e k
n

e k e k
n

δσ

δ

′

′

++
+= − ≅+ −

+ −

.  

As sww is lowered below P
wwσ , the fixed point kP loses stability. The stability condition (i) 

1 ( , ) ( , ) 0P P P P
c w c wT k k D k k+ + >  (see above) is violated involving the smallest eigenvalue of 

( , )P P
c wJ k k  becoming less than –1. The system follows a period-doubling (or Flip) bifurcation route 

to chaos. 18 At ww wws s= � ,19 the share of capitalists’ capital is zero. For ww wws s> � , as condition (10) is 

violated, the dual equilibrium 

 

1
1

D

ww

n
k a b

s

ρ ρ
ρ δ

−
� �� �+
� �= −� �
� �	 
� �

  

                                                

17 To generate all our diagrams, we discard the first 1500 periods and employ the subsequent 2500 

periods. 

18 Complex behaviour can be found for many constellations of the parameters. Our paper is 

however confined in its scope. We are not going to proof rigorously the existence of chaos. 

19 Note that for sww = swp, the switch between a Pasinetti and dual equilibrium necessarily occurs 

when the Pasinetti equilibrium is stable since P
ww wwsσ < �  always. 
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is created through a saddle node bifurcation (see Figure 4(a)). The steady growth capital/labour 

ratio, kD, goes from kD = kP to kD ≅ 1.209 as sww is increased from ww wws s= �  to sww = 0.3. As shown 

in the previous section, when sww = swp and ww wws s> �  the dual equilibrium is always stable.  

We turn now to the case sww < swp. Figure 5 presents bifurcation diagrams for the capital/labour ratio 

with respect to sww for 0 ≤ sww≤ 0.3 and for (a) swp = 0.3, (b) swp = 0.45, (c) swp = 0.475 and (d) 

swp = 0.5. Figure 4(b), instead, shows, the creation and the destruction of equilibria for 0 ≤ sww≤ 0.3 

and wp wps s> . As shown in figure 5(a), for swp = 0, the qualitative behaviour of the system is 

analogous to the case sww = swp: for 0 ww wws s≤ ≤ � , a Pasinetti equilibrium exists, where 0.224wws ≅� , 

and for P
ww ww wws sσ < < �  it is stable. At the bifurcation value 0.199P

wwσ ≅ , the Pasinetti equilibrium 

loses stability through a Flip bifurcation, where 

 
1 1

( )( 2) ( ) 2 ( )( )
2( ( ) ( ))(1 )

P P P P
ww c f f wp fP P

f f

n
s e k n e k s e k n

e k e k n n
σ δ δ

δ′ ′
′


 + �� �= − + − + + +� �� �− + +� �� �
 

For swp > 0.341, P
ww wwsσ > � , that is, the Pasinetti equilibrium is never stable. As Figures 5(b), 5(c), 

and 5(d) show there is a threshold value of the workers’ propensity to save, tsd
wws , above which the 

system behaviour changes. In particular, capitalists’ capital becomes zero after a sufficiently long 

number of iterations. Capitalists’ share of capital vanishes as t → ∞ before condition (10) is 

violated, that is, tsd
ww wws s< �  ( tsd D

ww ww ww wws s for s σ= >� � ). Above tsd
wws  the two-dimensional system (6) 

and (7) collapses to a one-dimensional system in which all the capital is owned by workers.  

As Figure 5(b) shows, when sww passes through wws� , a dual equilibrium kD is created via a Flip 

bifurcation. kD is unstable for D
ww wws σ< , where D

wwσ  represents the Flip bifurcation value of sww. As 

shown in Figs 5(b)-4(d), D
wwσ  increases with swp ( 0.206D

wwσ ≅  for swp ≅ 0.45, 0.208D
wwσ ≅  for 

swp ≅ 0.475 and 0.209D
wwσ ≅  for swp ≅ 0.5). Above D

wwσ  the dual equilibrium is stable if D
ww wwsσ > � .  

Finally, we consider the case sww > swp. If sww > swp, a Pasinetti equilibrium, if it exists, can lose 

stability only through a Hopf bifurcation. Figure 6 presents bifurcation diagrams for k, kc/k and kw/k 

with respect to sww for 0.25 ≤ sww ≤ 0.265 and swp = 0.3. Figure 4(c) shows, for this case, the creation 

and the destruction of equilibria as sww increases. As shown in Figure 6, the Pasinetti equilibrium is 

stable for sww < σH, where  
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( ) ( )(1 ) [(1 ) ( ) ]
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f c wp f c wpH

P P
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e k e k n

δ δ
σ

δ δ′


 �− + − − + +� �= − ≅� �+ + −� �� �
 

As shown in Figure 4(c), in correspondence of σF two dual equilibria are created as the system 

undergoes a Saddle node bifurcation. For F
wws σ> , the larger of these equilibria becomes the 

attractor of the system in correspondence of which, as shown by Figure 6, the capitalists’ share of 

capital vanishes. At ww wws s= �  the system goes through another Saddle node bifurcation as the 

Pasinetti equilibrium ceases to exist (see Fig. 4(c)) 

Changes in the workers’ propensity to save have also an impact on the distribution of wealth 

between workers and capitalists. Figure 7, shows the behaviour of the average capital/labour ratio 

and of the average shares of capitalists’ and workers’ capital for 0 ww wws s≤ ≤ �  and swp = 0.15, and 

compare it with the Pasinetti equilibrium (the dotted line). As shown  in Figure 6, for F
wws σ< , 

when the Pasinetti equilibrium is unstable, the share of capitalists’ capital is above the equilibrium 

value. Conversely, the average share of workers’ capital is below the equilibrium value. The 

behaviour of the wealth distribution between workers and capitalists follows the behaviour of the 

income distribution between profits and wages. According to Figure 7, when the Pasinetti 

equilibrium is unstable and F
wws σ< , the share of profits (wages) in output is larger (smaller) 

than equilibrium value. These results are reversed for F
wws σ> .  

 

4. Final remarks 

In this paper, we have presented a discrete-time Solovian growth model that allows for equilibrium 

growth with two types of agents, workers and capitalists. In line with Pasinetti’s (1962), Samuelson 

and Modigliani’s (1966) and Chiang (1973) analyses, we have assumed that workers, in their 

quality of shareholders, save out of profit in a lower proportion than pure capitalists do. We have 

confirmed the validity of Böhm and Kaas’s (2000) proposition according to which the properties of 

the equilibrium  depend crucially on the characteristics of the technology and on differential saving 

rates. Finally, we have presented some numerical explorations showing the long run behaviour of 

the distributive processes between the two groups existing in the economy. 
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Appendix 

The condition λ2 < 1, which corresponds to ( ) ( )D P

c

n
f k f k

s
δ+′ ′< = , is satisfied for kD > kP. To 

prove that when condition (10) holds and sww ≤ swp, it must be kD > kP, we proceed generalizing 

Samuelson and Modigliani, 1966, and Miyazaki, 1991: 

Assume that kD > kP. It follows from the strict monotonicity of f (k) that 

 
( ) ( )P D

P D

f k f k
k k

>   

Considering that  

 
( )

( )
D

wp ww D
D

ww ww

s sf k n
f k

k s s
δ −+ ′= −  and ( )P

c

n
f k

s
δ+′ = , 

through substitution one obtains  

 
( )

( ) ( ) ( )
P

P D
ww c wp wwP

f k
s s f k s s f k

k
′ ′> − − . 

Moreover, when kD > kP, it must be that ( ) ( )P Df k f k′ ′> . It follows that, as long as sww ≤ swp, 

 
( )

[ ( )] ( )
P

P
ww c wp wwP

f k
s s s s f k

k
′> − − ,  

which is true by condition (10). 
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