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Abstract

We derive the shape of optimal unemployment insurance contracts
when agents can exert search effort but have private information about
their search technology. We derive a recursive solution of our ad-
verse selection problem with repeated moral hazard. Conditions un-
der which the UI agency should always offer separating contracts are
identified. We show that the good searcher receives an information
rent and that the bad searcher receives the minimal entitlement. Our
main theoretical contribution is a numerically useful analytical char-
acterization of the sets of jointly feasible entitlements. This allows us
to map our analytical results one-to-one to a numerical algorithm.
According to our results the contract for the good searcher has a de-
creasing benefit profile, as the one he would be offered in a pure moral
hazard environment. In contrast, the contract of the bad searcher
is distorted by an adverse selection effect, so that it tends to have
an upward-sloping benefit profile. We provide a comparative static
analysis of changes in various parameters of our model.

Keywords: Unemployment Insurance, Recursive Contracts, Adverse Se-
lection, Repeated Moral Hazard

JEL classification: J65, J64, D82, C61, E61
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1 Introduction

Governments in all developed countries provide unemployment insurance
(UI). There is remarkable empirical evidence that the existence of such a
social insurance prolongs unemployment spells (compare the overview arti-
cles Atkinson and Micklewright (1991) and Meyer (1995)). This fact can be
attributed to the disincentive effects of UI on job search. Designing an opti-
mal UI scheme, the government has to trade off incentives to search against
insurance aspects of providing benefits. A contract theoretical framework un-
derlying this interpretation was first introduced by Shavell and Weiss (1979)
and later refined and simulated by Hopenhayn and Nicolini (1997). A key re-
sult is that UI benefits should decrease with the length of the unemployment
spell.

In this paper, we propose to reconsider the optimal design of an UI
scheme. The distinguishing feature of our analysis is agents’ unobservable
heterogeneity with respect to their reemployment probability. We want to
capture three related labor market situations.
First, workers searching for a job are better informed than the UI agency
about the general job opportunities in their specific segment of the labor
market as well as their personal chances in that segment. The latter roughly
means that people with an identical curriculum vitae (assuming for a moment
that a CV contains all information a UI agency can use) will not necessarily
be equally successful in a job interview.
Second, incurring monitoring costs, the UI agency is able to elicit the infor-
mation relevant for the job market chances of an individual worker. However,
monitoring is (prohibitively) costly so that the UI agency chooses not make
use of this information. In that case ”unobservable” is not to be taken liter-
ally.
Third, the information about different search technologies is readily available
in a CV but the use of it is prohibited due to legal restrictions like anti-
discrimination laws. In that case ”unobservable” reads ”non-contractible”.
In our setup this unobservable heterogeneity is modelled by different types
of searchers, i.e. unemployed agents that - ceteris paribus - face different
reemployment probabilites.

Our paper focuses on two questions. First, under which circumstances
will it be optimal to offer only one UI contract to all agents - a situation
that resembles real world UI schemes in most countries? We identify a con-
dition under which it is never optimal to offer only one UI contract. Loosely
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speaking, the condition says that good searchers react more sensitively to
search incentives than bad searchers. This condition is met in all numerical
specifications of our model. Second, is a decreasing UI benefit scheme not
only optimal in a homogeneous but also in a heterogeneous population? We
investigate the shape of optimal contracts in a framework where two types of
agents (good and bad), with the type of an agent being private information,
face different hazard rates of finding a job (given a certain search effort) so
that their resulting search costs are different. From a contract theoretical
point of view we consider an adverse selection problem with repeated moral
hazard.

The strand of literature on which we build takes a contract theoretical
perspective of the UI design problem.1 The seminal contributions are Shavell
and Weiss (1979) and Hopenhayn and Nicolini (1997) (HN hereafter). In their
setup, the probability of receiving a job offer depends on a costly and un-
observable search effort. The principal designs a UI benefit scheme in order
to guarantee a certain ex-ante-utility for the agent at lowest (expected) cost
taking into account the (repeated) moral hazard of agents. In this frame-
work, the optimal UI benefit scheme should decrease with the length of the
unemployment spell. Furthermore, HN show that a government should use
the additional instrument of a wage tax after reemployment with a tax rate
that should increase with the length of the unemployment spell. All these
contributions have one feature in common: They consider ex-ante identical
workers. With search effort hold constant, everybody faces the same proba-
bility of receiving a job offer.

Some steps toward an analysis of our questions can be found in the litera-
ture already. The issue of adverse selection has been raised first by Mortensen
(1983) who applies the seminal Rothschild and Stiglitz (1976) paper to UI.
His analysis is, however, static and does not include search incentives. Wang
and Williamson (1999) present a numerical welfare analysis of UI in a dy-
namic economy with moral hazard and heterogeneous agents. Their focus is
the effect of (full and partial) experience rating on optimal UI. In contrast in
our model agents choose from a set of different UI contracts offered by the

1The literature on optimal UI has evolved in several waves and around different ques-
tions. Economic aspects considered include job matching, work performance, wage bar-
gaining and human capital acquirement. We will not discuss this extensive literature here
in detail and refer the interested reader to the comprehensive overview article by Karni
(1999). Recent contributions include Pavoni (2001), Zhao (2001) and Hassler and Mora
(2002).
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principal. Finally, Hopenhayn and Nicolini (2001) address the issue of het-
erogeneity of agents in a two period model of UI similar to their earlier work.
They assume, however, that the agents’ type is observable and contractible.
As HN, our paper technically builds on recursive solutions of repeated games
and principal agents problems as studied in the papers by Spear and Srivas-
tava (1987), Thomas and Worrall (1990), Abreu et al. (1990) [APS], Atkeson
and Lucas (1992) and Chang (1998). This literature has introduced entitle-
ment utilities as state variables in order to analyze models of repeated moral
hazard.

The main theoretical contribution of this paper is a precise analytical
characterization of the sets of jointly feasible entitlements which can be used
one-to-one in a numerical algorithm. This corresponds to the calculation of
the set of ”sustainable outcomes” in the terminology of infinite-dimensional
models, that is characterized theoretically as the fix-point of a set-operator in
APS. We show that in our model the boundaries of the sets are continuous
functions. In particular, the sets are compact, connected and contractible
(i.e. ”have no holes”). These properties cannot be taken for granted in
approaches building on the APS methodology. They are crucial for our nu-
merical algorithm that considerably improves upon previous algorithms, not
making use of these properties, in terms of accuracy [compare e.g. section 8
of Chang (1998)].

In our set-up the principal wants to ensure a certain ex-ante lifetime util-
ity (entitlement) to both agents at lowest cost. In the first period he can
offer one or two contracts specifying the benefit levels for each period where
the agent remains unemployed. To keep track of the search incentives gen-
erated by a contract we introduce the remaining expected life-time utility
guaranteed by a contract to an agent as a state variable of the problem (that
we call entitlement in the sequel). This is necessary since we cannot hope to
find a direct recursive formulation of the problem: both the adverse selec-
tion incentive constraints and the entitlement constraints in the principal’s
problem have to hold only in the first period. With our state variables, we
are able to give a recursive formulation of two separate cost minimization
problems that generate optimal contracts implementing previously specified
entitlements. The adverse selection problem can then be stated in terms of
these cost minimization problems.

Combining a recursive method with classical contract theory we can de-
duce a number of results: First, the good searcher receives an information
rent, whereas the bad searcher receives the minimal entitlement. Second,
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the contract for the bad searcher is distorted by an adverse selection effect.
Third, if the incentive constraint of the bad searcher is slack, the contract
for the good searcher is identical to the one he would be offered in a pure
moral hazard framework, given his entitlement.

We use our recursive solution to derive further results in a a numerical
simulation. In particular, we study the effect of various parameters of the
model on the two optimal contracts. We are interested in their impact on
the adverse selection effect and the information rent for the good searcher.
Our findings are as follows:

1. In all our specifications, the incentive constraint of the bad searcher
is slack. In particular, this means that the good searcher always re-
ceives the same contract as in a pure moral hazard environment with
a decreasing benefit profile.

2. The adverse selection effect is strong for low values of the entitlement
and for small population shares of the bad searcher. Also, it is rein-
forced by a fall of the bad searcher’s hazard rate. In the simulation we
will see that if this effect is strong, the contract of the bad searcher will
show an upward-sloping profile.

3. The information rent increases as the entitlement decreases; it is low
if the population share of the bad searcher is high or if the agents are
highly risk-averse.

We provide an economic intuition for the results of the comparative static
exercise and discuss their implications for the application of an optimal UI
program with more than one contract.

The paper is organized as follows. In section 2 the model is introduced
and our assumptions are motivated. In section 3 the analytical results are
presented. In section 4 the model is solved numerically; we also present an
extensive comparative statics exercise. Section 5 presents various possible
extensions of our model. Most proofs are given in the appendix.

2 Model

Our framework for analyzing UI is a dynamic principal-agent model. The
principal represents the government (or UI agency) providing social insur-
ance.
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The agents’ problem The agents are unemployed workers searching for
a job. There is a continuum of agents, modelled by the unit interval. The
agents are of two types, differing in their opportunities of finding a new job.
They have private information about their types. The fraction of agents of
type B (”bad searcher”) q and of type G (”good searcher”) 1−q are common
knowledge. Except for the difference in search technologies (as formalized
below) we assume that agents are identical. In particular, we assume that
both agents are equally risk-averse, they enjoy the same utility u(.) from
consumption. Also, we assume that once an agent has been employed, he
will keep his job with a fixed wage rate w until his death in period T .2

We can thus calculate an employed agent’s total expected lifetime utility
in period t as:

Wt =

T
∑

l=t

βl−tu(w),

where β is the common discount factor.
The differences between the two types of agents in their search technology

is expressed by agent i’s probability of remaining unemployed pi(a), that is
a function of the search effort a he exerts. We assume that for all a:

pB(a) > pG(a),

i.e. for any given search effort a the bad searcher has a higher probability of
remaining unemployed than the good searcher (we will sharpen the notion
of heterogeneity in condition 2.5 below).

Unemployed agents receive possibly time-varying UI benefits. We denote
by bt the benefit received in period t. Given any benefit scheme {b1, ..., bT},
the agent chooses his search effort at in any period in which he is unemployed.
In his decision to increase his search effort he faces a trade-off between in-
creasing search costs on the one hand and an increasing reemployment prob-
ability on the other. The total lifetime utility he expects when remaining
unemployed is the key variable determining this decision. We denote by V i

t+1

an unemployed agent’s total expected lifetime utility in period t + 1. More-
over, in the sequel we will denote by zt = u(bt) the utility value of consuming

2Technically, the assumption that both agents get the same wage is in no way important
for our analysis, it is introduced for the sake of simplicity. In the solution to our model
we could keep track of the impact of different wages for B and G on the search incentives;
qualitatively, the results would not change.
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benefit bt. Thus we can state the agent’s problem in period t recursively by:

V i
t = max

a
zt − a + β[pi(a)V i

t+1 + (1 − pi(a))Wt+1], (1)

where we assumed that effort enters utility linearly. Recall that Wt+1 is an
employed agents expected lifetime utility where employment starts in t + 1.
We denote by âi

t the decision of agent i:

âi
t = argmaxa zt − a + β[pi(a)V i

t+1 + (1 − pi(a))Wt+1]. (2)

The principal will have to take into account the decisions by the agents when
designing contracts for them. These constraints are moral hazard incentive
constraints.

The principal’s problem The principal’s objective is to minimize total
expected costs. Hereby the current cost function is the inverse of the agent’s
utility function c(zi) = u−1(zi) = bi. The following property of c(.) is implied
by monotonicity and strict concavity of an agent’s utility function u(.), i.e.
risk aversion.

Condition 2.1 The current cost function c(.) is increasing and strictly con-
vex.

The principal’s objective is to minimize the cost of providing a certain
”level” of insurance by the design of (a menu of) optimal contracts for the
agents. We will call {zi

1, ..., z
i
T} a contract designed for agent i (with i =

B, G). We will often use the terms contract b and contract g to denote
the contracts designed for agents B and G respectively. Agents choose one
contract from the offered contracts in period 0. We assume that the principal
can fully commit to the contract promised in period zero.

In his minimization problem, the principal has to take into consideration
the different reemployment probabilities of the agents. Furthermore, he has
to take into account the following constraints: First, as mentioned above, he
has to take into consideration the agents’ decision problem, i.e. the moral
hazard incentive constraints. Second, the principal has to guarantee incen-
tive compatibility due to adverse selection, i.e., he has to ensure that each
agent chooses the contract designed for him. Third, he has to respect the
entitlement V (i.e. total expected lifetime utility) the contracts should at
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least guarantee to agent B and G respectively. This entitlement can be in-
terpreted as the ”level of insurance” the principal is willing to guarantee.
Any value of the entitlement V can be mapped one-to-one to a ”certainty
equivalent replacement rate”, i.e., to a percentage of the wage w which is
consumed every period and which provides lifetime utility of exactly V . This
interpretation will be used to calibrate reasonable values of V later.
The principal’s problem can thus be stated as:

min
{zB

1
,...,zB

T
},{zG

1
,...,zG

T
}
q[c(zB

1 ) + βpB(âB
1 )[c(zB

2 ) + βpB(âB
2 )[c(zB

3 ) + ...]...]] +

(1 − q)[c(zG
1 ) + βpG(âG

1 )[c(zG
2 ) + βpG(âG

2 )[c(zG
3 ) + ...]...]]

subject to the entitlement constraints (EC)

V
b,B
1 ≥ V , (3)

V
g,G
1 ≥ V , (4)

and the adverse selection incentive constraints (AS-IC)

V
b,B
1 ≥ V

g,B
1 , (5)

V
g,G
1 ≥ V

b,G
1 . (6)

The hat on the a’s describing the choices of effort of the agents, â, indicate
that the principal respects the moral hazard incentive constraints (MH-IC).
In the formulation of the principal’s problem, V

j,i
t denotes total expected

lifetime utility in period t for the unemployed agent i (i = B, G) if he selects
contract j (j = b, g). The superscript j indicates for which agent the contract
is designed, i.e., contract b is designed for agent B and contract g for agent
G. A priori both agents can of course choose either contract before period
1. The AS-IC constraints ensure that they will in fact choose the contract
designed for them. The EC constraints guarantee that the chosen contract
gives the promised utility. Both the V

j,i
t s and the âi

ts can be calculated from
the array of equations 1 and 2.

Remark 2.2 If agents are homogeneous in their search costs, i.e. they all
have the same pi(a), then the setup is identical to the one considered by
Shavell and Weiss (1979) (except for the finite time dimension).
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To make our problem interesting, the initial entitlements to total expected
lifetime utility have to be below the total lifetime utility from work. If the
entitlements V

i,j
t are higher than Wt for any period posterior to one in that

the unemployed agents exert search effort, the efforts would necessarily be
zero, and thus the probability of remaining unemployed pi would be 1.

Condition 2.3 The utility entitlement of the unemployed agent is below the
one guaranteed by lifetime work: V < W1.

We will see in the sequel that this condition guarantees that all optimal V
i,j
t

are smaller than Wt.

Formalization of the Agents’ Heterogeneity Now we formalize in de-
tail the idea that agents differ in their reemployment probabilities. First, we
assume that to achieve a given probability 1− pi of being reemployed, agent
B has to exert a higher effort than agent G. Moreover, to develop the model
model formally we make some standard technical assumptions on the pi(.)
functions.

Condition 2.4 The probability of remaining unemployed pi(a) of agent i:

1. Smoothness pi(a) ∈ C∞(R)

2. Monotonicity and strict Convexity p′i(a) < 0 p′′i (a) > 0

3. Boundary conditions pi(0) = 1 lima→∞ pi(a) = 0

4. Inada conditions lima→0 p′i(a) = −∞ lima→∞ p′i(a) = 0

Condition 2.4 ensures that the agents’ problem (1) always has a unique in-
terior solution that can be characterized by a first order condition.

Condition 2.5 1. Given the same effort, type B has a higher probability
of remaining unemployed than type G: pB(a) > pG(a).

2. Given the same contract {z1, ..., zT}, in equilibrium pB(aB
t ) > pG(aG

t ).

Condition 2.5 formally characterizes the heterogeneity in our model. Its
second part sharpens the basic concept of a bad or good searcher: given the
same contract, the bad searcher may exert a higher search effort than the
good searcher under this contract, but his effort will not be so high that his
chance of finding a job exceeds the good searcher’s chance. The next lemma
shows that the condition is in fact well-known from standard contract theory.
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Lemma 2.6 Part 2 of condition 2.5 is equivalent to the following Spence-
Mirrlees property:

∂V B
t

∂zt+s

−
∂V G

t

∂zt+s

> 0 (7)

for all t with 1 ≤ t ≤ T and s with 1 ≤ s ≤ T − t.

Proof. Firstly, we prove that pB(aB
t ) > pG(aG

t ) ensues from the Spence-
Mirrlees-Property 7. We calculate

∂V i
t

∂zt+1
= βpi(a

i
t)

∂V i
t+1

∂zt+1
= βpi(a

i
t),

where we use the Envelope Theorem. The assertion now follows immediately.
Secondly, assume that pB(aB

t ) > pG(aG
t ) holds. In the case where s = 1, the

Spence-Mirrlees property follows from what we have shown above. So let
s > 1. Then

∂V B
t

∂zt+s

−
∂V G

t

∂zt+s

= βpB

∂V B
t+1

∂zt+s

− βpG

∂V G
t+1

∂zt+s

,

where we have used the Envelope Theorem once more. The assertion follows
by induction.
Condition 2.4 and 2.5 will be used in all results that follow. For our first result
- on the optimality of separating the types - we need one more assumption on
pi(.). As we mentioned above, condition 2.4 ensures that the agent’s choice
of effort from (1) can be characterized by the following first order condition:

p′i(a
i
t) =

1

β(V i
t+1 − Wt+1)

. (8)

Equation (8) establishes a one-to-one and smooth relation between V i
t and

ai
t. We can therefore define the following function for the next-to-last period:

πi(zT ) ≡ pi(a
i
T−1) = pi

(

(p′i)
−1

(

1

β(zT − u(w))

))

So πi(zT ) is agent i’s probability of remaining unemployed when facing benefit
utility zT in the last period. It is clear that πi is increasing. We formulate
a condition on the elasticity of πi with respect to zT , which is -of course- an
implicit assumption on pi(.).
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Condition 2.7 1. The marginal probability of remaining unemployed ∂πi(z)
∂z

of agent i facing promised utility z is greater for agent G than for agent
B:

∂πG(z)

∂z
>

∂πB(z)

∂z

2. If the marginal probabilities ∂πi(z)
∂z

of agent G and B are equal for two
utility values zG and zB, then the utility of G, zG, must be smaller than
the utility of B, zB:

∂πG(zG)

∂z
=

∂πB(zB)

∂z
⇒ zG < zB.

What is the economic content of Condition 2.7? The first part says that
agent G reacts more strongly to a change in the promise z than agent B. In
other words: The probability of finding a new job depends more critically on
the UI benefit promise in the case of agent G than in the case of agent B.
Note that here we compare agents G and B that face the same contract. The
second part of condition 2.7 says, that whenever the reaction is equal, then
agent G must face a lower promise than agent B. Summarizing condition 2.7
we can say that the ”incentive sensitivity” of agent G is higher than the one
of agent B.

What role do conditions 2.5 and 2.7 play in our analysis? The model
presented in this paper incorporates two different paradigms, hidden infor-
mation and (repeated) hidden action. Condition 2.5 is the typical technical
assumption in hidden information models. Condition 2.7 is a condition that
ensures in our setup a feature of (pure) repeated hidden action that has
been analyzed numerically in Pavoni (2001) and discussed in Hopenhayn
and Nicolini (2001): In the full information case the decline of the UI (over
time) is sharper for better searchers. Loosely speaking, conditions 2.5 and
2.7 ensure that our model exhibits the ”standard” behavior of a pure hidden
information model and a pure hidden action model. We will see in section 4
that both conditions will be met in our functional specification of our simu-
lation.

3 Theoretical Results

In this section we develop a characterization of the solution to the principal’s
problem. First, we will however turn to a standard question in contract
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theory.

Pooling is Not Optimal The first question we ask is whether and under
what circumstances it is actually optimal to offer two contracts in order to
screen the agents. The answer gives a first indication that it may indeed be
relevant to consider the cost saving potential of a differentiated UI.

Proposition 3.1 There exists a solution to the Principal’s Problem. If Con-
dition 2.7 holds, any solution is separating.

Proof. see Appendix
Economically speaking: It is not efficient to offer only one UI contract to

two agents that face different search costs in the labor market if the good
searcher reduces his effort more than the bad searcher in response to an
increase in the entitlement while unemployed (i.e. so that his reemployment
chance falls more quickly). In other words: If the good searcher reacts more
sensitively to the search incentives set by the principal than the bad searcher,
he should not offer a single contract to both agents.

Remark 3.2 In the case of CARA and CRRA utility one can show that
to obtain the ”no pooling” result of theorem 3.1 it is sufficient to impose

assumption 2.7 on the elasticity σi
π(z) =

∣

∣

∣

∂πi(z)
∂z

z
πi(z)

∣

∣

∣
.

What makes the theorem very appealing from a more applied perspec-
tive is the fact that our numerical implementation with CRRA utility shows
that the good searcher is very likely to react more sensitively to the search
incentives than the bad searcher. Considering this numerical result as robust
we could claim that the UI agency has a definite potential for cost-saving by
switching from offering only one to offering two UI contracts.

But what should the optimal contracts look like? The answer to this
question is not evident: We can neither apply Shavell and Weiss (1979) so-
lution directly, since we should expect the influence of hidden information
on the optimal design of the contracts, nor can we apply standard solu-
tions of adverse selection models that do not incorporate repeated hidden
action. Moreover we cannot hope to find a direct recursive formulation of
the problem, because both the adverse selection incentive constraints and
the entitlement constraints in the principal’s problem have to hold only in
the first period.
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The Solution of the Model In the sequel, we develop a characterization
of the solution to the principal’s problem in Propositions 3.3, 3.5 and 3.9.
The strategy is as follows: We first look at each contract separately ignoring
for a moment the issue of self-selection. In Proposition 3.3 we give a recur-
sive formulation of the problem of finding a cost-minimizing contract that
provides agent B and agent G with two arbitrarily specified levels of ex-ante
lifetime utility (a pair of first-period entitlements) if both of them choose this
contract. The goal of this proposition is to summarize the cost minimization
problem in a compact way, i.e., to give two separate recursive formulations,
one for each contract. In this formulation the pairs of entitlements (one pair
for each contract) and their evolution over time serve as state variables of
the problem (compare HN).

The question left open by proposition 3.3 is which pairs of entitlements
are actually jointly feasible under a given contract (still ignoring the issue
of self-selection). The answer to this question has to take into account the
choices of effort by the agents induced by the contract under consideration
as well as the laws of motion for the entitlements. Proposition 3.5 gives a
precise theoretical and numerically useful description of the correspondence
mapping pairs of entitlements of the agents today (V B

t , V G
t ) to jointly feasible

policy options (zt, V
B
t+1, V

G
t+1), i.e., the benefit today and the entitlements for

tomorrow. This proposition is the main theoretical result of the paper and
serves as the cornerstone of our recursive numerical implementation. We
can now calculate the cost of a given contract that provides agents with any
feasible pairs of first period entitlements.

Finally, we return to address the issue of self-selection. We merge the two
separately solved cost minimization problems and state the original adverse
selection problem faced by the principal as a four-dimensional minimization
problem in the (two pairs of) entitlements of the first period. In Proposition
3.9 we further simplify the minimization problem by showing that the enti-
tlement constraint of G must be slack, and that the entitlement constraint of
B and the adverse selection incentive constraint of G must be binding at the
solution. This reduces the dimension of the problem from four to two which
allows us to solve the problem with high numerical accuracy.

We begin the characterization of the solution by the recursive formulation
of contract b, i.e. the contract designed for agent B. Of course contract
g can be described similarly. As usual in adverse selection problems, we
anticipate that only agent B will choose contract b in the end and thus
stochastically discount costs at his rate. For the time being, the lifetime
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(or first period) entitlements of contract b for agent B and agent G, V b,B

and V b,G, are taken as given. Their optimal values for given entitlement
constraints (EC) from the original problem will be calculated in Proposition
3.9 below. The recursive formulation takes the form of a (finite-dimensional)
Bellman Equation: The principal minimizes the costs of paying out a benefit
worth zt (in utility units) today and promising entitlements V

b,B
t+1 and V

b,G
t+1

for tomorrow. In doing so, he has to observe the entitlements of B and G
today, V

b,B
t and V

b,G
t , that serve as state variables of the problem. A law

of motion connects the state and the choice variables. We denote the set of
possible choices (zt, V

b,B
t+1 , V

b,G
t+1 ) in state (V b,B

t , V
b,G
t ) by Γt(V

b,B
t , V

b,G
t ). This

correspondence will be characterized later in Proposition 3.5. Moreover, the
choices of effort ai

t from the agents’ problem facing the promised entitlement
V i

t+1 for tomorrow, i.e. the MH-IC, are taken as given by the principal. The
recursive formulation is completed by two boundary conditions: The first
period entitlements V

b,B
1 and V

b,G
1 of course have to equal the promised ex

ante lifetime utilities V b,B and V b,G respectively. In the last period, the
entitlements V

b,B
T and V

b,G
T have to take the value of the last period benefit

zT . To see this, recall that we consider agents who chose the same contract,
namely contract b. So both get a benefit of zT in the last period. But in the
last period, unlike all other periods, there is no way of splitting the promise
for that period into a benefit in that period and a promise one period later
because there is no period later.
Thus we can state the following proposition without proof:3

Proposition 3.3 (Recursive Formulation of Contract b) The cost func-
tions for contract b, guaranteeing an ex ante lifetime utility of V b,B to agent
B and V b,G to agent G, has the following recursive form:

CB
t (V B

t , V G
t ) = min

{zt,V
B
t+1

,V G
t+1
}∈Γt(V B

t ,V G
t )

c(zt) + βpB(aB)CB
t+1(V

B
t+1, V

G
t+1) (9)

subject to

Law of motion for contract b (LOM)

zt − aB + β[pB(aB)V B
t+1 + (1 − pB(aB))Wt+1] = V B

t

zt − aG + β[pG(aG)V G
t+1 + (1 − pG(aG))Wt+1] = V G

t ,

3A proof by induction over T is straightforward. The recursive formulation can thus
be understood as a way of summarizing terms in the principal’s problem above.
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Choice of effort in contract b (MH-IC)

aB = argmaxa zt − a + β[pB(a)V B
t+1 + (1 − pB(a))Wt+1]

aG = argmaxa zt − a + β[pG(a)V G
t+1 + (1 − pG(a))Wt+1],

as well as the boundary conditions

V B
1 = V b,B (10)

V G
1 = V b,G (11)

V B
T = zT (12)

V G
T = zT . (13)

The correspondence Γt maps into the values of jointly feasible zt, V B
t+1, V G

t+1

given the pair of entitlements (V B
t , V G

t ).

Remark 3.4 Of course the contract g for agent G takes the same form as
contract b for agent B in Proposition 3.3, whereby necessary adaptations in
the entitlements etc. are obvious.

In order to make use of Proposition 3.3, we actually have to be able to
calculate the correspondence Γt(., .) as precisely as possible. This is partic-
ularly important for any numerical application of the recursive formulation.
The following proposition gives a characterization of theoretical properties of
Γt that are indispensable for a satisfactory approach to calculate Γt numeri-
cally. For technical reasons we distinguish between the case where the utility
zt from consuming the UI benefit is bounded from below from the case where
it is not. We will discuss this and other issues after stating the proposition.

Proposition 3.5 (Characterization of Γt) The following formulas char-
acterize the correspondence Γt(V

B
t , V G

t ), that gives all feasible policy options
for given entitlements V B

t and V G
t in period t. Note that we allow for a lower

bound z on the utility value of the benefit zt. The reason will be explained in
Remark 3.6.

1. Be t ≤ T and let zt ≥ z (where z may take the value −∞). Then there
exists a lower bound V G and so that for V G ≤ V G

t ≤ Wt:
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Γt(V
B
t , V G

t ) =

{

{zt(a), V B
t+1(a), V G

t+1(a)}a∈[a,a](V B
t ,V G

t ) : V B
t ∈ [V B

t (V G
t ), V

B

t (V G
t )]

∅ : else

(14)
The jointly feasible values zt(a), V B

t+1(a) and V G
t+1(a) are differentiable

functions.

The boundary functions a(V B
t , V G

t ), a(V B
t , V G

t ) and V B
t (V G

t ), V
B

t (V G
t )

are continuous. They are depend on the value of z.
For V G

t below V G, the correspondence Γt(V
B
t , V G

t ) is the empty set.

2. In period T − 1 the correspondence ΓT−1(V
B
T−1, V

G
T−1) takes the same

form as in 1 with only one possible parameter value a, i.e. only one
choice {zT−1(a), V B

T (a), V G
T (a)}.

Proof. see Appendix
We have two technical remarks on Proposition 3.5.

Remark 3.6 The upper bound Wt on V B
t is artificial: Of course the princi-

pal can ensure lifetime utilities above the value of secure lifetime income from
work. However, this cannot be optimal, since it reduces the search effort to
zero, and in view of Condition 2.3 we exclude lifetime utilities above Wt from
our considerations.

Remark 3.7 The lower bound on zt in Proposition 3.5 is introduced for
technical reasons: Some utility functions map onto the real line R, some
only onto the half-line R+. An example of the former kind are CARA utility
functions, one of the latter CRRA utility functions with risk aversion smaller
than one.

With Proposition 3.5 at hand, we can define precisely the notion of feasi-
bility in our model: A pair of entitlements (V B

t , V G
t ) is called jointly feasible

if the set Γt(V
B
t , V G

t ) is non-empty.
Let us now be more specific why this proposition is so important for

our purposes. Models including repeated moral hazard, as ours, have been
discussed in the framework of a strand of literature building on Spear and
Srivastava (1987), Thomas and Worrall (1990), Abreu et al. (1990) [APS],
Atkeson and Lucas (1992) and Chang (1998). We are not bound to provide
a detailed discussion of this literature, the following remark, however, relates
proposition 3.5 to it.
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Remark 3.8 The sets of jointly feasible entitlements are the finite-dimensional
analogue of the set of sequential equilibrium payoffs (of the agents’ game) in
the infinite-dimensional framework of APS or the set of sustainable outcomes
in the (again infinite-dimensional) framework of Chang (1998).

By introducing entitlements, marginal utilities or sequential equilibrium
outcomes as state variables - instead of ”intuitive” state variables - we in-
evitably run into the difficulty of defining precisely the sets of possible values
these state variables can take. APS and Chang (1998) characterize these
sets as the largest fixed point of a set operator. Moreover, they show that
the fixed point can be obtained by a fixed-point iteration of sets. This is
theoretically sound. However, it does not provide an entirely satisfactory
description of the sets nor the definite algorithm to calculate them numeri-
cally, in particular if the state space is more than one-dimensional. In fact,
the numerical determination of these sets may be a tricky issue in simula-
tions of models building on these methods. In Proposition 3.5 we give - for
our model - a satisfactory description of the sets of the state variables: The
boundaries of the sets are continuous functions. In particular, the sets are
compact, connected and contractible. In the next section we will point out
that this is crucial for the numerical implementation of our solution. More-
over, Proposition 3.5 states that the principal’s choice problem in a given
period is essentially one-dimensional (in the sense that the correspondence
describes a smooth one-dimensional path in the three-dimensional real space
with this path being parameterized in a). 4

After this methodological digression, we return to the solution of the
principal’s problem. Given proposition 3.3 it can be stated as follows:

min
V b,B ,V b,G,V g,B ,V g,G

qCB
1 (V b,B, V b,G) + (1 − q)CG

1 (V g,B, V g,G) (15)

s.t. Γ1(V
b,B, V b,G) 6= ∅ (16)

Γ1(V
g,B, V g,G) 6= ∅ (17)

V b,B ≥ V g,B (18)

V g,G ≥ V b,G (19)

V b,B ≥ V (20)

V g,G ≥ V . (21)

4Except for the next-to-last period, where there is only one choice left.
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This is a four dimensional minimization problem, and thus still rather com-
plex. However, as in the case of standard adverse selection problems (com-
pare e.g. the book by Laffont and Martimort (2002), Chap. 2), we are able
show that agent B’s entitlement constraint and agent G’s adverse selection
incentive constraint must be binding, and that agent G’s entitlement con-
straint must be slack at the solution. And so we finally characterize the
solution to the principal’s problem as follows:

Proposition 3.9 (Solution of the Principal’s Problem) For values of
V that are not too low, solutions to the principal’s problem are solutions to
the simplified problem:

min
V g,B,V g,G

qCB
1 (V , V g,G) + (1 − q)CG

1 (V g,B, V g,G)

s.t. V ≥ V g,B

Proof. see Appendix
The qualification ”not too low” is needed to avoid corner solutions. In

the simulation we found that all values of V corresponding to reasonable
levels of insurance were high enough (compare the proof in Appendix C and
footnote 6 in Section 4.1).

Two Corollaries Two corollaries ensue from proposition 3.9. The set-up
considered by Shavell and Weiss (1979) will be our benchmark, i.e. a set-up
where the principal knows the type of the agent and sets the benefits to give
optimal search incentives. We will call it the pure moral hazard environment.
About the contract for type B we learn:

Corollary 3.10 Type B receives the minimal entitlement utility V . His con-
tract is distorted with respect to the optimal contract in a pure moral hazard
environment such that its value V b,G for type G is reduced.

Proof. The first assertion is point 2 in the proof of 3.9. To see the second
assertion, note that, given that V g,B is chosen optimally for each value of
V g,G, the cost function of contract g is strictly increasing in V g,G. Moreover,
in a full information optimum (i.e. the pure moral hazard case for both
contracts) the optimal V b,G (optimal with respect to V b,B = V ) can be
characterized by a first order condition. We thus obtain a first order reduction
of costs for contract g by lowering V g,G = V b,G (constraint 19 is binding!)
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below the value of V b,G in a full information optimum, whereas there is only
a second order increase in costs for contract b. In the case of the contract
for type G, we deduce:

Corollary 3.11 1. Type G receives an information rent, i.e. the utility
V g,G that his contract provides him with is greater than V .

2. If the adverse selection incentive constraint of the bad searcher (18) is
slack at the solution, his contract is identical to the optimal contract
in the pure moral hazard environment (given the level of entitlement
V g,G).

Proof. The fact that V g,G > V has been proved in Proposition 3.9; so we
look at the second assertion. In our framework, we can recover the Shavell-
Weiss contracts (i.e. the contracts from the pure moral hazard environment)
at a given level of entitlement V i,i by solving (i 6= j):

min
V i,j

Ci
1(V

i,i, V i,j)

s.t. LOM, MH − IC

and applying forward induction afterwards. This is because by minimizing
the costs of contract i with respect to its value for agent j, we just neglect
the impact of this value for the optimal contract.

Now, if our objective function is optimized without further restriction,
we recover the optimal contract from the pure moral hazard environment,
because the value V g,B of contract g for type B does not appear in the cost
function of contract b.
In our numerical simulations, we found that the adverse selection incentive
constraint of the bad searcher 18 was always slack.

We thus recover the rent extraction/efficiency trade-off from a simple
adverse selection model without moral hazard (cf. chapter 2 of Laffont and
Martimort (2002)), where efficiency here is the search efficiency of agent B.

The corollaries provide first economic insights as to how the unemploy-
ment agency should design optimal UI contracts. Further economic aspects
will be discussed after a simulation of optimal contracts in the next section.
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4 Simulation

4.1 Computational Strategy

The simulation closely follows Proposition 3.3, Proposition 3.5 and Propo-
sition 3.9 in Section 2. The first part of the simulation calculates the cor-
respondence Γt by backward induction. As in Proposition 3.5, we use the
entitlement of agent G V G

t as a parameter for the upper and lower bound
on the entitlement V B

t for agent B. We introduce a grid on V G
t and then

calculate the bounds on V B
t by a bracketing procedure.

More precisely, for a given tuple (V B
t , V G

t ) of state variables, we check
whether the corresponding path of choice variables (zt(a), V B

t+1(a), V G
t+1(a))

(compare the proof of Proposition 3.5, Appendix C) intersects the set of
jointly feasible values (zt, V

B
t+1, V

G
t+1) as determined in the previous induction

step. As defined in the previous section, by ”jointly feasible” we refer to
tuples (V B

t+1, V
G
t+1) such that Γt+1(V

B
t+1, V

G
t+1) is non-empty; in the case of zt,

we only have to check whether it is above the lower bound z. By proposition
3.5, we know that for each V G

t (within the limits of feasible entitlements for

G) there exits a V B
t (V G

t ) and V
B

t (V G
t ) that limits the range of V B

t jointly
feasible with V G

t . Since for every V G
t the set of jointly feasible V B

t is one

interval, we can ”encircle” V B
t (and, separately, V

B

t ) by values of V B
t above

and below and then calculate the bound by a (highly precise) bracketing
procedure. It is thus proposition 3.5 that guarantees that our algorithm cal-
culates a characterization of the set of jointly feasible entitlements (V B

t , V G
t )

by stating that the set of jointly feasible entitlements (V B
t+1, V

G
t+1) is compact

and connected.
As we have pointed out in the preceding section (compare remark 3.8

and the following discussion), the virtue of proposition 3.5 lies in a more
”precise” characterization of the sets of jointly feasible entitlements (the set
of ”sustainable outcomes” in the terminology of Chang (1998)). It is ex-
actly here in the numerical algorithm where this characterization becomes
useful: The description of the set of sustainable outcomes as a fixed-point
of a set-operator by APS is mathematically precise, but poses a serious pre-
cision problem in numerical applications with more than one state variable
(compare the discussion in section 8 of Chang).

The second part of our numerical procedure uses the recursive formula-
tion in Proposition 3.3. It calculates a numerical approximation of the cost

21



functions Ci
t(V

B
t , V G

t ) based on a solution of the minimization problems in
the backward induction of the principal.

More precisely, we cover the domain of Ci
t (i.e. the set of jointly feasible

entitlements (V B
t , V G

t ) for which Γt(V
B
t , V G

t ) is non-empty) by a large grid.
For each tuple (V B

t , V G
t ) in the grid (”states of the world”), we solve the min-

imization problem along the path of choice variables (zt(a), V B
t+1(a), V G

t+1(a)),
i.e. we solve it in a. Ignoring the exact value of the limits a and a, we
use a bracketing procedure in which we allocate an extremely high cost to
a values delivering choice variables outside the set of feasible values. Note
that we make use of the characterization of Γt in two ways: First, we rely
on the fact that the set of jointly feasible entitlements (V B

t , V G
t ) is compact

and contractible 5. Second, we exploit the reduction of the number of choice
variables from three (zt, V

B
t+1, V

G
t+1) to one a.

Finally, each cost function is then approximated as a linear combination of
complete Chebychev polynomials by regression (for this standard procedure,
compare Judd (1998), Chapters 6.4, 6.12 and 12.8).

In the third part, the approximated cost functions Ci
1 are combined in

the objective function of the principal’s problem. According to proposition
3.9, we have to solve a two-dimensional minimization problem 6.

After an initial grid search, the solution is calculated by a Nelder-Mead
multidimensional minimization procedure.

4.2 Calibration of the Model

In our calibration, we work with a monthly interval. Therefore we set the
discount rate to β = 0.995 which corresponds to an annual discount rate of
0.95. The overall time-spell is a year, i.e. the number of periods is set to T =
12. As for the probability function, we choose pi(a) = 1 −

√

1 − exp(−θia),
where θi remains to be determined. We use CRRA utility functions u(b) =
b1−γ

1−γ
, as common in the UI literature.

5If it were not contractible there could be holes in the set of jointly feasible state
vectors (V B

t , V G
t ) and we would have to split up the minimization path into several parts

- a tedious and hardly tractable task.
6 There is one point to take care of, though: In order to apply proposition 3.9, we have

to ensure that the minimal entitlement V is so high that z1 > z (compare the proof in
Appendix C). We ran alternative minimization routines for low values of V , showing that
the assertion holds.
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Needless to say, the corresponding cost function c(.) = u−1(.) meets the
convexity condition 2.1:

c(z) = zα,

where α = 1
1−γ

≥ 1. Also, Conditions 2.4, 2.5 and 2.7 are fulfilled by the

probability function pi(a) 7. So in particular, in our numerical setup the
prerequisites of Theorem 3.1 hold.

In the benchmark case, following HN, we set α = 2 (i.e. risk aversion
γ = 1

2
), which corresponds to intermediate risk aversion on behalf of the

agents.
The wage is set to be w = 100, so that unemployment benefits become

equal to replacement rates. The lower bound on the UI benefits is set to z =
0, the lowest possible value taken by CRRA utility functions with 0 < γ < 1.
As in the proofs to the propositions, in our simulation we have normalized
utility from consuming the wage to zero, i.e. all expected lifetime utilities
are negative.

We have finally chosen the parameters θ1 = 0.007 and θ2 = 0.017 to
match reasonable escape rates from unemployment in autarky (compare
Meyer (1990)): For type B, the bad searcher, this is then 22.7% per month,
for type G, the good searcher, it is 35.8% per month. As a comparison:
HN assume a weekly escape rate in autarky of 10% as an average for the
US, which corresponds to a monthly escape rate of 34.4%. Other choices of
parameters will be discussed in the next section, where we give a detailed
comparative statics analysis.

Our first figures, figure 2 to 5, show how the set of feasible entitlements
becomes larger and larger along the backward induction. Figures 6 to 14 show
optimal UI contracts for different levels of entitlements to the agents and for
different values of q, the share of the first agents in the population. The
entitlement bounds chosen are V = −20, −25, −30 and −35 (also denoted
in the legend). This corresponds to a certainty equivalent of 68.67%, 61.76%,
55.21% and 49.03% of the wage per period respectively, i.e. the utility of an
(unemployed) agent who consumes X% of the wage for all periods and cannot
gain employment.8

7Our probability function pi(a) has a slightly more intricate functional form than the
one used by HN (pHN (a) = 1− exp(−ra)). We have chosen it because the latter does not
fulfill the Inada condition (cf. Condition 2.4).

8In the cases of V = −20,−25 the UI benefits for agent G exceed a replacement rate
of 100% in the first periods. This reflects the fact that our model does not incorporate
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4.3 Results

In this section we will explore the dependence of the optimal contracts on
different choices of parameters. Since we know that Theorem 3.1 applies, all
solutions are separating. Moreover, for all parameter values we have looked
at the incentive constraint of agent B, equation 18 was slack. For contract g
designed for the good searcher G this means according to Corollary 3.11 that
it is identical to the one considered by Shavell and Weiss (1979). From their
paper (compare also HN and Pavoni (2001)) we know that in our setup the
optimal contract for the good type G has a falling benefit profile, induced by
moral hazard; and this property is reflected by our figures. Changes in the
parameter values do not qualitatively change contract g; the falling benefit
profile is robust, as our theory predicts (for a detailed numerical discussion of
the comparative statics of the contract in a pure moral hazard environment
see Pavoni (2001)). However, the level of entitlement for G (and so, in
particular, his information rent) varies with the parameters of our model.

We will thus concentrate our discussion on contract b and the information
rent for G. The shape of contract b is determined by two effects:

1. a moral hazard effect (MH), arising as in the case of type G from the
agents’ search problem,

2. an adverse selection effect (AS), arising from the principal’s wish to
lower the value of the contract for type G (compare Corollary 3.10) in
order to separate the type types.

We know that in the pure MH environment, benefit schemes are falling.
What would agent B’s contract look like in a pure AS environment? As
a pure adverse selection environment, we consider a set-up where the type
of an agent is still hidden information, but the probabilities of remaining
unemployed of type B and G are fixed constants pB > pG. This is then a
typical adverse selection problem as discussed in Chapter 2 of Laffont and
Martimort (2002). Due to the assumption of full commitment, the dynamics
of the contracts is rather simple. Now, as in the case of the full problem
(Cf. Corollary 3.11), agent G receives an information rent, and, given the
entitlement V g,G, his contract is the first best contract. In the pure AS

effects of UI on work effort and its impact on employment.
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Information Rents

V Certainty Equivalent q = 0.2 q = 0.5 q = 0.8

-35 49.03 10.8 % 18.1 % 22.2 %
-30 55.21 7.3 % 13.9 % 17.0 %
-25 61.76 4.8 % 10.5 % 12.9 %
-20 68.67 3.1 % 7.2 % 9.9 %

(rents expressed as percentage increase over minimal entitlement)

Table 1: Information Rents obtained by agent G

case, this means his consumption is fully smoothed. Trivially, the following
Spence-Mirrlees property holds (as in the full problem, compare Lemma 2.6):

∂V B
t

∂zt+s

−
∂V G

t

∂zt+s

> 0 ∀s ≥ 1.

Therefore, in order to separate the two types, the contract for agent B has
to show an increasing benefit scheme. 9

So should we expect the benefit scheme for agent B to be rising or falling?
Whether the MH or the AS effect dominates depends on the choice of param-
eters. In the sequel, we discuss the influence of different parameters on the
relative weight of the MH and the AS effect. As our benchmark, we use the
parameterization of the previous subsection [α = 2, θB = 0.007, θG = 0.017,
q = 0.5].

The entitlement bound V For the good searcher, a decrease in the en-
titlement shifts the contract uniformly downwards (figures 6-9), as can be
expected.
We can also see from figures 6 to 9 that for the bad searcher the MH effect
prevails for high entitlement bounds V and thus his optimal contract falls as
well (figure 6). But as V is lowered the AS effect becomes more and more
important and the benefit profile becomes hump shaped (figure 8) or even

9A formal derivation of the solution to the principal’s problem in a pure adverse selec-
tion environment is available upon request.
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Elasticities σp of agent B

V Certainty Equivalent θB = 0.004 θB = 0.007 θB = 0.010

-35 49.03 0.0070 0.0116 0.0167
-30 55.21 0.0075 0.0131 0.0188
-25 61.76 0.0079 0.0139 0.0199
-20 68.67 0.0083 0.0146 0.0209

Table 2: Elasticities of unemployment probability w.r.t. benefit level for
agent B

rises (figure 9).
It is interesting to note that at the same time, according to table 1 (compare
also table 3 and 4), the information rent for agent G is increasing as V falls.
We infer that the distortion of contract b away from the contract for B in
a pure moral hazard environment (compare Corollary 3.10) increases as V

is lowered. So broadly speaking we can say that the rent extraction/search
efficiency trade-off is more severe for low than for high values of V . How can
this be explained?

Let us first briefly mention a mechanism that reinforces the MH effect as V

increases but cannot fully account for the observed changes in benefit profiles.
As can be seen from table 2, the elasticity of the probability of remaining
unemployed σi

π(z) with respect to the UI benefits are increasing in the benefit
level.10 This means that at higher levels of utility a reduction of future
benefits has a greater effect on the search effort and thus the reemployment
chances of the unemployed agent. Hence the MH effect is more likely to
matter at higher levels of utility, as we see in the figures. However, the
tables show that the elasticities σi

π(z) alter only slightly as the utility V is
lowered. Thus this ”elasticity effect” alone cannot explain the changes we
observe in the result of the comparative static exercise.

The main force driving the result is the convexity of the cost function,
i.e., the fact that the marginal costs of providing a certain utility increases
in the level of utility. Put in terms of the agents’ utility function we can
say that a reduction of benefits hurts an agent disproportionately badly at a

10This is consistent with Remark 3.2 in order to obtain ”no pooling” in the CRRA case.
Note that for reasons of computational ease we have calculated the elasticities w.r.t. to
the benefit in the period subsequent to the effort only.
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low level of utility. So in particular, a cost neutral shift of a benefit scheme
from a flat to a bended profile comes at a greater relative loss of utility at
low utility levels than at high utility levels. Loosely speaking, consumption
smoothing is more important at low levels of utility than at high levels.

Now we look at contract b. Its utility V b,B for agent B is fixed at V ,
and so we concentrate on its value V b,G for G. As we have pointed out
above, the rent extraction/search efficiency trade-off is reflected by the AS
and the MH effect: The slope of contract b is upward sloping in a pure AS
and downward sloping in a pure MH environment. Assume for a moment
that the elasticity of the probability of remaining unemployed σi

π(z), that
determines the importance of the MH effect, remains constant along shifts of
the entitlements (actually we have seen that the increase of σi

π(z) in z even
reinforces the results). In other words: We assume for a moment that the
search efficiency of B is equal across levels of utility.
Now according to what we have said about the preferences for flat versus
bended contracts of agents with concave utility functions, we deduce that
agent G would prefer to have his consumption smoothed more strongly at
low than at high levels of benefits. Since his own contract g is falling, the
(flatter) contract b becomes more attractive to him as the utility level is
reduced. So in order to ensure that the agents are separated, in equilibrium
the principal grants G a higher information rent (in relative terms, i.e. as
a fraction of his entitlement) and accepts a stronger distortion of contract b
from the pure moral hazard contract for B as V is lowered (recall that we
hold the MH effect fixed for the moment). The distorted (upward sloping)
contract b is then relatively less attractive for G than for B because of the
Spence-Mirrlees property, as explained above.

The share of type B agents q Figures 10, 9 and 11 depict the optimal
contracts at the entitlement bound V = −35 (Certainty equivalent: 49.03%)
for q = 0.2, 0.5 and 0.8 respectively. As the share of the bad searchers q

increases, we see a clear shift of contract b dominated by the AS effect to
one dominated by the MH effect. Furthermore, the contract for the good
searcher is uniformly shifted upwards. Moreover, from table 1 we can see
that his information rent rises.

We can explain these observations as follows: With a small proportion of
type B agents, the principal concentrates on lowering the costs of contract g.
He does so by pushing down the information rent of agent G, thus heavily
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Information Rents

V Certainty Equivalent θB = 0.004 θB = 0.007 θB = 0.010

-35 49.03 20.6 % 18.1 % 14.2 %
-30 55.21 14.3 % 13.9 % 10.9 %
-25 61.76 9.7 % 10.5 % 8.2 %
-20 68.67 6.6 % 7.2 % 6.2 %

(rents expressed as percentage increase over minimal entitlement)

Table 3: Information Rents obtained by agent G

distorting the value of contract b for agent G (recall that the incentive con-
straint for the good searcher binds, V b,G = V g,G). Since the value of contract
b for agent B is fixed at V , the value V b,G can only be lowered by steeply
raising the benefit scheme b. This is true because of the Spence-Mirrlees
property.

With an increasing proportion of type B agents, reducing the costs arising
from their contract predominates the principal’s problem and the issue of
paying an information rent to type G agents looses importance. In order
to keep the costs of contract b low, the principal prefers to avoid a large
distortion of V b,G away from its first best and consequently accepts a higher
information rent paid to type G agents.

Economically speaking, with a high proportion of type G agents, the
principal wants to curb the information rent, whereas with a high proportion
of type B agents, the principal wants to ensure the search efficiency of type
B agents.

Agent B’s unemployment probability parameter θB The parameter
θB determines the search capacity of agent B: The higher it is, the lower
is his probability of remaining unemployed, given the same search effort a.
We have looked at the case where the agents become more similar in their
search technology, i.e. θB increases while θG is held fix. In our analysis,
we have therefore kept agent G’s search parameter at θG = 0.017 and have
looked at the cases of θB = 0.004, θB = 0.007 and θB = 0.010. The latter
correspond to an escape rate in autarky of 15.6%, 22.7 and 27.7% per month
respectively. Figures 12, 8 and 13 show the optimal contracts at a utility
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Information Rents

Certainty Equivalent α = 1.5 α = 2 α = 2.5

49.03 27.3 % 18.1 % 10.4 %
55.21 21.5 % 13.9 % 8.2 %
61.76 17.1 % 10.5 % 5.8 %
68.67 13.7 % 7.2 % 3.7 %

(rents expressed as percentage increase over minimal entitlement)

Table 4: Information Rents obtained by agent G

level of V = −30 (certainty equivalent: 55.21%). From these figures we see
that the AS effect prevails for low values of θB, whereas for high values the
MH effect is dominant.

For the good searcher an increase in θB shifts his benefit scheme down-
wards. At the same time an increase in θB implies for the bad searcher that
the AS aspect looses importance and the MH becomes increasingly impor-
tant. One reason for this can be seen from table 2. The elasticity of the
probability of remaining unemployed is increased considerably as θB rises.
As explained in the paragraph on V , this means that the search incentives
for agent B are enhanced.

Risk aversion α−1
α

The exponent in the cost function α determines the
risk aversion of both agents, i.e., the coefficient of relative risk aversion is
α−1

α
. In this paragraph we look at the impact of a change in risk aversion

on the optimal contracts and the information rents for type G.The results
for the latter two are shown in table 4. As is apparent from the tables
we compare levels of certainty equivalents of the unemployment entitlement
bounds rather than levels of utility (which would of course make no sense).
All other parameters are identical.

Figures 14, 6 and 15 show the optimal contracts at a replacement rate of
68.67%. In these figures we make two observations. First, the contract for
type B, that is dominated by the MH effect at α = 1.5, becomes smoother
as α increases. Furthermore it slightly shifts upwards. Second, we can see
that the falling contract for G is shifted upwards as α increases. At the same
time his information rent falls (see table 4).
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The economic explanation for these two phenomena is straightforward.
In our model the coefficient of relative risk aversion is identical to the in-
verse of the intertemporal elasticity of substitution of consumption, i.e., more
risk averse agents have a stronger preference for intertemporal consumption
smoothing. Put the other way round: The marginal costs of guaranteeing a
certain level of instantaneous utility rise as relative risk aversion rises, so -
given that the principal guarantees a specified total expected lifetime utility
- falling and rising benefit schemes become relatively more expensive as com-
pared to flat ones. Therefore contracts tend to become flatter as α increases.

For agent G the contract shifts upwards because his contract is falling.
Therefore, as risk aversion increases, he needs to be compensated by higher
benefits in order to achieve a given certainty equivalent. This also explains
the fall in his information rent. Since his contract becomes disproportionately
more expensive in terms of benefits as α increases (recall the convexity of the
cost function), the UI agency wants to save information rent. This mechanism
resembles the fall of the information rent for G as V increases (see above).

5 Extensions

In this section we want to discuss a number of possible extensions of our
model. A first extension concerns the (minimal) entitlement V for the un-
employed: It could be type-dependent. Second, we show how to integrate
the UI taxes paid after reemployment introduced by HN. Third, we discuss
the limit of the time horizon T going to infinity.

Type Dependent Entitlement Constraint The entitlement constraints
in our model correspond technically to participation constraints in adverse
selection models analyzed in classical contract theory. The case of type-
dependent reservation utility in participation constraints has been widely
discussed in that context, the most general work being the article by Jul-
lien (2000). For our purpose, we will refer to Section 3.3.1 of Laffont and
Martimort (2002). They distinguish between five cases, characterized by dif-
ferent combinations of participation and incentive constraints binding at the
solution.

Clearly - given Proposition 3.9 - only the case where the minimal entitle-
ment of agent G, V G, is greater than the one of agent B, V B, i. e. V G > V B,
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is interesting 11. Otherwise the solution is identical to the one we have found
there. This is also the case for V G being only slightly greater than V B;
more precisely we can raise V G up to the value of V g,G (greater than V B by
Corollary 3.11) in Proposition 3.9 without changing the results. This corre-
sponds to the case 1 of Laffont and Martimort (2002). Note, however, that
we do not know whether the incentive constraint of the bad searcher B is
slack or binding at the solution (although numerically we found that it was
slack). In the first case - that has been the resulting from our simulations -
for V G = V G,g + ε with some ε > 0 we would have a situation as in their case
2 (with both entitlement constraints and the good searchers incentive con-
straint binding). In the second case we would face either their case 4 (both
entitlement constraints binding and type B’s incentive constraint binding) or
case 5 (type G’s entitlement type B’s incentive constraint binding). In prin-
ciple, as the wedge between V B and V G widens, we expect the entitlement
constraint of G to be binding at the solution, his contract becoming more
and more attractive for type B. In the case of a very large gap, we will have
to compensate B with an information rent for not choosing the contract of
type G, so it is G’s entitlement constraint and B’s incentive constraint that
have to be binding at the solution (case 5 of Laffont and Martimort (2002)).
So the situation is reversed with respect to Proposition 3.9: The contract for
agent B takes the same form as in the pure moral hazard environment, the
contract for G will be distorted. Note that it will be distorted downwards to
make it less attractive for agent B.

For the values of the wedge (V G − V B) in between we should expect
solutions according to case 2 to 4 of Laffont and Martimort (2002). A pre-
cise description of the solution in analytical terms, i.e. a statement about
constraints being binding or slack for certain ranges of parameter values,
will probably be untractable due to the highly non-linear dependence of the
entitlements on basic parameters of the problem. However, a numerical anal-
ysis should be straightforward, because it amounts to a direct comparison of
solutions of minimization problems with different (binding) constraints.

Taxes on wage Shavell and Weiss (1979) analyze the optimal allocation
of UI benefits with one representative agent, HN add taxes on labor income
after reemployment to this analysis. They make the simplifying assumption
that the tax rate is fixed for the rest of the life the moment agents have gained

11As in Proposition 3.9 we will assume that that V i with i = B, G are not too small

31



reemployment. In our model we have followed Shavell and Weiss (1979), tech-
nically, however, the extension to the framework of HN is straightforward.
By taxing (or subsidizing) labor income the principal can completely control
the agent’s consumption when he is employed. The additional ability of the
principal to tax the agent can thus be captured by the introduction of enti-
tlements while employed, Wt, that take the role of additional state variables,
and a value function for transfers, that corresponds to the cost function in
the recursive formulation of the UI contract in the model by Shavell and
Weiss (1979). In our model we would have to introduce two additional state
variables for each contract i, W i,B and W i,G. These state variables state the
entitlement utility of an employed agent under contract i. Given the wage
rate, the transfer to the principal can be calculated directly.

Although this extension does not seem to be complicated at first glance,
there is a problem. In the recursive formulation of contract b (and g likewise),
given by Proposition 3.3, the additional state variables enter into the cost
functions of the principal and -as choice variables- into the minimization
problem in the backward induction. While the value of the transfers after
the agent’s reemployment are easily calculated, the approximation of the cost
function poses a serious numerical problem. This is because it takes now four
variables, and the curse of dimensionality becomes a serious problem.

Infinite Time Horizon The finite time horizon of our model permitted
us to calculate the correspondence of feasible entitlements Γt(V

B
t , V G

t ) by
backward induction in our simulation of optimal contracts. In designing the
algorithm we relied in particular on the properties of the set of jointly feasible
entitlements, the sets being compact, connected and contractible.

As in Proposition 3.3, the recursive formulation of an optimal contract
given some (V B, V G) is straightforward in the case of an infinite time horizon:

CB(V B, V G) = min
{z,V̂ B ,V̂ G}∈Γ(V B,V G)

c(z) + βpB(aB)CB(V̂ B, V̂ G) (22)

subject to:
Law of motion for contract b (LOM)

z − aB + β[pB(aB)V̂ B + (1 − pB(aB))W ] = V B

z − aG + β[pG(aG)V̂ G + (1 − pG(aG))W ] = V G
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Choice of effort in contract b (CE)

aB = argmaxa z − a + β[pB(a)V̂ B + (1 − pB(a))W ]

aG = argmaxa z − a + β[pG(a)V̂ G + (1 − pG(a))W ].

This is a Bellman equation, where pairs of entitlements today (V B, V G) are
the state variables and benefit today and promises for tomorrow are the
choice variables (z, V̂ B, V̂ G). The value of lifetime work is denoted by W .
Once the cost functions are determined, the full adverse selection problem
can be stated as in Proposition 3.9. Before this can be done, an important
question arises: How to characterize the correspondence Γ(V B, V G)?

We conjecture that the correspondence Γ(V B, V G) has the same proper-
ties as Γt(V

B
t , V G

t ) in Proposition 3.5. In particular, the set of jointly feasible
state variables Ω = {(V B, V G)|Γ(V B, V G) 6= ∅} will be compact, connected
and contractible. Since the choice problem of the principal can be reduced in
the same way to the one-dimensional problem of choosing aG using the LOM
as before, these properties of the set of jointly feasible state variables would
guarantee that the functional form of the correspondence does not change
when the time horizon T goes to infinity.

Here we outline a proof. It is based on the idea that the set of jointly
feasible entitlements in the case of an infinite time horizon is the inverse limit
of the sets Ωt = {(V B

t , V G
t )|Γt(V

B
t , V G

t ) 6= ∅} of jointly feasible entitlements in
the finite dimensional case (with the topology being -of course- the topology
of the two dimensional real space):

Ω = lim
←

Ωt.

At the same time, given a lower bound on the one period benefit z, we know
that Ω must be bounded. Thus we obtain compactness. To show that Ω
is contractible, we need some homotopy theory. We apply a theorem giving
a hint about the first homotopy group of Ω, π1(Ω) (compare Bousfield and
Kan (1972), p. 254):

0 → lim
←

π2(Ωt) → π1(Ω) → lim
←

π1(Ωt) → 0

Moreover, due to the relation between Γt and Γt+1, the natural mapping
Ωt → Ωt+1 is a fiber bundle. Therefore we conclude that both lim← π2(Ωt)
and lim← π1(Ωt) must vanish, yielding the contractibility of Ω.
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We thus believe that Proposition 3.5 is a technical result that matters for
dynamic programming with infinite time horizons, i.e. for economies of the
type considered in APS, Atkeson and Lucas (1992), Chang (1998). However,
we leave a precise generalization to future research.
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A Proof of Theorem 3.1

Proof. It is clear that there is a solution to the principal’s problem. Let as-
sumption 2.7 hold. We prove the second assertion by contradiction: Assume
that the principal’s problem is solved by one contract p, {zP

1 , ..., zP
T−1, z

P
T },

for both agents, that generates a total expected utility of V B
t and V G

t in
period t for agent B and G respectively.

We have a look at the ”first best” solutions for the last two periods that
generate the same utilities V B

T−1 and V G
T−1 as p. As ”first best” solution,

we refer to the solution of the pure moral hazard problem as considered by
Shavell and Weiss (1979), i.e. the problem of guaranteeing agent i a utility
of V i

T−1 at lowest cost. This is stated as follows:

minzi
T−1

,zi
T

c(zi
T−1) + βpi(a

i)c(zi
T )

s.t. V i
T−1 = zi

T−1 − ai + β[p(ai)zi
T + (1 − p(ai))u(w)]

1 = βp′i(a
i)[zi

T − u(w)]

This is the two period cost minimization problem (the principal’s problem
in this framework) in the case of agent i, subject to the promise keeping
constraint and the first order condition of the agent’s problem, determining
the choice of effort ai. Plugging the entitlement constraint into the objective
function and making use of the envelop theorem, we calculate the following
first order conditions for the principal with respect to zT (we abbreviate
pi = pi(a

i)):

c′(zB
T−1) = −

(p′B)3

pBp′′B
c(zB

T ) + c′(zB
T ) (23)

c′(zG
T−1) = −

(p′G)3

pGp′′G
c(zB

T ) + c′(zB
T ). (24)

The factor of the cost function on the right-hand side is

−
(p′i)

3

pip
′′
i

=
1

πi(zT )

∂πi(zT )

∂zT

,

and so we see that the RHS is identical to the relative expected marginal
cost. By condition 2.7, part 1, we know that factor of the cost function is
higher for agent G than for agent B for a given zT . By its second part we
know that this has to hold in equilibrium, too, and so the RHS is greater for
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agent G than for agent B.12 We may therefore deduce that the Shavell-Weiss
contract of agent B is flatter than its counterpart for agent G, where we
define ”flatter” in the following sense:

zG
T−1

zG
T

>
zB

T−1

zB
T

.

In the following we will dicuss the last two periods of the pooling contract
only and show that it cannot be optimal to offer it to both agents. We will
refer to the first best solutions as Shavell-Weiss (SW) contracts.

First, suppose that the pooling contract p is flatter than the SW contract
of agent G. Then the principal can offer p and a second contract g’ that is
identical to contract p except for the last two periods, where zP

T−1 and zP
T

are substituted by zG
T−1 and zG

T−1 from the SW contract. This is incentive
compatible: Agent G is indifferent between p and g’ by construction. Suppose
that agent B (weakly) preferred g’ over p. Then for period 1 to T −2, he can
exert the same effort a

g
1 to a

g
T−2 (i.e. that he chooses in the case of contract

g’) when facing contract p, and thus the stochastically discounted utility
from the benefits z1 to zT−2 is identical for both contracts. In the last two
periods, in contrast, agent B -exerting effort optimally- gains a higher utility
from the flatter contract p than from contract g’ because of the Spence-
Mirrlees property (cf. Lemma 2.6). So agent B cannot prefer g’ over p.
Offering the two contracts p and g’ is also cheaper for the principal, because
g’ is the (unique) cost-optimizing contract for agent G during the last two
periods. Contradiction.

Second, suppose that the pooling contract p is identical to or steeper
than the SW contract of agent G. The principal then offers p and a second
contract b’ that is identical to contract p with zP

T−1 and zP
T substituted by

zB
T−1 and zB

T from the SW contract. Since the SW contract of agent B is
flatter than the SW contract of agent G, as we have seen, we can infer the
contradiction in the same way as in the first case.

12Note that we could weaken condition 2.7: To ensure that the RHS of G is higher than
the RHS of B it is sufficient to assume that the relative marginal probability of remaining

unemployed 1
πi(z)

∂πi(z)
∂z

is higher for agent G than for agent B.
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B Proof of Proposition 3.5

Proof. In order to simplify the proof we introduce a normalization: The
utility from consuming the wage w is set to zero. Thus, all Wt become zero,
too, and the entitlement utilities of the unemployed agents take non-positive
values. Note that the lower bounds for the entitlements, stemming from the
lower bound on the benefit utility z, thus shift downward each period along
the backward induction.

First, we look at the agents’ problem. Recall it takes the form

V i
t = max

a
zt − a + β[pi(a)V i

t+1 + (1 − pi(a))Wt+1].

Given our normalization we obtain the following first order condition at an
interior solution:

p′i(a
i
t) =

1

βV i
t+1

(25)

By the Inada condition in Condition 2.4 we assure that the interior solution
always applies.

The Case of t = T − 1 We start with the case of Γt(V
B
t , V G

t ) with t =
T −1. Mathematically speaking, the next-to-last period is different from the
previous ones in that there is an additional constraint on the choice variables
V i

T : The boundary conditions 12, 13, namely V B
T = V G

T = zT . This is the
very reason why, given the pair of state variables (V B

T−1, V
G
T−1), there is only

one choice left for the principal. First, let’s look at the Law of Motion (LOM)
for the state variables V B

T−1 and V G
T−1:

zT−1 − aB
T−1 + βpB(aB

T−1)V
B
T = V B

T−1,

zT−1 − aG
T−1 + βpG(aG

T−1)V
G
T = V G

T−1,

where we will drop the time index from the effort variables ai
T−1. In the

following, we will denote the difference between the entitlements of the agents
by:

∆t := V G
t − V B

t . (26)

With this new notation and remembering both our normalization and V i
T =

zT , we solve the LOM for zT−1, equalize both equations and solve for ∆T−1:

∆T−1 = aB − aG + βpG(aG)zT − βpB(aB)zT (27)
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We want to further simplify equation 27. In the next to last period, the first
order condition of the agents’ problem 25 takes the following form

p′B(aB) = p′G(aG) =
1

βzT

. (28)

Again by Condition 2.4, the p′i are strictly increasing functions

p′i : (0,∞) −→ (−∞, 0).

Remark B.1 Given Condition 2.3, the principal will never promise an en-
titlement above Wt (= 0 under our normalization), since at Wt the agents
stop searching (i.e. ai

t = 0) and their probability of remaining unemployed
becomes pi(a

i
t) = 1.

Thus in particular V i
T = zT < 0.

From this we deduce that the p′i are one-to-one and onto. Therefore the
following function γ(aG) is well defined:

γ(aG) := (p′B)−1 ◦ p′G(aG).

Now we have everything at hand to define ∆T−1 as a function of aG:

∆T−1(a
G) = γ(aG) − aG +

pG(aG) − pB(γ(aG))

p′G(aG)
(29)

In order to show point 3 of Proposition 3.5, we have to show that ∆T−1(.)
is invertible.

We do so by proving:

∆′T−1(a
G) > 0. (30)

Using the agents’ first order condition 25 and

γ′(aG) =
p′′G(aG)

p′′B(γ(aG))

we calculate

∆′T−1(a
G) = [pB(γ(aG)) − pG(aG)]

p′′G(aG)

(p′G(aG))2
. (31)
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By Condition 2.4 we know that p′′G(.) > 0, and since pB(γ(aG)) > pG(aG) by
Condition 2.5 assertion 30 follows.

Finally we observe that -again by Condition 2.4-

lim
aG→0

∆T−1(a
G) = 0. (32)

Together with 30 we deduce that as agent B’s entitlement V B
T−1 approaches

agent G’s one V G
T−1, the effort of the agent G aG (as well as the effort of agent

B) go to zero. Because of 25 this means that the benefit for the last period
zT has to converge to zero, i.e. the wage consumption utility.

Summarizing our results so far, we can state the following: Given entitle-
ments V B

T−1 and V G
T−1 such that ∆T−1 ≥ 0, we can find a unique corresponding

choice of effort by agent G aG (for the time being, we neglect the lower bound
z on the benefits zt). From this we can calculate -uniquely- the choice of ef-
fort by agent B aB and the benefit for the last period zT from equation 25,
and the benefit of the next to last period zT−1 from LOM. All these functions
are differentiable. As ∆T−1 goes to zero, the benefit of the last period zT

goes to zero, i.e. the cost of the benefit converges to the wage.
We finally have to look at the set of feasible entitlements V B

T−1 and V G
T−1.

If z = −∞, so z can take any value, we infer from 32 that the upper bound

V
B

t (.) on V B
t , given V G

t , is

V
B

t (V G
t ) = V G

t .

As for the lower bound, we calculate

V B
t (V G

t ) = lim
aG→∞

V G
t − ∆T−1(a

G).

Now let z > −∞. Then there is a natural lower bound V G
T−1, namely

the stochastically discounted sum of the bounds on zT−1 and zT . Given
V G

T−1 ∈ [V G
T−1, 0] we now have to prove that there is a lower and an upper

bound V B
T−1(V

G
T−1) and V

B

T−1(V
G
T−1) on the corresponding feasible V B

T−1. Be-
cause of 25 the lower bound on zT translates into an upper bound aG on the
corresponding choices of effort of agent G. It is attained with equality. By
26 and 30 we find the lower bound

V B
T−1(V

G
T−1) = V G

T−1 − ∆T−1(a
G).
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As for the upper bound V
B

T−1(V
G
T−1), one can see intuitively that V B

T−1 is
bounded by V G

T−1 (for a rigorous argument, see point 1 in the proof of 3.9).
However, V B

T−1 does not necessarily attain this bound, because of an addi-
tional constraint: zT−1 ≥ z. From the LOM and 25 we know

zT−1 = V G
T−1 + aG −

pi(a
G)

p′i(a
G)

The right hand side is increasing in aG, so a lower bound on zT−1 implies
a lower bound on the effort of the second type, aG (note that because of
our normalization, the reference points for each period have been shifted
downwards). Because of 30 a lower bound on ∆T−1 ensues. Given V G

T−1, we
thus find the upper bound on V B

T−1:

V
B

T−1(V
G
T−1) = V G

T−1 − ∆T−1(a
G).

We see that V B
T−1 attains V G

T−1 only if the lower bound aG becomes zero (the
smallest possible effort). Since ∆T−1(.) is an increasing function, we see that

all values V B
T−1 ∈ [V B

T−1, V
B

t−1] are attainable as long as aG > aG. This must
be the case for V G

T−1 ≥ V G
T−1, since then there are corresponding benefit

values zT−1, zT such that zi ≥ z. Finally, because of the Theorem of the
Maximum both aT−1 and aT−1 depend continuously on V G

T−1 and since ∆T−1

is a smooth function, the lower and the upper bound V B
T−1 and V

B

T−1 are
continuous functions of V G

T−1.
So for period T − 1, we have shown that the set of feasible values takes

the form stated in the theorem. Note in particular that this set is compact
and connected.

The Case of t ≤ T − 2 In this paragraph, we prove the assertion 1. As we
have stated above, the crucial difference between the next to last period and
the previous ones is the boundary condition of the last period 12 and 13. Be-
fore, for every feasible pair of state variables (V B

T−1, V
G
T−1) -or more precisely,

for the difference of these state variables ∆T−1- there existed one correspond-
ing choice of effort aG

T−1 that determined all choice variables (zT−1, V
B
T , V G

T ).
As we will see below, now to each pair of feasible state variables (V B

t−1, V
G
t−1)

(again, more precisely, to the difference of these state variables ∆t−1) there
corresponds a line of possible choices of effort aG

t−1 that parameterizes a com-
pact and connected path of choice variables (zt−1(.), V

B
t (.), V G

t (.)).
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We have a look at the LOM once more. With the help of the agents’ first
order condition we transform it into

zt − aB +
pB(aB)

p′B(aB)
= V B

t ,

zt − aG +
pG(aG)

p′G(aG)
= V G

t ,

where again we have dropped the time index from ai
t. This inspires the

definition of the following functions (i = 1, 2)

fi(a
i) = ai −

pi(a
i)

p′i(a
i)

.

From the LOM we can now derive a necessary equation for the choice vari-
ables (as represented by the ais, replacing the V i

t s) to hold:

∆t + fG(aG) = fB(aB), (33)

where we have used definition 26.
We have a closer look now at fi. From

f ′i =
pip
′′
i

(p′i)
2

> 0 (34)

we can see that it is a strictly increasing function (bearing in mind Condi-
tion 2.4). Moreover we calculate

lim
ai→0

fi(a
i) = 0, (35)

lim
ai→∞

fi(a
i) = ∞. (36)

Now note that there is a natural lower bound V G
t on each V G

t , namely the
stochastically discounted sum of the zt̂s (where t̂ = t, ..., T ). In the case of
T − 1, we have shown that the set of jointly feasible values V B

T−1, V G
T−1 takes

the form stated in the theorem. So let Γt(V
B
t , V G

t ) be non-empty and take the

form of a path in the space (zt, V
B
t+1, V

G
t+1) for V B

t ∈ [V B
t (V G

t ), V
B

t (V G
t )] with

V G
t ≥ V G

t . We have to show first that then Γt−1(V
B
t−1, V

G
t−1) is non-empty for

V B
t−1 ∈ [V B

t−1(V
G
t ), V

B

t−1(V
G
t )] for some continuous functions V B

t−1, V
B

t−1 when
V G

t−1 ≥ V G
t−1 and takes the form of a path in (zt−1, V

B
t , V G

t ).
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Put differently, we have to ask for which pairs (V B
t−1, V

G
t−1) there are choice

variables (zt−1, V
B
t , V G

t ) that are jointly feasible. By the agents’ first order
condition 25 we can replace V B

t and V G
t by the corresponding choices of effort

aB
t−1 and aG

t−1 (we will drop the time index in the sequel). The effort choices
aB and aG have to satisfy equation 33. Since ∆t−1 ≥ 0 and by 34, 35 and
36, for all aG ≥ 0 we can find a corresponding aB ≥ 0. By the LOM, we
can furthermore determine zt−1 once aG is given. Thus the number of choice
variables (zt−1(a

G), V B
t (aG), V G

t (aG)) is reduced to the ”choice” variable aG.
All functions are combinations of differentiable functions and thus differen-
tiable. We will call the projection of the triple of choice variables into the
two-dimensional space (V B

t (aG), V G
t (aG)) the curve φ∆t−1

parameterized in
aG.

We have reduced the choice problem to one variable, but which aG cor-
respond to feasible triples (zt−1, V

B
t , V G

t )? First we look at the constraint
zt−1 ≥ z. As in the preceding paragraph, by the LOM

zt−1 = V G
t−1 + fG(aG)

it translates into a constraint 13

aG ≥ aG =

{

f−1
G (z − V G

t−1) : V G
t−1 ≤ z

0 : V G
t−1 > z

(37)

Second we have to ask: Which of the pairs of entitlements (V B
t (aG), V G

t (aG))
are feasible? Well, those for which Γt(V

B
t , V G

t ) is non-empty. In other words:
Given V B

t−1 and V G
t−1, the set of feasible choices is the intersection of the

curve φ∆t−1
defined by 33, parameterized in aG with aG ≥ aG, and the set

of (V B
t , V G

t ) with Γt(V
B
t , V G

t ) 6= ∅. Figure B depicts the intersection for the
case of period 4 of 12 in an example from our simulation. The solid lines

represent the bounds V B
4 (V G

4 ) and V
B

4 (V G
4 ), the dotted and the dashed line

are curves φ∆3
with two different values for ∆3.

Two things remain to be shown:

1. we have to show that the set of (V B
t−1, V

G
t−1), for which the intersection

is non-empty, takes itself the form of a set bounded by functions V B
t−1

and V
B

t−1.

13If z = −∞, by our definition there is no limit on aG.
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Figure 1: Set of jointly feasible entitlements in period 4 of 12
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2. we have to show that if the curve 33 intersects the set of feasible values
(V B

t , V G
t ), it cuts the bounds at most twice, so that the set of feasible

choices is connected.

To show the first assertion, we look more closely at the family of curves

φ∆t−1
: aG −→ [φB(aG), φG(aG)]∆t−1

,

where

φB(aG) =
1

βp′B(f−1
B (∆t−1 + fG(aG)))

, (38)

φG(aG) =
1

βp′G(aG)
. (39)

Since φG is one-to-one, the curves can also be understood as a function

V B
t = φ∆t−1

(V G
t ).

We now want to prove the following: The curves are ”decreasing” in ∆t−1,
i.e.

∆t−1 < ∆∗t−1 ⇒ φ∆t−1
(V G

t ) > φ∆∗

t−1
(V G

t ). (40)
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We do so by calculating the derivative

∂∆t−1
(φ∆t−1

)(V G) = −
1

(βp′1(a
B))2

· βp′′1(a
B) ·

1

f ′θ1
(∆t−1 + fθ2

(aG))
< 0,

which is negative because of 34 and Condition 2.4. The property of φ∆t−1
is

reflected by its dotted and the dashed representation in Figure B.
By the induction hypothesis, the set of (V B

t , V G
t ) for which Γt(V

B
t , V G

t ) 6=
∅ is compact and connected. Thus we deduce from 40 that there are ∆t−1 and
∆t−1 so that the curves φ∆t−1

intersect the set for ∆t−1 ≤ ∆t−1 ≤ ∆t−1 and
do not intersect for ∆t−1 < ∆t−1 and ∆t−1 > ∆t−1 (of course ∆t−1 could be
smaller than zero, the lower limit for ∆t−1). From this ensues the existence

of two functions V B
t−1(V

G
t−1) and V

B

t−1(V
G
t−1) limiting the set of feasible pairs

(V B
t−1, V

G
t−1).

To show the second assertion, we have to look more closely at the shape of

the curve φ∆t−1
as well as the limiting functions V B

t−1(.) and V
B

t−1(.). First, we
prove that the derivative of φ∆t−1

is smaller than one. We do so by showing
that

D(.) ◦ φ−1
G (V G

t−1) := (φG(.) − φB(.)) ◦ φ−1
G (V G

t−1)

is increasing in V G
t−1, i.e. the derivative of φ∆t−1

is below the one of the
diagonal:

∂V G
t−1

D(φ−1
G (V G

t−1)) = 1 − ∂V G
t−1

φB(φ−1
G (V G

t−1)) > 0.

Since we know that
∂V G

t−1
(φ−1

G )(V G
t−1) < 0

by 25, it is sufficient to show that

D′(aG) < 0.

Using aB := f−1
B (∆t−1 + fG(aG)) we calculate

D′(aG) = −
p′′G(aG)

β(p′G(aG))2
+

p′′B(aB)

β(p′B(aB))2
·
f ′G(aG)

f ′B(aB)

= −
p′′G(aG)

β(p′G(aG))2
+

p′′B(aB)

β(p′B(aB))2
·
pG(aG)p′′G(aG)

(p′G(aG))2
·

(p′B(aB))2

pB(aB)p′′B(aB)

=

(

pG(aG)

pB(aB)
− 1

)

·
p′′G(aG)

β(p′G(aG))2
.
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The last expression is negative by Condition 2.4 and 2.5. Now, the second
assertion follows if we can show that the derivative of the boundary functions

V B(.) and V
B
(.) is greater than one, for then φ∆t−1

crosses them at most once.

So by induction hypothesis, assume that V B
t (.) and V

B

t (.) have a derivative
greater or equal than one (note that this is certainly true for the case of
t = T − 1).

According to what we have shown above, there are ∆t−1 and ∆t−1 that
limit the set of values ∆t−1 = V G

t−1 − V B
t−1 for which φ∆t−1

intersects the set
of feasible (V B

t , V G
t ). From this we might be tempted to deduce immediately

both V B
t−1 and V

B

t−1 must be linear functions with derivative one, for appar-
ently the limits only depend on the difference ∆t−1 = V G

t−1 − V B
t−1. Note,

however, that the starting point aG (see equation 37) for each curve φ∆t−1
is

shifting upwards as V G
t−1 is falling. Thus since by induction hypothesis V B

t

and V
B

t are more steeply increasing than the φ∆t−1
, we may deduce that

1. indeed V B
t−1(.) is linear with derivative one because the φ∆t−1

s cross the
function V B

t (.) at the lower bound V G
t at a high value for aG.

2. for lower values of V G
t−1 the smallest ∆t−1 for which φ∆t−1

intersects the
set of feasible values (V B

t , V G
t ) is below the one that would have been

obtained with aG fixed. Since the latter one would have corresponded

to a linear upper bound V
B

t (.) with derivative one, we conclude that

V
B

t (.) has to rise more steeply than this, i.e. that its derivative is
greater than one.

Thus by induction, we have shown that φ∆t−1
and V B

t−1(.) and V
B

t−1(.) cross
only once and the second assertion on the form of the correspondence Γt−1

ensues. This concludes the proof of Proposition 3.5.

C Proof of Proposition 3.9

Proof. To prove the proposition, we have to show that at the solution

1. the entitlement constraint 21 of type G is slack,

2. the entitlement constraint 20 of type B is binding,

3. the incentive constraint 19 of type G is binding.
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Beginning with 1 we show that for all contracts V G > V B. The assertion
then follows by V b,G > V b,B and agent B’s entitlement constraint 20.

So we consider a feasible UI contract. Given any set of effort choices
(aB

1 , aB
2 , ..., aB

T−1) of agent B, the same set of choices would yield a higher
value of total expected lifetime utility for agent G than for agent B, V G(~aB) >

V B(~aB). This is the case because firstly (total) utility when employed is
higher than (total) utility when unemployed (compare the remarks 3.6 and
B.1) and secondly by condition 2.5, first part, pB(aB) > pG(aB) for any
aB > 0. Thus, in particular, at the optimum V G > V B.

We now prove point 2 by contraction. Suppose that for the solution
contracts b, (zb

1, ..., z
b
T ), and g, (zg

1 , ..., z
g
T ), the constraint 20 did not bind.

For sufficiently high V we may assume that all zi
t > z for all t, in particular

for t = 1. But then create new contracts b’ and g’ by replacing zi
1 by zi

1 − ε

(i = b, g) for some ε > 0 with zi
1 − ε > z. These contracts are certainly

feasible. They are also incentive compatible, since the entitlements V
i,j
1 are

reduced by the same amount. However, the new contracts b’ and g’ are
less costly for the principal, since the cost function c(.) is strictly increasing.
Contradiction.

Point 3 is proved by an argument simular to the one in point 2.

Figure 2: Set of jointly feasible entitlements in period 11 of 12
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Figure 3: Set of jointly feasible entitlements in period 8 of 12
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Figure 4: Set of jointly feasible entitlements in period 5 of 12
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Figure 5: Set of jointly feasible entitlements in period 1 of 12
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Figure 6: UI contracts
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Figure 7: UI contracts
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Figure 8: UI contracts
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Figure 9: UI contracts
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Figure 10: UI contracts with q = 0.2
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Figure 11: UI contracts with q = 0.8
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Figure 12: UI contracts with θB = 0.004, θG = 0.017
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Figure 13: UI contracts with θB = 0.010, θG = 0.017
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Figure 14: UI contracts with α = 1.5
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Figure 15: UI contracts with α = 2.5
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