
Games and Queues

Li Zhang Fang Wu∗ Bernardo A. Huberman

Information Dynamics Laboratory

HP Laboratories
Palo Alto, CA 94301, USA

Abstract

We consider scheduling in distributed systems from a game theo-
retic point view while taking into account queuing theory methodolo-
gies. In this approach no one knows the global state of the system
while users try to maximize their utility. Since the performance of
such a blind scheduler is worse than the optimal, it induces users to
employ strategies to improve their own utilization of the system. One
such strategy is that of restarting a request if it is not satisfied in a
given time. Since we assume users as non-cooperative and selfish, the
problem is that of studying the characteristic of the Nash equilibrium
in a large distributed system with no omniscient controls. We study
the problem through computer experiments and analytical approaches.
We obtain exact solutions in situations delimited by two extremes: one
in which users never restart an initial request, and another one in which
the user’s requests are restarted infinitely often. Users can switch be-
tween these two behaviors. When the system load is below certain
threshold, it is always better off to be impatient, and when the system
load is higher than some threshold, it is always better to be patient.
Between them there exists a homogeneous Nash equilibrium with non-
trivial properties.

∗Department of Applied Physics, Stanford University

1



1 Introduction

Scheduling is one of the most well-studied topics in Computer Science.
As such, it has been traditionally approached within the setting of an
omniscient scheduler and passive users, where the scheduler has full
knowledge of the state of the system and the users only place requests
and wait passively for the requests being processed. Unfortunately,
both of those assumptions are often invalid in distributed computer sys-
tems. The Internet is probably the most prominent counter-example
to these assumptions since the scheduling (or routing) in the Internet
is done as a collective effort among numerous routers which each only
know their own state, with users that are far from passive in expressing
their preferences. Actually, most users play various strategies to try to
maximize their own utility, such as restarting their browsers.

In this paper, we consider scheduling in distributed systems from
a game theoretic point view while taking into account queuing theory
methodologies. In this approach no one knows the global state of the
system while users try to maximize their utility, which is measured
in terms of getting their needs served as fast as possible. The system
thus acts very much like a “blind” scheduler, i.e., one that has virtually
no knowledge about the system’s state. Since one would expect the
performance of such a blind scheduler to be worse than the optimal, it
would induce users to employ strategies to improve their own utiliza-
tion of the system. One common such strategy is that of restarting a
request if it is not satisfied in a satisfactory interval which depends on
the needs of the user.

While such restart strategies are commonly used in, they were first
studied systematically a few years ago [5] in the context of reduc-
ing the average and variance of the waiting time in Internet trans-
actions. In that study the only tractable scenarios corresponded to
situations where congestion is light, allowing for the construction of
restart strategies that minimize the response times and their variance.
That methodology cannot easily be extended to more congested sce-
narios, thus motivating a present approach that can yield predictions
at all levels of congestion.

In this paper we consider users that resort to a restart strategy in
order to gain access to a particular resource. Since we assume users as
non-cooperative and selfish, we cast the problem as that of studying
the characteristic of the Nash equilibrium in a large distributed sys-
tem with no omniscient controls within a game-theoretic sense. The
approach of treating users in a distributed system as players in a non-
cooperative game is fairly common and has already led to a number of
interesting results [2, 6, 4, 8, 7].

We first study the mixed game theoretical queueing theory problem
through computer experiments which reveal the possible regimes to be

2



expected. Next, we proceed to obtain analytical solutions in situations
delimited by two extremes: one in which patient users never restart an
initial request, and another one in which the impatient user’s requests
are restarted infinitely often. Users can then switch between these
two behaviors. Intuitively one expects that when the system load is
below certain threshold, it will always be better off to be impatient,
and when the system load is higher than some threshold, it will always
be better to be patient. As we show in this paper, those thresholds can
be derived analytically and have the property that between them there
exists a homogeneous Nash equilibrium with non-trivial properties .

Thus, in spite of its simplicity a restart strategy turns out to be very
powerful when dealing with a distributed system lacking an omniscient
scheduler. This has particular appeal when designing a system with
a blind or no scheduler such as the Internet. As is presently the case
in the Ethernet, there is no scheduler to determine who may use the
publicly shared media. Instead, each user uses an exponential backoff
protocol to decide when they may send a message. Other examples
include the routing on the Internet and scheduling in highly distributed
server farms.

2 Modeling restart in blind scheduling

Consider a typical distributed system that consists of a set of users and
machines, with the users generating requests, and machines processing
them. When a request is assigned to a machine, it is placed in an in-
ternal first-in-first-out (FIFO) queue in the machine. An idle machine
always takes the first request from its queue, whenever the queue is
not empty, and processes the request. The time needed to process a
request is S/V where S denotes the size of the request, and V the
speed of the machine. Each machine also prescribes a maximum queue
size. A machine only accepts requests when its queue size is under the
limit. The response time of a request is defined to be the time between
when a request is generated and when it has been processed.

The performance of a system is evaluated primarily by the mean
and by the variance of the response time [5]. If an omniscient sched-
uler is available, i.e. if the scheduler knows the speed and the queue
length of each machine, a simple greedy strategy works well.1 In this
paper, we are interested in systems where such information is unavail-
able. Conceptually, such a system can be modelled as to have a blind
scheduler: a scheduler that has no knowledge about the machine speed
and queue length and assigns the jobs in a random manner. We should
emphasize that the blind scheduler is only conceptual to capture the

1Computing the optimum is NP-hard even for an omniscient scheduler.

3



while(true) {
generate(R);
submit(R);
restart times = 0;
while(!processed(R)) {

if((waiting time > T )&&(restart times < k)) {
restart(R);
request times++;
reset(waiting time);

}
}

}

Figure 1: The restart algorithm. T is the restart time, and k
the maximum allowed restarts for each request.

behavior of a system where the global state or coordination is unavail-
able, such as routing on the Internet.

We assume that the users may have at most one pending request
at any time, and they may restart a pending request as described by
the pseudo-code in Figure 1. A restart request is ignored if the request
is being processed. Otherwise, the request is taken out from the queue
it is in and re-assigned to a randomly chosen machine (and therefore
placed at the end of the queue in that machine).

We should note that in the above model, there is no cost to restarts.
This assumption might not be true in practice as it takes scheduler and
machine’s effort to locate, cancel, and reschedule a request. To avoid
the system being overloaded by the restart requests, the system may
discourage restart requests by adding delays to the restart requests.
On the other hand, if by using restart the system can have better load
balance, it may encourage the use of restart strategy. To focus on
our main point, in our experiments, we assume that each restart is
free but there is a limit of the number of restarts per request. This is
according to the intuition that we can allow small number of restarts
but infinitely many restarts are costly for both the user and the system.
For our experiments, we assume that the users use a fixed restart time,
which they cannot adaptively or probabilistically change.

Whether to use restart strategy largely depends on the system load.
Intuitively, when the system is less congested, one should use shorter
restart time because the chance of reallocation to a lightly loaded ma-
chine is higher. But when the system load is high, using restart strategy
is probably not beneficial because the user will lose their position in

4



the queue and will have to line up in the tail of some other queue which
is likely to be full. In Section 4, we will make these points clearer. For
our experiments, we therefore focus on the interesting case when the
load of the system is fair. We note that the analysis in [5] is related to
the situation when the load of the network is light.

In what follows, we first show that for cooperative users, by using
a restart strategy properly, they may achieve nearly optimal response
time with a blind scheduler. Further, we study the more interesting
case when the users are selfish and only care about the response time
of their own requests. Central to games with selfish players is the
notion of Nash equilibrium, the combination of strategies in which no
user has incentive to change his strategy unilaterally. We study the
characteristics of Nash equilibria in such a system with the focus on the
homogeneous Nash equilibrium, in which all the users employ the same
strategy. Since we forbid the users from probabilistically choosing the
restart time, we can view that the users only play pure strategies, in
the game theory terminology.

3 Experiment results

It is difficult to calculate analytically the mean response time as a
function of the restart time. People have studied similar models and
only have success with very simple model [1]. We instead study the
problem by experiments and provide analytical analysis for a simplified
model in the next section.

3.1 Setup

In our simulation setup, we assume that each user generates requests
according to a Poisson process. The size of requests is from a log-
normal distribution. In both processes, we use the same parameters
for all the users. We fix the total number (2000) of users and the
maximum number (k = 10) of times a request may be restarted. The
mean of the request time is 1500. The mean of the request size is 300
and the standard deviation is 100.

We fix the number (50) of machines. The maximum queue size
of each machine is 50. The base speed of each machine is fixed and
uniformly distributed in the interval [2.5, 9.5]. To simulate different
congestion condition, we can apply a multiplicative rate r to the ma-
chine speed, i.e. the real speed of a machine is r times its base speed.
As explained before, we will focus on the cases when the load of the
system is fair (when r = 1.0).

With the above fixed parameters, we vary two parameters: the
number Nr of users that use restart strategies and the restart time T

5



for those users who use restart strategies. All of the simulations run
fairly long with millions requests generated in total.

For comparison, we run an omniscient greedy scheduling algorithm
and obtain the mean response time of 614.28 and standard deviation of
response time of 39.38. In the omniscient greedy algorithm, we calcu-
late the response time of a request on each machine by the assumption
that we know all the requests in each machine and the size of each
request. We then assign the request to the machine with the minimum
response time. While the greedy algorithm may not find the optimum
value, its solution should be fairly close to the optimum, and it is the
equilibrium when all the users are omniscient and can decide which
machine to assign theirs requests.

3.2 Cooperative restarts

In our first set of experiments, we assume that each user uses the
same preset restart time. A special case is when none of the users
uses restart, or in the other words, when their restart time is infinity.
Figure 2 shows the mean and the standard deviation of the response
time as a function of the restart time. When no users uses restart
strategy, the mean response time is about 1200, about twice as much as
the mean response time of omniscient greedy algorithm. The standard
deviation is 1800, which is significantly higher. When the users use the
restart strategy with appropriate restart time, both the mean and the
standard deviation of the response time become significantly lower. In
particular, the mean response time is very close to that produced by
the omnisicent greedy algorithm. The performance is fairly insensitive
to the restart time — the minimal mean response time is achieved
over a large interval ([20, 400]) of restart time. The standard deviation
of response time has a sharp drop for small restart time and reaches
the minimum when T ≈ 80 and remains fairly stable at 400 until T
reaches 500. Therefore, we can draw conclusion that when all the users
use restart strategy with the same restart time, it is easy to achieve
the nearly optimal mean response time with relatively small standard
deviation in the response time.

3.3 Non-Cooperative homogeneous restarts

As shown in the previous section, when all the users use restart strategy
with the same restart time, the best restart time is located in the
interval [80, 400] when both the mean and the standard deviation of
the response time are low. But what if the users are non-cooperative,
i.e. a user may defect from that restart time everyone else uses? To
answer that question, we first experiment with the extreme cases: in
one case, we let one user not to restart and all the othe users use the

6



200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time

w/i restart mean
w/i restart dev

w/o restart mean
w/o restart dev

Figure 2: The mean and standard deviation of the response time for homo-
geneous cooperative users.

same restart time; in the other case, we let only one user restart and
all the other users not to. The results are shown in Figure (3).

In Figure (3).(1), when there is only one restart user, it has much
lower response time than those who do not restart. It is even signifi-
cantly better than that by omniscient greedy algorithm. When all the
users restart, the non-restart user has smaller mean response time ex-
cept when the restart users use really small restart time.(Figure 3.(2)).

We further experiment with the cases when the restart users use
small restart time. We then vary one user’s restart time and find that it
is still beneficial for the user to defect. Figure 3.(3) shows the result. In
Figure 3.(3), we plot the response time when all the users are restart
users, and one user uses different restart time from the other users.
The x-axis in Figure 3.(3) represents the restart time of the defect
user. The solid curve corresponds to the mean response time to the
homogeneous group of users. Since the group restart time is chosen
from the interval such that the mean response time is small, the mean
response time remains the same. The dashed curves correspond to the
response time to the defect user with different group restart time.

¿From the figure, we can see that when all the users use the same
restart time, one is always better off to be a little bit more patient, i.e.
using a slightly longer restart time. However, as we show earlier, when
all the users are patient, it is always better off to restart. Therefore,
there exists a critical value when it is no longer true that waiting a
little bit more patient is better. In such cases, it is always better to
restart really sooner than the other users.

¿From these experiments, we conclude that it is always better to

7



0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (1 restart users, rate 1.0)

restart-users (1) mean
no-restart-users (1999) mean

(1)

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (1999 restart users, rate 1.0)

restart-users (1999) mean
no-restart-users (1) mean

(2)

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (rate 1.0)

other users
restart time 20

restart time 100
restart time 200
restart time 300
restart time 400

(3)

Figure 3: The mean and variance of the response time when there is one
defect user

8



use a different restart time when all the other uses use the same restart
time. In the game theory terminology, this means that there does not
exist a pure strategy homogeneous Nash equilibrium.

3.4 Non-cooperative non-homogeneous restarts

In the previous section, we show, by experiments, that there does not
exist a pure strategy homogeneous Nash equilibrium. It raises question
of whether there exists a pure strategy Nash equilibrium at all. We
experiment the situation when there are two groups of homogeneous
users, and one group does not use restart strategy. Figure 4 shows
three different settings where the number of restart users is 500, 1000,
and 1800 respectively. In all the cases, the interval [100, 400] seems the
most appropriate restart time for the restart users as both the mean
and the variance are low. From the figure, we can see that when Nr,
the number of restart users, is 500, it is good for a non-restart user
to switch to using restart. When Nr = 1800, it is however beneficial
for a restart user to switch to non-restart. When Nr = 1000, the
gap between the restart users and non-restart users diminishes, which
indicates the possibility of the existence of a Nash equilibrium in the
neighborhood.

4 Analysis

It is difficult to analytically analyze the mean response time in our
experiment setup. In this section, we analyze a simpler model and
show some characteristics of the restart strategy.

4.1 A simplified model

The significant simplification we make is to assume that a restart re-
quest always restarts with 0 waiting time, i.e. it keeps restarting until
the server it is randomly assigned to happens to be available. We call
such requests impatient. An alternative way to view impatient requests
is to create an additional queue, the “impatient” queue, to store such
requests. And an impatient request is served as long as one of the
server is available.

Another simplification is that we no longer require that each user
can only generate one request. Instead, we assume that the users
generate requests steadily at a constant rate. This simplification re-
moves the feedback loop which adjusts the overall system input rate
and makes the analysis much simpler.

Formally, suppose that there are m identical M/M/1 queues, each
having a service rate of µ = 1, and there are n clients (players), each

9



200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (500 restart users, rate 1.0)

restart-users (500) mean
restart-users (500) dev

no-restart-users (1500) mean
no-restart-users (1500) dev

(1) Nr = 500

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (1000 restart users, rate 1.0)

restart-users (1000) mean
restart-users (1000) dev

no-restart-users (1000) mean
no-restart-users (1000) dev

(2) Nr = 1000

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e

restart time (1800 restart users, rate 1.0)

restart-users (1800) mean
restart-users (1800) dev

no-restart-users (200) mean
no-restart-users (200) dev

(3) Nr = 1800

Figure 4: Response time with two groups of homogeneous users.
10



generating requests at the rate of λ/n. There are two kinds of re-
quests, patient or impatient. A patient request is assigned randomly
to a server and waits in the queue until being served. There is an
additional “impatient” queue for impatient requests. An impatient re-
quest would wait in that queue and get served when one of the servers
becomes available. This captures the fact that an impatient request
has 0 waiting time and tries to catch any available server. Since we are
only interested in the expected waiting time, the queuing principle of
the impatient queue does not matter. We assume it is an FIFO queue.

The immediate observation is that if all the users are impatient,
then there is only a single impatient queue in the system. So the system
behaves exactly as the M/M/m queue, which is the most efficient way
to use the system, or in the other words, it achieves the social optimum.
However, what is interesting to us is the Nash equilibrium of the game
where a user may decide each of its requests being patient or not.

In our analysis, we consider mixed strategy, i.e. each user can de-
cide according to a probability whether a request it generates should
be patient or impatient. Let pi be the probability that the requests
generated by the client i are patient. Now, the question we would like
to answer is whether there is a Nash equilibrium and, if there is, what
is the performance at the Nash equilibrium, compared to the social
optimum.

Let ρ = λ
mµ

= λ
m

, and p =
∑n

i=1 pi/n. Since all the users generate
requests at the same rate, and a request is decided to be a patient
request with probability pi, we can view the system with total incom-
ing rate λ, of which a fraction of p are patient requests, and 1 − p are
impatient requests. Let T1(p, ρ) and T2(p, ρ) denote, respectively, the
expected waiting time for the patient and impatient requests of such a
system. Note that T1, T2 are the mean waiting time but not the mean
response time, which is the sum of the waiting time and the processing
time. It suffices to consider waiting time because the expected pro-
cessing time is the same for all the requests and all the machines in
our model. In the following, we will first attempt to computing T1 and
T2 and then analyze the property of the game.

4.2 Expected waiting time of patient requests

We are able to obtain a fairly simple formula for T1(p, ρ).

Lemma 4.1

T1(p, ρ) =
ρ

1 − pρ
.

Proof. Consider how a patient request can be delayed by an impatient
request. An impatient request r can only grab a server when the server
is free, and the patient requests that are going to be delayed due to

11



the processing of r is exactly those requests that arrive in the busy
period starting from the time when r is served. The mean of the total
number of requests appearing in that busy period is 1

1−pρ
according to

the M/M/1 queue result. Therefore, the number of patient requests
that are delayed by r is 1

1−pρ
− 1 = pρ

1−pρ
on average.

Now consider what happens over a long time interval [0, T ]. Since
we assume λ < 1, each request experiences a delay with finite mean.
Therefore, we can assume that all the requests are processed within
time [0, T + δT ] where δT/T → 0 when T → ∞. By symmetry, we
know that the impatient requests are evenly divided among the servers.

Therefore, each server processes (1−p)λT

m
impatient requests, and each

causes a delay of 1
µ

for pρ
1−pρ

patient requests. Therefore, the total
additional delay caused by impatient requests is:

(1 − p)λT

m
· pρ

1 − pρ
· 1

µ
=

(1 − p)pρ2T

1 − pρ
.

There are pλT/m patient requests arriving at any server, therefore
the mean delay of each patient request is:

T1(p, ρ) =
pρ

(1 − pρ)µ
+

(1 − p)pρ2T

(1 − pρ)
· m

pλT
(1)

=
pρ

(1 − pρ)µ
+

(1 − p)ρ

(1 − pρ)µ
(2)

=
ρ

(1 − pρ)µ
=

ρ

1 − pρ
. (3)

�

¿From the above formula, we can see that T1(p, ρ) is increasing and
convex in terms of both p and ρ.

4.3 Expected waiting time of impatient requests

Computing T2(p, ρ) is difficult for general p. We consider the extreme
cases when p = 0, 1. When p = 0, i.e. when there is no patient requests,
the system is exactly an M/M/m queue. The followinng is a known
result about M/M/m queue.

Lemma 4.2

T2(0, ρ) =
(mρ)m

m!m(
∑m−1

k=0
(mρ)k

k! (1 − ρ)2 + (mρ)m

m! (1 − ρ))
.

To calculate T2(1, ρ) = limp→1 T2(p, ρ), we consider the situation
when all but one requests are patient requests. When there is only one
server, the impatient request has to wait only when the server is busy
upon its arrival, and its waiting time is the time since its arrival to

12



the time when the server becomes free. This is exactly the length of
the busy period left of a randomly arriving request. When there are
multiple servers, then the waiting time is the minimum of length of
the busy period on those servers. When all the requests are patient,
the queue state on each server is independent of the other servers.
Therefore, we can apply the process for computing the expected value
of the minimum of multiple random variables.

Let b(t) denote the p.d.f. for the busy period distribution of the
M/M/1 queue with arrival rate ρ and service rate 1. It is known that

b(t) =
1

t
√

ρ
e−(1+ρ)tI1(2t

√
ρ) ,

where I1(x) is the Bessel function of the first kind,

I1(x) =

∞
∑

k=0

(x/2)2k+1

k!(k + 1)!
.

Now, we calculate the probability that the waiting time of impatient
request does not exceed t. Let X, X1 denote the random variable of the
waiting time of the impatient request for m and 1 servers, respectively.
Then,

Prob[X ≤ T ] = 1 − Prob[X1 > T ]m .

Let B be the mean of the busy period of an M/M/1 queue. Since
B = 1

1−ρ
, we have that:

Prob[X1 > T ] =
ρ

B

∫

∞

T

(t − T )b(t)dt = ρ(1 − ρ)

∫

∞

T

(t − T )b(t)dt .

If we let f1(·), f(·) denote the p.d.f. of X1 and X respectively, then

f1(T ) = ρ(1 − ρ)

∫

∞

T

b(t)dt ,

and

f(T ) = mProb[X1 > t]m−1 · f1(t)

= mρm(1 − ρ)m

∫

∞

T

b(t)dt

(
∫

∞

T

(t − T )b(t)dt

)m−1

Therefore, , T2(1, ρ) is given by the following formula.

T2(1, ρ) =

∫

∞

0

t · f(t)dt .

Since b(t), the p.d.f. of the busy period distribution of an M/M/1
queue, has a quite complicated form so the numerical solution is sus-
ceptible to errors. We show that for two servers, we can use the tool

13



of Laplace transform to obtain a simpler form, which is an interesting
result in its own right.

We first calculate the distribution of X1. Suppose the impatient
request sees N requests waiting in queue 1 when it enters the system,
where N is a random variable. From [3] we know that N is geometri-
cally distributed

Prob[N = n] = (1 − ρ)ρn, n = 0, 1, . . . , (4)

and has the generating function

fN (x) =
1 − ρ

1 − ρx
. (5)

The time the request has to wait for queue 1 to become empty can
thus be represented as a sum of busy period:

X1 =

N
∑

i=1

XBi. (6)

XBi is the time it takes the server to decrease the queue size by one
for the i’th time, which has the same distribution as the busy period.
The Laplace transform of X1 is

f̂1(s) = E[esX1 ] = E[E[esX1 |N ]] = E[E[esXB ]N ] = E[f̂B(s)N ], (7)

where f̂B(s) is the Laplace transform of fB(t), the density of the busy
period XB. It can be deduced that [3]

f̂B(s) =
1

2ρ
(ρ + 1 + s −

√

(ρ + 1 + s)2 − 4ρ). (8)

Notice that the last step of (7) is nothing but the moment gener-

ating function of N calculated at x = f̂B(s), so

f̂1(s) =
1 − ρ

1 − ρf̂B(s)

=
1 − ρ

1 − (ρ + 1 + s −
√

(ρ + 1 + s)2 − 4ρ)/2

=
2(1 − ρ)

1 − ρ − s +
√

(ρ + 1 + s)2 − 4ρ

=
1 − ρ

2s
[−1 + ρ + s +

√

(ρ + 1 + s)2 − 4ρ]. (9)

When there are two queues, the impatient request can be served
when either queue becomes empty, so its waiting time is

X = min(X1, X2), (10)

14



where the subscripts 1 and 2 stand for queue 1 and queue 2. Because
the two queues are independent and identical, X ’s CDF

F (t) = Prob[X ≤ t] = 1− (1 − F1(t))
2. (11)

Then T2(1, ρ) = EX , which is

EX =

∫

∞

0

t dF (t) = −
∫

∞

0

t d(1 − F (t))

=

∫

∞

0

(1 − F (t))dt =

∫

∞

0

(1 − F1(t))
2dt. (12)

If we let
g(t) ≡ 1 − F1(t), (13)

then (12) can be written as

EX =

∫

∞

0

g2(t)dt =

∫

∞

0

e−stg2(t)dt

∣

∣

∣

∣

s=0

= ĝ2(0), (14)

where ĝ2(s) is the Laplace transform of g2(t).

The problem now boils down to calculating ĝ2(0). We first study
some of the properties of ĝ(s). Because F1(t) is the integral of f1(t),
we have from (13) that

ĝ(s) =
1 − f̂1(s)

s
. (15)

We claim that s = 0 is not a pole of ĝ(s). This is clear from the

expansion of f̂1(s) near s = 0:

f̂1(s) = 1− ρ

(1 − ρ)2
s + O(s2), (16)

which implies

lim
s→0

ĝ(s) =
ρ

(1 − ρ)2
. (17)

Hence ĝ(s) is analytical at s = 0. However, because there is a square

root in f̂1(s) (see (9)), ĝ(s) is not analytical on the entire complex
plane. Define

ρ1 = −(1 +
√

ρ)2, ρ2 = −(1 −√
ρ)2. (18)

Then the square root in (9) can be written as

√

(ρ + 1 + s)2 − 4ρ =
√

(s − ρ1)(s − ρ2). (19)

15



1λ 2λ

Figure 5: Branch cut of f̂1(s) and ĝ(s).

If we make a branch cut along the line segment [ρ1, ρ2], then both

f̂1(s) and ĝ(s) are analytical on the plane with the branch cut removed
(Fig. 5).

The Laplace transform of the product g2(t) can be represented as
a convolution product of ĝ(s) and itself:

ĝ2(s) =

∫

∞

0

g2(t)e−stdt

=

∫

∞

0

(

1

2πi

∫ c+i∞

c−i∞

ĝ(s′)es′tds′
)

g(t)e−stdt (20)

=
1

2πi

∫ c+i∞

c−i∞

ĝ(s′)ds′
∫

∞

0

g(t)e−(s−s′)tdt

=
1

2πi

∫ c+i∞

c−i∞

ĝ(s′)ĝ(s − s′)ds′, (21)

where (20) is the formula of inverse Laplace transform. c can be any
real number larger than the convergence abscissa of ĝ(s), which is ρ2

in our case. In particular, we can take c = 0 because ρ2 < 0. Thus

ĝ2(0) =
1

2πi

∫ i∞

−i∞

ĝ(s)ĝ(−s)ds. (22)

The integral of (22) can be calculated with the aid of the contour
shown in Fig. 6. Because ĝ(s)ĝ(−s) is analytical on the entire complex

16



1C

2C

∞C

C

Figure 6: Contour of integral.

plane with the two branch cuts removed, we have
(

∫

C

+

∫

C∞

+

∫

C1

+

∫

C2

)

ĝ(s)ĝ(−s)ds = 0. (23)

As s → ∞, f̂1(s) → 1 − ρ uniformly. As a result ĝ(s) is of the order
s−1 when s is large, and ĝ(s)ĝ(−s) is of the order s−2. The length of
the half circle is of the order s, so the integral on the path C∞ is of
the order s−1 which goes to zero when s → ∞. Therefore

∫ i∞

−i∞

ĝ(s)ĝ(−s)ds = −
(

∫

C1

+

∫

C2

)

ĝ(s)ĝ(−s)ds. (24)

Because ĝ(s) has the same real part on the upper and lower edges of
the branch cut, the real parts of the two integrals along C1 and C2 with
opposite directions cancel out. Only the image part of ĝ(s) counts for
the integral. The image part of ĝ(s) on the upper edge and the lower
edge differ only in the sign, so

∫ i∞

−i∞

ĝ(s)ĝ(−s)ds

= −2i

∫

C1

Im[ĝ(s)]ĝ(−s)ds

= 2i

∫

C1

1

s
Im[f̂1(s)]ĝ(−s)ds

17



0.2 0.4 0.6 0.8 1
Λ

2.5

5

7.5

10

12.5

15

17.5

20
ET

Figure 7: Expected waiting time versus incoming rate. The red line is for
the impatient request and the blue line is for patient requests. The two lines
cross at ρ = 0.744.

= i

∫

C1

1 − ρ

s2

√
s − ρ1

√
ρ2 − s ĝ(−s)ds (25)

Finally we have

T2(1, ρ) = EX(ρ) = ĝ2(0) =

∫ ρ2

ρ1

1 − ρ

2πs2

√
s − ρ1

√
ρ2 − s ĝ(−s)ds.

(26)
A numerical computation of the integral is shown in Fig. 7.
To summarize, we have that

Lemma 4.3

T2(1, ρ) =

∫

∞

0

t · f(t)dt .

In particular, when m = 2,

T2(1, ρ) = ĝ2(0) =

∫ ρ2

ρ1

1 − ρ

2πs2

√
s − ρ1

√
ρ2 − s ĝ(−s)ds .

4.4 Nash equilibrium of the restart game

By the above analysis, we can compute the critical values ρ1 and ρ2

where T1(0, ρ1) = T2(0, ρ1) and T1(1, ρ2) = T2(1, ρ2). Those values are
of importance because of the following statement.

18



m 2 3 4 5 6 7 8 9 10 100

ρ1 0.618 0.748 0.810 0.847 0.871 0.889 0.902 0.912 0.921 0.991

ρ2 0.744 0.875 0.925 0.950 0.964 0.973 0.979 0.983 0.987

Table 1: The critical value ρ1 and ρ2

Lemma 4.4 1. When ρ ≤ ρ1, for any 0 ≤ p ≤ 1, T1(p, ρ) ≥
T2(p, ρ). Or when λ ≤ mµρ1, it is always better off to be im-

patient, i.e. pi = 0, for i = 1, . . . , n, is the Nash equilibrium in

this case.

2. When ρ ≥ ρ2, for any 0 ≤ p ≤ 1, T1(p, ρ) ≤ T2(p, ρ). Or when

λ ≥ mµρ2, it is always better off to be patient, i.e. pi = 1, for

i = 1, . . . , n, is the Nash equilibrium.

By Lemma 4.1 and 4.2, we can solve, numerically, for ρ1. It is the
root of the following equation:

(mρ)m

m!m(
∑m−1

k=0
(mρ)k

k! (1 − ρ)2 + (mρ)m

m! (1 − ρ))
=

ρ

1 − pρ
.

Table 1 shows the numerical solution to the above equation for
various m’s. The value of ρ1 approaches 1 when m → ∞, which is
consistent with the intuition that when the number of servers increases,
it is more likely that there exists a free server.

So when ρ ≤ ρ1, the Nash equilibrium is achieved when all the pi’s
are 0. In this case, the Nash equilibrium is also the social optimum.

Similarly, we calculate ρ2 numerically, and the solution is again
given in Table 1. In Figure 8, we plot the critical values ρ1, ρ2 as a
function of the number of servers. When m → ∞, both ρ1 and ρ2

approach to 1.
In the regime of ρ ≥ ρ2, the Nash equilibrium is achieved when

pi = 1 for all the i’s. The mean waiting time at the Nash equilibrium
is mρ

1−mρ
, the mean waiting time given by an M/M/1 queue, while

the social optimum happens at when all the requests are impatient.
There is a loss of efficiency at the Nash equilibrium. When m = 2,

T2(0, ρ) = ρ2

1−ρ2 . Therefore, for two servers, the efficiency of the Nash

equilibrium is T2(0, ρ)/T1(1, ρ) = ρ
1+ρ

. When the number of servers
increases, the efficiency decreases.

In the above, we have characterized the Nash equilibrium when
the system is lightly or heavily loaded. In both cases, there exist a
homogeneous pure strategy Nash equilibrium. What about the case
when ρ1 < ρ < ρ2?

When ρ1 < ρ < ρ2, there exists 0 < pρ < 1 such that T1(p, ρ) =
T2(p, ρ). It is tempting to conclude that if all the users decide with

19



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10

ρ

number of servers

ρ1

ρ2

Figure 8: The plot of critical values ρ1, ρ2.

probability p that a request is patient, then it is a Nash equilbrium
because it does not seem to make difference when a request switches
from patient to impatient and vice versa. This is indeed the case when
there are infinitely many users and each user generates one request.
The reason is that an individual user’s decision will have no effect on
the other requests. However, when there are finite number of users, it
is not the case by the following analysis.

We will have to need an assumption which we have observed consis-
tently from simulation results but are, unfortunately, unable to prove:

Hypothesis. For any fixed ρ ∈ (ρ1, ρ2), T1, T2 are continuous,
monotonically increasing, and convex with respect to p. That is,
T ′

1(p), T ′

2(p), T ′′

1 (p), T ′′

2 (p) ≥ 0. Further, T1(p)−T2(p) is monotonically
increasing.

The above hypothesis implies that there exists a unique 0 < pρ < 1
such that T1(pρ) = T2(pρ). This follows from that T1(0) < T2(0),
T1(1) > T2(1), and T1−T2 is continuous and monotonically increasing.

Let p =
�

n
i=1

pi

n
. The expected waiting time T (i) of the i-th player

is:
T (i) = piT1(p) + (1 − pi)T2(p) .

For a combination of strategies p1, . . . , pn, it is a Nash equilibrium
if for any 1 ≤ i ≤ n and 0 ≤ x ≤ 1:

T (i) ≤ xT1

(

p +
x − pi

n

)

+ (1 − x)T2

(

p +
x − pi

n

)

.

20



In particular, when the users are homogeneous, i.e. pi = p, it is:

pT1(p)+(1−p)T2(p) ≤ xT1

(

n − 1

n
p +

1

n
x

)

+(1−x)T2

(

n − 1

n
p +

1

n
x

)

.

Let q = (1 − 1
n
)p. Then a homogeneous strategy where pi ≡ p is a

Nash equilibrium if the function Fp(x)

Fp(x) = xT1

(

q +
1

n
x

)

+ (1 − x)T2

(

q +
1

n
x

)

,

achieves the minimum at x = p.
Assuming the hypothesis, we can show that for any 0 ≤ p ≤ 1,

Fp(x) is strictly convex.

F ′

p(x) = T1

(

q +
1

n
x

)

+
x

n
T ′

1

(

q +
1

n
x

)

(27)

−T2

(

q +
1

n
x

)

+
1 − x

n
T2

(

q +
1

n
x

)

. (28)

F ′′

p (x) =
2

n

[

T ′

1

(

q +
x

n

)

− T ′

2

(

q +
x

n

)]

(29)

+
x

n2
T ′′

1

(

q +
x

n

)

+
1 − x

n2
T ′′

2

(

q +
x

n

)

. (30)

Since T1−T2 is increasing and T ′′

1 , T ′′

2 > 0, we have that F ′′

p (x) > 0,
i.e. Fp is a strictly convex function for any p > 0.

Now, consider F ′

0(0) = T1(0)− T2(0) + 1
n
T ′

2(0). Since F0 is strictly
convex, F0(0) is the minimum of F0(x) if and only if F ′

0(0) ≥ 0. There-
fore, when F ′

0(0) ≥ 0, the strategy pi ≡ 0 is a Nash equilibrium.
When F ′

0(0) < 0, we consider F ′

pρ
(pρ).

F ′

pρ
(pρ) = T1(pρ) +

pρ

n
T ′

1(pρ) − T2(pρ) +
1 − pρ

n
T ′

2(pρ) (31)

=
pρ

n
T ′

1(pρ) +
1 − pρ

n
T ′

2(pρ) > 0 . (32)

Therefore, there exists p ∈ (0, pρ) such that F ′

p(p) = 0. Since Fp(·)
is strictly convex, Fp(x) achieves the minimum at x = p. Thus pi ≡ p
is a Nash equilibrium. According to Equation (32), F ′

pρ
(pρ) → 0 when

n → ∞. Therefore, pi ≈ pρ is a Nash equilibrium when there are a
large number of users.

To summarize, when ρ1 < ρ < ρ2, there exists a unique homo-
geneous Nash equilibrium at p < pρ. At the Nash equilibrium, the
impatient requests have longer waiting time than the patient requests.

21



5 Conclusion

In this paper, we have shown the characteristics of the Nash equilib-
rium of using restart strategy in a queueing system. We did it through
experimental results and the analysis of a simplified model. Appar-
ently, there are many open questions, such as finding the Nash equi-
librium of the game described in our experimental setup and proving
the hypothesis for the simplified model.

References

[1] G. I. Falin and J. G. C. Templeton. Retrial Queues. Chapman &
Hall, 1997.

[2] B. A. Huberman and T. Hogg. Distributed computation as an
economic system. Journal of Economic Perspectives, pages 141–
152, 1995.

[3] L. Kleinrock. Queueing Systems, volume I and II. John Wiley &
Sons, 1976.

[4] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Lec-

ture Notes in Computer Science, 1563:404–413, 1999.

[5] S. M. Maurer and B. A. Huberman. Restart strategies and Internet
congestion. Journal of Economic Dynamics and Control, 25:641–
654, 2001.

[6] N. Nisan and A. Ronen. Algorithmic mechanism design. Games

and Economic Behavior, 35:166–196, 2001.

[7] C. H. Papadimitriou. Algorithms, games, and the Internet. In
ACM Symposium on Theory of Computing, pages 749–753, 2001.

[8] T. Roughgarden and E. Tardos. How bad is selfish routing? In
IEEE Symposium on Foundations of Computer Science, pages 93–
102, 2000.

22


