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1 Introduction

The existence of widespread and persistent fluctuations which permanently affect the over-

all economic activity is an inherent feature of any modern economy.

However, despite the huge number of competing models providing a rationale for expan-

sions and recessions, we still lack a generally accepted explanation for business fluctuations.

More specifically, there seems to be an increasing dissatisfaction in the economic profession

about the way in which economic theory copes with empirically observed properties of busi-

ness cycles. As Zarnowitz (1985, 1997) puts it, economic scholars are “mainly concerned

with theoretical possibilities, rather than with explanations of what actually happens”.

Consequently, there is “little regard for how the pieces fit each other and the real world”.

Ultimately, the theory of business cycle appears to be “long of questions and short of

answers”.

A primary example of such a mismatching might be found in the ways economic theory

deals with both microeconomic and macroeconomic stylized facts concerning investment

and output dynamics. A robust empirical literature has indeed shown that, at the aggregate

level, investment is considerably more volatile than output and that fluctuations of both

output and investment are highly synchronized. Furthermore, at the micro level, firms’

investment behavior appears to be lumpy and strongly affected by firms’ financial structure.

Notwithstanding the proliferation of models trying to separately account for micro

and macro stylized facts, almost no attempts have been made in the literature to explain

the properties of aggregate investment and output dynamics on the basis of individual

behaviors which, at least, embody the observed microeconomic regularities about firms’

investment behaviors.

In this paper, we begin pursuing this strategy and we propose a model where both out-

put and investment dynamics are grounded upon lumpy investment decisions undertaken

by firms that are also constrained by their financial structure.

The model depicts a two-industry dynamic economy composed of firms and consumers/

workers. Firms in the first industry perform R&D and produce heterogeneous machine

tools. Firms in the second industry invest in new machines and produce a consumption

good.

Following the seminal work of Keynes (1936) on “trade cycles”, we assume that per-

vasive market uncertainty, as well as individual expectations, play a key role in shaping

investment dynamics and triggering fluctuations in the overall economic activity. More

specifically, we model firms and workers as heterogeneous, boundedly-rational agents, en-

dowed with adaptive expectations, who directly interact in an endogenously-changing en-

vironment characterized by strong procedural and substantial uncertainty (Dosi and Egidi,
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1991; Dosi, Marengo, and Fagiolo, 2004).

Partly as a consequence, we interpret lumpiness in firm investment decisions as a

boundedly-rational, routinized, behavior, rather than deriving it as the outcome of some

optimization rule carried out by a perfectly-rational, forward-looking, individual holding

non-convex adjustment costs (Caballero, 1999).

The model belongs to the evolutionary, “agent-based computational economics” (ACE),

family. In each period t, firms and workers carry out their production, investment, and

consumption decisions on the basis of routinized behavioral rules and adaptive (myopic)

expectations (i.e. “animal spirits”). The dynamics over microeconomic variables (i.e. indi-

vidual production, investment, consumption, etc.) thus induces a macroeconomic dynam-

ics for aggregate variables (e.g. total investment and output, consumption, etc.), whose

statistical properties are then studied and compared with empirically observed ones.

Preliminary simulation results show that the model is able to reproduce the most im-

portant aggregate stylized facts characterizing investment and output dynamics. More

specifically, we find that a necessary condition for the economy to exhibit self-sustaining

patterns of growth is the presence of some additional (exogenous or endogenous) compo-

nent to private consumption (e.g. public expenditure, unemployment benefits, etc.). This

component, acting as automatic stabilizers, is likely to dampen the oscillations of the man-

ufacturing industry and to reduce the instability of the whole economy. We also show that,

under such broad conditions, the model is able to generate simulated output-investment

dynamics characterized by volatility, auto- and cross-correlation patterns similar to those

observed in reality.

The rest of the paper is organized as follows. Section 2 provides a short overview of

micro and macro empirical evidence. In Section 3, we discuss how economic theory has

dealt with the stylized facts and we introduce the main ingredients of the model formally

presented in Section 4. Qualitative and quantitative results of simulation exercises are

accounted for in Section 5. Section 6 concludes and discusses future developments.

2 Investment Patterns and the Business Cycle: What

Can We Learn from the Data?

In this Section we will single out the most robust stylized facts concerning the micro- and

macro-dynamics of investment and output. In particular, we shall argue that the evidence

on the empirically observed microeconomic patterns of investment might give us some clues

to better understand what happens at the macro level.
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2.1 Macro stylized facts

A key issue in the empirical business-cycle literature concerns the investigation of the

properties of the coupled dynamics of investment and output1.

A casual inspection of the data shows that, after theWWII, both output and investment

appear to have experienced a huge and quite smooth growth in the U.S. (cf. Fig. 1) as

well as in other developed countries. However, the observed smoothness in both time-

series typically hides severe business cycle turbulences affecting both economic aggregates.

If we isolate business cycle frequencies by applying a bandpass filter (Baxter and King,

1999) to the series2, output and investment exhibit a completely different pattern, see Fig.

2. In fact, the two series display a typical “roller coaster” shape, implying the repeated

interchange of expansions and recessions which characterize the business cycle.

In addition to all that, the analysis of the co-variance and auto-correlation structure

of the filtered series allows us to single out two key stylized facts which seem to represent

investment patterns at the macro level:

SF1 Investment is considerably more volatile than output.

SF2 Business cycles fluctuations of investment and output are highly synchronized and
exhibit very similar patterns.

Investment and output reach indeed their peaks and troughs at (almost) the same date,

but the fluctuations of investment are extremely more pronounced. As Table 3 shows, the

percentage deviation of investment from the trend growth path is 2.5 times larger than

the one of the GDP (SF1). The contemporaneous correlation between investment and

GDP is positive and very high (0.95) and it decreases monotonically as the leads and lags

increase. Using the business cycle terminology, investment appears to be a procyclical (i.e.

cross correlations are positive) and coincident (i.e. the highest cross correlation is at time

t) variable (SF2). Both stylized facts are robust against time, country and detrending

technique 3.

1At least at the macro level, investment cannot be studied in isolation because its behavior must be
linked — in some way — to the business cycle (typically proxied by output dynamics). Evidence on investment
in machines and equipment is also reported, in order to better compare the results of the model below
(which abstracts from other investment components such as e.g. construction) with real-world data.

2Following Stock and Watson (1999), we isolate the frequencies ranging from 6 to 32 quarters and we
apply a bandpass filter (6,32,12). Cf. also Appendix A.

3See also Agresti and Mojon (2001), Stock and Watson (1999), Kydland and Prescott (1990) and
Napoletano, Roventini, and Sapio (2004). Stock and Watson employ a bandpass filter (6,32,12) to US
data for the period 1956—1996. Agresti and Mojon apply a bandpass filter (6,40,8) to Euro area series
ranging from 1970 to 2000. Kydland and Prescott use a HP filter (1600) using US data from 1954 to 1989.
Napoletano, Roventini and Sapio apply a bandpass filter (9,43,12) to Italian data for the period 1970-2002.
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2.2 Micro stylized facts

The limited success of both neoclassical4 and q theory5 in providing a statistically robust

explanation of the microeconomic determinants of investment (Caballero, 1999; Hasset and

Hubbard, 1996; Chirinko, 1993), has triggered a more careful investigation of the statistical

regularities characterizing investment patterns at the microeconomic level. These research

efforts have led to the discovery that:

SF3 Investment is lumpy.

SF4 Investment is influenced by firms’ financial structure.

Consider first SF3. In standard investment models, convex adjustment costs and re-

versibility assumptions guarantee that firms smoothly and continuously adapt their capital

stock over time. However, these predictions are at odds with the empirical evidence pro-

vided in the seminal work of Doms and Dunne (1998). They employ plant level data to

show that lumpiness is an intrinsic feature of firm investment decisions: in a given year,

51.9% of all plants increase their capital stock by less than 2.5%, while the 11% of them

raise it by more than 20%. Moreover, within-plant investment patterns show that plants

typically invest in every single year, but they concentrate half of their total investment in

just three years out of the sixteen under analysis. As it might be expected, if the same

analysis is performed at the “line of business” and firm levels, investment patterns are

smoother, but still lumpy.

In any case, the microeconomic lumpiness of investment does not appear to be com-

pletely filtered away at the macroeconomic level. Aggregate investment fluctuations are

indeed influenced by the number of plants incurring in huge investment episodes: the corre-

lation between aggregate investment and the number of plants experiencing their maximum

investment share is 0.59.

As far SF4 is concerned, the evidence is even more impressive. Since the influential work

of Fazzari, Hubbard, and Petersen (1988), a huge stream of empirical literature6 has been

providing evidence against the Modigliani and Miller (1958) theorem. Indeed, if capital

markets are imperfect (e.g. because of information asymmetries), the financial structure

of the firm is likely to affect its investment decisions. In particular, the cost of external

financing is typically higher than that of internal financing. The larger information costs

born by each firm, the higher the gap between the cost of internal and external financing.

4See Jorgenson (1963) and Hall and Jorgenson (1967).
5Cf. Tobin (1969) and Brainard and Tobin (1968).
6See Hubbard (1998) for a survey.
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These propositions are supported by the evidence provided by the so-called “financial

constraints” literature: ceteribus paribus, firm investment is significantly correlated with

cash flow (a proxy for net worth variation) and the correlation magnitude is higher for

those firms that suffer more from information asymmetries plaguing capital market (e.g.

young and small firms)7.

3 Explaining Stylized Facts: What Can we Learn from

Economic Theory?

While the link between financial constraints and investment decisions can be easily ex-

plained within an imperfect information framework (Evans and Jovanovic, 1989; Fazzari,

Hubbard, and Petersen, 1996), the fact that observed patterns of investment are lumpy can

be reconciled with standard investment models only if one assumes an ad-hoc formulation

of the cost structure. For example, by positing non-convex adjustment costs, a perfectly-

rational, optimizing firm will follow an (S,s)-type of investment behavior (see Caballero

(1999) for a survey).

In these models, firms face the problem of choosing the optimal level of capital that

maximize their flow of profits. Firms compare the desired stock of capital (K∗) stemming

from first-order conditions, with the actual stock of capital (K). If the capital imbalance

Z ≡ K/K∗ is different from one, firms invest (or disinvest) only if they can recover the

costs of adjusting their stock of capital. The presence of non-convex adjustment costs will

force firms to follow an (S,s) rule. Given the optimal target (l and u) and trigger (L and

U) thresholds, with L < l < 1 < u < U , firms will invest (disinvest) up to Z = l (Z = u)

only if their capital imbalance is lower (higher) than the trigger point L (U)8.

These models have been quite successful in explaining investment behavior. Using

micro data, Caballero, Engel, and Haltiwanger (1995) found an increasing adjustment

hazard, which implies that the larger the capital imbalance, the higher the probability

of an investment spike. The same result was confirmed on aggregate data by Caballero

and Engel (1999), who also showed that the (S,s) model outperforms the linear one in

explaining the behavior of manufacturing investment. Finally, Cooper, Haltiwanger, and

Power (1999) found that the probability of a large investment episode is increasing in time

since the previous spike.

Notwithstanding the awareness that investment lumpiness may have not trivial conse-

7See, among others, Fazzari and Athey (1987), Bond and Meghir (1994), Kaplan and Zingales (1997)
and Hubbard (1998). For an alternative point of view, cf. Erickson and Whited (2000).

8In presence of large disinvestment costs, investment becomes irreversible and the (L, l, u, U) rule
reduces to (L, l).
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quences at the macro level, almost no attempts have been made to embed the observed

microeconomic investment behavior into a business cycle model9. More specifically, a sur-

prisingly little attention has been paid so far to the interpretation of the macroeconomic

stylized facts on investment and output discussed above on the basis of the microeconomic

evidence on firm investment behavior (cf. SF3 and SF4).

In this paper, we make a preliminary step in this direction by presenting an evolution-

ary/ACE model10 which explores the links between microeconomic investment lumpiness

and the properties of the coupled dynamics of aggregate investment and output. The

model builds on the Keynesian theory of “trade cycles” (Keynes, 1936), as it recognizes

investment instability as the main culprit of economic fluctuations.

Building on earlier works in Chiaromonte and Dosi (1993) and Silverberg, Dosi, and

Orsenigo (1988), we describe an economy where firms belong to two different industries.

Machine-tool firms produce capital goods, whereas manufacturing firms invest in machine

tools and produce a consumption good.

Investment can be either employed to increase the capital stock or to replace existing

capital goods. Manufacturing firms plan their expansion investment according to a (S,s)

model. However, we depart from the standard lumpy investment literature in modeling

firms as boundedly-rational agents. In particular, we assume that firms employ routinized

behavioral investment rules (Dosi, 1988) instead of fully-rational, profit-maximizing behav-

iors cum non-convex adjustment costs.

We argue that the assumption of routinized behaviors can be justified by two comple-

mentary arguments. On the one hand, one may avoid to resort to ad hoc and restricting

assumptions such as the peculiar form of adjustment costs function which is needed to

rationalize lumpy investment in a standard framework. As a consequence, the most im-

portant features singled out by the empirical evidence at the microeconomic level (cf. SF3

and SF4) can be more naturally embedded within the behavioral repertoire of the firm.

On the other hand, we believe that the target and trigger levels of an (S,s) model

might be more easily interpreted in terms of a routinized investment rule, rather than as

the outcome of some optimization procedure. Indeed, if firms live in truly evolutionary

environments (Dosi, Marengo, and Fagiolo, 2004), they typically face both substantive

and procedural uncertainty (Dosi and Egidi, 1991), and they mainly invest to satisfy their

expected demand. Hence, the adoption of a (S,s) rule fulfills the goals of a prudent, risk-

9An exception is in Thomas (2002). She develops a real business cycle model where firms take their
investment decisions according to a (S,s) rule. However, in this model, lumpy investment does not have
any significant impact at the macro level, because households preferences for smooth consumption paths
sterilize investment lumpiness through price movements (i.e. real wage and interest rate).

10More on evolutionary and “agent-based computational economics” (ACE) approaches in economics is
in Dosi and Nelson (1994), Dosi and Winter (2002), Epstein and Axtell (1996) and Tesfatsion (1997).
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averse, firm. Since firms are not able to fully anticipate their future level of demand, their

animal spirits (i.e. demand expectations) are not completely reliable. Therefore, they will

decide to expand their stock of capital only if they expect a huge demand growth. Firms

will then invest to reach their target level of capital only if the satisfaction of their expected

demand requires a capital stock at least equal to their trigger level.

Similarly to what happens for expansion investment, firms employ routines to decide

their replacement investment as well11. In particular, we introduce heterogenous capital

goods and we assume that firms implement their replacement policy through a payback-

period routine. In this way, technical change and capital good prices enter in the replace-

ment decisions of manufacturing firms.

Finally, the financial structure of the firm does affect in our model its investment policies

(cf. SF4). Indeed, the presence of financial constraints might imply that firms cannot

fully implement their investment plans. Since by assumption firms are fully rationed in the

capital market, they will invest until their net worth is enough to finance their investment

plans.

The model, in line with evolutionary/ACE building blocks, allows for network external-

ities and direct-interaction effects among firms both between- and within-industry. While

the former occur through competition (and the ensuing selection), the latter are embodied

in firms’ investment decisions.

Within this framework, we shall address below two main sets of questions. First, we

shall ask whether non-linearities generated at the micro-level by routinized behaviors and

direct interactions among heterogeneous firms can endogenously generate business cycles

waves without any built-in external shock mechanism (e.g. technology, money supply,

etc.)12.

Second and relatedly, we shall explore whether features such as the multiplier (Kahn,

1931) and the investment-accelerator (Clark, 1917) can endogenously emerge and coevolve

in the model, in such a way to generate investment instability and business cycles charac-

terized by the empirically observed stylized facts discussed above (cf. SF1 and SF2).

11This in line with empirical evidence discussed in Feldstein and Foot (1971); Eisner (1972); Goolsbee
(1998), who show that replacement investment is typically not proportional to capital stock

12Business cycles theories can be (roughly) distinguished in “endogenous” and “exogenous” ones. In
“endogenous” theories, trade cycles are an intrinsic feature of the functioning of industrial economies. On
the contrary, “exogenous” theories depict pendulum-like economies, which are always in equilibrium unless
they are perturbed by a (stochastic) shock. Keynesian theories of business cycles are inherently “endoge-
nous”: “animal spirits” originate investment instability, which in turn causes output fluctuations. The new
Keynesian and real business cycle theories have instead an “exogenous” nature: short-run fluctuations are
respectively the results of monetary or productivity shocks. For an exhaustive analysis of endogenous and
exogenous business cycle theories, see Zarnowitz (1985, 1997).
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4 The Model

We model an economy populated by F firms and L workers/consumers. Firms are split

in two industries: there are F1 machine-tools firms (labeled by i in what follows) and F2

manufacturing firms (labeled by j). Of course, F = F1 + F2. Machine-tool firms produce

heterogenous capital goods and perform R&D. Manufacturing firms invest in machine-

tools and produce a homogeneous product for consumers. Workers inelastically sell labor

to firms in both sectors and fully consume the income they receive. Investment choices of

manufacturing firms determine the level of income, consumption and employment in the

economy. There is no financial market and time is discrete.

In the next subsection, we shall firstly describe in a telegraphic way the dynamics of

events in a representative time-period. Next, we shall provide a more detailed account of

each event separately.

4.1 Dynamics

In any time period t = 1, 2, ..., the timeline of events runs as follows13:

1. Manufacturing firms take their production and investment decisions. According to

their expected demand, firms fix their desired production and, if necessary, invest to

expand their capital stock. A payback period routine is employed to set replacement

investment. Firms may be forced to reduce (or postpone) their investment if their

net-worth is too low.

2. Capital-goods market clears. Market shares allocate the total demand to each machine-

tool firm. Market shares change according to the evolution of the competitiveness of

each firm thanks to a replicator dynamics. Firms compute their profits and update

their net-worth.

3. Consumption-good market clears. Manufacturing firms update their productivity

and their capital stock. Production takes place. The size of the consumption-good

demand depends on the number of workers employed by firms. Manufacturing firms

receive a fraction of the total demand in proportion to their market shares, update

their inventories, and compute profits. Net-worth and market-shares dynamics takes

place (as it happens in the machine-tool industry).

13All updating steps are carried out using a “parallel updating scheme”. More specifically, all firms
have simultaneously access to the updating step and base their decisions on the most recent observation
of the variables affecting their updating decision.
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4. Entry, exit, and technical change occur. Firms experiencing a negative net-worth

and/or a null market-share exit and they are replaced by new firms. Incumbent

machines depreciate and new machines are developed.

Finally, unemployment rate and the monetary wage are accordingly computed. Total

consumption, investment, change in inventories, and total product are obtained by aggre-

gating individual time-t quantities. Therefore, the dynamics of microeconomic decisions

generated through points 1-4 induce a dynamics over macroeconomic variables.

4.2 Investment

Manufacturing firms use two different sets of rules to set their expansion and replacement

investment.

We assume that “animal spirits” are the key force driving expansion investment. Each

manufacturing firm j = 1, 2, ..., F2 sets its demand expectations (De
j) according to both its

own past demand and market signals:

De
j(t) = f(Dj(t− 1), Y (t− 1), Dj(t− 2), Y (t− 2)...), (1)

whereDj(t−1) is the demand of firm j at time t−1 and Y (t−1) is the level of the economic
activity at time t− 1 (i.e. GDP). In the preliminary simulation exercises presented below,
we begin by assuming that demand expectations are completely myopic:

De
j(t) = Dj(t− 1). (2)

According to the expected demand and the stocks (Nj) inherited from the previous period,

firms fix their desired level of production (Qd
j):

Qd
j (t) = De

j(t)−Nj(t− 1) +Nd
j (t), (3)

where Nd
j = θDe

j(t), with 0 ≤ θ < 1, is the desired level of stocks. Production is carried out

using capital and labor under constant returns to scale. The stock of capital determines

the maximum level of production achievable by each firm. Hence, given the desired level

of production, firms compute the desired stock of capital as:

Kd
j (t) =

Qd
j (t)

ud
, (4)

where ud is the desired level of capacity utilization.
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Manufacturing firms decide whether to expand14 their stock of capital following an (S,s)

model. They compute their target (K targ
j ) and trigger (Ktrig

j ) level of capital as follows:(
Ktrig

j = Kj(t) ∗ (1 + α)

Ktarg
j = Kj(t) ∗ (1 + β)

, (5)

with 0 < β < α < 1. Firms then plan to increase their capital stock to reach the target

level only if the desired capital stock is higher than the trigger one:

EIdj (t) =

(
0, if Kd

j (t) < K trig
j (t)

Ktarg
j (t)−Kj(t), if Kd

j (t) ≥ Ktrig
j (t)

, (6)

where EIdj (t) is the desired expansion investment.

As discussed above, firms adopt a routine-based behavior because they live in an econ-

omy characterized by strong uncertainty generated by non-stationary fundamentals, en-

dogenous technological progress, and non-trivial interaction networks. Consequently, firms

do not hold a solid confidence in the accuracy of their demand expectations. They will

therefore invest only if they expect a huge rise of their future demand. Moreover, in order

to avoid to accumulate too much capital, they will shrink their desired capital to the target

level15.

The stock of capital of manufacturing firms is heterogeneous, because it is composed of

various types of machines differing in terms of productivity and relative weight. Machines

are measured in terms of their production capacity. They are identified by a labor pro-

ductivity coefficient Ai,τ , where i denotes their producer and τ their generation (technical

change takes place through the creation of new generation of machines). If Ξj(t) is the set

of all types of machines existing within firm j at time t, firm j’s capital stock is defined as:

Kj(t) =
X

Ai,τ∈Ξj(t)

gj(Ai,τ , t), (7)

where gj(Ai,τ , t) is the absolute frequency of machine Ai,τ . Given the nominal wage w(t),

the unit labor cost of each machine is computed as::

c(Ai,τ , t) =
w(t)

Ai,τ

. (8)

Scrapping policies of manufacturing firms follow a payback-period routine. In this way, the

14We assume that there are no secondary markets for capital goods. Hence, firms have no incentives to
reduce their capital stock.

15In the simulations performed below, we assumed for simplicity that α = β (i.e. no distinction between
target and trigger level of capital).
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replacement of an incumbent machine depends on its degree of obsolescence16 and on the

market price of new capital goods. More formally, firm j will scrap machines Ai,τ ∈ Ξj(t)

if they satisfy:

RSj(t) =

½
Ai,τ ∈ Ξj(t) :

p∗(t)
c(Ai,τ , t)− c∗(t)

≤ b

¾
, (9)

where p∗ and c∗ are, respectively, the average market price and unit labor cost of new

machines, and b is a strictly positive payback-period parameter. Hence, the desired re-

placement investment (RIdj ) of firm j will be equal to:

RIdj (t) =
X

Ai,τ∈RSj(t)

gj(Ai,τ , t), (10)

i.e. each manufacturing firm computes its desired replacement investment (RIdj ) by “mul-

tiplying” the types of machines that satisfy eq. (9) for their absolute frequency.

The desired level of investment (Idj ) is the sum of expansion and replacement investment.

If the net worth of a firm is not enough, actual investment (Ij) will be lower than the desired

one. Firms must bear production costs before selling their goods. Therefore, we assume

that if net worth NWj(t) is not enough, it will be allocated first of all to finance production;

next to expansion investment; and finally to replacement investment. Summing up the

actual investment of all manufacturing firms, we get aggregate investment (I).

4.3 Capital Goods Market

In the previous section, we have described how the demand of capital goods is generated.

In this section, we analyze the supply-side of the market and its clearing mechanisms.

Each machine-tool firm i = 1, 2, ..., F1 sells its latest generation of products character-

ized by labor productivity coefficient Ai,τ ,with τ = 1, 2, .... Firms produce “on demand”:

manufacturing firms’ orders determine the size of the investment cake, whose slices (Di)

are allocated according to the market share (fi) of each producers:

Di(t) = I(t)fi(t). (11)

Market shares evolve according to a replicator dynamics. More specifically, the market

share of each firm will grow (shrink) if its competitiveness (Ei) is above (below) the

industry-average competitiveness (E
i
):

16Since machines may be used by manufacturing firms for many years, we also adjust their labor
productivity coefficient for their degree of senescence. More specifically, at the end of each period, the
labor productivity of machines employed in manufacturing firm j is multiplied by (1 − δuj(t)), where
0 < δ < 1 is a depreciation parameter and uj(t) is the effective rate of capacity utilization of firm j.
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fi(t) = fi(t− 1)
Ã
1 + χ1

Ei(t)− E
i
(t)

Ei(t)

!
, (12)

where χ1 ≥ 0 and:

E
i
(t) =

F1X
i=1

Ei(t)fi(t− 1). (13)

The competitiveness of each firm depends on the price it charges (pi) and on the level of

its unfilled demand (li):

Ei(t) = −ω1pi(t)− ω2li(t), (14)

where ωh, h = 1, 2 are non-negative parameters.

The production process employs labor only and it is characterized by constant returns

to scale. The unit cost of production depends on the machine currently manufactured:

ci(t) =
w(t)

Ai,τ

. (15)

As it happens in the manufacturing industry, machine-tool firms bear the costs of pro-

duction before receiving the revenues. Therefore, firm i will fully satisfy its demand

only if its net worth (NWi) is sufficient to cover the total cost of production (ciQi). If

Wi(t) < ci(t)Qi(t), the firm will satisfy only a fraction of its demand and its competitive-

ness will be reduced in the next period. Once the level of production is determined, firms

can hire workers as:

LD
i (t) =

Qi(t)

Ai,τ

, (16)

where LD
i is the labor demand of firm i.

Firms set the price according to a mark-up (µ) routine:

pi(t) = (1 + µ)ci(t), (17)

where µ ≥ 0. Firm i’s profits (Πi) will be then given by:

Πi(t) = [pi(t)− ci(t)]Qi(t), (18)

while net worth changes according to:

NWi(t) = NWi(t− 1) +Πi(t). (19)
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4.4 Consumption Good Market

After the capital good market clears, each manufacturing firm j = 1, 2, ..., F2 receives the

new machines and updates its average productivity (πj) and unit cost of production (cj).

Average productivity reads:

πj(t) =
X

Ai,τ∈Ξj(t)

Ai,τ

gj(Ai,τ , t)

Kj(t)
, (20)

while unit cost of production will be given by:

cj(t) =
X

Ai,τ∈Ξj(t)

c(Ai,τ , t)
gj(Ai,τ , t)

Kj(t)
. (21)

Labor demand (LD
j ), prices (pj), competitiveness (Ej), market shares (fj) and average

competitiveness (E
j
) are computed — as it happens in the machine-tool industry — as

follows:

LD
j (t) =

Qj(t)

πj(t)
, (22)

pj(t) = (1 + µ)cj(t), (23)

Ej(t) = −ω3pj(t)− ω4lj(t), (24)

fj(t) = fj(t− 1)
Ã
1 + χ2

Ej(t)− E
j
(t)

Ej(t)

!
, (25)

E
j
(t) =

F2X
j=1

Ej(t)fj(t− 1). (26)

Again: µ ≥ 0, ωh, h = 3, 4 and χ2 are non-negative parameters.

The dynamics of aggregate consumption (C) shapes the demand-side of the market.

We single out three scenarios:

1. Work-or-die scenario. Only the fraction of the population that has a job receive an

income that is fully consumed. Hence, aggregate consumption reads:

C(t) = w(t)
F1X
i=1

LD
i (t) + w(t)

F2X
j=1

LD
j (t) (27)
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2. Exogenous-component scenario. Aggregate consumption is obtained by adding an

exogenous component (G) to aggregate employee income defined in eq. (27). G can

be interpreted as public expenditures or, equivalently, as a lump-sum transfer given to

each worker independently on the number of unemployed workers and market wage.

3. Endogenous-component scenario. In this set-up, unemployed workers receive a frac-

tion of the market wage. Hence, the aggregate sum transferred to the unemployed

workers endogenously depends on their number, as well as on market wage. Total

consumption is the sum of income of employed and unemployed workers.

In all scenarios, manufacturing firms face a demand equal to a fraction of the total

consumption proportional to their market share:

Dj(t) = C(t)fj(t). (28)

If firm demand is smaller than firm production (i.e. Dj < Qj), the firm will accumulate

stocks. Otherwise, ifDj > Qj, the firm will not be able to fill its whole demand17. Denoting

by Sj total sales of firm j, profits read:

Πj(t) = pjSj − cjQj −
F1X
i=1

pimj,i, (29)

where mj,i is the number of machines bought by manufacturing firm j from machine-tool

firm i. Net worth is accordingly updated as follows:

NWj(t) = NWj(t− 1) +Πj(t). (30)

4.5 Entry, Exit, and Technical Change

At the end of every period, firms with zero market shares and/or negative net worth die

and are replaced by new firms. Hence, the sizes of both sectors remain constant across

time.

In order not to bias the overall dynamics, we start by assuming that each entrant is a

random copy of an existing firm. Since young firms may suffer from financial constraints

more than older ones, we restrict the set of duplicable firms to those with a net worth

smaller than the current industry-average.

17We rule out the perverse case where total production of manufacturing firms is not enough to satisfy
aggregate demand by assuming that consumers will buy another (e.g. luxury) commodity up to the point
where their income is exhausted.
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Finally, our economy is fuelled by a never-ending process of technical change. At the

end of each period, machine-tool firms try to develop the next generation of their product

(i.e. discovering machines with a higher labor productivity coefficient). The result of their

efforts is strongly uncertain: firms create a prototype whose labor productivity (Ai,new) can

be higher or lower than the one of the currently manufactured machine. More formally, we

let:

Ai,new = Ai,t + ε, (31)

where ε are random variables normally distributed with zero mean and variance:

σi,τ(t) = σ◦ + ϕ(Amax(t)− Ai,τ), (32)

where Amax(t) is the highest labor productivity achieved by a machine in the current period,

σ◦ is a constant and ϕ is a non-negative parameter. Note that, in line with Llerena and

Lorentz (2003), we model the variance of ε so as to allow low-productivity firms to catch

up those firms which are close to the technological frontier.

We also posit that firm i will release the next generation machine only if the latter

entails a labor productivity improvement (i.e. Ai,new > Ai,τ). Finally, if the firm decides

to produce the new machine, the index τ is accordingly incremented by one unit.

4.6 Macro Dynamics

The dynamics generated at the micro-level by individual decisions and interaction networks

induces, at the macroeconomic level, a stochastic dynamics for all aggregate variables of

interest (e.g. income, investment, consumption, unemployment, etc.). Two remarks are in

order. First, notice that the usual national accounting identities hold in our model. For

example, gross national income Y (t) is identically equal, in each period, to the sum of

aggregate consumption C(t), aggregate investment I(t) and change in inventories N(t).

Second, labor market is not cleared by real wage movements. As a consequence, in-

voluntary unemployment may arise. The aggregate supply of labor is exogenous, inelastic

and grows at a constant rate (η):

L(t) = L(t− 1)(1 + η). (33)

The aggregate demand of labor is the sum of machine-tool and manufacturing firms’ labor

demands. The wage is fixed by institutional rather than market forces and in each time

period reads:
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w(t) = w(t− 1) + ψ1
cpi(t)− cpi(t− 1)

cpi(t− 1) + ψ2
A(t)− A(t− 1)

A(t− 1) + ψ3
U(t)− U(t− 1)

U(t− 1) , (34)

where cpi is the consumer price index, A is average labor productivity and U is the unem-

ployment rate. The system parameters ψ1,2,3 allow one to characterize various institutional

regimes for the labor market.

As mentioned above, our model genuinely belongs to the evolutionary/ACE class. Since

neither analytical, closed-form, solutions nor numerical ones can be obtained, one must

resort to computer simulations to analyze the properties of the (stochastic) processes gov-

erning the co-evolution of micro and macro variables (Kwasnicki, 1998; Pyka and Grebel,

2003).

To do so, one should in principle address an extensive Montecarlo analysis to understand

how the statistics of interests (e.g. average growth rate of the economy, investment-output

volatility and correlation structure, etc.) change with initial conditions and system param-

eters. A sufficiently large number of Montecarlo replications for any given choice of initial

conditions and system parameters is required to wash-away the effect of across-simulation

variability induced by stochastic components. Notice, however, that in our model the only

stochastic component driving away the underlying dynamics from its deterministic path is

given by technological improvements. In fact, some preliminary sensitivity exercises show

that the across-simulation stochastic variability is quite low (even if one slightly tunes the

parameters σ◦ and ϕ in eq. (32) above) and no chaotic patterns are detected. Hence, we can

confidently present below results concerning averages over a limited number of replications

(typically M = 50) as a robust proxy for the behavior of all time-series of interest.

5 Some Preliminary Simulation Results

In this Section, we present some preliminary simulation exercises18. In each of the three

“consumption scenarios” that we have characterized above (“work-or-die”, “exogenous

component”, “endogenous component”), we firstly investigate in a qualitative fashion out-

put and investment patterns. More specifically, we study technological and institutional

conditions under which the system is able to generate self-sustaining growth.

Next, we turn to a more quantitative exploration of the statistical properties of the

18All our results refer to a benchmark parametrization and initial conditions setup ensuring consistent
and economically-interpretable simulation exercises (see Appendix B). All findings presented below are
quite robust to changes of initial conditions within a sufficiently large set. However, given its preliminary
nature, the analysis below does not address the question whether the observed statistical properties of
simulated time-series change with system parameters. This is in fact the next point in our agenda.
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coupled output-investment dynamics to ascertain to what extent our model is able to

replicate the macroeconomic stylized facts discussed in Section 2.

5.1 Qualitative results

Let us begin with the “work-or-die” scenario. In this economy, the fraction of the popu-

lation that is currently unemployed does not receive any income, while the employed one

fully consumes their wage.

As simulations show (cf. Fig. 3), in this scenario the system is not able to generate a self-

sustaining pattern of growth. Indeed, in the first simulation time-periods, expansion and

replacement investment seem to spur output growth19. However, aggregate demand soon

becomes insufficient to prevent expansion investment from falling toward zero. Similarly,

replacement investment is not able to trigger subsequent booms (see Fig. 4).

Two remarks are in order. Notice, first, that in the “work-or-die” scenario, technological

progress does not play a key role in inducing long-run growth. This is not a surprising result,

if we consider that in the model process innovation dominates over product innovation. This

in turn implies that positive effects of technical change linked to its “creative” nature (e.g.

birth of new products, markets, industries) are not able to prevail on its “destruction” one

(e.g. job losses, unemployment).

Second, self-sustaining growth appears to be a zero-probability event in this scenario

also because there do not exist any forces moderating the “natural” instability of the

manufacturing industry. In real-world economies, in fact, the dominant role played by

services, the presence of a public sector, and the implementation of automatic stabilizers

are all likely to dampen the oscillations of the manufacturing industry, thus reducing the

instability of the whole economy (Zarnowitz, 1991).

Following this intuition, we move now to the second and third consumption scenario,

where we introduce, on the contrary, some very stylized examples of such re-equilibrating

forces. In both “exogenous” and “endogenous” component scenarios, the size of aggregate

demand is persistently larger than in the “work-or-die” scenario and it contains an acyclical

(“exogenous” case) or countercyclical (“endogenous” case) component.

As shown in Figs. 5 and 9, in both scenarios self-sustaining growth patterns character-

ized by endogenous fluctuations do emerge.

Moreover, an investigation of output and investment patterns at a more disaggregated

level shows that the behavior of aggregate investment is the result of huge changes in

expansion and substitution investment, see Figs. 6 and 10.

Finally, if we isolate the business cycle frequencies of the both series by applying a

19Notice that we focus on real variables only. Output is the sum of investment and consumption.
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bandpass filter20, we observe the typical “roller coaster” shape that characterizes real data

(see Figs. 7 and 11; cf. also Section 2).

As clearly depicted in Figs. 8 and 12, aggregate investment appears to be more volatile

than output and expansion investment fluctuates more wildly than replacement investment.

Finally, aggregate investment seems to display a procyclical behavior in both scenarios.

But to what extent the foregoing qualitative evidence is corroborated by a more robust

statistical analysis? To answer this question, in the next section we shall discuss in more

detail the statistical properties of our simulated investment and output dynamics.

5.2 Quantitative results

In this section we study the extent to which our simulated investment and output dynamics

displays, in each of the three consumption scenarios introduced above, statistical properties

similar to the empirically observed one (as summarized by SF1 and SF2).

More specifically, let us consider our benchmark setup for system parameters and initial

conditions and indicate with:

{log Y (t), t = 1, ..., T} (35)

and:

{log I(t), t = 1, ..., T} (36)

the simulated time-series of (real) output and investment time-series, respectively21. We

shall focus on the average growth rate (AGR) of the economy:

AGRT =
logY (T )− log Y (0)

T + 1
, (37)

the standard deviation of both output and investment, suitably detrended using the alter-

native techniques discussed in Appendix A — as well as cross- and auto-correlation struc-

ture for the coupled time-series {Y (t), I(t)}. Moreover, we perform Dickey-Fuller tests on

{log Y (t), t = 1, ..., T} to detect the presence of unit roots in the series (interpreted as evi-
dence for self-sustaining patterns of growth). All results refer to averages computed across

M = 50 independent simulations and to the same setups as far as system parameters and

initial conditions are concerned (cf. Appendix B).

Consider the “work-or-die” scenario first. The “gloomy” picture depicted in section 5.1

is confirmed. As Table 4 shows, all time-series are stationary and have negative average

20For a more accurate discussion of the filtering techniques employed in this work in the light of the
pros and cons of alternative choices, cf. Appendix A.

21All results refer to the choice of T = 500, cf. Appendix B. This econometric sample size is sufficient
to allow for convergence of recursive moments of all statistics of interest.

19



rates of growth. In this framework, the information conveyed by standard deviations and

cross correlations become completely irrelevant (cf. Table 5).

Conversely, in the “exogenous-component” scenario, the average growth rate of output

and investment are both strictly positive (' 1.5%) and well above the constant growth

rate of G (see Table 6). According to Dickey-Fuller tests, output and aggregate investment

are non-stationary, whereas both expansion and substitution investment appear to be I(0).

A lack of aggregate demand may be at the root of the stationarity of the expansion and

substitution investment series. Unfortunately, we do not have real data on expansion and

replacement investment to confirm or reject these results.

We employ a bandpass filter (cf. Appendix A) to extract the cyclical component of

the series in order to compute standard deviations and correlations. According to the

relative standard deviations, the model seems to be able to match SF1 (i.e. investment is

considerably more volatile than output). The volatility of aggregate investment is indeed

2.6 times larger than the output one. Relative volatility of expansion and replacement

investment are even higher (15.22 and 6.50 respectively).

The autocorrelation structure of output is very close to the one observed in real-world

data (cf. Table 7). Notice however that cross-correlations are not as high as the ones

observed e.g. in the U.S.. Nevertheless, they clearly indicate that aggregate investment is

a pro cyclical and c oincident variable (SF  2). Th eir pattern is close r to the one di splayed by

machine-and-equipment investment than to the one of aggregate investment. Cross corre-

lations of expansion and substitution investment are lower and more stable than the ones

of the aggregate variable. In particular, replacement investment seems slightly acyclical.

Also in this case, we cannot test our results against real data.

Similar to what happens in the second setup, output dynamics in the “endogenous-

component” scenario exhibits strictly positive average growth rates together with a I(1)

pattern, cf. Table 8. This confirms that in the two last scenarios self-sustaining growth

does emerge in our economy.

However, as shown in Table 9, relative standard deviations of the three investment series

are higher in the “endogenous-component” consumption scenario than in the “exogenous-

component” one. These differences may stem from the fact that in the second scenario

aggregate demand contains an acyclical component, whereas in the third one that compo-

nent exhibits a countercyclical behavior.

Nonetheless, the patterns of output auto correlations are similar in both second and

third scenarios. In the “endogenous-component” one, cross correlations between output

and aggregate investment are slightly higher and track more closely output auto correla-

tions. Replacement and expansion investment are both procyclical, but the first is lagging,

whereas the second is leading. Their cross correlation pattern is completely different from
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the one exhibited by the exogenous-component setup.

To sum up, the work-or-die scenario is not able to generate self-sustaining growth and

it cannot match either SF1 or SF2. Both the “exogenous-” and “endogenous-component”

scenarios deliver long-run growth characterized by short-run endogenous fluctuations. Both

scenarios are thus able jointly to replicate SF1 and SF2. However, the “exogenous-

component” setup reproduces with more precision the first stylized fact, whereas the

“endogenous-component” scenario better fits the second one.

Finally, notice that the foregoing results strongly indicate that (sort of) “multiplier” and

“investment-accelerator” effects — endogenously emerging in our economy — lie at the heart

of vicious and virtuous cycles characterizing the three scenarios. Indeed, in the second

and third scenarios, the emergence of a “multiplier” effect drives output growth, while

a mechanism quite similar to the well-known “investment-accelerator” induces firms to

expand their capital stock in the next period. This generates a virtuous cycle leading to self-

sustaining growth and short-run fluctuations. Conversely, in the “work-or-die” scenario,

such a virtuous reaction chain breaks down and the economy stops growing after some

time-steps22.

6 Conclusions and Outlook

In this paper we have presented an evolutionary, agent-based, model of industry dynamics

and firm investment behavior which attempts to provide an interpretation of the most

robust stylized facts of the coupled investment-output aggregate dynamics. A key feature

of the model is that investment lumpiness is grounded upon boundedly-rational behaviors

and adaptive expectations, rather than being derived as the outcome of some optimization

procedure carried out by a fully-rational, forward-looking, agent.

Despite their preliminary nature, simulation results indicate that imperfect adjustment

among boundedly-rational, myopic, firms who interact directly in a two-sector, strongly

non-stationary, economy is able to generate — under some broad institutional and mar-

ket conditions — self-sustaining patterns of growth and business cycle waves characterized

by statistical properties very similar to those observed in real-world output-investment

dynamics.

The set of results presented in Section 5 seems to be quite robust to alternative initial

conditions’ setups, as well as to different choices of some key parameters (cf. Appendix

B). For instance, additional exercises show that the pace of technical change and its

22Since the relationship between the multiplier and the accelerator is inherently circular, there is an
“egg-chicken” problem to be solved: our simulation exercises cannot shed much light on which of the two
elements is the main culprit of an observed stagnation.
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degree of “catching up” — cf. eq. (32) — seem to barely affect both the properties of

the investment-output correlation structure and the across-simulation variability. This

suggests that the counter-balancing forces characterizing the linkages between demand,

capital- and consumption-good layers of our economy are able to substantially dampen

down the amplitude of any exogenous shock.

Nonetheless, the robustness of the foregoing findings must be more thoroughly checked

against — at least — three complementary sets of simulation exercises. First, one should

perform an extensive Montecarlo simulation study to explore to what extent (and in which

direction) our basic results change when one tunes system parameters across a properly

defined grid. In such a way, many interesting questions might be answered. For example,

what are the consequences of assuming a different institutional setting as far as market-wage

dynamics is concerned (cf. eq. 34)? And, similarly, what happens if one assumes different

competitive/selective pressures, e.g. if one changes competitiveness (ωh, h = 1, ..., 4) and

replicator-dynamics (χh, h = 1, 2) parameters?

Second, the model could be extended to take on board a microfounded labor-market

side, where, as happens in Fagiolo, Dosi, and Gabriele (2004), both wage and unemployment

setting are endogeneized. Similarly, one may experiment with different exit-entry rules, to

understand which is the role played by industry turbulence in shaping the business cycles.

Finally, one might attempt to investigate the impact of different “expectation forma-

tion” setups on the statistical properties of simulated business cycles. In the model above,

we have indeed assumed a particular, benchmark, form for the “animal spirits” our firms

are endowed with, i.e. myopic expectations. More generally, in line with Fagiolo and

Dosi (2002), one might explore the consequences of changing the expectation rule (e.g.

within the framework of eq. 1) and investigate the effect of injecting our population of

boundedly-rational firm with players endowed with more sophisticated expectation rules.
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A The Choice of the Filter
All analyses of empirical and simulated time-series conducted above have required the
application of some filtering techniques in order to single out the business cycle components
of the series.
The choice of the filter is not trivial: as Canova (1998, 1999) pointed out, different

detrending methods affect both the qualitative and quantitative stylized facts of the busi-
ness cycle. An ideal filter should remove the trend, as well as any irregular components,
without introducing any distortion. The problem becomes clearer if it is treated in the
frequency domain. According to the spectral decomposition theorem, a covariance sta-
tionary time series can be represented as the infinite sum of orthogonal components, each
of which is associated to a given frequency. Each series has a power spectrum, which
reports the contribution to the total variance of the process of the components belong-
ing to each frequency band. The (relative) importance of the fluctuations associated to a
given periodicity is given by the height of the spectrum at the correspondingly frequency.
As reported by Granger (1966), the spectrum of many macroeconomic time series has a
typical monotonically-decreasing shape, which implies that medium and (especially) low
frequencies — which correspond to the business cycle and long-run growth periodicity —
give the highest contribution to the variance of the variables. The ideal business cycle
filter should preserve the medium frequencies, detrend the variable (i.e. eliminating low
frequency fluctuations), and kill the high frequency noise.
Let us consider two of the most largely employed filters, i.e. “first-differencing” (FD)

and “bandpass” (BP), see Baxter and King (1999). On the one hand, the FD filter is very
simple and it is able to remove the trend component of the series. However, it amplifies
their short-run noise. Moreover, if a series does not have a unit root, we can incur in
over-differencing.
On the other hand, the BP filter outperforms FD and allows to single out only the

range of periodicity associated to the business cycle (e.g. 6-32 quarters)23.
Hence, in line with the econometric literature on business cycle stylized facts (Agresti

and Mojon, 2001; Stock and Watson, 1999; Kydland and Prescott, 1990; Napoletano,
Roventini, and Sapio, 2004), we choose to employ here the BP filter.
This choice is reinforced by the fact that the problem of high frequency noise is par-

ticularly severe in our data and that some of our series seem stationary (see Section 5.2).
For instance, if in the “exogenous component” scenario we compare output and investment
series detrended with the two filters (cf. Fig. 13), a distortion due to the presence of
short-run noise does emerge: the fluctuations of the first-differenced series are very wild as
compared to those of bandpass-filtered series. This does not allow one to infer any clear
relation between output and investment. Moreover, the distortion introduced by first-
differencing biases also our quantitative results: high frequency noise amplifies standard
deviations and reduces both auto- and cross-correlations (see Table 10).
Finally, notice that the BP filter requires to specify the range of frequencies that corre-

spond to business cycle periodicity. With real-world data, this choice is very simple: given

23More specifically, the optimal BP filter is an infinite symmetric moving average, singling out a specific
range of periodicity. The feasible BP filter is instead a finite moving-average, whose weights minimize the
squared difference between the ideal filter and viable ones.
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the frequency of the observed data (e.g. quarterly, monthly), the minimum and maximum
length of business cycle is usually defined according to a qualitative analysis of the data
(e.g. NBER chronologies).
Unfortunately, simulation-based exercises do not provide the modeler — by construction

— with this information. We deal with this problem by assuming that our simulated time-
tick coincides with quarterly data, and we use the same range of frequencies that are
commonly used in the empirical analysis of the U.S. business cycles (i.e. 6-32 quarters).
There seem to be at least three reasons which justify this choice. First, using quarterly

data allows us to better compare statistical properties of simulated time-series with those
exhibited by empirically observed ones (cf. Section 2.1). Second, we believe that the
assumption of quarterly data is a good compromise between the timing of investment and
production choices made by firms whose time-horizon is (also) shaped by data-availability.
Finally, the quarterly timing appears to be the “optimal” one also from a calibration
perspective. Imagine to search for the ranges of frequencies of a BF that allow our simulated
data to best reproduce the empirically observed stylized facts on output and investment.
More specifically, let us assume that the length of our business cycles falls between 6 and 32
quarters and let us filter our simulated data as if they were quarterly, monthly and annual24.
It turns out that the quantitative results we obtain with “annual” data closely resemble
those obtained with first-differencing (Table 10). This does not come as a surprise: since
frequency is the inverse of periodicity, by assuming annual data we widen the frequency
range, taking on board a lot of high frequency noise. With “quarterly” and “monthly” data,
on the other hand, the situation improves substantially: the relative standard deviations
of investment decrease, while both auto- and cross-correlations increase. However, with
“monthly” data, auto- and cross-correlations fall too slowly as compared to what happens
in real-world data.

B Simulations and System Parameters
All simulation results presented above refer to the benchmark setup described in Table 1.
Initial conditions are defined as in Table 2. The “work-or-die” scenario does not require any
additional initial conditions, nor additional parameters: aggregate consumption is indeed
simply the product of wage and aggregate labor demand.
Conversely, in the “exogenous-component” scenario, we add to aggregate consumption

an exogenous variable (G). We have employed different initial values and laws of motion for
G (i.e. no growth, stochastic growth and deterministic growth). Since all simulation results
presented above appear to be robust to such choices, we have assumed for simplicity that G
grows at the same constant rate of the population (η), i.e. a sort of “golden rule”. Finally,
in the “endogenous-component” scenario, the share ϑ of current market-wage earned by
unemployed workers does not seem to dramatically alter our results. Therefore, we have
set ϑ = 0.35.

24For “quarterly” data, we apply a bandpass filter (6,32,20); for “monthly” data, we use a bandpass
filter (18,96,36) and for “annual” data, a bandpass filter (2,8,6). The first two numbers set the lowest (e.g.
18 months) and highest periodicity (e.g. 96 months) that must be considered. The last number regulates
the precision of the filter.
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Description Symbol Value
Size of Machine-tools Industry F1 50
Size of Manufacturing Industry F2 200
Econometric Sample Size T 500
Replicator Dynamics Coeff. χ1,2 −1
Competitiveness weights ω1,2,3,4 1

Tech. Progr. Variance: Const σ0 25
Tech. Progr. Var.: Catch-up Coeff. ϕ 0.5

Labor Supply Growth Rate η 0.01
Wage Setting: ∆cpi weight ψ1,2 0.75
Wage Setting: ∆A weight
Wage Setting: ∆U weight ψ3 75

“Desired level of stocks” share θ 0.1
Desired level of capacity utilization ud 0.75

Trigger rule α 0.3
Payback Period Parameter b 300

Mark-up rule µ 0.3

Table 1: Benchmark Parametrization

Description Symbol Value
Market Wage w(0) 100

Consumer Price Index cpi(0) 1.2
Average Labor Productivity A(0) 100

Net Worth Wi,j(0) 10000
Capital Stock Kj(0) 1000
Labor Supply L(0) 7000

Unemployment Rate U(0) 1

Table 2: Initial Conditions
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St d Dev. Cros s-a uto co rrel a ti on s wi t h o u tpu t (l a gs)
Series Abs Rel -4 -3 -2 -1 0 1 2 3 4
Output 1.52 1.00 0.22 0.49 0.74 0.93 1.00 0.93 0.74 0.49 0.22

Investment (Total) 4.02 2.65 0.25 0.51 0.75 0.91 0.95 0.89 0.72 0.49 0.26
Investment (M&E) 4.38 2.89 0.52 0.74 0.89 0.93 0.86 0.69 0.46 0.20 -0.03

Table 3: Variance and Auto-Correlation Structure of Investment and Output for the U.S.
economy (1960- 2002). Quarterly data have been detrended with a bandpass filter (6,32,12).
Source: Our elaborations on data from Main Economic Indicators (MEI), OECD.

Output Aggr. Inv. Exp. Inv. Repl. Inv.
Average growth rate (%) -2.34 -1.28 -1.28 0.00

Dickey-Fuller Test (logs) -2.23 -3.78 -4.82 -3.54
Sign. level 0.05 0.01 0.01 0.01

Dickey-Fuller Test (Bpf; 6,32,20) -5.03 -6.32 -4.61 -6.30
Sign. level 0.01 0.01 0.01 0.01

Std. Dev. (Bpf; 6,32,20) 0.70 0.24 0.47 0.26
Rel. Std. Dev. 1.00 0.35 0.67 0.37

Table 4: The Work-or-Die Scenario. Output and Investment Statistics.

Output (Bpf; 6,32,20)
Bpf (6,32,20) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Output 0.09 0.36 0.66 0.90 1.00 0.90 0.66 0.36 0.09
Aggr. Inv. -0.02 0.09 0.29 0.51 0.70 0.75 0.65 0.45 0.22
Exp. Inv. -0.06 -0.02 0.02 0.05 0.07 0.08 0.08 0.09 0.10
Repl. Inv. -0.05 0.05 0.22 0.44 0.62 0.69 0.61 0.42 0.21

Table 5: The Work-or-Die Scenario. Correlation Structure.
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Output Aggr. Inv. Exp. Inv. Repl. Inv.
Average growth rate (%) 1.61 1.49 1.41 2.56

Dickey-Fuller Test (logs) 3.56 -0.45 -6.20 -2.28
Sign. level 1.00 1.00 0.01 0.05

Dickey-Fuller Test (Bpf; 6,32,20) -4.89 -6.48 -5.65 -6.86
Sign. level 0.01 0.01 0.01 0.01

Std. Dev. (Bpf; 6,32,20) 0.14 0.36 2.10 0.90
Rel. Std. Dev. 1.00 2.62 15.22 6.50

Table 6: The Exogenous Component Scenario. Output and Investment Statistics.

Output (Bpf; 6,32,20)
Bpf (6,32,20) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Output -0.02 0.30 0.64 0.90 1.00 0.90 0.64 0.30 -0.02
Aggr. Inv. 0.26 0.35 0.43 0.50 0.51 0.43 0.25 0.02 -0.21
Exp. Inv. -0.04 0.10 0.22 0.30 0.32 0.30 0.26 0.21 0.18
Repl. Inv. 0.12 0.08 0.07 0.08 0.11 0.12 0.07 -0.02 -0.12

Table 7: The Exogenous Component Scenario. Correlation Structure.

Output Aggr. Inv. Exp. Inv. Repl. Inv.
Average growth rate (%) 1.53 1.56 1.54 2.32

Dickey-Fuller Test (logs) 4.14 -1.02 -6.06 -2.56
Sign. level 1.00 1.00 0.01 0.05

Dickey-Fuller Test (Bpf; 6,32,20) -5.36 -6.45 -6.35 -6.35
Sign. level 0.01 0.01 0.01 0.01

Std. Dev. (Bpf; 6,32,20) 0.09 1.20 2.51 1.63
Rel. Std. Dev. 1.00 13.51 28.37 18.44

Table 8: The Endogenous-Component Scenario. Output and Investment Statistics.

Output (Bpf; 6,32,20)
Bpf (6,32,20) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Output -0.11 0.20 0.57 0.88 1.00 0.88 0.57 0.20 -0.11
Aggr. Inv. -0.09 0.16 0.43 0.60 0.63 0.50 0.29 0.08 -0.06
Exp. Inv. -0.32 -0.28 -0.15 0.04 0.21 0.31 0.32 0.26 0.18
Repl. Inv. 0.07 0.29 0.49 0.59 0.54 0.38 0.16 -0.02 -0.15

Table 9: The Endogenous-Component Scenario. Correlation Structure.
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Rates of Std. Dev. Correlation with Output (Rates of Growth)
growth Abs Rel t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
Output 0.10 1.00 0.02 -0.16 -0.11 0.33 1.00 0.33 -0.11 -0.16 0.02
Aggr. Inv. 0.80 8.37 0.23 0.15 -0.28 -0.15 0.38 0.17 -0.07 -0.16 0.02
Exp. Inv. 3.98 41.48 0.00 -0.02 -0.02 0.04 0.16 -0.02 -0.04 -0.01 0.02
Repl. Inv. 2.17 22.65 0.12 0.13 -0.16 -0.20 0.19 0.18 -0.03 -0.13 0.03

Bpf Std. Dev. Correlation with Output (Bpf; 6,32,20)
(6,32,20) Abs Rel t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
Output 0.14 1.00 -0.02 0.30 0.64 0.90 1.00 0.90 0.64 0.30 -0.02
Aggr. Inv. 0.36 2.62 0.26 0.35 0.43 0.50 0.51 0.43 0.25 0.02 -0.21
Exp. Inv. 2.10 15.22 -0.04 0.10 0.22 0.30 0.32 0.30 0.26 0.21 0.18
Repl. Inv. 0.90 6.50 0.12 0.08 0.07 0.08 0.11 0.12 0.07 -0.02 -0.12

Bpf Std. Dev. Correlation with Output (Bpf; 18,96,36)
(18,96,36) Abs Rel t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
Output 0.13 1.00 0.71 0.83 0.92 0.98 1.00 0.98 0.92 0.83 0.71
Aggr. Inv. 0.28 2.17 0.75 0.79 0.80 0.79 0.74 0.67 0.57 0.46 0.34
Exp. Inv. 2.57 19.74 -0.07 0.02 0.12 0.21 0.28 0.34 0.38 0.40 0.40
Repl. Inv. 0.84 6.45 0.54 0.54 0.52 0.48 0.44 0.38 0.33 0.27 0.21

Bpf Std. Dev. Correlation with Output (Bpf; 2,8,6)
(2,8,6) Abs Rel t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4
Output 0.06 1.00 0.06 -0.50 -0.54 0.22 1.00 0.22 -0.54 -0.50 0.06
Aggr. Inv. 0.51 8.39 0.36 0.13 -0.46 -0.29 0.40 0.30 -0.10 -0.28 -0.03
Exp. Inv. 2.34 38.40 -0.01 -0.09 -0.08 0.06 0.19 -0.02 -0.12 -0.07 0.02
Repl. Inv. 1.35 22.22 0.20 0.16 -0.25 -0.28 0.20 0.27 -0.02 -0.21 -0.03

Table 10: Robustness of Simulation Results to Alternative Filtering Procedures. First
Differencing vs. Bandpass Filter.
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Figure 1: Level of GDP, Aggregate Investment, and Machine & Equipment Investment in
the U.S.A. (1960Q1 — 2002Q4). Source: Main Economic Indicators (MEI), OECD.
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Figure 2: Bandpass-Filtered GDP, Aggregate Investment, and Machine & Equipment In-
vestment in the U.S.A. (1960Q1 — 2002Q4). Source: Our elaborations on data from Main
Economic Indicators (MEI), OECD.
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Figure 3: The Work-or-Die Scenario. Level of Output and Aggregate Investment.
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Figure 4: The Work-or-Die Scenario. Level of Expansion and Replacement Investment.
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Figure 5: The Exogenous-Component Scenario. Level of Output and Aggregate Invest-
ment.
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Figure 6: The Exogenous-Component Scenario. Level of Expansion and Replacement
Investment.
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Figure 7: The Exogenous-Component Scenario. Bandpass-Filtered Output and Aggregate
Investment.
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Figure 8: The Exogenous-Component Scenario. Bandpass-Filtered Expansion and Re-
placement Investment.
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Figure 9: The Endogenous-Component Scenario. Level of Output and Aggregate Invest-
ment.
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Figure 10: The Endogenous-Component Scenario. Level of Expansion and Replacement
Investment.
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Figure 11: The Endogenous-Component Scenario. Bandpass-Filtered Output and Aggre-
gate Investment.

35



0 50 100 150 200 250 300 350 400
-8

-6

-4

-2

0

2

4

6

Pe
rc

en
t

Exp. I
Repl. I

Figure 12: The Endogenous-Component Scenario. Bandpass-Filtered Expansion and Re-
placement Investment.
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Figure 13: First Differencing vs. Bandpass Filter (6,32,20).
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