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Abstract

This paper proposes a model of endogenous fluctuations in investment. A
monopolistic producer has an incentive to invest when the aggregate demand
is high. This causes a propagation of investment across sectors. When the in-
vestment follows an (S,s) policy, the propagation size can exhibit a significant
fluctuation. We characterize the probability distribution of the propagation size,
and show that its variance can be large enough to match the observed investment
fluctuations. We then implement this mechanism in a dynamic general equilib-
rium model to explore an investment-driven business cycle. By calibrating the
model with the SIC 4-digit level industry data, we numerically show that the
model replicates the basic structure of the business cycles.

1 Introduction

This paper concerns a propagation mechanism in investment across sectors. The large
fluctuation in investment is often considered as a driving force of business cycles. Also
the investment fluctuation is characterized by the synchronized oscillation across sec-
tors. We propose a model of investment propagation which quantitatively explains this
phenomenon and identifies the parameters at work.

∗This paper is based on my Ph.D. dissertation submitted to Department of Economics, University
of Chicago. I am grateful to Lars Hansen, Fernando Alvarez and José Scheinkman for their advice. I
have benefited from comments by Samuel Bowles, Doyne Farmer, Xavier Gabaix, Jess Gaspar, Luigi
Guiso, John Leahy, Toshihiko Mukoyama, Andrea Tiseno, and Hiroshi Yoshikawa.
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The sectors are linked each other by derived factor demand when each sector uses
other sectors’ product as intermediate inputs. Their interaction forms a positive feed-
back in capital adjustments in the network of input-output relations. Suppose that
a capital adjustment takes a form of discrete decision. Then there is a chance of a
chain-reaction of investment in which an investment in one sector triggers an invest-
ment in another sector, and so on. This chain-reaction turns out to be represented by
a branching process in an equilibrium model. We then find that the total size of the
chain-reaction can exhibit a very large variance in some parameter range.

Quantitatively, we ask the following question: given the magnitude of sectoral os-
cillations in the U.S. economy, how do the sectoral fluctuations add up to the aggregate
fluctuations? It is immediately clear that just summing up the independent series of
the sectoral oscillations do not amount to the aggregate fluctuations observed in the
U.S. production. There must be some sectoral comovements. Our model provides a
model of sectoral comovements which is able to simulate the magnitude of aggregate
fluctuations observed in the U.S. when the responses of real wage and real intrest rate
to aggregate production are modest.

This paper casts a new perspective on the much discussed issue of investment fluc-
tuations. Traditional macroeconomics as well as the benchmark real business cycle
theory supposes the aggregate shocks, such as money supply, aggregate productivity,
or animal spirits of investers, as the fundamental shock. Without apparent evidence
of such aggregate shocks as the consistence cause of the business cycles,1 however, the
literature needs some mechanism that propagate and amplify the shocks on disaggre-
gated parts of economies. The disaggregated model of the aggregate fluctuations turns
out to face the law of large numbers: the tendency that disaggregated shocks cancel
out each other. In many models the tendency is so strong that a realistic magnitude
of an individual shock does not generate aggregate fluctuations large enough to match
the data. For example, Long and Plosser (1983) show that a general equilibrium model
can in principle generate comovement across sectors when sectors bear idiosyncratic
productivity shocks. In a successive research, however, Dupor (1999) establishes that
their model cannot generate the aggregate fluctuations unless the individual shock is
of order the size of the number of individuals in the economy.

This paper shows that the law of large numbers can be overcome. We show that
the propagation distribution in our model has a heavier tail than the normal distribu-
tion which characterizes a large class of aggregative models. The propagation size also
exhibits critical fluctuations in which the propagation size does not have mean and vari-
ance in the limiting case at which wage and interest rate are determined independently

1See Cochrane (1994) for a careful discussion.
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from the product market. This proposition assures that any magnitude of aggregate
fluctuation can be obtained in the model when the price response to aggregate product
is sufficiently slow.

Another line of research on investment fluctuations focused on the endogenous
fluctuations which result from non-linearity of economic dynamics. The models of
multiple equilibria, chaos, or self-fulfilling expectation show the possibility that the
aggregate fluctuations occur in a deterministic environment of economic fundamentals
if the non-linearity is sufficiently strong. This paper explores a new approach along this
line, in which an interaction of many small non-linear behaviors causes a deterministic
fluctuation. We suppose that individual sectors follow a deterministic pattern of capital
oscillations with occasional large adjustments and periods of inertial depreciation. The
sectors monopolistically compete each other, so an increase in production in a sector
induces other sectors to increase their production (and cut prices). Thus the timing of
occasional capital adjustments may be endogenously synchronized. This interrelation
makes the product markets a multi-dimensional non-linear dynamical system which
in principle is capable of generating an endogenous complex fluctuation. The result
obtained here can be seen as a generalization of the critical fluctuations demonstrated
by Bak, Chen, Scheinkman, and Woodford (1993) in particular. They show a power-law
distribution of production propagation in a network of locally interacting producers.
We implement a similar propagation mechanism in an equilibrium model of globally
interacting sectors. We find that a power-law distribution appears at a limiting case,
and near the limit any magnitude of fluctuation is observed for a system of a large
number of individuals.

This paper is related to the question of whether a micro discrete choice, in particular
an (S,s) behavior, is relevant in aggregate fluctuations. It has been noted that an
establishment level capital is adjusted only occasionally but by a jump in size. A series
of research, among others Cooper, Haltiwanger, and Power (1999), has stressed the role
of the lumpy adjustments played in business cycles. Theoretical studies on aggregation
of (S,s) behaviors, for example Caplin and Spulber (1987) and Caballero and Engel
(1991), have largely found that such an individual lumpiness does not contribute to
aggregate fluctuations. Again, the law of large number is the logic: the individual
lumpiness tends to cancel out each other. To the contrary, this paper shows that
the (S,s) behavior can generate a considerable magnitude of aggregate fluctuations.
In fact, the fluctuation is scale free, in the sense that the variance does not depend
on the number of agents, at the limiting case when the wage and interest rate are
determined independently from the product markets. The propagation size exhibits a
power-law distribution whose mean and variance diverge. This implies that, if there are
numerous establishments in an economy, their lumpy investments generate stochastic
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synchronization which results in a considerable aggregate fluctuation.
After establishing the analytical results on the propagation distribution in a partial

equilibrium setup, we simulate a general equilibrium calibrated by a finely disaggre-
gated sectoral data to examine under what conditions the model generates the right
magnitude of fluctuations. There have been successful attempts in reproducing the
production fluctuations by simulating coupled oscillators (see Selover, Jensen, and
Kroll (2003) for example). Here we embed the coupled oscillators in a general equi-
librium framework which incorporates a representative household’s response to prices,
construct the coupling parameters by the fundamentals such as technology and pref-
erence, and examine the structure of fluctuations among aggregate variables. We also
show that the autocorrelation and correlation structure of the production and demand
components matches the usual business cycle patterns.

The rest of the paper is organized as follows. The next section presents the model of
investment propagation and the analytical propositions in a partial equilibrium setup.
Section 3 numerically examines the quantitative properties of the propagation and the
business cycle fluctuations by explicitly incorporating the consumer’s behavior. Section
4 concludes the paper.

2 Model of Investment Propagation

In this section we focus on the inter-industrial equilibrium relations in the product
market provided with the other prices, namely wage and interest rate. The product
market consists of N monopolists and a representative household. Each monopolist j
produces a differentiated good Yj, using capital Kj and labor hj.

Let us specify the production technology by a constant returns to scale Cobb-
Douglas function: Yj,t = Kα

j,t(Athj,t)
1−α, where At is a labor-augmenting technology

parameter which grows at rate g. We consider a balanced growth path where Yj,t,
Kj,t, and consumption Ct grows at rate g and ht stays constant. Let us normalize the
variables by a growth factor At as yj,t ≡ Yj,t/At, kt ≡ Kj,t/At, ct ≡ Ct/At, ij,t ≡ Ij,t/At,
etc. Then the production function is written in the normalized terms as:

yj,t = kα
j,th

1−α
j,t . (1)

The capital is accumulated over time as:

gkj,t+1 = (1− δj)kj,t + ij,t (2)

where δj is an industry specific depreciation rate. Investment ij,t is a composite good
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produced by combining all the goods symmetrically as:

ij,t = N1/(1−ξ)(
N∑

l=1

(zI
l,j,t)

(1−ξ)/ξ)ξ/(1−ξ) (3)

where ξ > 1 is the elasticity of substitution between inputs in the production of invest-
ment good.

We assume that the investment rate is chosen from a discrete set. Specifically, we
assume that:

ij,t/kj,t ∈ {0, (1− δj)(λ
±1
j − 1), (1− δj)(λ

±2
j − 1), . . .} (4)

for λj > 1. This implies that the next period capital kj,t+1 has to be either the
naturally depreciated level kj,t(1− δj)/g or its multiplication or division of λj. By this
assumption, the producer is forced to invest in a lumpy manner. Thus this constraint
is a shortcut for the lumpy behavior which typically occurs when a fixed cost incurs
in investment. This is the only modification from the usual model of monopolistic
economies. The main objective of this paper is to examine the aggregate consequence
of a non-linear behavior of producers induced by the discreteness constraint.

Let pj,t denote the price of good j at t. Define a price index pt ≡
(
∑N

j=1 p1−ξ
j,t /N)1/(1−ξ) and normalize it to one. Let wt denote a real wage for an ef-

ficiency unit of labor. Then the monopolist’s profit (normalized by At) at t is written
as:

πj,t ≡ pj,tyj,t − wthj,t −
N∑

l=1

pl,tz
I
l,j,t (5)

The demand function for good j is derived by usual procedure as in Dixit and
Stiglitz (1977). Let us suppose that the representative household has a preference over
the sequence of consumption and labor:

∞∑
t=0

βtU(Ct, ht) (6)

where Ct = Atct is a composite consumption good produced identically as the invest-
ment good:

ct = N1/(1−ξ)(
N∑

l=1

(zC
l,t)

(1−ξ)/ξ)ξ/(1−ξ). (7)

The representative household maximizes the utility function subject to the sequences
of budget constraints:

N∑
j=1

pj,tz
C
j,t = wtht +

N∑
j=1

((πj,t + qj,t)vj,t − qj,tvj,t+1). (8)
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where vj,t is the stock holding for firm j and qj,t is its price.
The cost minimization of the consumer given the level of consumption Ct implies

zC
j,t = (pj,t/pt)

−ξct/N . Similarly, the derived demand for good j by the monopolist
l given the level of investment il,t is obtained as zI

j,l,t = (pj,t/pt)
−ξil,t/N . With the

equilibrium condition for good j, yj,t = zC
j,t+

∑N
l=1 zI

j,l,t, these yield the demand function

for good j as: yj,t = (pj,t/pt)
−ξ(ct + it)/N where it ≡

∑N
j=1 ij,t. Define a production

index yt ≡ N1/(1−ξ)(
∑N

j=1 y
(ξ−1)/ξ
j,t )ξ/(ξ−1). Then we have relations

∑N
j=1 pj,tyj,t = ptyt,∑N

j=1 pj,tz
C
j,t = ptct, and

∑N
j=1 pj,tz

I
j,l,t = ptil,t. Combining with the consumer’s budget

constraint (8) and the equilibrium condition for labor, ht =
∑

j hj,t, we obtain the
demand function:

yj,t = (pj,t/pt)
−ξyt/N (9)

The monopolist maximizes its discounted future profits as instructed by the rep-
resentative household. The discount rate, r−1

t , is the intertemporal ratio of marginal
utility of consumption. Then the monopolist’s problem is defined as follows.

max
{yj,t,kj,t+1,hj,t,ij,t,zI

l,j,t
}

∞∑
t=0

(r1 · · · rt)
−1Atπj,t = A0

∞∑
t=0

(r1 · · · rt)
−1gt(pj,tyj,t−wthj,t−

N∑
l=1

pl,tz
I
l,j,t)

(10)
subject to the production function (1,3), the capital accumulation (2), the discreteness
of investment rate (4), and the demand function (9).

Let us define the aggregate capital index kt as follows.

kt ≡ (
N∑

j=1

k
α(ξ−1)/(ξα+1−α)
j,t /N)(ξα+1−α)/(α(ξ−1)) (11)

By using the optimality condition for hj,t, the profit at t is reduced to a function of
(kj,t, kj,t+1) as:

πj,t = D0w
(α−1)/α
t k

1/(ξα+1−α)
t k

α(ξ−1)/(ξα+1−α)
j,t − gkj,t+1 + (1− δj)kj,t (12)

where D0 ≡ (1 − (1 − 1/ξ)(1 − α))((1 − 1/ξ)(1 − α))(1−α)/α. The discounted sum of
the profit sequence is concave in kj,t. Thus the optimal policy is characterized by an
inaction region in kj,t with a lower bound k∗j,t and an upper bound λjk

∗
j,t. Consider two

sequences of kj,s which are identical except for kj,t. Such sequences can be constructed
by assigning a positive investment at t−1 and zero investment at t in one sequence and
zero investment at t − 1 and a positive investment at t in the other. Then the lower
bound of the inaction region is derived by solving for k∗j,t at which the two sequences
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yield the same discounted profit. If kj,t is strictly less than k∗j,t, the producer is better
off by adjusting it upward rather than waiting. The sequence has kj,t = k∗j,t if zero
investment is assigned at t− 1. Then kj,t−1 = (g/(1− δj))k

∗
j,t. The other sequence has

kj,t = λjk
∗
j,t. Note that by this construction the both sequences have the same capital

at t + 1: (λj(1− δj)/g)k∗j,t. Solving for k∗j,t which equates the discounted profits of the
two sequences, we obtain:

k∗j,t = Dj(w
(1−α)/α
t (rt − 1 + δj))

−(ξα+1−α)kt (13)

where Dj ≡ ((λ
α(ξ−1)/(ξα+1−α)
j − 1)D0/(λj − 1))ξα+1−α.

Equation (13) expresses the feedback relation from the mean capital level kt to the
threshold for an individual capital level kj,t. Note that the feedback effect on kj,t is non-
linear because of the threshold behavior. The mean capital level kt affects the threshold
of the inaction region, but it may or may not induce the adjustment of kj,t. Also note
that the effect on the inaction region is linear. This implies that, in the situation when
an individual capital adjustment occurs continuously (λj → 1), the feedback effect
from the mean capital to an individual capital is linear. The linear feedback means
that the individual capital moves proportionally to the mean capital level. These two
observations are summarized as local inertia and global strategic complementarity of
the individual behavior. The individual capital is insensitive to a small perturbation in
the mean capital level, while it synchronizes with the mean capital if the perturbation
is large.

The global strategic complementarity is perfect in a sense that the percentage
changes coincide in an individual and mean capital. We will show shortly that this
perfect complementarity induces a large fluctuation in propagation of capital adjust-
ments. The perfect complementarity results from the constant returns to scale of the
technology. This point is shown as follows. Consider an identical economy as above
except for that the production incurs only capital as in Yj = A1−θ

j Kθ
j . Then the lower

bound of the inaction region of capital is shown to be proportional to k
1/(1+ξ(1/θ−1))
t .

The lower bound is linear in kt only when the returns to scale is constant (θ = 1).
The strategic complementarity is less than or more than proportional depending on
whether the returns to scale is diminishing or increasing.

For simplicity, let us for a while focus on this feedback network of producers in
the product markets while abstracting the rest of the economy by assuming that the
equilibrium wage and interest rate only depends on the mean capital level. We come
back to the equilibrium price functionals in Section 4. Suppose that the equilibrium
wage and interest are approximated by a constantly elastic function of the mean capital
kt in the vicinity of the steady state k̃. Namely, using a tilde to designate a steady

7



state value, I assume that:

(rt − 1 + δj)/(r̃ − 1 + δj) = (kt/k̃)θr (14)

wt/w̃ = (kt/k̃)θw (15)

Then the threshold (13) is written simply:

k∗j,t/k̃
∗
j = (kt/k̃)φ (16)

where k̃∗j is a threshold corresponding to the steady state r̃, w̃, k̃ and φ is the strategic
complementarity between the individual and mean capital:

φ = 1− (αθr + (1− α)θw)(ξ − 1 + 1/α) (17)

Note that φ is less than one. This implies that the strategic complementarity between
producers is decreased from the perfect complementarity due to the equilibrium re-
sponse of the wage and interest rate. The wage and interest rise in our approximation
when the production is higher than the steady state level. This price response works
as a dampening factor in the investment propagation.

The equilibrium of the product markets is given by a capital profile which satisfies
kj,t ∈ [k∗j,t, λjk

∗
j,t]. This condition allows multiple equilibria in general. Here we employ

best response dynamics as an equilibrium selection algorithm. Suppose that a prede-
termined capital kj,t resides in the inaction region. The next period capital kj,t+1 only
decreases by depreciation and technology progress unless adjusted. In the first step of
the best response dynamics, the producers adjust capital by λj if their capital level
goes below k∗j,t given kt. Note that assuming δj + g < λj, the adjustment never exceeds
λj. In the second step, kt is calculated by a new capital profile, and the producers
adjust their capital responding to the revised kt. We repeat this procedure until the
capital profile converges. The adjustments after the second step can be upward or
downward, depending on whether the first step upward adjustments by some produc-
ers weigh more or less than the inertial depreciation of overall capital. Let us formally
define the best response dynamics as follows. Set the initial point of the dynamics as
k0

j,t = kj,t(1 − δj)/g and k0
t = kt. Succeeding mean capital ku

t is defined by the profile
ku

j,t. Then ku
j,t, u = 0, 1, . . ., evolves according to the (S,s) rule:

ku+1
j,t =


λjk

u
j,t if ku

j,t < k∗uj,t

ku
j,t/λj if ku

j,t > λjk
∗u
j,t

ku
j,t otherwise

(18)

We can show that this dynamics converges at a finite stopping time T with probability
one when N → ∞. Thus the best response dynamics is a valid equilibrium selection
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algorithm. Then we define the converged point as an equilibrium capital profile at
t + 1, namely, kj,t+1 = kT

j,t.
The best response dynamics is a realistic equilibrium selection mechanism in a sit-

uation where many agents interact each other, as Vives (1990) argues. All information
needed for an agent to make decision is the prices and the mean capital level. This
selection mechanism precludes big jumps that occur due to the informational coordi-
nation among agents. In this sense, the best response dynamics selects an equilibrium
path that is least volatile among possible equilibrium paths.

The aggregate investment fluctuates along the equilibrium path depending on the
evolution of configuration of the capital profile in the inaction region. To evaluate the
magnitude of fluctuations analytically, we regard the capital configuration as being a
random variable that takes values within the inaction region. Specifically, we assume
that the position of an individual capital relative to the lower bound of its inaction
region (in log-scale) follows a uniform distribution independent across sectors.2 The
uniformity assumption has an analytical ground. It is known that a variable which
grows linearly and is controlled by an (S,s) policy converges to a uniform distribution in
the (S,s) band when the initial value is random. See Engel (1992) for the mathematical
reference and also Nirei (2003) for a rigorous treatment in our specific economic model.

Define a producer’s position in an inaction region as sj,t = (log kj,t− log k∗j,t)/ log λj.
We assume for a while that λj and δj are common across j. Define m0 = N(log k1 −
log kt)/ log λ where k1 is the mean capital at the first step of the best response dynamics.
At the first step, all capital is depreciated by (1− δ)/g and some producers increased
capital due to the direct effect of the depreciation. Thus m0 indicates the deviation of
mean capital growth from the steady state level in the unit of the number of producers
at the first step of the adjustment process. Also define W = N(log kt+1− log kt)/ log λ.
W indicates the deviation of mean capital growth from the steady state level in the
unit of the number of producers in the entire best response dynamics. Define µ =
| log((1− δ)/g)|/ log λ. Here we place our main analytical proposition.

Proposition 1 Suppose that λj and δj are common across j. Suppose that sj,t is
a random variable which follows a uniform distribution independently across j. Then
m0/

√
N asymptotically follows a normal distribution with mean zero and variance µ(1−

µ). Let m be a positive integer. |W | conditional to |m0| = m follows a distribution
function asymptotically as we take ξ → 1 first and then N →∞:

Pr(|W | = w | |m0| = m) = (m/w)e−φw(φw)w−m/(w −m)! (19)

2See Nirei (2003) for the case in which the distribution is not uniform.
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for w = m, m + 1, . . .. The tail of the probability function is approximated by:

Pr(|W | = w | |m0| = m) ≈ (m(φe)−m/
√

2π)(φe1−φ)ww−1.5 (20)

The unconditional distribution of W is symmetric.

Proof is deferred to Appendix A.1. The key to the proof is to embed the best
response dynamics in a branching process so that the recursivity of the branching
process becomes available. Let G(s) be the generating function of the total adjustment
W given the initial deviation from steady state, m0 = 1. Let x be the number of sectors
that adjust capital due to m0, and F (s) be its generating function. Each adjustment
of x then has a chance to propagate in the next step just like the initial adjustment
m0. Thus the total number of offsprings which are originated from each of x follows
G(s). Hence we obtain a functional equation G(s) = sF (G(s)), from which we derive
the distribution of W . A similar functional equation obtains for a large class of models
with features such as heterogeneous λi and δi, non-uniformly distributed s0

j,t, or non-
constant returns to scale technology, as shown in Nirei (2003). The functional equation
characterizes the propagation distribution completely, because all the moments can be
derived from it.

Proposition 1 implies that the capital growth log kt+1 − log kt conditional to m0 is
approximated by a power distribution w−1.5 truncated by an exponential distribution
that declines at rate 1 − φ. We can calculate moments when φ < 1. The capital
growth conditional to m0 = 1 has an asymptotic mean log λ/(N(1− φ)) and variance
(log λ/N)2(2 − φ)/(1 − φ)3. The variance of an unconditional capital growth rate is

calculated as ((log λ)2/N)(µ(1−µ)(1−2/π)/(1−φ)2 +
√

2µ(1− µ)/(πN)/(1−φ)3) by
approximating m0 by an integer random variable. This is a natural result as obtained
in usual models: a fraction µ of sectors are induced to adjust by the deterministic trend
in mean. The variance of the capital growth rate declines linearly in N , hence the law
of large numbers obtains. One notable difference is that the variance has a 1/(1− φ)3

term, which can be quite large when φ is close to one. In a continuously adjusting
model, the variance is of order 1/(1 − φ)2. We can regard the extra 1/(1 − φ) as the
contribution of the discrete propagation to the fluctuations.3.

The fluctuation of the capital growth exhibits quite a different behavior, however,
when φ = 1. The distribution of W becomes a power law distribution. With the
exponent 0.5 (in a cumulative distribution), it is known that the distribution does not
have either mean or variance. That is, the sample moments diverge as the sample size
increases.

In fact, the variance of the capital growth rate ceases to depend on N when φ = 1.

3See Nirei (2003) for details.
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Proposition 2 When φ = 1, the variance of the aggregate capital growth rate con-
verges to a non-zero constant as N →∞. The limit variance is approximated by:

(log λ)2
(
µ(1− µ) +

√
2µ(1− µ)/(9π)

)
. (21)

Proof: We concentrate on W/N which is the mean capital growth rate divided by
log λ. The unconditional variance Var(W/N) is decomposed as E(Var(W/N | m0)) +
Var(E(W/N | m0)). Since W is symmetrically distributed and since |W | conditional
to m0 follows the same distribution as the sum of m0 number of |W | conditional to
m0 = 1, we have Var(W/N | m0) = |m0|Var(W/N | m0 = 1) and E(W/N | m0) =
m0E(W/N | m0 = 1) for an integer m0. We linearly interpolate this formula for
any real number m0. Then, using the asymptotic distribution of m0, we obtain that

Var(W/N) =
√

(2/π)Nµ(1− µ)Var(W/N | m0 = 1) + Nµ(1− µ)(E(W/N | m0 = 1))2.

Next we derive the moments of W/N conditional to m0 = 1. At φ = 1, the distribution
of W becomes a pure power-law. Also by construction, W conditional to m0 = 1 only
takes integer values between 1 and N . Thus the distribution of W/N converges to
a continuous distribution in [0, 1] with keeping the power-law exponent. For a large
N , let us approximate the probability distribution of W conditional to m0 = 1 by a
density function x−1.5/(2(1−1/

√
N)) for x ∈ [1, N ]. Then the density function of W/N

is given by y−1.5/(2(
√

N − 1)) for y ∈ [1/N, 1]. Note that the distribution converges
to a delta function at zero only at the speed 1/

√
N . Hence the mean and variance of

W/N conditional to m0 = 1 are of order 1/
√

N . Combining with the previous result,
we obtain that the unconditional variance of W/N is of order N0. More precisely we
obtain the following formula:

Var(W/N) =
√

2µ(1− µ)/π(
√

N−1/N)/(3(
√

N−1))+Nµ(1−µ)(1−1/
√

N)2/(
√

N−1)2

(22)
By taking a limit of N , we obtain our result. 2

This result means that the growth rate fluctuation is scale-free, and that the law
of large numbers is broken. No matter how large the aggregative system is, a non-
linearity in an individual level can add up to an aggregate fluctuation. Consider the
case of lumpy investment behaviors. Cooper, Haltiwanger, and Power (1999) docu-
ments that, in the Longitudinal Research Database, the investment episodes in which
the investment-capital ratio exceed 20% constitutes 20% of the plants and account for
50% of gross investment. Considering that there are about 350, 000 plans in U.S. man-
ufacturing as they report, the aggregate fluctuation generated by the lumpy investment
in individual level is negligible in a situation where the central limit theorem holds.
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lumpiness (log λ)
0.02 0.05 0.1 0.2 0.4

periodicity 4 0.011 0.028 0.055 0.110 0.220
(1/µ) 6 0.010 0.024 0.049 0.098 0.195

8 0.009 0.022 0.044 0.089 0.178

Figure 1: Scale-free standard deviation of capital growth g

To the contrary, our result establishes a possibility of the aggregate fluctuations via a
stochastic propagation effect.

The formula (21) gives the standard deviation of growth rates as a function of λ and
µ. λ is the lumpiness parameter, and 1/µ is interpreted as the periodicity of capital
oscillation in individual level. Some numerical examples are shown in Table 1. We
observe that the magnitude of lumpiness observed in data is large enough to generate
the fluctuations in aggregate production.

Our analytical results imply two things on the investment propagation. First, it
challenges the conventional view that the sectoral propagation does not add up to a
large aggregate fluctuation due to the law of large numbers effect. Our result shows
that, when the price response is rigid enough so that φ is close to one, the sectoral prop-
agation generates a significant fluctuation in aggregate level. Secondly, our result shows
that the large, non-degenerate investment fluctuation can occur endogenously in a de-
terministic environment. This implies that an interdependence of a small non-linearity
in a micro behavior may play a crucial role in aggregate investment fluctuations.

The propagation distribution derived here has an interesting link with other models
of non-linear dynamics in a network, such as the self-organized criticality or a perco-
lation in the Bethe lattice. These analytical connections are explored in Nirei (2003).
In this paper, let us move on to the next question of how this propagation effect may
explain the economic aggregate fluctuations quantitatively.

3 Business Cycle Simulation

In this section we examine quantitative properties of the equilibrium fluctuation by
numerical simulations. We ask whether the sectoral oscillations of magnitude exhibited
by the U.S. manufacturing sectors would add up in our model to the observed aggregate
fluctuations and generate the business cycle patterns. The answer is affirmative when
the intertemporal substitutions of consumption and leisure are close to perfect. If this
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is the case, the (S,s) policy at the individual level generates an endogeneous fluctuation
of the aggregates.

In the previous section we demonstrate the possibility that an individual determin-
istic (S,s) policy generates aggregate fluctuations. The result is obtained by assuming a
simple behavioral rule of consumer decisions and the stationarity of the cross-sectional
distribution of producers’ positions in the (S,s) band. We no longer impose these
assumptions. The consumer’s behavior is derived from a representative household’s
choice. By this we can analyze the impact of preference structure on the aggregate
fluctuations. Moreover, the fluctuation is calculated by simulations without setting
the cross-sectional distribution of producers’ positions at the stationary distribution.
Whereas simulations show that the distribution converges to a uniform distribution
quickly, they can also exhibit interesting dynamics such as the echo-effect or mode-
locking when a large deviation from the stationary state is present. We will study the
dynamics which could not be examined in the setup of the previous section.

Our aim is to reproduce the second moment structure of business cycles. In par-
ticular, we attempt to explain the mechanism for the positive autocorrelation of the
business cycle variables and the positive correlation between production and demand
components. We do not focus on the amplification effect of the propagation, which
was explored in the previous section.

Let us start from estimating the fluctuation magnitude of U.S. manufacturing sec-
tors. We use the 4-digit SIC annual data compiled by Bartelsman and Gray (1996).
We remove the trend by Hodrick-Prescott filter with smoothing parameter λ = 100.
We estimate a second order autoregressive process of the detrended log sectoral capital
as:

yj,t = φ1,jyj,t−1 + φ2,jyj,t−2 + εj,t (23)

The regression shows that 434 sectors out of total 459 sectors exhibit a damped oscil-
lation phase φ2

1,j + 4φ2,j < 0. A second order autoregressive process with a damped
oscillation displays a pseudo-periodic behavior. The pseudo-periodicity is calculated as

1/µj ≡ 2π/ cos−1(φ1,j/(2
√
−φ2,j)), following the procedure similar to Yoshikawa and

Ohtake (1987).
We emulate this oscillation by our lumpy behavior of sectoral investments. The

presumption is that a sector has to commit to a sizable investment if it invests at
all. If it does not invest, then the gap between the actual and desired level of capital
increases as capital depreciation and technological progress takes effect. The lumpy
adjustment generates a non-harmonic oscillation which is familiar in the (S,s) literature
such as the Baumol-Tobin cash balance dynamics. It is more likely that the committed
amount of investment is executed in several periods, if we consider the time to build.
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By incorporating the time to build, the sectoral oscillation exhibits a more realistic
harmonic oscillation, but the basic properties of aggregate behavior does not change
by this modification.

We derive λj and δj from the observed oscillations µj and σj in the way that the
periodicity and magnitude of oscillation the data shows are maintained. From the
periodicity we have a relation 1/µj = log λj/| log((1 − δj)/g)|. Also, we numerically
calculate the standard deviation of the model oscillation for log λ = 1 and δj. Then
log λj is derived by dividing σj by the calculated standard deviation. Thus we obtain
λj and (1− δj)/g.

Figure 2 shows the estimated periodicity in the first panel. The periodicity is
distributed with mean 8.2 years and standard deviation 3.3. The second and third
panels show the calibrated discreteness λj and the annual depreciation rate δj that
match with the estimated parameters for oscillations. The mean of λj is 2.5 and
standard deviation is 2, and the mean of δj is 0.09 and standard deviation 0.07. Let us
notice the considerable heterogeneity shown in the periodicity. It casts a doubt on the
view that the sectoral fluctuation is merely a reflection of aggregate fluctuations. It is
worth exploring the possibility that a pseudo-random propagation effect across sectors
causes the aggregate fluctuations.

We focus on the aggregate fluctuations by abstracting the mechanism for sectoral
fluctuations in the individual level. Individual sectors may fluctuate for various reasons
such as technological improvement or strategic complementarity among firms’ behaviors
within the industry. For convenience of analysis we assume the lumpy behavior of
monopolists. The amplification effect of investment propagation is not an emphasis in
this section either. The standard deviation of the aggregate growth rate amounts to
about 1% even if we sum up the independent series of sectoral oscillations of magnitude
we observe in data. Our emphasis in this section is thus on the structure of second
moments of variables when the business cycle is driven by autonomous movements of
investment.

We will show that our model of investment propagation is capable of reproduc-
ing the basic business cycle structure: the standard deviation of GDP around 1.7%,
the positive correlations between production and demand components, and the strong
autocorrelations of the production and demand components. To do so, we explicitly
solve the representative household’s choice between leisure and consumption. We dis-
cuss how the approximated parameters θw and θr in the previous section relate to the
preference and technology parameters. Our model shares the basic quantitative char-
acteristics of monopolistic models that have been studied by, for example, Gaĺı (1994)
or Rotemberg and Woodford (1995). In the following we concentrate on the investment
fluctuation and its effect on production and consumption.
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Figure 2: Properties of sectoral oscillations
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We use the following utility specification:

U(ct, ht) = c1−σ
t /(1− σ)− h1+ν

t /(1 + ν) (24)

where σ ≥ 0 and ν ≥ 0. This simple specification allows us to obtain some analytical
insight as we see later, although the labor hour will not be stationary in the balanced
growth path in this specification. We set the technological growth rate at g = 1 and
inflate the depreciation rate δj by the observed productivity growth rate so that the
simulated sectoral oscillations continue to match the oscillations in the data. From the
utility specification we obtain the equilibrium price conditions immediately:

wt = cσ
t h

ν
t (25)

rt = (ct+1/ct)
σ/β (26)

A contemporaneous equilibrium (yt, ct, ht, wt) given kt, it, rt is determined by (25) and:

yt = ((1− 1/ξ)(1− α)/wt)
(1−α)/αNkt (27)

wtht = (1− 1/ξ)(1− α)yt (28)

yt = ct + it (29)

The first equation is derived by aggregating the optimal production level when the
capital is given. The second equation is obtained by aggregating the optimal employ-
ment given capital. It shows that the labor share is equal to (1 − 1/ξ)(1 − α). The
third equation is a product market equilibrium condition. Given these equilibrium re-
lations, the equilibrium path (kt, it, rt) is determined by the capital accumulation (2),
the equilibrium interest rate (26), and the selection algorithm for it with the optimal
threshold rule (13).

We resort to numerical simulations to solve the equilibrium path. In the simulation,
we assume that the representative household and monopolists have a static expectation
on future investment. Namely, the expected future investment is set at the steady
state level

∑
j δj k̃j. Computational difficulty is the reason we do not solve for a perfect

foresight equilibrium. Since the investment crucially depends on the details of the
configuration of producers capital positions, solving the perfect foresight path requires
prohibiting computational loads. Also, it is not realistic to suppose that the agents are
able to form a perfect foresight. Besides the computational problem, the agents would
have to have precise information about the capital configuration of the entire economy.
When the economy has attained the stationary level, a noisy information would not
contribute to the accuracy of prediction very much in our setting. We also tried another
expectation formulation based on an AR(1) estimate of the past investment path. We
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GDP Investment Consumption Capital Hours Wage

standard deviation (%) 1.83 11.63 1.80 1.88 1.82 0.02
(0.52) (1.07) (0.50) (0.54) (0.52) (0.01)

correlation with GDP 1 0.49 0.77 1.00 1.00 0.77
– (0.05) (0.09) (0.00) (0.00) (0.09)

autocorrelation 0.89 0.61 0.52 0.88 0.89 0.52
(0.05) (0.07) (0.21) (0.05) (0.05) (0.21)

Table 1: Simulated business cycle statistics

confirmed that the basic property of the fluctuations does not change, although we
noted that the convergence to the rationally expected AR(1) parameters can be fragile
depending on the fundamental parameters. Another issue in the simulation is the
finiteness of the agents. The existence of equilibrium is shown in the previous section
as an asymptotic property when the number of sectors N tends to infinity. When
N is finite, with a positive probability the best response dynamics does not reach an
equilibrium. We impose a rule that the dynamics stops either when all the sectors
adjust upward or all the sectors which adjust at the initial step re-adjust downward.
This case happens in the early periods of simulated paths. We did not observe this
case once the equilibrium path is converged to a stationary state level.

Table 1 summarizes the simulation result on the second moments. The standard
deviations of the estimated second moments in 500 runs are shown in parentheses.
The parameter values are set as σ = 0.01, ν = 0, labor share (1− 1/ξ)(1− α) = 0.58,
mark-up rate 1/(ξ − 1) = 1/3, and annual discount rate β = 0.96. Although the
correlation between production and investment is not strong enough, the simulation
captures the basic feature of business cycles such as the magnitude of fluctuations in
GDP, investment, and consumption, strong autocorrelations in GDP, positive correla-
tions between production and demand components and input components, and small
wage fluctuations.

Figure 3 shows typical paths of the simulated production and investment for the
same parameter set. The variables are normalized by the stationary level GDP after
convergence. The top left panel shows the entire paths of the GDP and the aggregate
investment. The simulated path converges to a steady state level quickly and exhibits
persistent fluctuations thereafter. The investment-production rate converges to a re-
alistic 9.6%. The bottom left panel shows the capital paths of individual sectors. We
observe an (S,s) behavior of the sectors. The right panels show the magnified plots of
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Figure 3: A simulation path of GDP and investment. X axis shows quarters. Y axis is
scaled by the stationary level GDP.
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Figure 4: Admissible range of parameters

the same aggregate paths in a shorter time horizon. We observe a chaotic fluctuation
(in the sense that the deterministic path appears random) with a certain degree of
periodicity. Also we see a strong correlation between the production and investment.

The correlation structure shown in Table 1 is robust in parameters. Figure 4 shows
the admissible range of parameters. For each parameter alignment, we take an average
of estimates from 15 simulation runs. We plot a circle when the standard deviation
of GDP is more than 1% and less than 3%, a cross when investment correlates with
production, and a plus when consumption correlates with production. The plots show
that our results depend on the preference specifications (σ and ν) sensitively but not
on the markup rate (1/(ξ − 1)). In the left panel, there exists an admissible range of
σ for the markup rate larger than 30% (which corresponds to ξ ≤ 4). The larger the
markup rate is, the larger and the broader the admissible range of σ is. We observed
that the business cycle patters obtain also for a smaller markup rate (ξ ≥ 10). It is
not certain, however, if this pattern is generated by the mechanism we analytically
identified. For a small markup, the production goods are easily substitutable and
the firms are competitive. Hence the price responds sensitively to the initial shock
in the best response dynamics. The subsequent adjustment process occurs not in
the direction to amplify the initial shocks but in the direction to mitigate the initial
response. Hence our analysis does not apply to this case. It is nonetheless interesting
that a competitive setting also generates an endogeneous fluctuation. The right panel
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Figure 5: Correlation between sectoral and aggregate production (left) and cross sec-
tional distribution of production relative to average (right). The bar and line respec-
tively show the actual data and simulation.

shows that the admissible range for preference specifications (σ and ν). We obtain
the aggregate fluctuations large enough when σ + ν is small enough. To obtain a
meaningful stochastic propagation effect, the representative household needs to be
sensitive enough to interest rate or wage. We also observe in the plot that σ needs to
be small for the correlation between production and investment to obtain. When σ is
larger, an investment by a sector increases the interest rate more, and dampens the
propagation effect.

The simulation also replicates well the mean behavior of the pairwise correlation
between sectoral production and GDP. The comovement of the sectoral production
(and hence sectoral and aggregate production) is a defining characteristic of business
cycles. However, the comovement is far from a perfect mode locking. The left panel
of Figure 5 shows the histogram of the correlations in data (shown by a bar). The
correlation between a sector and aggregate is only modest. This fact agrees with
another fact we noted that the periodicity of sectoral oscillations varies much. These
suggest contrary to the view that the business cycles are mainly driven by an aggregate
factor and the sectoral movements are only a noise-ridden version of the same cycles.
The modest correlation between the sectoral and aggregate production is captured by
our simulation well. The histogram of the simulated correlations under our benchmark
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Figure 6: Autocorrelation of GDP (left) and investment (right)

parameter set (as for Table 1) is drawn by a real line. The simulated histogram is more
centered than the real histogram, which is a natural consequence of our symmetric
modeling of sectoral interactions. The real input-output matrix is far from symmetric,
as Horvath (2000) emphasized, and the asymmetric input-output relation will generate
more heterogeneity in the comovement structure across sectors. The mean of the
correlation (0.24) is reproduced well by our simulation, however. This suggests that
the symmetric modeling may be satisfactory insofar as the aggregate fluctuations is
concerned. The right panel of Figure 5 shows the histograms of sector size in data (bar)
and in simulation (line). The only source of heterogeneity in the model is depreciation
rate (δj) and lumpiness (λj). The heterogeneity of the sector size is reproduced fairly
well. This excludes the case in which the different variety in comovement stems from
the different sector size distributions. Also this assures that the model fluctuation we
observe does not result from an unrealistic distribution of sector size.

Figure 6 shows that the autocorrelations of production and investment depend
on σ and ν. The autocorrelation is estimated by taking an average of 15 runs for
each parameter set. The other parameters are set at the benchmark level. The left
panel shows that the GDP autocorrelation is decreasing in ν. The right panel shows
that the investment autocorrelation is not sensitive to the change in ν. This implies
that the intertemporal substitution of labor affects the production autocorrelation not
through the investment propagation but through the contemporaneous labor decisions.
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Figure 7: Distribution of GDP growth rates

In contrast, σ affects the autocorrelation of investment quite sensitively. This suggests
that the large part of the decrease in autocorrelation of production from σ = 0.01 to
the other values results from the decrease in autocorrelation in investment (and thus
in capital). In the U.S. data, the autocorrelation of investment is about 0.12 for the
post-war periods. To match this, σ has to be in between 0.01 and 0.02. It is a narrow
range, but the other statistics for this level of σ are consistent with the data as seen in
Table 1.

Finally, Figure 7 shows an inverse cumulative distribution of the growth rates in
GDP. The probability shown in the vertical axis is cumulated from above. The plot is
displayed in a semi-log scale, so a linear line would express an exponential distribution.
We plot by the dashed circle the real distribution calculated by quarterly GDP from
1958 to 2002. The real line shows the simulated distribution. The dotted lines show
several simulated distributions when the sample size is equal to that of the GDP data.
Because of the small sample size, the distribution fluctuates across the simulation
runs. However, the mean behavior of the distribution matches the data well. Yet, this
should not be taken as a distinctive evidence for our distribution shown in Proposition
1. The distribution declines faster than an exponential distribution, hence a normal
distribution would also fit well. Thus the distribution data by itself does not reject any
aggregative model that results in a normal distribution by the central limit theorem.
The plot only confirms that the propagation distribution exhibited in simulation is
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compatible with the data.
Let us now interpret the simulation results by our analytics. In the previous sec-

tion we introduce the parameter φ to characterize the relation between the propagation
fluctuations and the strategic complementarity across producers. The fluctuation ex-
hibits an extreme variance when φ = 1. In a static setup where the capital is replaced
with intermediate input, we can derive when this critical fluctuation occurs under the
same utility specification (Nirei (2003)). One case is σ = ν = 0. In this case, the
utility function is linear in consumption and labor, and thus both of the real wage and
interest rate are fixed. Another case of criticality occurs when α = 1 and the interest
rate is fixed. Namely, the production is adjusted only by capital. In this extreme
case of “production of commodities by means of commodities,” there is no longer an
aggregate resource constraint of labor. Thus the propagation lacks a dampening mech-
anism in which an increase in production is suppressed by a rising wage. In a general
equilibrium, a rising interest rate still serves as a dampening factor. If we study the
fluctuation of stationary level production, however, the interest rate is not a dampening
factor since the stationary interest rate is given by fundamental parameters. Thus the
fluctuation is still critical in a long run. This is because a rise in interest rate has to be
followed by a decline to the steady state level eventually, which serves as an accelerator
of the fluctuations.

It is not trivial in our model to have correlations between production and demand
components. In the standard real business cycle model, the fluctuation in total factor
productivity causes the procyclical movement of both consumption and investment.
Instead, the investment fluctuates relatively independently from the economic envi-
ronment in our model. This aspect gives the model a different mechanism for the
procyclical movement of the consumption and investment. An increase in investment
demand induces the monopolistic producers to produce more on one hand. On the
other hand, since the capital level is predetermined, an increase in investment com-
petes with the contemporaneous consumption given the production level. By using the
equilibrium relations given kt, we obtain dyt/dit = 1/(1 + (α + ν)/(σ(1 − α)(ct/yt))),
which is always between 0 and 1. Hence, given the capital level, an investment has
a positive effect on production, but the effect is no more than 1. Hence there is no
multiplier effect of the investment demand on the production. The correlation between
consumption and production rather stems from the fluctuations of accumulated capi-
tal. We also obtain (dyt/yt)/(dkt/kt) = (1 + ν)α(ct/yt)/(σ(1− α) + (α + ν)(ct/yt)) at
equilibrium. This takes values between zero and one, and is close to one when σ and ν
are close to zero, agreeing with our benchmark simulation. Since the investment is de-
termined partly by an independent process of best response dynamics across producers
which the representative household cannot predict deterministically, large production
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due to large capital can result in large consumption. The Keynesian multiplier effect
would increase the correlations between production and demand components. This
would be the case when the consumption function is more sensitive to income than
our baseline model. If a significant number of consumers face liquidity constraint, for
example, it would contribute to more synchronous movements between production and
demands.

The autocorrelation of production is generated by the demand-smoothing effect of
the real interest rate. In the previous section we saw that an increase in the interest
rate sensitivity θr lowers φ and dampens the instantaneous investment propagation. In
a dynamic setting, this dampening effect only postpones the investment propagation
to the subsequent periods. Suppose that the interest rate is now above the steady state
level due to a large concentration of sectors near the adjustment threshold. In the next
period, the interest rate would decrease to the steady state level if the investment is at
the steady state level. This decrease in interest rate increases the threshold for capital
adjustment. Hence the investment in the next period tends to be larger than the
steady state level. This is the mechanism for the autocorrelation in investment when
σ = 0.01 in Figure 6. In this mechanism, the effect of delaying the investment is strong
when the sensitivity parameter θr is large, and a large θr follows a small intertemporal
substitution in consumption, 1/σ. The autocorrelation in investment generates the
autocorrelation in production in two routes: a contemporaneous effect on aggregate
demand and subsequent effects on aggregate supply via capital accumulation.

It is helpful to examine our economy’s smooth counterpart to understand the fun-
damental condition when the fluctuations occur. Suppose that there is no discreteness
constraint (4); then any capital level can be chosen. The producers’ optimal choice of
capital yields an optimality condition which is linear in aggregate capital as in (13).
By aggregating the optimality condition, we find that the aggregate capital level kt

is indeterminate in the product market. The capital level is thus solely determined
by the consumer’s choice between leisure and consumption. In our model, the steady
state capital level (normalized by the total factor productivity) is also determined in-
dependently from technology. However, the investment is determined uniquely in the
best response dynamics across producers. We saw that the propagation exhibits an
extreme variance when the wage and interest rate are fixed. This corresponds to the
indeterminacy of capital level in the smooth economy. When the wage and interest
rate are not fixed, the aggregate capital does have a steady state level. However, the
attraction power of the steady state in the dynamics of aggregate capital is vanishingly
small as the wage and interest rate bacomes insensitive to production.
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4 Conclusion

This paper explores a mechanism of investment propagation as a fundamental shock
to the business cycle fluctuations. We consider industrial sectors which are character-
ized by constant returns to scale technology and monopolistic pricing. Demand for
intermediate inputs forms a positive feedback of capital adjustment in the interindus-
trial relations. We suppose that the sectoral capital exhibits a intermittent adjustment
where a large investment occurs occasionally. Under this environment, we derive the
distribution function of the propagation size. The propagation size has a large variance
when the real wage and real interest rate do not respond sensitively to the production
level. In the limit case when the wage and interest rate are fixed, the variance of capital
growth rates does not depend on the level of dissaggregation.

Simulations show that the investment propagation mechanism above explains the
aggregate fluctuations of the U.S. economy quantitatively. We specify the representa-
tive household’s utility as a separable function in leisure and consumption and solve
for the equilibrium paths. The results show that the standard deviation, the correla-
tions between production and investment and consumption, and the autocorrelation of
production, investment, and consumption match the U.S. postwar business cycles well.
Thus we show that, given the magnitude of oscillations that a manufacturing sector
exhibits, the sectoral oscillations can add up to the aggregate fluctuations through the
investment propagation mechanism with the correct second moments of the business
cycle variables.

The paper leaves two points for further explorations. First, the simulation shows
that the correlations between two demand components and production are not strong
enough simultaneously. It stems from that the consumption responds weakly to in-
come when capital level is fixed. The behavior of representative household needs to
be modified in such a way that the income effect becomes strong, for example by in-
corporating the liquidity constraint. Secondly, the deterministic oscillation of sectoral
capital is assumed. It is no doubt an over-simplification that a sectoral capital jumps
in one period and depreciate capital over many years. Incorporating the time-to-build
of capital would make the sectoral oscillations more realistic with keeping the results
of the paper unaltered. Yet it is not obvious that a sectoral capital accumulation pro-
cess incurs such degree of inflexibility. This leads to the question as to whether the
business cycle patterns still obtain if we disaggregate the economy to the establishment
level. Our analytics shows that the large aggregate fluctuations can occur in principle
regardless of the number of agents, but a quantitative demonstration of the theoretical
possibility is left open.
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A Appendix

A.1 Proof of Proposition 1

The details of proof draw on Nirei (2003). Here we outline the proof. Let us rewrite
the best response dynamics for the investment in t. We use u to denote the step in the
dynamics and suppress t. Let ku denote the mean capital defined by (11) with a profile
ku

j . Define k∗uj by the threshold formula (16) with ku except for u = 0 at which we
define k∗0j = k∗j,t. Define su

j = (log ku
j − log k∗uj )/ log λ. Then the dynamics of (ku

j , su
j ) is

written as follows.

k0
j = kj,t(1− δ)/g (30)

s0
j = sj,t + (log k0

j,t − log kj,t)/ log λ (31)

ku+1
j =


ku

j λ if su
j < 0

ku
j /λ if su

j > 1
ku

j otherwise
(32)

su+1
j = su

j + (log ku+1
j − log ku

j − log ku+1 + log ku)/ log λ (33)

We consider for u > 1 the case m0 > 0. The case m0 < 0 is proved symmetrically
by changing the sign of adjustments. W = 0 if m0 = 0. Define Hu as the set of j such
that log ku+1

j − log ku
j = log λ. Define mu as the size of Hu. First we derive a formula

for N(log ku+1− log ku). By definition, we have log ku+1
j = log ku

j +log λ for u ∈ Hu and

log ku+1
j = log ku

j for u 6∈ Hu. Let us define ϕ = α(ξ − 1)/(ξα + 1− α). Then the first
term of a Taylor expansion is

∑
j∈Hu

(ku
j /ku)ϕ log λ. All the terms after the second term

either contain ϕ or are of order 1/N . Also the series are absolutely convergent. We
have ϕ → 0 as ξ → 1. Hence we obtain N(log ku+1− log ku) → ∑

j∈Hu
log λ = mu log λ

as ξ → 1 and N →∞.
Next we examine m0 = N(log k1 − log kt)/ log λ. We break m0 into two terms as

m0 = N(log k1− log k0)/ log λ+N(log k0− log kt)/ log λ. The first term represents the
first step adjustments and the second term represents the depreciation. The second
term is equal to N log((1−δ)/g)/ log λ. The first term converges to m1 by the argument
in the previous paragraph. Let us study m1. By the assumption that sj,t follows a
uniform distribution, we obtain Pr(s0

j < 0) = µ. Then the number of producers who
adjust their capital at the first step, m1, follows a binomial distribution Bin(N, µ). By
the central limit theorem, m1/

√
N−

√
Nµ asymptotically follows a normal distribution

with mean zero and variance µ(1−µ). Combining these results, we obtain that m0/
√

N
asymptotically follows a normal distribution with mean zero and variance µ(1− µ).
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Next we examine mu conditional to mu−1. We have Pr(j ∈ Hu|j /∈
∪v=1,2,...,u−1Hv) = φ(log ku − log ku−1)/ log λ. Thus mu follows Bin(N −∑u−1

v=1 mv, φ(log ku−log ku−1)/ log λ). This defines the stochastic process mu completely.
As we let ξ → 1 and N → ∞, the binomial converges to a Poisson distribution with
an asymptotic mean φmu−1.

Since a Poisson distribution is infinitely divisible, the Poisson variable with mean
φmu−1 is equivalent to a mu−1-times convolution of a Poisson variable with mean φ.
Thus the process mu is a branching process with a step random variable being a Poisson
with mean φ. Since φ ≤ 1, the process mu reaches 0 by a finite stopping time with
probability one. Thus the best response dynamics is a valid algorithm of equilibrium
selection. Let T denote the stopping time. Using the asymptotic formula, we have
W → ∑T

u=1 mu. By using the property of a Poisson branching process Kingman (1993),
we obtain the infinitely divisible distribution for the accumulated sum W =

∑T
u=1 mu

as in the proposition.
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