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The fact that expected payoffs on assets and call options are infinite under
most log-stable distributions led both Paul Samuelson (as quoted by Smith 1976)
and Robert Merton (1976) to conjecture that assets and derivatives could not
be reasonably priced under these distributions, despite their attractive feature
as limiting distributions under the Generalized Central Limit Theorem. Carr
and Wu (2003) are able to price options under log-stable uncertainty, but only
by making the extreme assumption of maximally negative skewness.

This paper demonstrates that when the observed distribution of prices is
log-stable, the Risk Neutral Measure (RNM) under which asset and derivative
prices may be computed as expectations is not itself log-stable in the problematic
cases. Instead, the RNM is determined by the convolution of two densities, one
negatively skewed stable, and the other an exponentially tilted positively skewed
stable. The resulting RNM gives finite expected payoffs for all parameter values,
so that the concerns of Samuelson and Merton were in fact unfounded, while
the Carr and Wu restriction is unnecessary.

Since the log-stable RNM developed here is expressed in terms of its charac-
teristic function, it enables options on log-stable assets to be computed easily by
means of the Fast Fourier Transform (FFT) methodology of Carr and Madan
(1999), provided a simple extension of the FFT, introduced here, is employed.
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According to the Generalized Central Limit Theorem, if the sum of a large
number of identically and independently distributed (IID) random variables has
a non-degenerate limiting distribution after normalizing location and scale, the
limiting distribution must be a member of the stable class (cf. Samorodnitsky
and Tagqu 1994, Uchaikin and Zolotarev 1999). Asset price changes are the
multiplicatively cumulative outcome of a vast number of contributing factors,
making it natural to assume that log returns are stable, so that returns them-
selves are log-stable. The normal or Gaussian distribution is the most familiar
member of the stable class, and the only one with finite variance. However,
log returns are commonly too leptokurtic to be normal, and often are skewed
as well. This consideration makes the non-Gaussian stable distributions a nat-
ural, not to mention parsimonious, choice for modeling log returns (McCulloch
1996a).

However, the heavy upper tail of most stable distributions makes the ex-
pectation of the corresponding log-stable distribution infinite. This fact left
Paul Samuelson (as quoted by Smith 1976: 19) "inclined to believe in [Robert]
Merton’s conjecture that a strict Lévy-Pareto [stable] distribution on log(S5*/S)
would lead, with 1 < o < 2, to a 5-minute warrant or call being worth 100 per-
cent of the common." Merton (1976: 127n) further conjectured that an infinite
expected future price for a stock would require the risk-free discount rate to be
infinite, in order for the current price to be finite.

In a recent paper in this Journal, Carr and Wu (2003) are able to price
options under log-stable uncertainty, but only by making the very restrictive
assumption that log returns have maximally negative skewness, in order to
give the returns themselves finite moments. While stock returns often exhibit
negative skewness, it is only in rare instances that they appear to be maximally
negatively skewed. Furthermore, prices such as foreign exchange rates obviously
cannot always be negatively skewed, since their reciprocals, which are equally
exchange rates, must have the opposite skewness.

The present paper shows how the Risk-Neutral Measure (RNM), a risk-
adjusted density under which asset and derivative prices may be computed as
expectations in an arbitrage-free market, can be derived from the underlying
distribution of marginal utilities in a simple representative agent model. It
then derives the characteristic function (CF) of the RNM when the Frequency
Measure (FM), which governs the empirically observable distribution of returns,
is a general log-stable distribution. Rather than being stable itself, the RNM for
log-stable returns is shown in general to be the convolution of two densities, one
a maximally negatively skewed stable density, and the other an exponentially
tilted maximally positively skewed stable density. This RNM leads to finite
asset and derivative prices, even when the corresponding FM has an infinite
mean. [t follows that above-mentioned concerns of Samuelson and Merton were
unfounded, and that the finite moment restriction of Carr and Wu is not required
to obtain reasonable asset and option prices under log-stable distributions.

The paper then goes on to show how the CF of the RNM can be used to



quickly evaluate options for a general log-stable FM, by means of a variant on
the Fast Fourier Transform (FFT) methodology introduced by Carr and Madan
(1999). A mathematically equivalent formula (McCulloch 1996a) has already
been used by McCulloch (1985, 1987) and Hales (1997) to evaluate options on
bonds and foreign exchange rates, without the finite moment restriction of Carr
and Wu, but only by means of tedious numerical integrals interpolating off tables
of the maximally skewed stable distributions. The stable RNM CF presented
here therefore greatly facilitates the pricing of log-stable options.!

I. Asset Pricing and the RNM in General

As in the representative agent model of McCulloch (1996a: §4), the price of
an asset at future time T is taken to be

St = Uy /Uy,

where U; is the agent’s random future marginal utility of the numeraire in which
the asset is priced, and U, is the random future marginal utility of the asset
itself. Let g(Uy, Us) be the joint pdf of U; and U, conditional on information at
present time 0, so that the FM, in terms of the cumulative distribution function
(cdf) of St, is

F(x) = Pr(Sr <z)=Pr(Us <zl;)

oo zU;
//Q(UlaUZ)dUZdUh
0 "o

whence the FM probability density function (pdf) for St is

f(l') = U1g(U1,$U1)dU1

0\8

oo

é / h(vr, o1 + log(x))dvs, (1)

— 00

where h(vi,ve) = UyUsg(Ur,Us) is the joint pdf of v; = log(U;) and vy =
log(Usz). The FM, in terms of the pdf for log(St), is then

p(z) = ef(e)

o0

/ h(v1,v1 + 2)dvy, (2)

—00

where z = log(x).

1A GAUSS program, STABOPT, which performs this evaluation, is available to researchers
on the author’s homepage at <http://econ.ohio-state.edu/jhm/jhm.html>.



Let F be the explicit or implicit forward price in the market at present time
0 on a contract to deliver 1 unit of the asset at future time 7', with unconditional
payment of F units of numeraire to be made at time 7. Then the first order
condition for the representative agent’s expected utility to be maximized at the
equilibrium 0 net position in this contract is

F = EU,/EU,. (3)

If the asset in question is a stock with no valuable voting rights before time
T that pays dividends in stock at rate d per year, and if p is the default-free
interest rate at time 0 on numeraire-denominated loans maturing at time 7', its
implicit forward price can be computed from the time 0 spot price Sy using

F= Soe(pid)T.

Let r(z) be the density of the RNM in the market at time 0 for state-
contingent claims at time 7. By definition, r(x)dx gives the value, in terms
of numeraire payable unconditionally at time T, of 1 unit of numeraire payable
only on the condition that St € [z,z + dz). The first order condition for the
representative agent’s expected utility to be maximized at the equilibrium 0 net
position in this contract then implies that r(z) is simply the FM, adjusted for
the state-contingent value of the numeraire:

- E(U1|U2/U1 = .’E)

Since
E(U.|U:/U; = =x)
= E(e"|veg =v1 +logx)
/ e’ h(vy,v1 + logz)dvy
/ h(v1,v1 + log x)dv;
it follows that -
1
r(r) = 2EU, /e”lh(ful,vl + log x)duv . (4)
0

As may be seen by comparing (1) and (4), the FM and RNM are two different,
but not unrelated, transforms of the underlying joint density h(vy,vs).

It is often natural to assume that the distribution of St /Sy, and therefore
that of log(St/Sy), is independent of Sy. In practice, therefore, Carr and



Madan (1999) in fact evaluate options in terms of the RNM for the log of price,
whose density, in the general case, is

q(z) = er(e?)
ELUl/e”h(v,v—i—z)dv. (5)

— 00

In order to streamline the notation, the subscripts on vy in (5) et seq. have been
suppressed. The Carr and Madan formula for option prices is then based on
the CF or Fourier Transform (FT) of this density:

/ etq(2)dz

_ 1 T v+izt
= I / /e h(v,v + 2z)dvdz, (6)

cfq(t)

where i = /—1.
IT. The RNM with Log-Stable Distributions

A random variable Z has a standard stable distribution S(«, ) with density
sap(2) iff its log characteristic function is

- —|t|*[1 — 48 sgn(t) tan (0)] a#1
log cf (1) = log Be'? = {7 ’ ’ 7
0g cfas(t) = log Fe {|t [1 +iﬁ% sgn(t) 10g|t\] , a=1, (7)
where a € (0,2] is its characteristic exponent, 5 € [—1,1] is its skewness para-

meter, and 6 = /2. The random variable X = 0 + ¢Z then has the general
stable distribution S(a, B, ¢, d) with density

1 T—0

. §) = =54
S(.T, o, B¢, ) CS ,3( c ) (8)
iff its log CF is
logcfapes(t) = FEeXt
= it + cfq (ct) 9)
i0t — |et|® [1 — iBsgn(t) tan (ra/2)], «a # 1,
= _ s (10)
i0t + |ct|[1 + iB=sgn(t) log |ct|], a=1,

where ¢ € (0,00) is the standard scale, and § € (—o0,00) is the location pa-
rameter.?  Since the case o = 1 requires special treatment unless 5 = 0, its

2Equation (9) and therefore (10) follow DuMouchel (1971) and McCulloch (1996b), ¢.v.,
in the "afocal" case & =1, 8 # 0, so that the location-scale relationship (8) will be valid for
all a.



consideration is deferred to Appendix 2 below. Subsequent equations in the
present section therefore may not apply in that special case.

Three properties of stable distributions are particularly important for the
present discussion:?

Property 1:
X~ S(a,B,¢,0) = —X ~ S(a, =, ¢, —9).
Property 2:
Xl ~ S(a,ﬁl,cl,Sl), Xg ~ ind. S(Oé,ﬂz,Cg,(Sg) >
X3 :X1+X2N5(a,ﬁ3,(33,53), (11)
where
§ = G+
8, = i f1 + 50
3 g
03 = 01+ 09. (12)

Property 3:*
X ~ S(a, B,¢,0), A complex with R(A) > 0 =

_ — 2, <1
E AX 00, a < 2, 1
¢ { exp(—AJ — A%c@sech), S =1, (13)

or equivalently,

2, B>-1
E AX 00, a <z, 14
¢ { exp(Ad — A%csecl), f=—1. (14)

Properties 1 and 2 imply that as long as v; and vy are stable with a common
a, the FM of
log Sp = v2 —v1 = vy + (—v1)

will also be stable, with the same a. However, in order to keep the expectations
in (3) etc. finite, Property 3 requires that v; and ve both have 8 = —1, as
assumed by McCulloch(1996a).  Nevertheless, this does not prevent log St
itself from having the general stable distribution

lOgST ~ S(O{,B,C,é),

3See Uchaikin and Zolotarev (1999), Samorodnitsky and Taqqu (1994), and McCulloch
(1996a) for further properties of stable distributions.

4Equation (13 ), given by Carr and Wu (2003: Property 1.3), is equivalent, after a change
in notation, to Theorem 2.6.1 of Zolotarev (1986: 112). For complex A, A% is to be interpreted
as |A|* exp(a Arg(X)), where the principal argument Arg(X\) € (—m, «].




since its skewness 8 will, by Property 2, be intermediate between +1 and —1,
the exact value being determined by the relative scales ¢; and ¢y of v; and vs.
In the simplest case, v; and v, are independent®, with

vy ~ S(a,—1,¢1,0)
vy ~ind. S(a,—1,ca,9).

(15)

Properties 1 and 2 then imply that ¢; and ¢o can be backed out of ¢ and 5 by

a = (1+p)/2) ",
e = (1-8)/"c
Property 3 then implies
EU, exp(—c{ sech), (16)
EUs; = exp(d — cgsech),
whence by (3) and Property 2,
F = 65+Bc°‘ sec9. (17)
Model (15) now implies
h('Ul, ’UQ) = 8(7}1; «a, 71a C1, O)S(UQ; «, 717 C2, 5)
Furthermore, (8) implies
s(w+z; a,8,¢,0) = s(v+z—10; a,B,¢0)
= S(Z; O[,,B,C,(s*'l/), (18)

so that by (5) we have

q(z) =

— 1 ’U(.
= e’s(v;

—00

! / e’s(v;
EU, ’

a,—1,¢1,0)s(v+ z; a,—1,co,d)dv

a,—1,¢1,0)s(z; a,—1,¢9,0 —v)dv

Substituting into (6), reversing the order of integration, and using (10), (16)

5McCulloch (1996a) generalizes (15) somewhat by allowing v1 and vz to have a common,

also negatively skewed, component. However, the common component has no effect on the
distribution of the log price or on option values, and hence is omitted here for simplicity. See
Concluding Remarks below for further discussion.



and (18), we have the following for the CF of q(z):

cf,(t) = B / /e””“s(v; a,—1,¢1,0)s(z; o, —1,¢2,0 — v)dvdz
—00 —00
1 oo oo
= /e”s(v; a,—l,cl,O)/eiZts(z; a,—1,¢2,0 —v)dzdv
= 1 / e's(v; a,—1,¢1,0) cfy —1,c0.5—0(t)dv
EU] ) ’ s C1, ,—1,c2,
—o0
1T e
_ v 1(6—v)t—|cat|¥ (14isgn(t) tan 0) . -1
0 /e e s(v; a,—1,¢1,0)dv
— 00
oo
— ec‘l"se09+i6t7|c2t\°‘(1+sgn(t)tan@)/e(lfit)vs(v; Oé,—l,Cl,O)dU.

Since 1 — 4t has a positive real part, Property 3 now implies
logcf,(t) = cffsecO+idt — |cat|“(1 +isgn(t) tand) — (1 —it)¥cf secd
= 0t — |cot|“(1 4+ isgn(t) tand)) + c¢f secO(1 — (1 —it)<)
1—
= i(log F' — Bc“ secO)t — Tﬂ let|“[1 + isgn(t) tan 6]

1
LL1Eh

c*secf(l — (1 —it)*) (19)

Since the log CF of the convolution of two densities is the sum of their
respective log CFs, it may be seen from (19) that q(z) is such a convolution of
two densities. The first of these, whose log CF is

5 b |ct|*(1+isgn(t) tan 6) = i6t—|cat|* (144 sgn(¢) tan 0)

i(log F'—Bc® secO)t—

is simply the max-negatively skewed stable density of vy. It may be seen from
(29) in Appendix 1 that the second density, whose log CF is

1+

c¥secf(l — (1 —it)*) = cfsech(l — (1 —it)%), (20)
is an exponentially tilted stable distribution with parameters o, "c¢"=c1, A =1,
and "0"= 0. In other words, it is the max-positively skewed stable density of
—v1, that has been exponentially tilted by a factor of e~*, and then normalized.
The RNM q(z) is therefore a hybrid combination of two different, but related,
distributions, the one a negatively skewed stable distribution, and the other an
exponentially tilted positively skewed stable distribution.
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Figure 1: The coincident FM and RNM for F =1, a=15,8=—-1,c=1.

In the case § = —1, ¢c; = 0 and ¢ = ¢, so that the RNM and the FM
coincide with

q(z) = o(z) = s(z; a,—1,¢,log F' + ¢* sec ).

Figure 1 shows the common RNM and FM density for the particular case F' =1,
a=158=—-1¢c=15 Thecase f = —1 is equivalent to the "Finite Moment
Log Stable Process" of Carr and Wu (2003). Their model should give exactly
the same option values as McCulloch (1996a) in this case.

For 8 > —1, however, the RNM and FM diverge, as shown in Figures 2 and
3 for § =+41and 8 =0, resp. In both Figures, F', o, and ¢ remain as in Figure
1.

In Figure 2, with 8 = 1 and therefore ¢; = ¢ and ¢y = 0, the maximally
positively skewed FM

o(z) = s(z; a,+1,¢,log F' — ¢ sech)

6The densities in Figures 1-3 were computed from the CFs in the paper in GAUSS, using
the inverse FFT with 28 points and an implied log-price step of 278.  Note, however,
that GAUSS proc "FFT" generates what is generally understood by the inverse FFT, while
"FFTI" generates the FFT itself.
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Figure 2: The divergent FM and RNM for F =1, a=15,8=+41,c=1.

is the mirror image of that in Figure 1, while the RNM is the exponentially
tilted mutant of the FM.

In Figure 3, with 8 = 0 so that ¢; = ¢co = 2-1/¢, the symmetric stable FM
is the convolution of two maximally skewed distributions with the same shape
as the FM’s in Figures 1 and 2 but somewhat smaller scale. The RNM of
Figure 3 is the convolution of a reduced-scale version of the skew-stable density
in Figure 1 with a similarly reduced-"c" (and therefore tighter but somewhat
heavier tailed) version of the tilted stable RNM of Figure 2.

For smaller values of ¢, the shape difference between the RNM and FM is not
so obvious to the eye, since then the primary effect of the exponential damping
is far out in the upper tail, where the stable density is already small. The shape
difference between the RNM and FM likewise diminishes as « increases toward
2.

When o = 2, a stable distribution becomes normal with mean § and variance
0% = 2¢2, and f3 loses its effect on the shape of the distribution, though not on
the relation between log F' and 6. The FM becomes N (log F+ 302 /2, 0?), while
the RNM has log characteristic function

cf,(t) = i(log F — 02 /2)t — o*t% /2, (21)

10
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which is that of the N(log F' — 02/2,0?) distribution. In the log-normal case,
the RNM and FM therefore both have the same Gaussian shape in terms of log
price, with the same variance. They differ only in location, by the observable
risk premium (3 + 1)o?/2 that is determined by 3, i.e. by the relative standard
deviations of log Uy and logUs. This comes about because a downwardly ex-
ponentially tilted normal distribution is just another normal back again, with
the same variance but a reduced mean.

It should be noted that except in the finite moment cases a = 2 and g = —1,
the population equity premium ES7/F — 1 is infinite under a log-stable FM.
For any finite sample, the sample equity premium will be finite with probability
1, but a large average excess arithmetic return does not necessarily indicate an
"Equity Premium Puzzle" per Mehra and Prescott (1985).

ITI. Option Pricing with the Stable RNM

Let C(X)be the value, in units of numeraire to be delivered at time 0, of a
European call entitling the holder to purchase 1 unit of the asset in question
at exercise (or strike) price X, at, but not before, time T. Then by definition
of the RNM, its value must be the discounted expectation of its payoff under
either r(z)or q(z):

cX) = e*pT/maX(O,:er)T(:r)das
0

= 7T /(ez—X)q(z)dz. (22)

log X

Similarly let P(X) be the value of a European put option allowing the owner
to sell one unit of the asset at time T at exercise priceX, so that

PX) = e_”T/max(O,X—m)r(m)dm
0
= T / (X —€e*)q(z)dz=. (23)

Equation (6) in Carr and Madan (1999) may be used to evaluate call options
directly from the Fourier transform of (22), provided

EQ(S5) < oo

for some tilting coefficient a > 0, where E9 denotes the expectation under the
RNM q(z). However, since the tilting factor built into the RNM is necessarily
unity, the above expectation is only just finite for a = 0, and infinite for any
larger value, so that the method of their (6) will not work in the log-stable case.

12
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Figure 4: OTM option value function V(X) for « = 1.5, 8 = 0, ¢ = .1, and
F =100, with p = d = 0.

It is therefore instead necessary to use an approach similar to Carr and
Madan’s alternative formula (14). Define the out-of-the-money (OTM) option
value function V(X) by V(X) = P(X) for X < F and V(X) = C(X) for
X > F. By put-call parity, P(F) = C(F) for any RNM, so that V(X) is
continuous at F. It is also known that it is monotonic and convex on either
side of F. Figure 4 depicts V(X) for « = 1.5, 5 =0, ¢ = .1, and F' = 100,with
p=d=0.

With no loss of generality, we may measure the asset in units such that
F =1. Following Carr and Madan,” the Fourier Transform of v(z) = V(e?) is
then f(t—i)—1

pcfg(t =) —
o) = =T

When ¢ = 0, this formula takes the value 0/0, but the limit may be evaluated

L 0. (24)

"Carr and Madan in fact base their (14) on a function which equals P (X) when X is less
than the spot price Sp and C'(X) otherwise. This unnecessarily creates a small discontinuity
which can only aggravate the Fourier inversion. The present function V(X) avoids this
problem, with the consequence that (24) is in fact somewhat simpler than their (14).

13



by means of I’'Hépital’s rule. In the stable case, using (19), this becomes

6,(0) = —e " secd <B + ! ; ﬁa) .

Unfortunately, however, the function v(z) has a cusp at z = 0 corresponding
to that in V(X) at X = F, so that numerical inversion of (24) by means of the
discrete inverse FFT results in pronounced spurious oscillations in the vicinity
of the cusp. The problem is that the ultra-high frequencies required to fit
the cusp and its vicinity are omitted from the discrete Fourier inversion, which
only integrates over a finite range of integration instead of the entire real line.
Increasing the range of integration progressively reduces these oscillations, but
never entirely eliminates them.

However, the fact that increasing the range of integration does give improved
results allows the FFT inversion results to be "Romberged" to give satisfactory
results, as follows: Start with a large number of points N = Ny, with a log-
price step Az = ¢y/27/N (or a round number in that vicinity if desired), and
a frequency-domain step At = 27/(N Az). Then quadruple N to Ny = 4N,
and then again to N3 = 16N1, halving both step sizes each time, so as to double
the range of integration each time, while obtaining values for the original z grid.
Each of the original N7 z values now has 3 approximate function values vy, va,
and v3 that are converging on the true value at an approximately geometric rate
as the grid fineness and range of integration are successively doubled. The true
value may then be approximated to a high degree of precision at each of these
points simply by extrapolating the geometric series implied by the three values
to infinity:

Voo = VU3 +

1 f p(US - 'UQ),

where p = (v3 — v3)/(ve —v1). The residual error may then be conservatively
estimated by computing vy using Nyg = N7 /4, repeating the above procedure
using vo, v1, and vz, and assuming that the absolute discrepancy between the
two results is an upper bound on the error. It was found that for o« > 1.3,
N; = 219 usually gives a maximum estimated error less than .0001 relative to
F =1, though occasionally N; = 2 is necessary.® Put-call parity may then
be used to recover C'(X) and/or P(X),as desired, from V(X) = v(log X).

The above procedure gives the value of v(z) at Ny closely spaced values of z,
and therefore V(X)) at N; closely spaced values of X. Unfortunately, however,
these will ordinarily not precisely include the desired exercise prices, and because
of the convexity of V(X)) on each side of the cusp, linear interpolation may give
an interpolation error in excess of the Fourier inversion computational error.

8For the financially less relevant values of a < 1.3, the infinite first derivative of the imag-
inary part of (24) at the origin causes additional computational problems. These problems
become even worse for aw < 1.0, when the imaginary part becomes discontinuous at the origin.
No attempt was made in the present study to overcome these problems.

The reader may wish to experiment with recovering the Laplace density function
.5 exp(—|z|), which has a similar cusp at the origin, from its characteristic function 1/(1+¢2),
by means of the Romberg-FFT inversion described in the text.

14



Nevertheless, cubic interpolation on C(X) and/or P(X) using two points on
each side of each desired exercise price gives very satisfactory results.

Fourier inversion of (24) using the stable RNM (19) is mathematically equiv-
alent to the stable option pricing formula given by McCulloch (1996a: (53)),
which has already been used by McCulloch (1987) and Hales (1997) to evalua-
tion options on foreign exchange options. However, the latter method requires
tedious numerical integrals using maximally skewed stable density values inter-
polated off of tables. The method described in the present paper is both simpler
and faster.

Maturing options create special problems for Fourier inversion of the Carr
and Madan equation (14) that lead them to employ a hyperbolic sine function
to transform their value function in this case. However, far-out-of-the-money
stable call options (with log(X/F) >> ¢) and put options (with log(X/F) <<
—c) may be evaluated directly (see McCulloch 1996a: 414) using

hﬁ}% — ¢ TF(1 + B)¥(a, X/F)
and P(X

IR
where

W) = S | (loga) " —aa [ ¢t
log x

_ F(O{)ﬂ-slna [(logz)—a _ Oz:L’F(*Oé,lOg :Ij):l , (25)

and

o0

I'(a,z) = /e_tta_ldt

is the incomplete gamma function, which is defined for z > 0 for ¢ > 0 and for
z >0 when a < 0. Integration by parts yields the recursion’

I'a+1,z) =z%"*+al(a,z) (26)
whence (25) may be further simplified to

I'(«)sind

U(a,z) = -

z (1 — a,log ). (27)

Routines which compute the gamma distribution CDF P(a, z) = 1-T'(a, 2)/T'(a)
may be used to recover I'(a, z), but only for a > 0, since P(a,z) =1 for a <0

9Note that (26) implies that the more familiar recursion I'(a + 1) = aI'(a) is valid only for
a>0. Fora<0,TI(a) =T(a,0)= oo, while (26) becomes I'(a) =T'(a + 1)/a + oco.

15



and z > 0. Nevertheless, (27) may still be evaluated using such routines, at
least for o # 1, by one further application of the recursion (26).1°

In an a-stable Lévy motion, the scale ¢y that accumulates in T' time units
is ¢;TY*. Therefore maturing OTM stable options may be evaluated directly,
without Fourier inversion or the hyperbolic sine transform, using

l%%(C(X)/T) = So(1+ B)ci¥(a, X/So),

Hm(P(X)/T)

X(1 = B)ei ¥ (e, So/X). (28)

McCulloch (1985) used (28) to evaluate the put option implicit in deposit
insurance for banks and thrifts that are exposed to interest rate risk, but un-
necessarily evaluated the incomplete gamma integral numerically.

It is well known that the RNM whose CF is given by (21) yields the Black-
Scholes (1973) option pricing formula. The log-stable option pricing formula
implied by (19) and (24) therefore nests the Black-Scholes formula in the case
a=2.

IV. Directions for Further Research

The present paper assumes for simplicity that the log marginal utilities vy
and vy are independently distributed. However, they could still be negatively
skewed stable, and still lead to a general stable log St, with a much more general
bivariate stable distribution with spectral mass anywhere in the closure of the
third quadrant (see, e.g., McCulloch 1996a: §2.3). Except in the rather special
case of a common component that affects both v; and ve equally, considered
already by McCulloch (1996a) and shown to have no effect on asset or option
pricing, it is not clear whether these more general bivariate stable distributions
would lead to the same relationship between the FM and the RNM presented
here. If not, there may be more than one RNM for any given stable FM. This
issue deserves further research.

Hurst, Platen and Rachev (1999) price options on log-symmetric stable as-
sets using the well-known theorem of Bochner that if a normal distribution is
subordinated in variance to a positive stable distribution with o/ < 1 and 8 =1,
the resulting distribution is symmetric stable with @ = 2a’ (see, e.g., Samorod-
nitsky and Taqqu 1994: Proposition 1.3.1). They then evaluate options as the
expectation of the Black-Scholes (1973) formula under the subordinating pos-
itive stable distribution. The formula of McCulloch (1996a: (53)), which is
mathematically equivalent to Fourier inversion of (24), is not restricted to the
symmetric case, but even when it is evaluated at § = 0, the two formulas do
not look at all alike. It is not clear at present whether the two formulas give
equivalent option values in this case, or why there would be a difference if they
do not.

10%(1.0001, z) and ¥(0.9999, 2) differ by at most 6 parts in 10,000 for x between 1.001 and
10, so ¥(1,z) may simply be computed as the average of these two values, to an accuracy of
at least 3 parts in 10,000 in this range.
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V. Conclusion

The Generalized Central Limit Theorem makes the stable distributions a
particularly natural assumption for the empirically observed distribution of log
asset returns. Early on, however, both Paul Samuelson and Robert Merton were
discouraged from believing that assets and derivatives such as options could be
reasonably priced under these distributions because of their the infinite first
moment. In a recent article in this Journal, Carr and Wu (2003) do price
options under log-stable uncertainty, but only by means of a very restrictive
assumption on the stable distribution parameters.

The present paper employs a simple representative agent expected utility
argument to derive the Risk-Neutral Measure (RNM), a risk-adjusted proba-
bility measure under which assets may be priced as expectations, for a general
log-stable empirical distribution. It is shown that the RNM is not, as in the
log-normal case Samuelson and Merton were familiar with, a simple location
shift (in logs) of the empirical distribution. Instead, the RNM corresponding
to a log-stable empirical distribution in general has a different shape, with an
exponentially damped upper tail. This RNM has finite moments, and leads to
reasonable asset and option prices.

Because the RNM for log-stable uncertainty is developed here in terms of
its Fourier Transform, it is now possible to use the inverse Fourier Transform
approach of Carr and Madan (1999) to numerically evaluate log-stable options
by means of the Fast Fourier Transform (FFT) algorithm, without the restrictive
assumption of Carr and Wu (2003). The paper introduces a simple extension
of the FFT procedure in order to overcome a technicality that arises.

A GAUSS program implementing the required computations is available to
researchers on the author’s website.
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Appendix 1:
Exponentially Tilted Stable Distributions

An exponentially tilted positively skewed stable demsity with parameters «,
¢, 6, and A > 0 has density

fes(z;a,c,6,)) = ke ™ *s(x; a, +1,¢,6),
where k is a normalizing constant to be determined. Its CF, using stable
distribution Property 3 with a # 1, is
cfis(t) = k / e "e T\ s(z; , +1, ¢, 6)da

— 00
o0

k/e*()‘*“)ms(x;aﬂrl,c,é)d

— 00

= kexp(—(A—it)d — (A —it)*c™ sech),

where, as in the text, § = ra/2. Since for any CF, ¢f(0) = 1, we must have
k = exp(Ad + A% sech),

whence
log cfys(t) = @0t 4 ¥ sec G(A* — (A — it)?) (29)

The second density (20) in the CF (19) of the RNM q(z) is therefore tilted stable
with § =0, c = ¢, and A = 1, i.e. e~ * times the density of —v; and normalized.
Figure 2 illustrates a positively skewed stable distribution (the FM), along with
the corresponding A = 1 tilted stable distribution (the RNM).

The tilted stable class may be written as a location-scale family, with location
0, scale s = 1/, and shape parameters « and v = (cA)® sec 6, as follows:

logcfs(t) = @0t + (1 — (1 — its)®)

Note that a change in ¢ by itself is not a pure change in the scale of the tilted
stable distribution itself, unless A is at the same time changed in the inverse
proportion. Changing ¢ by itself does tighten or relax the distribution, but at
the same time changes its shape.

One can, mutatis mutandis, equally tilt a maximally negatively skewed stable
with et**. It is not, however, possible to tilt a stable distribution with 8 €
(—1,1) in either direction, since then fe“s(az;a,ﬂ,c, 0) would be infinite for
any value of A # 0.

Tilted stable distributions have already been used in the context of option
pricing by Vinogradov (2002), who points out that for a € (1,2], they are
a special case of the Tweedie distributions, and generate what are known as
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Hougaard processes. He notes that exponential tilting of a density is known as
the Esscher Transformation. If I understand his option pricing model correctly,
he is valuing options as their discounted expected payoff under an exponentially
tilted stable distribution like the RNM of Figure 2, under the assumption that
So equals the discounted expectation of S under this distribution. According
to the present model, this is the correct procedure for valuing options when the
FM itself is stable with 8 = 1, provided the tilting coefficient A is unity. It
would not, however, be the correct procedure if the FM were tilted stable, unless
log U, were for some reason tilted stable and log U; were nonstochastic, so that
assets were priced as if investors were risk-neutral.

The "truncated Lévy distribution" used by Boyarchenko and Levendorskii
(2000) and Cartea and Howison (2002) to value options is in fact the convolution
of two tilted stable distributions, one skewed left and tilted right, and the other
skewed right and tilted left, with a common « and A but perhaps different
stable scales. As these authors note, both tails of the resulting density are
exponentially damped. The density itself is not, however, exponentially tilted.
It is not clear what FM, if any, would correspond to such an RNM.
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Appendix 2:
The Case Alpha = 1.

Unless 8 = 0, the case a = 1 requires special treatment of both the CF and
the location parameter. This paper follows DuMouchel (1971) and McCulloch
(1996b) in specifying the CF in such a way that the location-scale property (8)
will hold. This in turn implies (9), and therefore (10), with ¢ multiplying the
t inside the log. Omitting this factor of ¢, as is done, e.g. by Samorodnitsky
and Taqqu (1994), results in a non-location-scale family.

Under (9), (12) becomes

b3 =01+ 0z + %(5363 log(B3cs) — Bye1log(Bicr) — Bz log(Byc2))
For X ~ S(1,41,¢,0) and R(A) > 0, (13) becomes
Ee X = exp(—\d + %C)\ log(cA)),
while for X ~ S(1,—1,¢,d) and R(A) > 0, (14) becomes
EeM = exp(\d + %C)\ log(cA)).

Furthermore, the suitably normalized tilted positively skewed stable density
ke ?s(x; 1,1,¢,8) now has log CF

log cf;(t) = idt + % [e(A —it)log(c(A — it)) — cAlog(cA)],

in place of (29).
Setting
v o~ S(l,*l,cl,dl),
vz~ 5(17_1762762)7 il’ld.,

log ST ~ S(1, 8, ¢, d), where now

0 = 09—01+ 2(ﬁclogc —c1loger + calogea)
0

1-3 148

62— 81+ =((1— ) log

‘We then have

2
EU;, = exp(d1+ =cilogey),
™
2
EU; = exp(ds + —caloges),
™
2
F = exp(d2 —01+ ;(02 logcz — c1logey))

= exp(d— 2ﬁclog c),
T
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and
. .2
logcty(t) = i(d2 — 1) — |cat|[1 — z;sgn(t) log |eat]]
2
+;[01(1 —it)log(c1(1 —it)) — ¢1log cq].
As for a # 1, the RNM is the convolution of the max-negatively skewed

stable density of vo with an exponentially tilted mutation of the max-positively
skewed stable density of —v1, using a unitary tilting coefficient.
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