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Abstract

The monetary policy literature has recently devoted considerable
attention to Taylor-type rules, in which the interest rate set by the cen-
tral bank depends on measures of inflation and aggregate output. We
show that if policy-makers attempt to choose the optimal rule within
a Taylor-type class they may be led to rules that generate indetermi-
nacy and/or instability under learning. This problem is compounded
by uncertainty about structural parameters. We advocate a procedure
in which policy-makers restrict attention to rules that lie in the deter-
minate stable region for all plausible calibrations, and which minimize
the expected loss, computed using structural parameter priors, subject
to this constraint.

JEL classification: E52, E32, D83, D84.

Keywords : Monetary Policy, Taylor Rules, Indeterminacy, E-stability,
parameter uncertainty, robust rules.

1 Introduction

The development of tractable forward looking models of monetary policy,
together with the influential work of [25], has lead to considerable interest
in the performance of Taylor-type interest rate rules.1 These rules take the
nominal interest rate as the policy instrument and direct the central bank

1For a recent survey and extended analysis, see [24].
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to set this rate according to some simple (typically linear) dependence on
current, lagged, and/or expected inflation and output gap, and possibly on
an inertial term generating interest rate smoothing. Extended Taylor-type
rules would allow for a dependence also on observable exogenous shocks.

While these simple policy rules have clear advantages, it has been noted
by a number of authors, e.g. [1], [29], [23] and [5], that the corresponding
models exhibit indeterminate steady-states for large regions of the reasonable
parameter space. This is undesirable because associated with each indetermi-
nate steady-state is a continuum of equilibria depending on extraneous vari-
ables known as “sunspots”, and the particular equilibrium on which agents
ultimately coordinate may not exhibit wanted properties.

The existence of sunspot equilibria raises the question of whether it is
plausible that agents will actually coordinate on them if they follow sim-
ple adaptive learning rules. Although [28] has shown that stable sunspots
can exist in simple overlapping generations models,2 the sunspot solutions
in many calibrated applied models are lacking this necessary stability. For
example [7] show that sunspots in the Farmer-Guo model are unstable, and
[11] describe a stability puzzle surrounding the lack of stable indeterminacies
in a host of non-convex RBC-type models. The New Keynesian Monetary
model, however, has led to the discovery of cases involving forward looking
Taylor rules in which sunspot solutions are stable under learning for certain
representations of these solutions, see [17] and [12].3

In [12] we modified the theory of common factor representations to apply
to models of monetary policy and found that if the policy rule was forward
looking then the associated model exhibited stable common factor sunspots
for some parameter values; and further, that this type of stable indeterminacy
can exist for reasonable values of the structural and policy parameters. This
result raises a natural question: if policy makers are choosing the parameters
of their policy optimally (as measured by some standard loss function), is it
still possible for the resulting economy to yield stable indeterminacy? This
question is the first issue our paper seeks to address. If it is possible for
unconstrained optimal policy to lead to this result then policy makers would
be well advised to constrain their optimization problem by searching only
among those rules that yield stable determinacy. Equally troubling would

2For the local stability conditions see [6] and [10].
3See [13] for a thorough discussion in the univariate case of the alternative representa-

tions of sunspot solutions. This paper shows that “common factor” sunspots can be stable
under learning even when other standard representations are not.
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be cases where unconstrained optimization leads to unstable determinacy or
unstable indeterminacy.

We begin our analysis of optimal policy by simply appending to the mod-
els we studied in [12] a government criterion representing a loss in the volatil-
ity of output gap and inflation. We consider a several calibrations of the
New-Keynesian relations including purely forward-looking and inertial spec-
ifications.

For each of a variety of Taylor-type rules (i.e. policy rules that condi-
tion only on endogenous variables) we use numerical methods to compute
the optimal policy. We find that, in case forward-looking models are con-
sidered, the resulting economy may yield stable indeterminacy; it may also
yield stable determinacy, unstable indeterminacy, and unstable determinacy,
depending on calibrations and policy rules. Thus, when a Taylor-type rule
is used, our question is answered and policy makers are strongly cautioned:
unconstrained optimal policy may yield undesirable outcomes.4 On the other
hand, we find that inertial specifications may mitigate this danger. When rel-
atively high degrees of inertia are present in the IS and AS relations, optimal
policy appears to always render stable determinacy.

Next we turn to the analysis of extended Taylor-type rules, i.e. policy
rules that depend on exogenous shocks as well as endogenous variables. [8]
showed that these types of rules may be able to implement the unconstrained
optimal REE, that is, the REE that, independent of policy, minimizes the
government’s criterion. In particular, these authors constructed two policy
rules consistent with the optimal REE: one depending only on lagged output
gap and current shocks, and the other also depending on expectations. When
closed with the former rule, the economy was always unstable and possibly
indeterminate, but when closed with the latter rule, the economy was always
stable and determinate. In our analysis of extended Taylor-type rules, we
characterize all possible forward looking rules capable of implementing the
optimal REE, and then study their associated stability and determinacy

4Some of these issues were previously investigated by [21], who evaluated optimal policy
for several classes of Taylor-type rules. Our analysis goes beyond theirs in several ways.
They restricted attention to optimal policy given their specific estimated model, whereas
we investigate policy across calibrations. Secondly, we consider stability under learning,
as well as indeterminacy, and investigate the apparent gains to policy rules inside the
unstable and/or indeterminate regions. Third, we examine optimal policy when policy
makers have uncertainty about structural parameter values and make explicit allowance
for this uncertainty.
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properties. We find that “optimal policy” can yield unstable indeterminacy
and stable determinacy, as pointed out by Evans and Honkapohja, but that
it also may result in stable sunspots. These results are particularly worrying
since a numerical search algorithm, if left unconstrained, cannot distinguish
between the stable determinate Evans-Honkapohja-rule, and a rule yielding
a potentially far worse result.

The dangers described in above demand prescription and we turn to this
in Section 5. Most obviously, we advise policy makers to restrict attention to
policy rules that result simultaneously in stability and determinacy. However,
this necessary restriction may not be sufficient to guarantee good outcomes:
a rule that is optimal and yields stable determinacy with respect to one
calibration may result in stable sunspots with respect to another calibration.
This point holds regardless of whether inertial specifications are considered
and whether extended Taylor-type rules are used. To address this problem of
parameter uncertainty, we consider the existence of “robust” policy. At issue
here is whether there exist policy rules yielding stable determinacy across
calibrations. If so, we can employ techniques such as those advocated by [2].
That is, we show how to obtain a policy rule that meets the constraint that
it is stable determinate across calibrations and that is the optimal choice
within this class, based on prior probabilities for the alternative calibrations.
We find that for each form of Taylor-type rules, such a constrained optimal
policy exists, and we report its computation.

We next employ the same technique, incorporating structural parameter
uncertainty, to extended Taylor-type rules. We first note that, while for a
given known calibration, a fully optimal such policy exists that is also stable
and determinate, the intersection of these regions across calibrations appears
to be empty. This forcefully illustrates the strong and binding nature of
the constraint that the chosen policy rule be stable and determinate across
calibrations. We then proceed to show how to implement our procedures
for choosing the optimal constrained policy when parameter uncertainty is
present.

The paper is organized as follows. Section 2 develops the theory neces-
sary construct common factor representations and analyze their stability in
the context of multivariate monetary models. Also, the specification of the
government’s criterion, as well as the method used to compute its value, is
described. The work in this section is done with respect to Taylor-type rules,
but we note that it is straightforward to apply the same techniques to the
extended Taylor-type rules as well. Section 3 presents the results on Taylor-
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type rules, including figures containing graphs of policy indifference curves.
Section 4 presents results on extended Taylor rules. Section 5 presents the
analysis of optimal policy under parameter uncertainty and Section 6 con-
cludes.

2 Theory

In this section we develop the theory necessary to analyze the stability of
sunspot equilibria and the evaluation of the government’s objective, thus
allowing for the derivation of optimal policy. We begin by specifying the
models of interest. Then, for expedience, we choose a particular specification
and develop the associated equilibrium representations and learning analysis.
It is straightforward to modify this developed theory for application to other
model specifications, and thus we omit the details concerning these other
models. Finally, we describe the policy maker’s problem and show how to
compute the value of the criterion for given structural and policy parameters.

2.1 Monetary Models and Policy Rules

We study optimal policy using several variants of the New Keynesian Mone-
tary model. All specifications have in common the following forward looking
IS-AS curves:

IS : xt = −φ(it − Etπt+1) + δEtxt+1 + (1 − δ)xt−1 + gt (1)

AS : πt = β(γEtπt+1 + (1 − γ)πt−1) + λxt + ut (2)

Here xt is the proportional output gap, πt is the inflation rate, and gt and
ut are independent, exogenous, stationary, zero mean AR(1) shocks with
damping parameters 0 ≤ ρg < 1 and 0 ≤ ρu < 1 respectively.

The first equation is a formulation of the forward-looking IS curve amended
to include inertia. This functional form may be obtained from a linearized
model of optimization behavior on the part of consumers. In some cases
we also allow for an inertial term xt−1 present due to habit formation: see
for example [22]. The second equation is the forward-looking Phillips curve.
When γ = 1, equation (2) is the pure forward-looking New Keynesian “AS”
relationship based on “Calvo pricing,” and employed in [4] and Ch. 3 of [30].5

5For the version with mark-up shocks see [30] Chapter 6, Section 4.6.
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Here 0 < β < 1 is the discount factor. Again, this equation is obtained as the
linearization around a steady state. The specification of the AS curve in the
case 0 < γ < 1 incorporates an inertial term and is similar in spirit to [14],
the Section 4 model of [15], and the Ch. 3, Section 3.2 model of [30], each
of which allows for some backward looking elements. Models with 0 < γ < 1
are often called “hybrid” models, and we remark that in some versions, such
as [14], β = 1, so that the sum of forward and backward looking components
sum to one, while in other versions β < 1 is possible.6

This structural model may be closed by specifying a policy rule describing
how interest rates are set. The region and nature of a model’s indeterminacy
depends critically on the specification of this policy rule. To better under-
stand the role of this specification, we analyze a number of policy rules, which
we parameterize as follows:

PR1 : it = απEtπt + αxEtxt (3)

PR2 : it = αππt−1 + αxxt−1 (4)

PR3 : it = απEtπt+1 + αxEtxt+1 (5)

We previously studied the determinacy and stability properties of this set
of rules (as well as others) in [12], but here we consider the issue of optimal
policy. PR1, PR2, and PR3 are the rules examined by [3]. We have omitted
the intercepts for convenience, and in each policy rule πt can be interpreted
as the deviation of inflation from its target. These are all Taylor-type rules
in the spirit of [25]. We assume throughout that απ, αx ≥ 0 and thus the
αππt term in PR1 indicates the degree to which monetary policy authorities
raise nominal interest rates in response to an upward deviation of πt from its
target.

Taylor’s original formulation specified dependence on current values of
endogenous variables; but the assumption that current data on inflation and
the output gap are available to policymakers when interest rates are set has
been met with criticism: see for example [19]. [3] look at three natural al-
ternatives: a slight modification of Taylor’s formulation yields PR1 in which
policy makers condition their instrument on expected values of current infla-
tion and the output gap; in PR2 policy makers respond to the most recent
observed values of these variables; and in PR3 they respond instead to fore-

6To remain consistent with the work of [?], when we include inertia in our analysis, we
set β = 1.
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casts of future inflation and the output gap.7

This list of rules is far from exhaustive. In particular, it is quite natural to
include dependence on fundamental shocks, as well as analyze more general
rules which nest PR1 - PR3 as special cases; in fact, some forms of these more
general rules allow for the implementation of the best possible equilibrium as
measured via the government’s objective. We consider some of these more
general rules below, but to provide better context, we put off their discussion
until Section 4.

2.2 Determinacy

As usual, the model is said to be determinate if there is a unique nonexplosive
REE and indeterminate if there are multiple nonexplosive solutions.8 The
determinacy of a model can be analyzed by writing the reduced form equation
as a discrete difference equation with the associated extraneous noise terms
capturing the errors in the agents’ forecasts of the free variables. If the
nonexplosive requirement of a rational expectations equilibrium pins down
the forecast errors, that is, if the dimension of the unstable manifold is equal
to the number of free variables, then the model is determinate. On the other
hand, if the errors are not pinned down, that is, if the dimension of the
unstable manifold is less than the number of free variables, these forecast
errors can capture extrinsic fluctuations in agents’ expectations that are not
inconsistent with rationality. In this case, multiple equilibria exist; these
types of equilibria are sometimes called sunspots.

The methodology for assessing determinacy is well known, and we refrain
from presenting the details. For the monetary models and interest rate rules
considered in this paper the specifics are given in our earlier paper [12]. If
the model is indeterminate, we can distinguish between the cases of order
one and order two indeterminacy, depending on whether they are driven by
one or two dimensional extraneous sunspot variables. Furthermore, the set of
sunspot solutions has alternative representations, a point that is important
if one is interested in whether sunspot solutions are stable under learning.

7Because at the moment we are assuming rational expectations and a common informa-
tion set, we do not need to specify whose forecasts are represented in the interest rate rules
(3) and (5). We will return to this matter when we discuss the economy under learning.

8By “nonexplosive” we mean that the conditional expectation of the absolute value of
future variables is uniformly bounded over the horizon. For a detailed discussion of this
and related concepts see [13].
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Again, these issues are discussed at length in [12].

2.3 Learning

If the model is determinate, so that there is a unique non-explosive REE
(rational expectations equilibrium), it is desirable that the solution be stable
under learning. By this we mean that there is convergence to the solution if
private agents in the economy estimate and update the coefficients of their
forecast functions using least squares regressions. Because the models are
self-referential, i.e. the evolution of the economy depends on how agents form
expectations, the stability of an REE under least squares learning cannot be
taken for granted.

More specifically, the structural model combined with the interest rate
rule can be written in reduced form as follows:

yt = AE∗
t yt+1 +BE∗

t yt + Cyt−1 +Dĝt, (6)

where y′t = (xt, πt). We now write E∗
t to indicate that we no longer impose

rational expectations, and at issue is how agents form their time t expecta-
tions E∗

t . In the determinate case the unique nonexplosive solution takes the
form

yt = a+ byt−1 + cĝt, (7)

for particular values of ā, b̄ and c̄.
Under least squares learning (7) is treated as the econometric specification

of a forecasting rule, the parameters of which are estimated updated by the
private agents. The specification is often referred to as a Perceived Law of
Motion (PLM). Combining these regressors into the vector X ′

t = (1, y′t−1, ĝ
′
t)

and writing the parameters as Θ = (a, b, c), the PLM can be written as yt =
Θ′Xt. Under learning agents obtain least squares estimates Θt = (at, bt, ct)
using data through time t and then use the estimated PLM to form their
forecasts E∗

t yt+1, which in turn influence the path of yt. The question is then
whether or not (at, bt, ct) → (ā, b̄, c̄) as t→ ∞. If so, we say that the solution
is stable under learning.

We use expectational stability as our criterion for judging whether agents
may be able to coordinate on specific solutions, including in particular sunspot
equilibria. This is because, for a wide range of models and solutions, E-
stability has been shown to govern the local stability of REE under least
squares learning. In many cases this correspondence can be proved, and in
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cases where this cannot be formally demonstrated the “E-stability princi-
ple” has been validated through simulations. For a thorough discussion of
E-stability see [7].

The E-stability technique is based on a mapping from the PLM to the
corresponding Actual Law of Motion (ALM) parameters. For the case at
hand, if agents believed in the PLM (a, b, c) then their corresponding forecasts
would be given by E∗

t yt+1 = a+bE∗
t yt+cE

∗
t ĝt+1. Using E∗

t yt = a+byt−1 +cĝt,
and assuming for convenience that ρ is known so that E∗

t ĝt+1 = ρĝt, yields

E∗
t yt+1 = (I2 + b)a+ b2yt−1 + (bc+ cρ)ĝt.

Inserting E∗
t yt and E∗

t yt+1 into (6) and solving for yt as a linear function of
an intercept, yt−1 and ĝt yields the corresponding ALM parameters induced
by the PLM.

a → A(I2 + b)a+Ba (8)

b → Ab2 +Bb+ C (9)

c → A(bc+ cρ) +Bc+D. (10)

Equations (8)-(10) defines a mapping from PLM parameters Θ to the
ALM parameter T (Θ). The REE Θ̄ = (ā, b̄, c̄) is a fixed point of this map
and it is said to be E-stable if it is locally asymptotically stable under the
differential equation

dΘ

dτ
= T (Θ)− Θ. (11)

The E-stability principle tells us that E-stable representations are locally
learnable for Least Squares and closely related algorithms. That is, if Θt

is the time t estimate of the coefficient vector Θ, and if Θt is updated over
time using recursive least squares, then Θ̄ is a possible convergence point,
i.e. locally Θt → Θ̄, if and only if Θ̄ is E-stable. Computing E-stability
conditions is often straightforward, involving computation of eigenvalues of
the Jacobian matrices of (11).

Determinacy and stability under learning are clearly desirable properties
for a policy rule. If a policy rule yields indeterminacy then in addition to
the intended REE there exist other solutions depending on sunspot variables
that may be substantially inferior, in terms of the policy makers objective
function. If the policy rule yields determinacy but is unstable under learning,
then the economy will fail to converge to the intended solution. The earlier
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literature has shown that these are independent properties and so both must
be checked.

A further issue of considerable interest is whether, in the case of indeter-
minacy, the sunspot solutions are stable under learning. Recent research has
found that sunspot solutions can in some cases be stable under learning in
monetary models of the type considered here, and that stability can depend
on the particular representation of the solution that forms the basis of the
agents’ PLM.9 For example, “General Form Representations,” which here
would take the form

yt = a+ byt−1 + hyt−2 + cĝt + fĝt−1 + eξt,

with the sunspot ξt an arbitrary one or two-dimensional martingale difference
sequence, appear never to be stable under learning. However “Common
Factor Representations,”

yt = a+ byt−1 + cĝt + dζt,

where ζt = λζt−1 + ε̆t is an exogenous one or two-dimensional sunspot with
“resonant frequency” parameter λ, have in some cases been found to be stable
under learning.

2.4 Government’s Behavior

The model is closed via inclusion of the policy rule; however, the parameters
of the policy rule are still free. These parameters may be pinned down by
imposing optimizing behavior on the part of the government. As is standard
in the literature, we assume, for the government’s criterion, a loss function
that is quadratic in π and x.10 The government chooses its policy parameters
to minimize this criterion subject to the structural model of the economy.
For example, if we are analyzing PR1, then we assume the government faces
the following problem:

min
αx,απ

ψV ar(x|α) + V ar(π|α) (12)

such that the interest rate is determined by PR1 and equations (1) and (2)
hold. Here ψ is the relative weight assigned to the variance of the output gap,

9See [17] and [12].
10This is consistent with a second order approximation to expected average utility: see

[30].
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and V ar(·|α) is the unconditional variance of “·” given the policy parameters.
Note the number of choice variables, i.e. the number of policy parameters,
available to the government depends on the policy rule being considered.
Here the government has only two choice variables, but for the more general
rules considered below this number may increase to nine.

The value of the government’s objective may be computed by determin-
ing the rational expectations equilibrium associated to the relevant policy
parameters α; however, in the indeterminate case, this value is not well de-
fined due to the presence of multiple equilibria. Thus we are required to
choose an equilibrium from the many available; for the analysis in this paper
we choose the “minimal state variable” solution, i.e. a solution of the form
yt = a + byt−1 + cĝt, and in case there are multiple such solutions, we take
the loss to equal the minimum of across solutions of this form.11

We think of the government’s problem described above as being uncon-
strained. It is unconstrained in the sense that the government, when choosing
its optimal policy, does not restrict attention to the region corresponding to
stable determinacy. It is our contention that when not constrained the solu-
tion may advocate a policy yielding instability, indeterminacy, or both.

3 Results on Taylor-type Rules

Our central concern in this section is to investigate the possibility that uncon-
strained optimization may result in undesirable outcomes. More specifically,
we seek to determine whether simply choosing the policy that imparts an
MSV solution minimizing the government’s objective can imply indetermi-
nacy, instability, or even the presence of stable sunspots. We will find that
for forward-looking specifications of the model, all these outcomes are pos-
sible, as well as is the prefered outcome of stable determinacy, and thus we
are led to the recommendation that optimal policy should be formed subject
to the constraints implied by stability and determinacy.

Analytic results are not tractable and so we proceed numerically. We
restrict attention to Taylor rules of the form (3)-(5) and analyze each policy
with respect to three different calibrations of the parameters in the IS-AS
curves, as due to [29], [5], and [20], as well as a fourth Variant calibration
consistent with estimates reported in the literature; the relevant parameter

11If no lagged variables are present in the structural model or in the policy rule then
the (unique) minimal state variable solution takes the form yt = a + cĝt.
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values are given in Table 1 below. All calibrations have in common ρg =
ρu = .9. For each calibration we consider two inertial specifications: the
usual purely forward looking specification in which β = .99 and δ = γ = 0;
and a lagged specification in which β = 1 and δ = γ = .5, which is largely
consistent with the estimations of [22].12 Finally, the conditional variance of
g and u must be specified in order to compute the value of the government’s
objective. For all analysis presented, we take this variance to be .1.13

Table 1: Calibrations14

Name φ λ
W 1/.157 .024
V 1/.157 .3

CGG 4 .075
MN .164 .3

For each policy rule, calibration and inertial specification, and for objec-
tive weights ψ ∈ {.1, 1, 10}, a lattice was analyzed in the region of policy
space given by 0 ≤ αx, απ ≤ 5, where αx and απ are meant to represent
the weight on output gap and inflation respectively regardless of the speci-
fication of the policy rule. The stability and determinacy properties of the
model corresponding to each lattice point were computed, and the value of
the government’s objective was determined. These values were then used to
numerically compute contours, hence a graphical representation of the gov-
ernment’s indifference curves was obtained. Finally, a numerical optimization
algorithm was used to compute the optimal policy parameters constrained
to lie with the specified 5 × 5 benchmark policy space.

3.1 General Results

Table 2 below presents a complete summary of the results obtained in our
numerical analysis for the non-inertial specification. In this table is recorded

12Setting β = 1 in case of inertia in the Phillips curve imposes that the sum of the
weights on inflation is unity as is consistent with many, but not all, of the associated
theoretical models.

13Not surprisingly, altering the value of the conditional variance appears only to change
the value of the government’s objective at the optimum, and not the parameter values cor-
responding to optimal policy or the stability and determinacy properties of the associated
economy.

14The calibrations are for quarterly data, and so the CGG estimates have been adjusted
accordingly.
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the value of the government’s objective, and the stability and determinacy
properties of the equilibrium associated to optimal policy, for all permuta-
tions of policy rules, calibrations, and objective weights. To identify the
stability and determinacy properties, we use the notation SD (stable de-
terminacy), UD (unstable determinacy), SI (stable indeterminacy), and UI
(unstable indeterminacy). For example, under the W calibration, using PR1,
and assuming ψ = 1, the optimal policy yields a stable determinate equilib-
rium and results in an objective value of 42.25. An objective value marked
with an asterisk indicates that across rules it is the smallest value associated
to that calibration and objective weight: see Section 3.4 below.

Table 2: Forward-Looking Model

Calibration PR ψ = .1 ψ = 1 ψ = 10
1 29.84∗ SD 42.25∗ SD 44.09∗ SD

W 2 31.39 UI 134.22 UI 1094.03 UI
3 29.84∗ SI 42.25∗ SI 44.09∗ SI
1 .58 SD 5.17 SD 25.21∗ SD

V 2 .53∗ UI† 4.59∗ UI 38.02 UD
3 .58 SI 5.17 SI 25.21 SI∗

1 7.73 SD 30.07∗ SD 42.31∗ SD
CGG 2 7.38∗ SD 40.73 SD 295.25 UI

3 7.73 SI 30.07∗ SI 42.31∗ SI
1 1.70 SD 6.17 SD 28.40∗ SD

MN 2 1.52∗ SD 5.99∗ SD 28.54 SD
3 2.03 SD 6.46 SD 28.99 SD

Note: Those values of the objective marked with an asterisk represent the
minimum across policy rules for fixed calibration and lag structure. Also the
symbol † indicates a solution that is very near the origin. In these cases there
is typically a solution not near the origin and within the 5 × 5 space that
yields a value for the objective function close to the optimum. This alternate
solution may be SD or UI.

This table indicates the main result of this paper: unconstrained optimal
policy may produce SD, UD, SI, or UI. In particular, the constraint of sta-
ble determinacy may well be binding and must therefore be imposed when
computing optimal monetary policy – not only do regions of UI, UD, and SI
exist, but indeed optimization algorithms may seek them out; against this
possibility policy makers must stand guard.
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The table also provide a caveat to this result, though perhaps not a partic-
ularly important one. If policy makers are confident that the model’s struc-
tural parameters are consistent with the findings of McCallum and Nelson,
then they should have no fear of choosing policy associated to undesirable
outcomes. However, given the varied opinion in the literature of the appro-
priate values for the structural parameters, it seems likely that policy makers
would not, or at least should not, feel that confident about their estimates.

We now turn to some case specific results. Originally, Taylor specified an
interest rate rule conditioned on current levels of inflation and output gap.
However, as mentioned above, some regard this rule as infeasible as the Fed
is unlikely to have access to the necessary data. The rules specified by (3) -
(5) are feasible variants of Taylor’s formulation, and perhaps the most closely
related to Taylor’s rule is PR1, which, we remind the reader, is given by

PR1 : it = αxEtxt + απEtπt.

The stability and determinacy properties of the purely forward-looking
New Keynesian model (1), (2) closed with PR1 have been characterized an-
alytically by [3]. They found that the regions in policy space corresponding
to determinacy and stability coincide – in particular, there are no stable
sunspots – and this desirable feature inclined the authors to recommend this
rule.15 The argument in favor of PR1 is considerably strengthened by the
results in the table. Under this rule, for all calibrations and governmental
objectives concerned, the resulting optimal policy is stable and determinate;
and, this is the only rule for which SD always obtains.

Figure 1 presents our numerical analysis under the W calibration with
ψ = .1. In this and all figures the contours represent the indifference curves
for the government. Regions corresponding to SD, SI, etc. are separated
by bold curves. In Figure 1 there are two regions: UI, corresponding to the
southwest corner of the figure; and SD in the complement. The large black
dot represents the location of the optimal policy parameters as determined
by the search algorithm.

Figure 1, W PR1 ψ = .1 No Lag Here

We note that the optimal policy chosen by the search algorithm (and
consistent with the contours) lies on the eastern boundary of our artificially

15[12] extended the result of Bullard and Mitra to include inertia in the Phillips Curve,
the further strengthening the argument for rules of PR1 form.
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constrained 5 × 5 policy space. And indeed, this constraint is binding; if
the search algorithm considers a 100 × 100 grid, it selects a point again
near the boundary (and again, SD). On the other hand, the flatness of the
government’s objective, as is evidenced by the contours, imparts little benefit
to expanding the parameter space: the optimal value of the objective for the
100 × 100 grid is 29.8348 and for the 5 × 5 grid is 29.8351, a difference of
.001%.

While the benefits of using PR1 are evident, many economists advocate
specifying a rule depending on expectations of future inflation, arguing that
anticipatory responses may diminish the usual policy lag and also may help
anchor agents’ expectations. Our version of a forward looking policy rule is
(5), as given by

it = αxEtxt+1 + απEtπt+1.

Before giving the results we discuss the interpretation of this rule under
learning. Under least squares learning private agents are assumed to recur-
sively estimate the parameters of their PLM and use the estimated forecast-
ing model to form the expectations E∗

t πt+1 and E∗
t xt+1 that enter into their

decisions as captured by the IS and AS curves. Under PR3 forecasts also
enter into the policy rule. Because we are now relaxing the rational expec-
tations assumption, one can in principle distinguish between the forecasts of
the private sector, which enter the IS and AS curves, and the forecasts of
the Central Bank, which enter policy rule PR3. We will instead adopt the
simplest assumption for studying stability under learning, which is that the
forecasts for the private sector and the Central Bank are identical. This can
either be because private agents and the Central Bank use the same least
squares learning scheme, or it could be because one group relies on the oth-
ers’ forecasts. In the latter case, for example, the Central Bank might be
setting interest rates as a reaction to private sector forecasts, as in [1] or [9].

The homogeneous expectations assumption was adopted in [3].16 They
found, in case of a purely forward looking AS curve, that determinate equilib-
ria were stable under learning, and also that for some parameter values, there
may be stable MSV solutions associated to indeterminate steady-states. In
[12] we extended this result to include Phillips curves with explicit inertia,

16The implications of heterogeneous expectations in the context of the New Keynesian
monetary model is examined in [18]. This issue is further discussed in [9]
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and further showed that stable common factor sunspot equilibria may exist.17

Now, back to results. A quick glance at Table 2 reveals a picture quite
different from PR1. Here, we see that optimizing policy makers may choose
rules that result in SI, which implies the existence of stable sunspots. Indeed,
only the MN calibration is free of this possibility. Figure 2 presents the results
for PR3 under precisely the same calibration, etc. as was used in Figure 1.
And notice that almost all the features of the graph, including the shape
and values of the level curves, and the location of and value at the optimum,
are essentially identical. However, much of the region which, in Figure 1
corresponded to SD, here corresponds to SI.

Figure 2, W PR3 ψ = .1 No Lag Here

The existence of stable indeterminacy associated to rules of the form
PR3 is troubling because policy makers consider forecasts of future variables
when considering policy moves; though, the mere presence of bad outcomes
for some policy choices is not necessarily damning. However, the results
presented here cast aside any doubt that the existence of stable sunspots is
a minor concern; these results imply not only the presence of bad outcomes,
but moreover that unconstrained optimizing behavior may in fact result in
these outcomes obtaining.

The lagged version of the Taylor rule, PR2, as given by

it = αxxt−1 + αππt−1,

yields some interesting behavior not witnessed with PR1 or PR3. As noted
by Bullard and Mitra, there exist determinate cases for which the REE is
not stable under learning. We find that in fact these cases may be selected
by optimizing policy makers. As an example, consider Figure 3. Here we see
an optimum within the region of unstable determinacy.

Figure 3, V PR2 ψ = 10 Here

3.2 Flatness of the Objective

As mentioned above in our discussion of Figure 1, there is a tendency for
the government’s objective function to be very flat near the optimum. This

17[17] found stable finite state Markov sunspots associated to PR3; see [12] for a discus-
sion of the relationship between their result and ours.
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has the potential benefit of rendering precision irrelevant when attempting to
determine the optimal policy, but also this flatness may be detrimental due
to the difficulty of pinning down an optimal rule in the presence of multiple
nearly optimal rules.

As an example, consider again the W calibration with either PR1 or PR3

and with ψ = .1. Figure 2 suggests that the objective is nearly flat for a
non-empty sub-region of the benchmark space, and perhaps even constant
along a positively sloped line. To analyze this possibility more closely, we
had the optimization algorithm solve the policy problem twice, thus yielding
two different optimal policies (both yielding essentially the same value for the
objective). These two points were used to construct a line with the following
specification: αx = .433απ − .365. We then allowed απ to vary from 1 to
5, used our constructed line to choose αx, and computed the value of the
government’s objective. The result is plotted in Figure 4. Here a dashed
line indicates the corresponding model is SD and a solid line indicates SI.
As suspected, the government’s objective is almost constant across these
parameters.18

Figure 4 here

3.3 The Inertial Specifications

Analysis of the inertial specifications reveals that including lags in the IS
and AS relations may mitigate the negative results obtained in the forward-
looking model. Indeed for the relatively high levels of inertia considered in
our calibrations, optimal policy always resulted in a determinate model with
a stable equilibrium. On the other hand, low levels of inertia present results
similar to those obtained in the purely forward-looking case: optimal policy
may be consistent with stable sunspots. This raises the interesting issue of
how much inertia is required to preclude “bad” optimal policy; we intend to
investigate this question more carefully in a future version of the paper.

3.4 Optimum across Rules

We have thus far considered the implications of policy making via uncon-
strained optimization, under the restriction that policy makers are compelled

18Extending the line to απ = 100 does not alter this finding.
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to use a rule of a specified functional form. It is reasonable to assume, how-
ever, that policy makers may choose among rules of different functional forms
when making decisions; and further, that allowing for this possibility may
overturn the generally negative results obtained above. In particular, per-
haps for each calibration and objective weight, the optimum across rules
yields stable determinacy. The information provided by the table allows us
address this question. In the table, for fixed calibration and objective weight,
the rule(s) yielding the lowest loss value are marked with an asterisk. We
find that even optimizing across rules does not provide a foolproof solution.
For example, in case of the variant calibration, the optimum across rules
yields UI for ψ = .1, 1. Also, for many specifications, PR1 and PR3 produce
the same or nearly the same minimum value of the government’s objective,
but where as PR1 yields SD, in many of these cases PR3 results in stable
sunspots.

4 Results on Extended Taylor-type Rules

The previous section analyzed policy rules which depended on the model’s
endogenous variables; however, such a restriction is not necessary. Indeed it
may be possible for policy makers to view fundamental shocks and if these
shocks contain information orthogonal to that provided by the endogenous
variables then policy makers would do well to condition their policy accord-
ingly.

In this section we model optimal extended Taylor-type rules in precisely
the same way we modeled Taylor-type rules above. The government takes
the form of the rule, as well as the structural model of the economy, as given,
and chooses the parameters of the rule to minimize its loss function.

Rules depending on fundamental shocks have been studied by [8].19 These
authors showed that the optimal unconstrained equilibrium – that is, the
REE yielding the minimum value of the loss function, independent of the
policy rule: see equation (15) below – may be implemented by two different
policy rules, each dependent on fundamental shocks; and furthermore, the
stability properties of the optimal equilibrium and the determinacy properties
of the associated model depend on the form of the policy rule chosen. Because
of the close connection between their work and ours, we review their work

19Giannoni and Woodford have also studied optimal policy rules dependant upon ex-
ogenous shocks for a host of IS and AS specifications. See [16] for details.

18



briefly here. Then, noting that a modification of the government’s first order
conditions nicely connects their work to ours, we proceed to characterize all
possible rules that implement the optimal equilibrium, as well as to consider
how the stability and determinacy properties change across policy rules.

4.1 The Results of Evans and Honkapohja

Using the same non-inertial New-Keynesian structural model employed here,
and assuming the timeless perspective, Evans and Honkapohja (EH) impose
that optimal monetary policy is derived from the following objective:

Et

∞∑

s=0

βs(π2
t+s + ψx2

t+s). (13)

As shown by Woodford and others, under commitment the optimal REE
must satisfy

λπt = −ψ(xt − xt−1). (14)

This dynamic equation may be combined with the AS curve to obtain a
representation of the unique optimal REE given by

yt = Ayt−1 +Bĝt, (15)

where y = (x, π)′, ĝ = (g, u)′, and both the second column of A and the first
column of B are zero: see equations (9), (10), in [8].

To obtain an interest rate rule consistent with this optimal REE, the
representation (15) may be used to form expectations, which may then be
imposed in the IS curve; the associated optimal interest rate rule is thus
obtained, having the form

it = δxxt−1 +
1

φ
gt + δuut. (16)

However, EH proceed to show that the economy described by (16) together
with the structural IS-AS curves (1) and (2), may be indeterminate, and the
equilibrium represented by (15) is never stable.

An alternate construction of an interest rate rule consistent with the
optimal REE proceeds as follows. Solve the optimality condition for πt and
impose this equation into the AS curve (2), isolating xt. Combining the
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resulting equation with the IS curve (1) and solving for it yields an interest
rate rule of the form

it = α̂f
xEtxt+1 + α̂f

πEtπt+1 + α̂L
xxt−1 + α̂ĝ

ggt + α̂ĝ
uut, (17)

where the hats on the policy parameters are meant to distinguish this rule
– the EH-Rule – from the general rule (19) below.20 EH show that, when
combined with the IS-AS curves (1) and (2), the above rule yields a stable
determinate equilibrium, where, of course, the unique REE is necessarily the
optimal REE (15).

4.2 The Modified EH-Rule

Following Woodford and others, Evans and Honkapohja choose a discounted
sum of expected future losses as their objective, and impose commitment by
assuming the timeless perspective. This is in contrast to our model, which
takes as the objective a loss in unconditional variances. Though different, our
objective is closely related to the discounted sum (13). Indeed, our objective
is simply a scalar multiple of the average value of (13), where the average is
taken across initial conditions.

Because our objective differs from the discounted sum analyzed by EH,
and because the timeless perspective is not designed to be fully optimal
(more on this point in a moment) it is possible that rules exist that provide
performance as measured by our objective superior to the EH-Rule. In fact,
Jensen and McCallum (JM) [Cite Here] show that there are even relations
of the form (14) that are superior to the timeless perspective. In particular,
they recommend a relation of the form

λπt = −ψ(xt − βxt−1), (18)

and document numerically its superior performance.
The existence of relations like (18) that yield lower average objective

values than the timeless perspective is not surprising when one recalls the
timeless perspective is not designed fully optimal. Indeed the value of the
objective (13) depends upon the initial state of the economy, and the solution
to the associated optimization problem advises the government to condition
its policy on this initial state differently than it conditions its policy on

20The policy parameters α̂ may be written in terms of the structural parameters.
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subsequent realizations. It is precisely for this reason that the fully optimal
policy is not time consistent.

In the sequel, we will be interested in characterizing optimal policy rules,
as well as comparing the numerically computed objective value implemented
by constrained rules with the objective evaluated at the optimal REE. Be-
cause our government’s objective is equivalent to the average discounted ob-
jective (13), we take the JM relation (18) as defining the optimal REE. It is
then straightforward to compute the associated rule of the form (17), which
we call the modified EH-Rule, and use it to implement the optimal REE.21 It
is also easy to compute an alternative modified rule of the form (16), which
leads us to the next section.

4.3 The Optimal Policy Manifold

That there are two possible policy rules consistent with the optimal REE
begs the question, “what does the collection of all policy rules consistent
with the optimal REE look like, and what are the associated stability and
determinacy properties?” We address this question by characterizing the
collection of all policy rules (restricted within a certain class) that are capable
of implementing the optimal REE, where here and for the remainder of the
section, the optimal REE refers to the REE obtained by combining (18) with
the AS curve under the assumption of no inertia. We postulate a general
policy rule of the form

it = αfEtyt+1 + αLyt−1 + αĝ ĝt, (19)

where αf = (αf
x, α

f
π), α

L = (αL
x , α

L
π ), and αĝ = (αĝ

g, α
ĝ
u). Imposing rationality

implies that (19) must reduce to (16) when the optimal REE (15) is used
to form expectations.22 Thus our goal is to find policy parameters α which
allow for this reduction.

21We compared the value of the government’s objective when evaluated at the REE
implemented by the modified EH-rule with the value of the government’s objective when
evaluated at the REE implemented by the policy recommended by the search algorithm
under the condition that the modified EH-Rule was available as a choice for the search
algorithm. We found that the modified EH-Rule and the search algorithm yielded essen-
tially identical results, and further that these results were better than the result obtained
when the original EH-Rule was employed.

22The coefficients in (15) and (16) are now assumed modified to account for (18).
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Using the optimal REE (15), we may form expectations and impose these
expectations into (19). The resulting policy rule depends only on yt−1 and
ĝt and thus defines a map T : R6 → R1×2 ⊕ R1×2 as determined by

it = T1(α)yt−1 + T2(α)ĝt. (20)

It is straightforward to compute

T1(α) = αfA2 + αL

T2(α) = αf (AB +Bρ) + αg

The policy parameters α are consistent with the optimal REE provided (20)
is the same as (16), or, more precisely

T1(α) = (δx, 0)

T2(α) = (
1

φ
, δu).

It is not difficult to show that optimal policy requires αĝ
g = 1/φ and

αL
π = 0. The remaining four policy parameters face only two constraints,

suggesting that, depending on regularity conditions, the collection of optimal
policy rules is characterized by a 2-manifold in 4-space. In fact, one can use
a program such as Mathematica to solve for any two of the policy parameters
in terms of the remaining policy parameters and structural parameters, thus
fully parameterizing the manifold of optimal policy.23

To study the impact on stability and determinacy of using alternate op-
timal policy rules we parameterize the optimal policy manifold by solving
for αL

x and αĝ
u in terms of αf

x, α
f
π and structural parameters. Then, for each

point on a lattice over the 5 × 5 (αf
π, α

f
x) benchmark policy space we com-

puted the stability and determinacy properties of the model closed with the
corresponding optimal policy: see Figure 5. For this figure, the V param-
eterization was used, with the modification that λ = 1; admittedly this is
a value of λ that is larger than estimates found in the literature, but it is
consistent with certain theoretical models: see for example (CITE HERE).
We use this calibration for emphasis and note that while less dramatic, the

23The parameterization obtained using Mathematica is too complex to be worth record-
ing here.
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same conclusions apply to other calibrations. The large dot is the location
of the modified EH-rule.24

Figure 5 Here

Figure 5 demonstrates that while rules capable of implementing the opti-
mal REE abound, at least for the modified V calibration a large proportion of
these rules have associated to them either stable or unstable indeterminacy.
This result is punctuated by the location of the EH-rule: while it does lie in
the region of stable determinacy, this region is a small oasis surrounded by a
sea of trouble, and because all policies represented in this figure implement
the optimal REE, an unconstrained optimizer can not distinguish between
the oasis and the sea.

4.4 Discussion

In Section 3 on Taylor-type rules, we used numerical analysis to compute the
REE yielding the minimum value of the government’s loss function subject
to the constraint that the policy rule take on a certain functional form. In
this section, we found that by relaxing that functional form to include fun-
damental shocks, the unconstrained optimal REE may be obtained; and fur-
thermore, multiple rules are consistent with its implementation.25 However,
the properties of the economy depend upon the rule chosen to implement the
optimal REE: some rules yield stable determinacy while others yield stable
or unstable indeterminacy. An unconstrained optimization program will not
distinguish between such rules as the objective is flat across the associated re-
gions in parameter space. Therefore, this result strongly advocates imposing
stability and determinacy constraints when searching for optimal policy.

24Note that in contrast to the exercises producing the figures in the previous section,
when producing Figure 5 the policy parameters not referenced in the figure (such as αL

x ,
etc) are allowed to vary; in fact, they are required to vary in order to maintain a rule
consistent with the optimal REE.

25Woodford has pointed out that the optimal rule must be history dependant, and
therefore can not be strictly forward-looking. In particular, it must depend on lagged
variables: as we see here, our optimal rule always depends on xt−1.
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5 Robust Optimal Policy

The results of the previous sections warn of the need to constrain policy
choices, and we now turn to the implementation of this warning. For a given
calibration and functional form for the policy rule, computing the optimal
constrained policy is straightforward: solutions can visualized using the in-
difference curves and graphic representations of the model’s characteristics
that were presented earlier; and numerically, constrained optimization algo-
rithms may be employed. Furthermore, in case a non-inertial model is taken
as well representing the economy, the optimal REE may be implemented us-
ing the modified EH-rule. However, the wisdom of restricting attention to a
particular calibration is questionable given the varied estimates of structural
parameters available in the literature. Importantly, a rule which performs
well with respect to one calibration, may perform quite poorly with respect
to another. For example, suppose the true parameters are consistent with
the non-inertial Woodford calibration, and ψ = 1. If the government uses
PR3, believes the parameters are in accordance with the MN calibration, and
restricts attention to rules which result in stable determinacy, then the as-
sociated optimal policy, when combined with the IS and AS relations under
Woodford calibration, will result in an economy exhibiting stable sunspots.
This observation holds regardless of the presence of inertia. Similarly, if the
government attempts to implement fully optimal policy using the modified
EH-rule, stable sunspots will also obtain. We conclude that robustness with
respect to alternate calibrations is critical.

The method of robust analysis we prescribe when faced with model uncer-
tainty is based on the work of [2]. Put simply, these authors suggest assigning
a distribution over possible models consistent with the priors of the policy
maker. The value of the policy maker’s objective may then be computed as
the expected value of the objective conditioned on this prior distribution.

We implement the method suggested by [2] in our constrained setting by
assignment probabilities to the various calibrations. We consider two sets of
priors: one which includes inertial models (called “lag models” below), and
one which gives positive weight only to purely forward looking models. We
assign the weights according to the following table:

Table 3: Weights
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W V CGG MN W-Lag V-Lag CGG-Lag MN-Lag
No lag .3 .1 .3 .3 0 0 0 0
Lag .15 .05 .15 .15 .05 .15 .15 .15

We use a procedure in the spirit of Brock et al method to compute optimal
robust policy subject to the constraint that the policy rule have a specified
functional form.

5.1 Robust Taylor-type Rules

We begin by considering robust rules that depend only on endogenous vari-
ables. Specifically, we consider PR1 – PR3, with the additional possibility of
including an interest rate smoothing term parameterized by θ. It is straight-
forward to verify that for each policy rule among PR1 – PR3, and for each
weight ψ, there is a policy pair α so that the associated model is stable
determinate for all calibrations, thus the constraint set of our optimization
problem is non-empty for all policy rules. Using Matlab to perform the op-
timization, subject to stability, determinacy, and αx, απ ∈ [0, 5], θ ∈ [0, 1],
we obtained the results presented in the following tables corresponding to
ψ = 1:

Table 4.1: Robust Taylor-Type Constrained Optimal Policy: No Inertia

Policy Rule Restriction αf
x αf

π θ Value

PR1
θ = 0 5 3.78 – 27.05

θ ∈ [0, 1] 1.38 .81 1 25.44

PR2
θ = 0 .16 1.19 – 78.6

θ ∈ [0, 1] .31 .39 1 54.45

PR3
θ = 0 .26 1.36 – 52.38

θ ∈ [0, 1] .48 1.05 .51 31.96

Table 4.2: Robust Taylor-Type Constrained Optimal Policy: Inertia
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Policy Rule Restriction αf
x αf

π θ Value

PR1
θ = 0 2.44 5 – 112.85

θ ∈ [0, 1] .69 1.16 1 109.96

PR2
θ = 0 .18 1.60 – 162.37

θ ∈ [0, 1] .35 .94 1 145.40

PR3
θ = 0 .24 1.49 – 129.58

θ ∈ [0, 1] .53 1.34 .67 109.44

Notice that, when the smoothing term θ is set equal to zero then regardless
of whether the inertial models are considered, PR1 performs significantly
better than PR3. This reflects the prevalence of indeterminacy when policy
rules depend on forward expectations. In particular, while for a given set of
policy parameters α the government objective evaluates essentially the same
for either PR1 or PR3 (compare Figures 1 and 2), the set of parameters α
corresponding to stable determinacy under PR3 is significantly smaller than
the set under PR1. For example, according to Table 4.1, the optimal value of
α under PR1 is (5, 3.78). If PR3 is parameterized using this value of α then
resulting objective value is approximately 27, just like with PR1; however,
the associated model is indeterminate.

Interestingly, the inclusion of a smoothing term appears to significantly
mitigate this effect. This is especially true in case the lag calibrations are con-
sidered. In this case, the optimal PR3 with smoothing produces essentially
the same objective value as the optimal PR1 with smoothing.

Further observations about the optimal value of θ are warranted. While
it is natural that the inclusion of an additional degree of freedom in the
policy rule should only improve performance, we find that in many cases,
the improvement appears substantial. For example, in the purely forward
looking case, including the smoothing term in PR3 reduced the government’s
loss by 39%. Also, notice that in all cases, θ was chosen larger than zero,
and in four of six cases, the upper constraint placed on θ was reached. This
suggests that super-inertial rules may actually be optimal.

5.2 Robust Extended Taylor-type Rules

Precisely the same method can be employed to obtain robust extended Taylor-
type rules. We begin by restricting attention to rules dependant only upon
lagged endogenous variables and current fundamentals, and then proceed to
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relax the restriction until the full rule, given by (21), is analyzed:

it = θit−1 + αfEtyt+1 + αcEtyt + αLyt−1 + αĝĝt; (21)

For this exercise, we set ψ = 1. Note that because the extended rules nest
the non-extended rules, we again have that the relevant constraint set is
non-empty. We impose the following restrictions on the policy parameters:

0 ≤ θ ≤ 1, 0 ≤ αf , αc, αL ≤ 5,−5 ≤ αĝ ≤ 5.

The following table is obtained:

Table 5: Robust Extended Taylor-Type Rules

Model αf
x αf

π θ αc
x αc

π αL
x αL

π αĝ
g αĝ

u Value

No Lag – – – – – .18 1.14 .44 .52 76.04
Lag – – – – – .20 1.50 .35 .91 157.83

No Lag – – – 4.88 .445 0 2.51 2.47 5 25.25
Lag – – – 2.28 2.50 0 2.73 1.34 -5 108.96

No Lag – – 1 3.22 .47 0 .25 -.51 5 24.54
Lag – – .87 1.6 2.15 0 1.11 .32 -.5 108.70

No Lag .1 .19 .96 1.67 0 0 0 .04 5 23.58
Lag .68 2.10 .74 .18 .035 0 0 .48 -3.24 108.1

A cell with a dash (–) indicates the associated policy parameter was set equal
to zero.

Observe that relaxing the constraint on the functional form of the policy
rule to include current expectations significantly improved the rule’s per-
formance regardless of whether inertial models were considered; however,
subsequent relaxing of the this constraint had relatively minor impact. On
the other hand, when θ was allowed to vary, it value was chosen to be large,
often near one. This suggests that while fully optimal policy may be imple-
mented without an interest rate smoothing term when parameter values are
known with certainty (as we saw in Section 4), a non-zero smoothing term
may be advisable in case of parameter uncertainty. We further observe that
often the constraint on αĝ

u was binding, which indicates that perhaps a larger
region should be considered. Finally, notice that including the forward look-
ing terms in the policy rule did not much lower the value of the government’s
objective, thus suggesting that including a dependence on expectations of
future inflation is not critical to achieve near optimal policy.
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In case only forward looking models are considered, it is conceivable that
a fully optimal policy may be implemented. As we saw in Section 4, the
collection of policies implementing the optimal REE is a 2-manifold in 6-
space. The shape and location of the manifold are calibration dependant, as
is the subregion of the manifold corresponding to stable determinacy. It is
a-priori possible that the intersection of these stable determinate subregions
across calibrations is non-empty; if so, a single rule would implement the
optimal REE, and the lowest possible value of the weighted objective would
be obtained.

Whether the intersection of numerically computed 2-manifolds in 6-space
is empty is, in general, difficult to determine, and for the four calibrations
considered here, our current results do not directly imply a void intersec-
tion.26 On the other hand, it is straightforward to compute optimal value
of the weighted objective: simply implement the modified EH-rule for each
calibration and evaluate. If the intersection of the stable determinate sub-
regions is non-empty, is should be possible for our search algorithms to find
a policy yielding an objective value that closely approximates the optimal
one. Computation reveals the optimal value of the weighted objective to be
approximately 17. As this value is considerably lower than the minimum
value obtained in Table 5, we conclude that the intersection is likely empty,
at least over the region considered by our search algorithm, and thus imple-
menting a fully optimal rule is not possible when alternate calibrations are
simultaneously considered.

5.3 Discussion

Researchers are at odds over the correct calibration of New Keynesian mod-
els, and because of this, a variety of calibrations should be considered when
searching for a good policy rule. To simultaneously consider multiple calibra-
tions, we employed the method recommended by [2], and thus weight each
calibration according to the specified prior probability that it is accurate.
We then computed, for each policy rule PRi, the optimal policy parameters
subject to the constraint that the economy be stable and determinate for all
calibrations. An important point of this exercise was to emphasize that the
constraint set was not empty, so that indeed Brock et al’s method could be

26If the V calibration is modified so that λ = 1 then it is straightforward to show that
the intersection is indeed empty.
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employed, given this constraint.
Although these results are preliminary, they do suggest that this is a

feasible and fruitful way to think about the optimal choice of interest-rate
rules, taking into account both determinacy and stability constraints and
structural parameter uncertainty.

6 Conclusion

We have demonstrated the potential for policy makers, attempting to choose
the optimal rule within a class, to be directed towards rules that lie in the in-
determinacy and/or instability regions. Taylor-type rules have an appealing
simplicity, with the key inflation and output coefficients traditionally chosen
based on plausible rules of thumb. One might expect that improved per-
formance would be obtained by choosing these policy parameters optimally
for a given calibrated model. Paradoxically this may not be the case, be-
cause searching for the optimal policy rule with a given class may fail to
deliver a rule that produces a determinate equilibrium that is stable under
learning. It is therefore imperative that the search for optimal policy rules
be constrained to the determinate stable region. One might think that this
problem would be avoided by considering a class of extended Taylor rules
that is sufficiently general that it includes fully optimal solutions. However,
we have also seen that this class will contain some “optimal” rules that are
subject to indeterminacy and/or instability problems.

These problems are compounded by the issue of structural parameter un-
certainty. Policy rules which lead to determinacy and stability under learning
and which are fully optimal for one set of structural parameters can lead to
indeterminacy or instability for another set of parameters. We therefore ad-
vocate a “robust” optimization procedure, in which policy makers select the
optimal constrained rule. Such a rule is computed as the one which mini-
mizes the policy-makers expected loss, based on prior probabilities for the
structural parameters, but which is constrained to satisfy the condition that
it lies within the stable, determinacy region for every calibration that has
positive probability.
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