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Abstract

We introduce a novel dynamical model of the interest rate term struc-
ture based on the concept of functional auto-regression. We show how
parameters of this auto-regressions can be estimated, and how it can be
used for prediction and simulation purposes. We also provide conditions
for the existence of the equivalent martingale measure. The model is ap-
plied to the example of term structure in Eurodollar futures. It is shown
that consistently with the literature the dynamics of the forward rates can
be described using 3 prototypical curve shapes, which we estimate from
data. We discuss the properties of the coefficient operator and the covari-
ance matrix of the autoregression. It is found that there is an inseparable
dynamic interaction between different factors.

1 Introduction

The forward rate is the equilibrium interest rate, at which borrowing at a future
date can be arranged today. It can be either inferred from the current prices
of different maturity bonds, or observed directly in prices of forward interest
rate contracts. For one thing the study of forward rates is important since the
market of interest rate futures contracts is large and growing. The number of
futures contracts on interest rates traded on U.S. Exchanges grew more than 20
times during the last two decades: from 12.5 millions in 1980 to 248.7 millions
in 2000. For another, the study of forward rate curve dynamics is important
for pricing other interest rate securities and for managing risk of fixed-income
portfolios. Finally, models of term structure shed light on how investors form
their expectations about future interest rates. In this paper we construct a
model of forward rates dynamics based on functional autoregression:

ft(T )− f(T ) = ρ
£
ft−δ(T )− f(T )

¤
+ εt(T ), (1)

where t is the calendar time, measured in discrete increments δ, forward rate
ft(T ) is a Hilbert-space valued random variable, and ρ is a linear operator on
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this Hilbert space. We show how to estimate this model and why it is useful for
both pricing interest rate products and forecasting the forward rate curve.

The models of forward curve dynamics come in 3 varieties. Equilibrium
models start with assumption that there are several factors, typically short and
long interest rates, that determine the prices of all other bonds. The process of
the factors is specified in a parametric form and estimated. The bonds in these
models may be mispriced. The prominent contributions in this tradition are
[11], [2] and [4]. Arbitrage-free models start from the assumption that all bonds
are priced correctly and focus on how to price interest rate derivatives. The
prominent contributions include [7], [8] and [6]. The most well-known of those
models, Heath-Jarrow-Morton (HJM) model, add the insight that modeling
forward rate curve evolution instead of bond yields makes pricing derivatives
easier. The focus in these papers is, however, on novel methods of pricing, not
on estimation. The random string models relax the assumption that evolution
of term structure should be driven by a finite number of factors. The prominent
contributions are by [9], [5], and [10]. In their current form, however, they are
ill-suitable for estimation purposes.

We model interest rate dynamics by representing it as a particular case of a
functional auto-regression. The theory of functional auto-regressions has made
a significant progress in last years (see monograph [1]) and we capitalize on it.
We develop a strategy of estimation of the forward rate auto-regression and
prove its consistency.

Next we show how the model can be applied in prediction of future for-
ward rates, evaluation of portfolio risk, and pricing of interest rate securities.
With respect to the question whether our model can be made arbitrage-free, we
provide a result on the existence of the martingale measure in our model.

In an empirical section our method is illustrated by an application to the
data on Eurodollar future rates. We estimate the functional auto-regression and
extract the factors. We find that the factor dynamic cannot be separated in 3
components independent from each other.

2 Definitions and Model

Let Pt(T ) is the time t price of a coupon-free bond with maturity at time T .
The function is assumed differentiable in T , and the forward rate is defined:

ft(T ) = −∂ logPt(T )
∂T

. (2)

At each moment of time we have a curve of forward rates, indexed by the
time remaining to maturity. We are going to model the time evolution of this
curve as a stochastic process with values in continuous functions.

By definition, the functional auto-regression is described by equation (1),
where ft(T ) denotes a Hilbert space valued random variable, εt(T ) is a strong
white noise, and ρ is a bounded linear operator. See [1] for definitions of these
concepts.

The functional auto-regression (1) was thoroughly studied in the recent lit-
erature on estimation of linear processes in function spaces. It describes forward
rates in a more flexible way than HJM model because, first, the covariance ma-
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trix of the shocks is allowed to be non-singular. And second, the functional
auto-regression allows mean reversion in forward rates.

3 Estimation

The natural estimator for the mean forward curve, f(T ), is

bf(T ) = 1

n

nX
i=1

fiδ(T ). (3)

To define an estimator of ρ, we first introduce the empirical covariance func-
tion:

Cn(T1, T2) =
1

n

nX
i=1

fiδ(T1)fiδ(T2)− bf(T1) bf(T2), (4)

and the empirical cross-covariance function:

Dn(T1, T2) =
1

n− 1
n−1X
i=1

fiδ(T1)f(i+1)δ(T2)− bf(T1) bf(T2). (5)

From the model we know that true cross-covariance function

D = Et [ftft+δ] = Et [ft(ρft + εt+1)] = ρC. (6)

Consequently, it is natural to define the estimator of ρ as follows:

ρn = DnC
−1
n . (7)

Unfortunately, this estimator behaves badly for a singular or near-singular
C. The regularization method, advocated by Bosq, is to use πkn , the projector
on a set of eigenvectors of Cn, associated with the kn largest eigenvalues. LeteCn and eDn be the empirical covariance and cross-covariance operators restricted
to the span of the largest eigenvalues. Then define

ρn = eDn eC−1n (8)

on the span of the eigenvalues and zero on its orthogonal complement. Under
certain conditions this estimator is consistent.
Assume that ρ is a Hilbert-Schmidt operator. Let a1 = (λ1 − λ2)

−1, and

ai = max

½
1

λi−1 − λi
,

1

λi − λi+1

¾
for i > 1, (9)

where λi are eigenvalues of the covariance operator C ordered in the decreasing
order.
Theorem 1. If for some β > 1,

λ−1kn

knX
i=1

ai = O(n
1/4 (logn)−β), (10)

then ρn is strongly consistent in operator norm induced by L2 norm:

kρn − ρkL2 → 0 a.s. (11)
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Proof: This is a restatement of Theorem 8.7 in [1].
The condition of the theorem require that the eigenvalues of the covariance

matrix do not drop to zero too fast, and that the eigenvalues are not too close
to each other.

4 The martingale measure drift

For pricing purposes we need to adjust the drift of the forward rates process
using the condition that the prices of bonds follow martingales. For a fixed time
to maturity , the process of discounted bond prices is a martingale if:

Et
£
e−rδPt+δ(T − δ)

¤
= Pt(T ), (12)

where

e−rδ ≡ Pt(t+ δ) = exp

Ã
−
Z δ

0

ft(τ)dτ

!
. (13)

Therefore, the following condition must hold:

Et

·
Pt+δ(T − δ)

Pt(T )

¸
= exp

ÃZ δ

0

ft(τ)dτ

!
. (14)

We are especially interested in the case when δ is small. We will assume
that the discrete-time process of forward rates under the martingale measure,

ft+δ(T )− ft(T ) = eµ(δ)t (T ) + εt+δ(T ), (15)

can be represented as a sampling of a continuous-time process. Assume also

that the expectation function eµ(δ)t can be written as eµtδ, and the covariance
function of εt+δ(T ) can be written as ctδ to the first order in δ.
Theorem 2. Suppose condition (14) is satisfied for a continuous time pro-

cess of bond prices with time to maturity T. Then the following condition must
hold: Z T

0

eµt(τ)dτ = ft(T )− ft(0) + 12
Z T

0

Z T

0

ct(τ1, τ2)dτ1dτ2 (16)

Corollary. Suppose condition (14) is satisfied for all times to maturity.
Then the forward rate curve must be differentiable with respect to the time to
maturity, and the drift and covariance function must satisfy the following con-
dition: eµt(T ) = ∂ft(T )

∂T
+

Z T

0

c(T, τ)dτ . (17)

From the practical point of view, the presence of the derivative with respect
to the time to maturity in the equation for the drift require interpolation of
the forward rate curve by a smooth curve. After the interpolation, the pricing
algorithm is straightforward. First, compute the drift of the process under
the risk-adjusted measure. Then, simulate the process of forward rate using
this drift. Finally, calculate the price of the derivative security in question by
averaging the discounted payoff under these simulations.
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5 Existence of an equivalent martingale mea-
sure

It is important to figure out what restrictions on and guarantee the existence
of a martingale measure. Indeed, it is a result of Harrison and Pliska that
the martingale measure exists if and only if the market is free from arbitrage
opportunities. By an arbitrage opportunity we mean a self-financing strategy
that brings non-negative return with probability one and positive return with
positive probability. The market with arbitrage opportunities cannot be in
equilibrium because any rational investor would be willing to take a position in
the arbitrage opportunity.

A sufficient condition for existence of martingale measure can be obtained
using an infinite-dimensional version of the Girsanov theorem (see [3]).

Let forward rates follow an infinite-dimensional diffusion:

df = Afdt+BdW, (18)

where A is a linear (perhaps unbounded) operator on the space U of forward
rates, W is a cylindrical Wiener process taking values in a Hilbert space H,
and B is an operator from H to U . And let us assume that under martingale
measure the evolution of forward rates has to be described by a similar diffusion
equation:

df = eAfdt+BdW, (19)

Theorem 3. The continuous- time process of forward rates in (18) admits
an equivalent martingale measure if there is such a process ( 19) that

i) ( 19) defines a martingale measure;

ii) (A− eA)f ∈ ImB;
iii) for some γ > 0, supt∈[0,t]E exp

©
γ
°°B−1(A−A)f°°ª <∞.

6 Application

6.1 Data

We use daily settlement data on the Eurodollar futures traded on Chicago Mer-
cantile Exchange. The Eurodollar futures contract is an obligation to deliver a
3-month deposit of $1,000,000 in a bank account outside of the United States.
The available contracts has delivery dates that starts from several first months
after the current date and the go each quarter up to 10 years into the future.

We obtained the data from Commodity Research Bureau. The available data
start in 1982, however we use only the data starting in 1994 when the trading
on 10-year contract appeared. Available datapoints were interpolated by cubic
splines and the resulting curve were sampled in 30 day intervals speed up the
estimation. Datapoints with less than 90 or more than 3480 days to expirations
were removed. Consequently 114 points per curve and 2507 valid dates were
available for estimation.
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6.2 Results of Estimation

6.2.1 Factors

The results of estimation suggest that the rank of operator is around 3. This
corresponds well to the finding in the previous empirical literature that dynamics
of the term structure can be decomposed into evolution of 3 main factors: level,
slope and curvature. Figure 1 shows the eigenvectors of the covariance matrix
of forward rates that corresponds to the highest eigenvalues.

Figure 1. Eigenvectors
Figure 1 is here.

Note: The eigenvectors are estimated using the daily data on the Eurodollar
forward rates.

Clearly the eigenvectors can be interpreted as the level, slope, and curvature
factors.

6.2.2 Dynamics of factor loadings

Figure 2 illustrates how loadings on the factors evolve over time.

Figure 2. Time Evolution of Factor Loadings
Figure 2 is here.

Note: On the horizontal axis the calendar time in working days since January
1994. On the vertical line is the value of the factor loading. The blue line is
for the loading on the “level”, the green is for the “slope”, and the red is for
the “curvature”. The factor curves were estimated using the entire data period

from January 1994 till December 2003.

It is clear from this picture that the “level” is the most important contributor
to the interest rates, followed by the “slope” and the “curvature”. The mean-
reverting nature of the dynamics is also apparent. Figure 3 shows the scatterplot
of factor loadings:

Figure 3. Scatterplot of factor loadings
Figure 3 is here.

Note: The level loading is on the horizontal axis, the slope loading is on the
vertical axis.

6.3 Estimates of coefficient operator

Operator maps the term structure curve to a linear combination of the factor
curves. The action of operator on the factor curves themselves is given by the
matrix in Table 1:

Table 1. The estimate of ρ− I in the basis of eigenvectors.
-0.21 0.1 1.48
-0.12 -0.43 -0.77
0.00 -0.05 -0.74

Note: The coefficients are estimated from the daily data and all coefficients
are multiplied by 100 for convenience.
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What is surprising about this matrix is that it is non-symmetric and that
the off-diagonal elements are quite large compared with diagonal elements. This
observation suggests two possible explanations. The first one is that the dynamic
of the model is more complex than the simple mean reversion. The second one
is that the estimates of the off-diagonal elements are not sufficiently precise.
First, we address the issue of dynamics.
Operator ρ have 1 real and 2 complex eigenvalues. All of them are less than

1 in absolute value so the operator is stable in the sense that it corresponds
to a stable dynamic system: the deviation from the mean tends to the zero
eventually The complexity of the dynamics can be seen from Figure 4.

Figure 4. Dynamics of factor loadings.
Figure 4 is here.

Note: The horizontal axis shows the loading on the “level” factor. The vertical
axis shows the loading on the “slope” factor. The loading on the curvature

factor is not shown. Its initial value was set equal to 1.

This picture shows evolution of the factor loadings with different initial val-
ues in the absence of external noise, so it illustrates impulse response function
for a particular impulse. While the loadings are seen to converge to zero even-
tually, the convergence is not monotonic. The “level” initially increases before
converging to zero, and the slope at some point becomes negative.
We can address the concern about the precision of the estimates by plotting

the results of the estimation as the number of data increases:

Figure 5. The evolution of matrix entries of the estimate of operator .
Figure 5 is here.

Note: The operator is estimated using the daily data on the Eurodollar
forward rates. The estimation is on the rolling basis so it uses all the

information available at the time of estimation.

This chart suggest that some entries in the coefficient operator are indeed
unstable over time. It turns out that these are all entries that are over the main
diagonal. The entries on the main diagonal and below are stable.

7 Further Research

It appears that the main direction of further research is identifying what causes
the regime changes in interest rates dynamics.
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Figure 1. Eigenvectors. 
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Note: The eigenvectors are estimated using the daily data on the Eurodollar forward rates. 
 



Figure 2. Time Evolution of Factor Loadings 
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Note: On the horizontal axis the calendar time in working days since January 1994. On the vertical line is 
the value of the factor loading. The blue line is for the loading on the “level”, the green is for the “slope”, 
and the red is for the “curvature”. The factor curves were estimated using the entire data period from 
January 1994 till December 2003. 



 

Figure 3. Empirical dynamics of factor loadings. 
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Note: The horizontal axis shows the loading on the “level” factor. The vertical axis shows the loading on 
the “slope” factor. 



Figure 4. Dynamics of factor loadings. 
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Note: The horizontal axis shows the loading on the “level” factor. The vertical axis shows the loading on 
the “slope” factor. The loading on the curvature factor is not shown. Its initial value was set equal to 1. 



Figure 5. The evolution of matrix entries of the estimate of operator ρ . 
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Note: The operator ρ  is estimated using the daily data on the Eurodollar forward rates. The estimation is 
on the rolling basis so it uses all the information available at the time of estimation. 


