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Abstract

Despite the rapid growth in computing power and new developments in the literature on numerical dynamic programming,

many economic problems are still quite challenging to solve. Economists are aware of the so-called curse of dimension-

ality and the limits placed on the ability to solve high-dimensional dynamic models. Many of the economic models

subjected to the curse of dimensionality present some special structure that can be exploited in an efficient manner. This

paper introduces a decomposition methodology, based on a mathematical programming framework, to compute the equi-

librium path in dynamic models by breaking the problem into a set of smaller independent subproblems. We study the

performance of the method solving a set of dynamic stochastic economic models. The numerical results reveal that the

proposed methodology is efficient in terms of computing time and accuracy.
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1 Introduction

In many situations, applied economists consider stochastic dynamic models for forecasting, testing economic theories,

and designing economic policies. Dynamic programming has been extensively used in economics because this theoret-

ical framework is flexible enough to represent the fluctuations of unemployment, prices, consumption, production and

investment, among others. From a computational point of view, solving dynamic economic problems is still a quite chal-

lenging task, in spite of the noticeable increase in computing power, storage capacity and new approaches in the literature

on computational economics. The search of major realism in the economic models have pushed economists to consider

more and more complex dynamic stochastic specifications which generally challenge the best existing approaches. The

solvability of many economic models suffers from the so-called curse of dimensionality: the computing time required to

solve these models presents an exponential growth associated with the dimension of the models. Therefore, reducing the

curse of dimensionality in economic growth and business cycle models gives the practitioners to enlarge substantially the

class of questions that can be addressed with dynamic modelling.

Many different algorithms have been proposed during the past 15 years. There are two main approaches to approximate the

solution of a dynamic economic problem: the discrete approximation and the smooth approximation. The first approach

consists of discretizing the value of the policy function over a refined grid of points and then solving the Bellman operator

for each point of the grid (see [24]). The second approach considers parametric approximations, based on Taylor series

expansions, of the value of the policy function (see [15, 10, 18, 28], among others). In many problems, the Euler equation

(which represents the first-order conditions for the problem corresponding to the Bellman equation) is used to approximate

the value function. The log polynomials approximations (see e.g., [9]), projection methods as introduced in [14] and

perturbation methods (see e.g., [16, 15]) are popular procedures for approximating the Euler equations. For a discussion

and analysis of these approaches see [27]. More recently, in [17], Judd et al. review advances in computational methods

for solving dynamic models and Borağan et al., in [3], study the performance and accuracy of different solution methods,

making a clear recommendation of perturbation methods.

Despite the fact that most of these approaches show good performance in solving particular economic models, a compu-

tational methodology to deflate the curse of dimensionality is worthwhile and would be appreciated by practitioners. We

aim to address this problem by splitting it into manageable pieces (subproblems) and by coordinating the solutions of these

subproblems. To attain this goal, we have studied the special structure of economic dynamic stochastic models. Then,

we have developed a general methodology based on the Lagrangian decomposition procedure to reduce the dimension-

ality problem associated with dynamic stochastic models. This methodology is based on a mathematical programming

framework. It solves the original model by breaking the problem into a set of smaller independent problems. With the

proposed methodology, we obtain two main computational advantages. First, the subproblems are, by definition, smaller

than the original problem and therefore much faster to solve. Second, the subproblems could have special properties such

as convexity and sparsity that enable the use of efficient algorithms to solve them.

Previous decomposition algorithms break into three groups: Danzting-Wolfe decomposition, Benders decomposition and

augmented Lagrangian relaxation procedures. Both Danzting-Wolfe decomposition (see [7]) and Benders decomposition

(see [2] and [11]) are efficient schemes to deal with convex optimization problems. Extension to nonconvex problems is

attained by the augmented Lagrangian relaxation (see [5, 23, 25, 6]). These techniques are based on an estimate of the
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Lagrange multipliers to decompose the problem into a set of subproblems. Then, their solutions are used to update the

current estimate of the Lagrange multipliers. But augmented Lagrangian methods may converge slowly in practice (see

[13, 4]).

Applications of decomposition methods to economics are originally due to Mansur and Whalley [21]. They apply Danzt-

ing and Wolfe’s decomposition to compute the solution of a pure exchange general equilibrium model. A pure exchange

general equilibrium problem represents a static economy where there are no sectors of production (for a detail description

of the model see [8]). In contrast, the current paper considers an extension of Lagrangian decomposition methods for

the computation of stochastic dynamic economic models. It must be noted that these models represent a more general

and versatile tool in economics as they describe an economy with consumption and production sectors that evolves over

an infinite number of time periods. Our approach first reduces the original problem to a finite-horizon problem and then

solves decomposed subproblems obtained after fixing some of the decision variables and Lagrange multipliers.

To validate the efficiency of the proposed methodology, we have solved several economic dynamic models. The numerical

results are very encouraging, showing computational gains when applying to large-scale problems. The proposed approach

has therefore the potential for application in many economics problems.

The paper proceeds as follows. In Section 2, for illustrative purposes, we consider a simple but important example, the

traditional deterministic neoclassical growth model. We use this model to develop, in Section 3, the proposed decompo-

sition methodology. In Section 4, we extend this methodology for dealing with uncertainty. In Section 5 we present and

solve an international model which is typically hard to solve because of its high dimensionality. Finally, in Section 6, we

discuss the results and provide conclusions.

2 The economic growth model

The neoclassical growth model, despite its age and recent developments in the growth literature, continues to be of great

theoretical and empirical interest to study the long-term economic performance. In these models, agents have to decide

(in each period) how to allocate their resources between consumption commodities, in order to provide instantaneous

utility and capital commodities, and obtaining production for the next period. Therefore, these models are usually used

for forecasting, testing economic theories, and designing economic policies that increase the growth rate in the long-term.

For a formal discussion of these models, see e.g., [26].

The neoclassical growth model can be motivated as follows. Suppose a dynamic economy with infinitely lived agents,

whose preferences are representable by the utility function U (c) =
∑∞

t=0 βtu (ct), where {ct} is the sequence of con-

sumption at each period t, u (ct) is the utility function at each date and β ∈ (0, 1) is the discount factor. It is assumed

that the agents aim at maximizing their present utility represented by U (c). The physical capital is assumed to evolve

according the law of motion kt+1 = F (kt)− ct, for t = 0, 1, . . ., and where F (kt) denotes a production function, given

an initial endowment k0 = k̄0 > 0 of the capital stock.

Modern economic theory is based upon the concept of competitive equilibrium, which consists of an array of prices and

allocations (the consumption and the physical capital decisions) equating aggregate supply and demand. Equilibrium is a

basic descriptive and predictive tool for economists because it is expected that the forces acting on the economy will drive
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to this array of allocations and prices. However, we can assume that both the consumption and the physical capital decision

are made by a representative agent, the social planner. In welfare economics, a social planner is a decision-maker who

attempts to achieve Pareto optimality, in which no one’s outcome can be improved without worsening someone else’s

outcome. The social planner role can be thought of as if it were played by a government. Two important results in

economics, called the Two Fundamental Theorems of Welfare Economics, link the concept of a Pareto-optimal allocation

with that of a competitive equilibrium under certain conditions. See [22] and [26] for details. Since both welfare theorems

hold in this economy, our problem reduces to solve the social’s planner problem (i.e. to solve a Pareto-optimal allocation):

max
∑∞

t=0 βtu(ct)

subject to kt+1 − F (kt) + ct = 0, t = 0, 1, . . . ,
(1)

given an initial condition k0 = k̄0. The social planner problem is usually easier to solve than the equilibrium problems.

3 The decomposition methodology

In this section, we describe a general decomposition methodology to compute economic equilibria in dynamic models.

Decomposition is a classical solution approach for optimization problems based on the idea of partition. To simplify our

exposition, we consider the standard deterministic neoclassical growth model (1), which encompasses most of discrete-

time models proposed in the economic literature.

The first step of the proposed decomposition procedure follows the conventional domain truncation technique. Mainly,

we consider a large but finite temporal horizon of problem (1), 0 < T < ∞. Therefore, the truncated problem has the

form:
max

∑T
t=0 βtu(ct)

subject to kt+1 − F (kt) + ct = 0, t = 0, . . . , T,

k0 = k̄0.

(2)

Before presenting the decomposition approach, we need to accommodate the transversality condition associated to prob-

lem (1), namely,

lim
T→∞

λT kT+1 = 0, (3)

where λt denotes the Lagrange multiplier associated to the t-th constraint: kt+1−F (kt) + ct = 0. To attain this goal, we

propose to add a penalty to the capital stock at T + 1, guaranteeing that an optimal solution for problem (2) is a solution

of the following problem:

max
∑T

t=0 βtu (ct) + εT ln (kT+1)

subject to kt+1 − F (kt) + ct = 0, t = 0, . . . , T,

k0 = k̄0,

(4)

where εT > 0 and limT→∞ εT = 0. However, even these truncated problems can be too large to be solved by standard

algorithms.

For this reason, we propose to use the following decomposition approach which alleviates the high dimensionality by

breaking problem (4) into a set of smaller independent subproblems. The separability of the subproblems is obtained by

fixing the values of some variables.
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At each iteration of the procedure, the following T + 1 subproblems (SP) are solved:

SP0. For t = 0:
max β0u(c0)

subject to k̄1 − F (k̄0) + c0 = 0,

k0 = k̄0,

(with k̄1 fixed from previous iteration);

SPt. For t = 1, . . . , T − 1:

max βtu (ct)− λ̄t−1(kt − F (k̄t−1) + c̄t−1)

subject to k̄t+1 − F (kt) + ct = 0,

(with λ̄t−1, k̄t−1, k̄t+1 and c̄t−1 fixed from previous iteration);

SPT. For t = T :

max βT u (cT )− λ̄T−1(kT − F (k̄T−1) + c̄T−1) + εT ln
(
k̄T+1

)
subject to k̄T+1 − F (kT ) + cT = 0,

and kT+1 = F (kT )− cT (with λ̄T−1, k̄T−1, k̄T+1 and c̄T−1 fixed from previous iteration).

The intuitive idea of this decomposition methodology is to consider a set of smaller independent problems whose first-

order necessary conditions (at the optimal the solution) coincide with the corresponding conditions for problem (4). For

each subproblem t, the decision variables are only the contemporary ones (for example, the subproblem SPt is solved

in ct and kt). An economic interpretation of the decomposition draws on this partition of the decision variables into

contemporary and non contemporary decisions taken among agents.

Once the solution for these subproblems have been computed, the multipliers and the fixed variables are updated to

their last computed values. This procedure is repeated until the convergence criteria for the global finite problem (4) are

satisfied. We have chosen the following stopping criterion (where the superscript l denotes the current iteration):∥∥L
(
cl, kl

)
− L

(
cl−1, kl−1

)∥∥
1 + ‖L (cl−1, kl−1)‖

≤ ε, (5)

where L
(
cl, kl

)
=

∑T
t=0 βtu

(
cl
t

)
+ εT ln

(
kl

T+1

)
denotes the value of the objective function at iteration l.

The scheme of the decomposition algorithm is stated as follows.
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Initialization: Set a truncation date T and a regularization parameter εT . Choose a starting point(
c̄0, c̄1, ..., c̄T , k̄1, ..., k̄T+1

)
and an initial set of multipliers

(
λ̄0, λ̄1, ..., λ̄T

)
. Set k ← 0.

Repeat:

1. Solve subproblems SPt in ct and kt for all t = 0, 1, ..., T. Denote by
(
c̃0, c̃1, ..., c̃T , k̃1, ..., k̃T+1

)
the solution of these subproblems for all t = 0, 1, ..., T and

(
λ̃0, λ̃1, ..., λ̃T

)
the associated opti-

mal multipliers.

2. Update new point and multipliers:

(
c̄0, c̄1, ..., c̄T , k̄1, ..., k̄T+1

)
←

(
c̃0, c̃1, ..., c̃T , k̃1, ..., k̃T+1

)
(
λ̄0, λ̄1, ..., λ̄T

)
←

(
λ̃0, λ̃1, ..., λ̃T

)
and set k ← k + 1.

Until convergence (condition (5) is satisfied):

The convergence properties of this algorithm can be addressed using arguments analogous to those considered in [6].

These properties do not require an optimal solution of subproblems SP0, SPt and SPT. It is enough to compute their

solution up to a certain degree of accuracy (near the solution, it could be enough to perform a single iteration for each

subproblem). Therefore, the proposed decomposition technique considerably increases the speed of computations.

Next a numerical experiment is introduced to illustrate the computational gains of the decomposition method. We have

considered the neoclassical growth model presented in Section 2. In this model, we have chosen a Cobb-Douglas produc-

tion function F (k) = kα with capital share α = 0.33, and a utility function u(c) = cρ/ρ with ρ = 0.4. The discount

factor is β = 0.8 and the regularization parameter has been fixed to εT = 10−4.

We have implemented the decomposition algorithm using MATLAB 6.5 on an Intel Centrino Pentium M 1.6 GHz with

machine precision 10−16. Each subproblem SPt, for t = 0, ..., T , has been solved using the MATLAB subroutine

fmincon corresponding to the Optimization toolbox. This routine is suited for optimization problems with nonlinear

objective function and constraints.

We have computed the solution of neoclassical growth model by two procedures: i) a direct algorithm (i.e., we use the

subroutine fmincon to solve the finite problem (4)) and ii) the proposed decomposition algorithm solving the sub-

problems to optimality by the subroutine fmincon (which is worst-case scenario in terms of computational cost). The

decomposition algorithm stops whenever ε = 10−8.

Table 1 reports a comparison of the running times (in seconds) until convergence obtained from both procedures.

We can see a better view of these running times (in logarithmic scale) in Figure 1.

From this figure, it can be shown a clear advantage of the proposed decomposition algorithm over the direct approach.

It is remarkable that the computing time until convergence (or curse of dimensionality) required to solve the original

problem (2) is much better using the decomposition methodology than using a direct approach. Table 1 shows that the

proposed methodology is an effective and useful tool for solving large-scale economic problems as it breaks down a

high-dimensional problem into many low-dimensional ones, hence reducing the curse of dimensionality.
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Table 1: Running times (in seconds) until convergence for different T ’s.

T Direct Decomposition T Direct Decomposition

75 1.1 1.7 775 267.2 15.4

125 1.9 2.7 825 315.9 16.1

175 4.5 3.6 875 373.4 17.3

225 8.7 4.7 925 459.4 19.0

275 15.7 6.0 975 597.5 19.7

325 22.6 6.5 1000 642.2 20.4

375 34.8 7.4 1050 754.3 24.1

425 45.9 8.5 1100 1077.4 22.3

475 67.5 9.3 1150 1532.0 30.6

525 87.2 11.7 1200 1915.8 25.0

575 130.4 11.8 1250 1860.2 27.3

625 142.5 13.1 1300 2408.2 27.3

675 176.1 13.3 1350 3253.5 29.8

725 213.8 14.3

Moreover, to make the decomposition algorithm comparable to standard approaches in computational economics litera-

ture, we consider the accuracy of the solution measured by the normalized Euler equation error over T periods:

EEN = max
t=0,1,...,T

|Et|
u′ (ct) ct

(6)

where Et represents, in some sense, the first-order necessary conditions for problem (1). The use of Euler equation error

is a common and reliable feature of most traditional approaches (see [14]). In our example,

Et = cρ−1
t − βαcρ−1

t+1 kα−1
t , for all t = 0, 1, ..., T. (7)

Judd and Guu, in [16], interpret this error as the relative optimization error incurred by the use of the approximated

policy rule. Our algorithm achieves a good approximation of the solution of model (1) as the maximum Euler error is

Figure 1: Running times (in logarithmic scale) until convergence for different T ’s.
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8.62 × 10−7 for T = 1350. This means that the agent is making a cent mistake for each $106 of dollars spent. This

accuracy is comparable to that reported by Judd in [14], taking into account that we have set the termination tolerance for

the subproblems as ε = 10−8.

Though the results are very encouraging, in terms of computing time and accuracy of the solution, however, this example

is too simple to draw any firm conclusion. The next sections include models with uncertainty in some parameters and

which are more realistic from a practical point of view.

4 Solving stochastic growth models

In macroeconomics, it is well-known that it is essential to incorporate uncertainty into the decision-making problems.

The resulting stochastic models provide a tighter link between the specification of the economic theory and the empirical

facts. In this section, we show how to extend the proposed decomposition methodology presented in Section 3 to solve

stochastic dynamic economic problems.

We present the decomposition algorithm in the context of the following stochastic optimal growth problem:

max E
[∑∞

t=0 βtu(ct)
]

subject to kt+1 − F (kt, θt) + ct = 0, t = 0, . . . ,∞,

k0 = k̄0,

(8)

where θt denotes the stochastic shock to technology at time t.

After choosing T , the truncated problem is defined as follows:

max E
[∑T

t=0 βtu(ct) + εT ln (kT+1)
]

subject to kt+1 − F (kt, θt) + ct = 0, t = 0, . . . , T,
(9)

where k0 = k̄0, εT > 0 and limT→∞ εT = 0. Then, the decomposition procedure to solve (8) is similar to the

deterministic case after representing uncertainties in a form suitable for computation.

As we are using a mathematical programming framework, the uncertainty presented in these problems must be represented

in such a manner that its effect on present decision-making can properly be taken into account. A common representa-

tion of the uncertainty is to work with scenarios, which are particular models of how the future might unfold. Within

this framework, simulations can be used to generate a batch of scenarios. Moreover, for the class of problems studied

in this paper, one can act with perfect foresight, that is, the decisions can be made after the value of the uncertainty be-

comes known. Therefore, this kind of problems can be decomposed by scenarios and hence, we only need to solve an

optimization problem for each scenario that is generated.

In model (9), uncertainty is represented by a scenario tree S. Each node of the tree is a history of exogenous aggregate

shocks st = {s0, s1, ..., st} , where s0 is the root of the tree given by some fixed event. The path to event s is a partial

scenario with probability ωs along the path (see e.g., [12] for further details on this terminology).

Hence, problem (9) can be written with the following deterministic equivalent formulation:

max
∑

s∈S ωs(
∑T

t=0 βtu(ct,s) + εT ln (kT+1,s))

subject to kt+1,s − F (kt,s, θt,s) + ct,s = 0, t = 0, . . . , T, s ∈ S.
(10)
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As commented before, for each scenario s ∈ S, problem (10) can be broken into a set of independent problems of the

form
max

∑T
t=0 βtu(ct,s) + εT ln (kT+1,s)

subject to kt+1,s − F (kt,s, θt,s) + ct,s = 0, t = 0, . . . , T,

that can be solved similarly to problem (4). Therefore, we can decompose the stochastic dynamic problem by scenarios

and by time, obtaining the solution path {ct,s, kt,s}t for each scenario s ∈ S.

With this approach, the expected values of {ct,s, kt,s}t will be consistent estimates of the expected value of the solution

path, that is,

E [c∗t ] =
∑
s∈S

ωsct,s, E [k∗t ] =
∑
s∈S

ωskt,s, for all t = 0, 1, ..., T,

(where ∗ denotes optimal solution) and the optimal value function can be estimated by means of

E [V ∗] =
T∑

t=0

βt
∑
s∈S

ωsu(ct,s).

In general, scenario specifications of stochastic problems can be easily formulated but not solved. In applications we

confine ourselves with some approximate distributions of random data comprising only finitely many scenarios. In other

words, we assume S is a finite set, S = {1, ..., |S|}. Hence, we compute the approximate solution
{
c∗t,s, k

∗
t,s

}
t

for each

s ∈ {1, ..., |S|} and report the main statistical properties of the approximation. For example, the mean and variance of the

solution path can be computed as follows:

Ê [c∗t ] =
1
|S|

|S|∑
s=1

c∗t,s, Ê [k∗t ] =
1
|S|

|S|∑
s=1

k∗t,s, for all t = 0, 1, ..., T,

V̂ [c∗t ] =
1
|S|

|S|∑
s=1

(
c∗t,s − Ê [c∗t ]

)2

, V̂ [k∗t ] =
1
|S|

|S|∑
s=1

(
k∗t,s − Ê [k∗t ]

)2

, for all t = 0, 1, ..., T,

Note that we do not require stationarity as we estimate the statistical properties of the solution process from independent

simulations. The Law of Large Numbers and Central Limit Theorems can be applied when the standard finite moments

assumptions hold.

Confidence intervals can be made applying standard statistical methods. For example, for large |S|, we can compute a

confidence interval (with probability 1− α) for the expected value of the consumption at time t as:

E [c∗t ] ∈ Ê [c∗t ]± zα/2

√
V̂ [c∗t ]
|S|

(11)

where zα/2 is the appropriate percentile of the standard normal distribution. Analogously, the confidence intervals for

other estimations can be established. Moreover, as in Section 3, we consider the accuracy of the solution measured by the

normalized Euler equation error over T periods (with its corresponding confidence interval).

Next, the results obtaining by solving different cases of model (8) are presented. We have considered a Cobb-Douglas

production function F (kt, θt) = θtk
α
t with capital share α = 0.33, and a utility function cρ/ρ with ρ = 0.4. The discount

factor is β = 0.99 and the regularization parameter has been set to εT = 10−4. The shocks {θt} are assumed to take the

values {0.9, 1, 1.1}, following a first-order Markov chain given by the following transition matrix:

π =


0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

 .
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Therefore, a sample of 3T+1 possible scenarios is obtained as θt can take three different values. Table 2 reports the main

properties of the optimal value function for different simulation lengths and temporal horizons.

Table 2: Properties of the optimal value function.

T = 50 T = 100

|S| = 25 |S| = 50 |S| = 50 |S| = 100

Estimation of E [V ∗] 69.15 69.37 109.65 109.67

Standard error of E [V ∗] 0.13 0.07 0.11 0.08

Confidence Interval (95%) of E [V ∗] [68.89, 69.41] [69.23, 69.51] [109.43, 109.87] [109.51, 109.83]

In Figure 2, the optimal paths for E(ct) and E(kt), respectively, are shown with their corresponding confidence intervals

(at 95% level and with T = 100 and |S| = 100).

(a) Consumption path (with confidence intervals) (b) Capital path (with confidence intervals)

Figure 2: Paths for T = 100 and |S| = 100

In Figure 3, the optimal path for the normalized Euler equation errors is shown with their corresponding pointwise confi-

dence intervals (at 95% level and with T = 100 and |S| = 100).

From Table 2 and figures 2-3 it can be deduced that the proposed decomposition methodology obtains sufficiently accurate

results for practical purposes. For instance, the accuracy obtained for this type of models by Borağan et al., in [3], is

around 10−8 (though these authors consider another normalization of the Euler equation). Note that, with the proposed

methodology, we obtain an accuracy around of 10−7 (with a termination tolerance for the subproblems of ε = 10−8).

Moreover, the maximum error obtained by Borağan et al. is around 10−4 while the maximum error obtained by us is

around 10−6 (corresponding to the upper level of the confidence interval, as shown in Figure 3).

5 An international model with uncertainty

In this section, we consider a model with a finite number of heterogeneous agents. These models has been fruitfully
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Figure 3: Euler’s error path (with confidence intervals) for T = 100 and |S| = 100.

applied to study many questions in international economics, for example the co-movement of output, investment and con-

sumption across countries and international capital flows between countries (for a review, see for instance [1]). Because

of its high dimension, the computational solution of this problem is a quite challenging task.

The formulation of this model is as follows. Suppose a dynamic economy with N countries where each country is

populated by a representative consumer, over a number of years, t = 0, 1, . . .. A social planner maximizes a weighted

sum of the expected lifetime utilities of the countries’ representative consumers subject to the resource constraint. The

resulting model has the following form:

max E0

∑N
n=1

1
N

∑∞
t=0 βtu(cn

t )

subject to kn
t+1 +

(
ϕ
2

(
kn

t+1 − kn
t

)ξ
)/

kn
t = int + (1− δ) kn

t , for all t and n,∑N
n=1 cn

t +
∑N

n=1 int =
∑N

n=1 an
t (kn

t )α
,

where cn
t , kn

t , int denote consumption, capital and investment, respectively, at time t and in country n, β is the discount

parameter, δ is the depreciation rate and ϕ is the adjustment cost parameter. In this case, the stochastic process an
t

determining the technology shock is supposed to follow the law of motion:

ln an
t = η ln an

t−1 + σ (εt − εn
t ) , n = 1, . . . , N, t = 1, . . . ,

where εt and εn
t are i.i.d. random variables with a standard Normal distribution.

We have considered a utility function u(c) = (cρ − 1)/ρ with ρ = 0.4. The parameters in the constraints are δ = 0.025,

α = 0.025 and ξ = 2. The discount factor is β = 0.99 and the regularization parameter has been set to εT = 10−8. For

the stochastic shock simulations we have selected η = 0.95 and σ = 0.95.

Table 3 reports the computational time (in seconds) that the proposed decomposition methodology needs to find an optimal

solution for a temporal horizon T = 100 and S = 100 replications. Several cases were run to study the computational

time as a function of the number of countries and the nonlinearity of the problem. The nonlinearity is measured by the

parameter ϕ. When this parameter is greater than zero then the problem becomes strongly nonlinear. Moreover, Table

3 reports the confidence intervals of the optimal value function for the different number of countries and values of the

parameter ϕ.
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Table 3: Performance indices for T = 100 and S = 100 replications.

N ϕ CPU Time Confidence Interval (95%) of E [V ∗]

2 0 6.81e+003 [32.88, 33.61]

5 0 7.82e+003 [28.65, 29.38]

10 0 1.23e+004 [25.51, 26.22]

20 0 3.01e+004 [21.67, 22.48]

2 1 6.43e+003 [30.53, 31.23]

5 1 9.32e+003 [27.52, 28.60]

10 1 1.29e+004 [24.14, 25.20]

20 1 5.08e+004 [22.90, 24.11]

2 2 1.0672e+004 [29.82, 30.80]

5 2 1.4905e+004 [26.20, 27.82]

10 2 1.8201e+004 [22.01, 23.44]

20 2 4.2074e+004 [18.25, 19.40]

From Table 3 it can be deduced that the proposed decomposition methodology obtains sufficiently accurate results for

practical purposes. Moreover, the required computed time to solve the problems is reasonable, taking into account the

dimension of them. To the best of our knowledge, no results exist in the literature showing solutions of the presented

model for N > 10.

Attempts to solve this problem using parametric approximations are unsatisfactory. Krueger et al., in [19], introduce the

Smolyak’s algorithm to compute solutions of large-scale dynamic economic models. To document the performance of the

method they consider this model with N < 4 countries (and ϕ ∈ [0, 2]). Its computing time to converge to the solution is

4 hours and 15 minutes for N = 4 and ϕ = 0, and 12 hours and 31 minutes for N = 4 and ϕ = 2. Maliar and Maliar,

in [20], describe a version of the simulation-based Parameterized Expectations Algorithm, introduced in [9], that is only

successful in finding the solutions to models with a number of countries (N ) less than 10. Their computing time to solve

the problems vary from 5 minutes (for a model with N = 2 countries and ϕ = 10) to 5.5 hours (for a model with N = 10

countries and ϕ = 10).

6 Conclusions and further extensions

In this paper, we make a computational contribution for a rich toolbox of optimization models that economists use to ana-

lyze various facets of the economy. The solvability of these models suffers from the curse of dimensionality, which limits

practitioners from the modelling standpoint. In this sense, we have introduced a novelty decomposition methodology for

the computation of solutions of dynamic stochastic economics problems.

The proposed approach deflates the dimensionality of the models by breaking the problem into a set of smaller independent

subproblems. We have shown the decomposition method works very well in practice, better than a direct method (when

this is feasible).
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We have solved several high-dimension problems. The numerical results have revealed the efficiency of the methodology

in terms of computing time and accuracy, concluding that the proposed approach is promising for application in many

economics problems with similar structure.
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