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ABSTRACT 
Recent empirical studies have demonstrated that behaviour of interest rate processes can 
be better explained if standard diffusion processes are augmented with jumps in the 
interest rate process.  In this paper we examine the performance of both linear and non-
linear one factor CKLS model in the presence of jumps.  We conclude that empirical 
features of interest rates not captured by standard diffusion processes are captured by 
models with jumps and that the linear CKLS model provides sufficient explanation of the 
data.   
 
Keywords: term structure, jumps, Bayesian, MCMC 
 
JEL: C11, C13, C15, C32 

 
 
 

                                                           
1 Corresponding author. Email  Ghulam.Sorwar@nottingham.ac.uk 



1. INTRODUCTION 

    Accurate valuation of fixed income derivative securities is dependent on the correct 

specification of the underlying interest rate process driving it.  This underlying interest 

rate is modelled as stochastic process comprising of two components.  The first 

component is the drift associated with the interest rates.  This drift incorporates the mean 

reversion that is observed in interest rates.  The second component consists of a gaussian 

term.  To incorporate heteroskedasticity observed in interest rates, the gaussian term is 

multiplied with the short term interest rate raised to a particular power.  Different values 

of this power leads to different interest rate models.  Setting this power to zero yields the 

Vasicek model (1977), setting this power to half yields the Cox-Ingersoll-Ross model 

(1985b), setting this power to one and half yields the model proposed by Ahn and Gao 

(1999).  All of these one factor models are generalised by the Chan-Karolyi-Longstaff-

Sanders model (1992,CKLS).  In the CKLS  model this power is unrestricted 

    Large number of empirical studies have demonstrated that the CKLS models or a 

particular variant of it, does not adequately explain the observed characteristics of interest 

rates, for example CKLS model ignores the possibility of non-linear drift as found by 

Ait-Sahalia(1996) in the case of Eurodollar rates.  Furthermore, researchers have 

augmented the single factor CKLS model with a second or/and third stochastic factor.  

For example, Jegadeesh and Pennacci(1996) augment the CKLS model with stochastic 

mean reversion.  Ball and Torus (1999) and Andersen and Lund (1997) use stochastic 

volatility as the second factor.  However, they note, "it remains difficult to duplicate the 

fat-tailed or non-Gaussian innovations,." Ahn, Dittimar and Gallant (2002) test a series of 
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three factor affine and quadratic models and conclude, " none of the models are able to 

capture the ARCH and non-Gaussian features of the observed data". 

    An alternative to the multi-factor approach is to augment interest rate models with 

jumps.  This has been done by Ahn and Thompson (1988), Das (2002) and Johannes 

(2003).In particular Das incorporates jumps into the Vasicek model and finds strong 

evidence of jumps in the daily Federal Funds rate.  Johannes uses a non-parametric 

diffusion model to study the secondary three month Treasury bills.  He concludes that 

jumps are generally generated by the arrival of news about the macroeconomy. 

    In this paper we take a parametric approach in contrast to Johannes who uses a non-

parametric approach to model the interest rate drift.  We examine the role of jumps in a 

single factor CKLS framework both with linear and non-linear drift.  In contrast to 

Johannes who assumes the jumps are log-normally distributed and the average size of 

jump is zero, we assume jumps are normally distributed and the average jump size is not 

zero.  We focus on the updated data series used by Johannes.  Although the period used is 

different from Johannes, it nonetheless includes all the major periods 1979-1981, 1991-

1993 and 1998-1999 that Johannes studies in depth.  In order to better understand the role 

played by jumps we estimate the unobserved jump times and jump sizes. 

    In summary this paper provides strong evidence that CKLS model incorporated with 

jumps provides a better description of data than a CKLS model without jumps.  For all 

the three separate periods considered we find that diagnostic tests based on residual 

analysis indicates that CKLS without jumps is mis-specified..  We also find that the 

difference in performance between a CKLS model with linear and non-linear drift is 

negligible once jumps have been incorporated.  Thus we can conclude linear drift plus 

 3



jump provides sufficient description of the data.  Finally data augmentation leads to the 

same conclusion. 

    The remaining part of this paper comprises of the following sections.  Section 2 

introduces the models and the estimation procedure.  Section 3 summarises the empirical 

results.  Section 4 concludes this paper. 

2. JUMP DIFFUSION MODEL AND PARAMETER ESTIMATION 

PROCEDURE 

    The general one factor interest rate model comprises of a linear drift with a constant 

elasticity of variance.  As a stochastic process, it is stated as: 

( ) tttt dWrdtrdr γσθκ +−=       (1) 

    Parameters in the above model have intuitive interpretation.  θ is the central tendency 

parameter for the interest rate r which mean reversion at rate κ .The variance coefficient 

of the diffusion is given by σ2, whilst the variance of elasticity is given by 2γ.  Setting γ = 

0 yields the Vasicek; setting γ = 1/2  yields the CIR model, an unrestricted value of  

yields the CKLS model.  Simple version of this model has been found to be highly 

unsatisfactory, as a result Ait-Sahalia (1996) has proposed a more flexible model that can 

incorporate non-linear drift and a more general form of the diffusion coefficient.  He 

proposes the following diffusion process: 

( ) ttt
t

ttt dWrrdt
r
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Conley, Hansen, Luttmer, and Scheinkman (1997,CHLS) maintain the same drift as Ait-

Sahalia (1996) but simplified the diffusion term to CEV process  used by CKLS: 
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    To ensure stationarity α2<0 and α3>0.  For the remaining part of this study we add a 

random jump term to the short rate equation: 

( ) ttt
t

ttt dNdWrdt
r

rrdr ξσ
α

αθκ γ ++







++−= 32

2      (4) 

The  term tdNξ  represents the jump component.  Nt  is a Poisson process with constant 

intensity λ  and ξ is the jump size in interest rates.  We assume  that ξ  is normally 

distributed ( )2, JJN σµ~ξ .  Naturally imposing  λ = 0 ensures no jumps are present..  

Finally for convenience we define α0 as κθ  and α1 as -κ to yield 

ttt
t

ttt dNdWrdt
r
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    For estimation purposes we use the first order Euler approximation of equation as 

given by 

11
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     In the above discretisation, the Gaussian term is approximated by t∆ε  where 

ε is normally distributed with mean of zero and variance of one. Further we assume that 

at most a single jump can occur over each time interval with [ ]1 = ( )1,0∈= λnJP . 

 Equation (6) with data augmentation if required is used as the basis for Gibbs  or 

Metropolis-Hasting (MH)  sampling (see Eraker (2001, 2003), Jones (1999,2002) for 

recent applications of Markov Chain Monte Carlo (MCMC) to financial time series) .  

The steps involved are: 

1. Initialise  ξγλσαααα ,,,,,,,,, 2
3210 Jr

2. Choose number of extra points in between actual data if data augmentation used. 
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3. Sample  ξγλσαααα ,,,,,,,,,|given  2
3210\ Jrrr nnt

4. Using normal prior sample ( ) ξγλσαααα ,,,,,|,,, 2
3210 Jr  

5. Using inverse gamma prior sample  ξγλαααασ ,,,,,,,,| 3210
2 Jr

6. Using normal prior sample  ξλσααααγ ,,,,,,,,| 2
3210 Jr

7. Using beta prior sample  ξγσααααλ ,,,,,,,,| 2
3210 Jr

8. Using Bernoulli prior sample  ξλγσαααα ,,,,,,,,| 2
3210rJ

9. Using normal prior sample  J,,,,,,,| 2
3210 λγσααααξ

 

All the steps except step 3  and step 6 which uses MH sampling uses Gibbs sampling. 

Cycling through steps 1 to 9 represents one complete sweep of the sampler.  For data 

augmentation we follow the procedure in Jones (1999).  We need to perform thousands of 

such sweeps to estimate the model parameters.  

     The ability of the different models to fit the observed data can be assessed by 

examining the normalised residuals that are generated in the estimation process.  The 

residuals are based on the Euler approximation, for example for the one factor interest 

rates, the residuals are: 
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    In the Euler approximation the normalised residuals are assumed to be independent 

standard normal random variables.  According to Zellner (1975) ε  may be interpreted as 

a parameter vector and hence its posterior distributions of various functions may be 

computed.  To assess the viability of the models moments and autocorrelations should be 

 6



calculated.  If there is any misspecification in the model then independence or normality 

will be violated. 

    Posterior distributions of these functions are obtained in the same manner to posteriors 

of the model parameters.  Thus at each iteration we first calculate the model parameters 

and then based on the model parameters we calculate the series of residual ε n+1.  

 

3. EMPIRICAL RESULTS 

    The three month secondary market quote T- bill rates are used in this study.  As noted 

by a number of researchers the three month T- bills have the advantages of high liquidity, 

small bid ask spreads and are free of idiosyncratic effects that may lead to potential 

sources of non-normality.  Johannes (2003) notes that omitting weekends and holidays 

has no impact on the conclusions which can be reached using daily data.  Thus in this 

study we use daily data from January 1979 to December 2002.  The total number of 

observations is 5994. 

    Table 2 - Table 4 contain parameters for three separate sub time period based on daily 

observations.  Finally Table 5 contains parameters for one sub time period with data 

augmentation. 

    Table 2 contains the parameters for the period 1/2/1979 to 12/31/1981.  During this 

period the jump intensity is around 18% for the linear models and around 19% for the 

non-linear models indicating a period of large frequent jumps.  The average jump size is 

positive and γ is always greater than 1.  Without the jumps γ is just over one, however, 

with the jumps γ is always greater 1.5 for linear and non-linear models.  The α3 parameter 

is small with and without jumps indicating that the linear model is sufficient.  Without the 
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jumps the skewness and the kurtosis is around 0.1 and 5.6 respectively for both models.  

Introduction of jumps brings these statistics to acceptable levels around 0 and 3. 

    Table 3 covers the period 1/2/1991 to 12/31/1992.  During this period the jumps are 

smaller.  The average jump intensity for this period drops to around 7%.  The average 

jump size is negative.  Unlike the previous period γ is close to 0.  However the addition 

of jumps raises γ > 0.5 for both linear and non-linear models.  In the case of non-linear 

models with jumps α2 > 0 indicating potential mis-specification.  Futher α3 drops 

significantly once jumps are introduced, indicating that jumps eliminate any non-linearity 

that may be present in the interest rate.  The skewness, kurtosis and correlation are 

greater than 3, 14 and 0.1 respectively indicating very strong mis-specification without 

the jumps. 

    Table 4 covers the period 1/2/1998 to 12/29/2000.  During this period γ is 

approximately zero both with and without jumps, in contrast to the previous two periods.  

The average jump size is negative.  Unlike the previous two periods there is a large 

difference in jump intensity between the linear models and the non-linear models.  For 

linear models jump intensity is around 10% whereas for the non-linear models jump 

intensity is around 4%.  Introducing jumps has no significant impact on α3.  The 

skewness and kurtosis parameter again indicate strong mis-specificatin without the 

jumps. 

    In Table 5, we again estimate the parameters for the period 1/2/1991 to 12/31/1992, in 

this case with data augmentation.  Furthermore we only focus on the linear models as the 

conclusions drawn using non-linear models would be the same.  The first feature to note 

is the impact on the specification statistics for the models without the jumps.  Even with 
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t=1/2, that is with 2 simulated extra data points inbetween actual observations the 

specification statistics are at the boundary of acceptability.  With ∆t=1/8 , i.e. with 8 

simulated data points between actual observations, the specification statistics are wholly 

acceptable.   With jumps incorporated the specification statistics are always acceptable.  

Overall data augmentation does not cause the parameters  to be 

significantly different from those obtained without any data augmentation.  The average 

jump size is negative although increasing the number of simulated data points causes it to 

decrease in absolute terms.  The jump intensity is naturally lower with data augmentation 

as we have effectively more periods with data augmentation. 

22
10 ,,,, δγσαα

    Figure 2 - Figure 5 contain plots for the three different sub-periods.  Each figure 

comprises of 5 separate plots.  The first plot exhibits the daily change in the actual 

interest rate.  The second plot shows the daily probabilities of a jump.  The third plot 

shows the daily average jump sizes.  Both the second and the third models are based on 

linear models.  The final two plots are based on the non-linear models and show daily 

jump probabilities and average jump sizes respectively. 

    From Figure 2 we see that for the period 1979-1982 one factor linear and non-linear 

CKLS with jumps is able to predict both the times and the magnitudes of the jumps.  

However, a point to note is that the magnitude of the predicted jump size is smaller than 

the actual observed jump size.  For example, the largest observed jump was 134 basis 

points.  The corresponding model jump size based on the linear model is 102 basis points 

and based on the non-linear model it is 99 basis points.  Thus clearly for the period both 

the linear and non-linear models underestimate the magnitude of the jumps. 
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    Figure 3 covers the period 1991-1992.  As can be seen from the first plot the daily 

changes in this sub-period is much smaller than the previous sub-period.  For example, 

during this period the largest daily change in interests rate was a fall of 31 basis points.  

For this period the estimated jump sizes are more accurate than the previous period.  For 

example the corresponding jump size based on the linear model  was -29 basis points and 

based on the non-linear model it was also -29 basis points.  During this sub-period 

Johannes (2003) identifies the following event dats; 01/09/1991, outbreak of the Gulf 

War; 02/01/1991, unemployment announcements and comments by the Federal Reserve; 

08/19/1991, the Kremlin Coup and the Collapse of the Soviet Union; 08/21/1991, the 

emergence of Boris Yeltsin as the leader of Russia; 12/20/1991, the Federal Reserve 

lowered the discount rate.  All these events are reproduced by both the linear and the non-

linear CKLS model with probabilities of 60% or more. 

    Figure 4 covers the period 1998-2000.  The jumps during this period are similar in 

magnitude to the previous period.  The largest observed jump is -49 basis points.  The 

corresponding jumps based on the linear and non-linear CKLS models are -46.5  and -47 

basis points respectively. 

    Thus in summary when the jump sizes are of the order of 50 basis points, the estimated 

jump sizes can be calculated with a very high accuracy, however as during the first sub-

period 1979-1982 where the jump sizes are larger than 130 basis points, there may be a 

small discrepancy between the actual and estimated jump sizes. 

    Figure 5 covers the period 1991-1992 with data augmentation.  Figure 8 can be directly 

compared with Figure 3.  In terms of appearance, the two figures are similar.  However, 

closer examination indicates that once data augmentation is used both the probabilities 
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and the jump sizes decrease in absolute value and there are many more smaller jumps 

around the actual date of jump.     

 

4. CONCLUSIONS 

    In this paper we have examined the CKLS (1992) model augmented with normally 

distributed jumps.  Our results indicate that this model accurately captures the tail 

behaviour of interest.  Furthermore, we firstly find the non-linear drift offers no overall 

advantage over the linear drift and secondly the linear drift is correctly specified in 

contrast to the non-linear drift for certain periods.  We also estimate the model parameter 

using data augmentation and find that overall our conclusions remain the same.  

However, with data augmentation, the average jump sizes predicted by the models are 

smaller. 

        In this paper we have demonstrated that jumps are an important component in 

models explaining the empirical properties of interest rates.  The next step is to examine 

multi-factor CKLS models with jumps in the short rate and the long rate. 
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Table 1: Treasury bill  rate Summary Statistics from January 1979 to December 2002 
 Mean Min Max SD Skew Kurt AC 
rt(%) 6.56 1.14 17.14 3.06 0.94 0.83 0.99 
rt+∆(%) -1.37×10-5 -0.127 0.0134 11.76×10-4 0.38 22.99 0.13 

 

 13



Table 2: Treasury bill  parameter estimates, 1/2/1979 to 12/31/1981 based on daily observations.  For 
each parameter I report the mean of the posterior distribution and the standard deviation of the 
posterior in parentheses.   The mean, standard deviation, skewness, kurtosis and first autocorrelation 
is given in the lower part of the table.  For each statistic the mean and standard deviation is 
calculated, with the standard deviation in parentheses. 
 

 LIN LINJ NLIN NLINJ 
1000×α0 0.5083(0.3783) 0.7138(0.3267) -32.208(15.0428) -38.9943(23.8296) 
α1 -0.0041(0.0035) -0.0068(0.00309) 0.3168(0.1449) 0.3668(0.2156) 
α2   -1.0048(0.4497) -1.1317(0.6342) 
α3   0.0011(0.0005) 0.0014(0.0009) 
10×σ2 0.0089(0.0043) 0.02918(0.0341) 0.0085(0.0039) 0.0511(0.0760) 
γ 1.1365(0.1072) 1.5108(0.2093) 1.1270(0.1012) 1.6124(0.2346) 
1000×ξ  0.6667(0.4899)  0.4083(0.5061) 
1000×δ2  0.0168(0.0039)  0.0160(0.0038) 
λ  0.1793(0.0379)  0.1873(0.0382) 

Specification Analysis 
Mean(εr

t) 0.0000( 0.0364) -0.0002(0.0366) -0.0001(0.0370) -0.0002(0.0367) 
StDev(εr

t) 0.9995( 0.0261) 0.9995(0.0261) 0.9994(0.0255) 0.9996(0.0258) 
Skew(εr

t) 0.1300( 0.0088) 0.0085(0.0123) 0.1081(0.0267) 0.0084(0.0125) 
Kurt(εr

t) 5.6342( 0.0293) 3.2762(0.1932) 5.5837(0.0503) 3.2470(0.1950) 
ρ (εr

t) 0.1568( 0.0046) 0.0895(0.0296) 0.1612(0.0058) 0.0900(0.0296) 
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Table 3: Treasury bill  parameter estimates, 1/2/1991 to 12/31/1992 based on daily observations.  For 
each parameter I report the mean of the posterior distribution and the standard deviation of the 
posterior in parentheses.   The mean, standard deviation, skewness, kurtosis and first autocorrelation 
is given in the lower part of the table.  For each statistic the mean and standard deviation is 
calculated, with the standard deviation in parentheses. 
 

 LIN LINJ NLIN NLINJ 
1000×α0 0.0963(0.0619) 0.1146(0.0560) -8.7579(4.4268) -0.5546(4.3791) 
α1 -0.0037(0.0014) -0.0035(0.0013) 0.1976(0.1054) 0.0019(0.1045) 
α2   -1.4729(0.8162) 0.03490(0.8099) 
1000×α3   0.1249(0.0605) 0.0149(0.0598) 
10000×σ2 0.0087(0.0083) 0.0726(0.1011) 0.0083(0.0073) 0.0584(0.0717) 
γ 0.1932(0.1056) 0.5983(0.1809) 0.1892(0.1048) 0.55706(0.1917) 
1000×ξ  -0.3807(0.2544)  -0.4555(0.2902) 
10000×δ2  0.0129(0.0048)  0.0135(0.0058) 
λ  0.0789(0.0252)  0.0731(0.0249) 

Specification Analysis 
Mean(εr

t) -0.0029(0.0442) -0.0009(0.0447) 0.0002(0.0447) 0.0000(0.0449) 
StDev(εr

t) 0.9992(0.0317) 0.9996(0.0317) 0.9997(0.0316) 0.9990(0.0317) 
Skew(εr

t) 3.2349(0.2388) 0.0205(0.0243) 3.1348(0.2627) 0.0200(0.0232) 
Kurt(εr

t) 14.5631(0.5459) 3.4820(0.2310) 14.0121(0.6102) 3.4663(0.2231) 
ρ (εr

t) 0.1270(0.0031) 0.0957(0.0247) 0.1299(0.0050) 0.0935(0.0257) 
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Table 4: Treasury bill  parameter estimates, 1/2/1998 to 12/29/2000 based on daily observations.  For 
each parameter I report the mean of the posterior distribution and the standard deviation of the 
posterior in parentheses.   The mean, standard deviation, skewness, kurtosis and first autocorrelation 
is given in the lower part of the table.  For each statistic the mean and standard deviation is 
calculated, with the standard deviation in parentheses. 
 

 LIN LINJ NLIN NLINJ 
1000×α0 0.2145(0.1336) 0.1395(0.0901) -85.2941(19.7088) -98.2444(16.3505) 
α1 -0.0040(0.0026) -0.0025(0.0018) 1.6837(0.3960) 1.9104(0.3274) 
α2   -10.9923(2.6298) -12.2916(2.1712) 
α3   0.0014(0.0003) 0.0017(0.0003) 
10000×σ2 0.0035(0.0008) 0.0016(0.0013) 0.0035(0.0008) 0.0024(0.0017) 
γ 0.0293(0.0293) 0.0675(0.0676) 0.0326(0.0312) 0.0681(0.0677) 
1000×ξ  -0.0274(0.1871)  -0.4280(0.4574) 
1000×δ2  0.0019(0.0006)  0.0396(0.0223) 
λ  0.1011(0.0282)  0.0436(0.0178) 

Specification Analysis 
Mean(εr

t) -0.0013(0.0365) -0.0017( 0.0364) 0.0002(0.0367) -0.0001(0.0363) 
StDev(εr

t) 0.9999(0.0260) 0.9995(0.0256) 0.9997(0.0256) 0.9993(0.0255) 
Skew(εr

t) 0.7023(0.0541) 0.0099(0.0143) 1.1589(0.1370) 0.0133(0.0155) 
Kurt(εr

t) 26.7870(0.1310) 3.5532(0.2311) 28.4467(0.6359) 3.8104(0.1790) 
ρ (εr

t) 0.0462(0.0038) 0.1153(0.0292) 0.0627(0.0077) 0.1348(0.0232) 
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Table 5: Treasury bill  parameter estimates, 1/2/1991 to 12/31/1992 based on daily observations with 
data augmentation.  Time steps of ∆t=1/2 and ∆t=1/8 are used.  For each parameter I report the 
mean of the posterior distribution and the standard deviation of the posterior in parentheses.   The 
mean, standard deviation, skewness, kurtosis and first autocorrelation is given in the lower part of 
the table.  For each statistic the mean and standard deviation is calculated, with the standard 
deviation in parentheses. 
 

  

 LIN LINJ LIN LINJ 
 ∆t = 1/2 ∆t = 1/8 
1000×α0 0.0952(0.0618) 0.1132(0.0556) 0.0950(0.0624) 0.1161(0.0563) 
α1 -0.0037(0.0014) -0.0035(0.0013) -0.0037(0.0014) -0.0035(0.0013) 
10000×σ2 0.0662(0.0510) 1.2910(1.6475) 0.0525(0.0277) 0.5620(0.5558) 
γ 0.1570(0.0972) 0.6943(0.1930) 0.1343(0.0762) 0.6104(0.1408) 
1000×ξ  -0.2597(0.1840)  -0.2188(0.1561) 
10000×δ2  0.096(0.0390)  0.0791(0.0300) 
λ  0.0405(0.0150)  0.0169(0.0068) 

Specification Analysis 
Mean(εr

t) -0.0019(0.0257) -0.0000(0.0259) -0.0011(0.0149) -0.0002(0.0147) 
StDev(εr

t) 0.9999(0.0184) 0.9997(0.0181) 0.9999(0.0105) 1.0000(0.0105) 
Skew(εr

t) 0.1177(0.0447) 0.0042(0.0060) 0.0056(0.0052) 0.0014(0.0019) 
Kurt(εr

t) 4.2207(0.2550) 3.0369(0.1292) 3.1356(0.0867) 3.0038(0.0732) 
ρ (εr

t) 0.0145(0.0255) 0.0089(0.0257) 0.0016(0.0150) 0.0007(0.0148) 
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Figure 1: The time series of the daily-level and changes (in basis points) in the three-month Treasury 
bill rate from January 1979 - December 2002 
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Figure 2:  Time series interest rate changes, estimated jump probabilities and jump sizes for linear 
and non-linear drift from 1979-1982 
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Figure 3:  Time series interest rate changes, estimated jump probabilities and jump sizes for linear 
and non-linear drift from 1991-1992 
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Figure 4:  Time series interest rate changes, estimated jump probabilities and jump sizes for linear 
and non-linear drift from 1998-2000. 
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Figure 5:  Time series interest rate changes, estimated jump probabilities and jump sizes for linear 
and non-linear drift from 1991-1992 for h = 1/2 and h = 1/8. 
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