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Abstract. This paper compares the goodness-of-�t and the stability of six
methods used to extract risk-neutral probability density functions from currency op-
tion prices. We �rst compare �ve existing methods commonly employed to recover
risk-neutral density functions from option prices. Speci�cally, we compare the meth-
ods introduced by Shimko (1993), Madan and Milne (1994), Malz (1996), Melick and
Thomas (1997) and Bliss and Panigirtzoglou (2002). In addition, we propose a new
method, namely the piecewise cubic Hermite interpolation of the implied volatility
function. We use data on 12 emerging market currencies against the US dollar and
�nd that the piecewise cubic Hermite interpolation method is by far the method
with the best accuracy in �tting observed option prices. We also �nd that there
is a relative tradeo¤ between the goodness-of-�t and the stability of the methods.
Thus, methods which have a better accuracy in �tting observed option prices appear
to be more sensitive to option pricing errors, while the most stable methods have
a fairly disappointing �tting. However, for the �rst two PDF moments as well as
the quartiles of the risk-neutral distributions we �nd that the estimates do not di¤er
signi�cantly across methods. This suggests that there is a large scope for selection
between these methods without essentially sacri�cing the accuracy of the analysis.
Nonetheless, depending on the particular use of these PDFs, some methods may be
more suitable than others.

JEL Classi�cations: C52, F31, G13.

1. Introduction
This paper contributes to a new and growing literature on option-based approaches to

modelling exchange rate expectations. Interest in this topic has burgeoned in recent years,
driven by the growth of derivative markets and a greater appreciation of the information
imbedded in the prices of options. The key tool used to extract the information contained
in exchange rates is the risk-neutral probability density function (PDF). Risk-neutral
PDFs provide the probabilities attached by a risk-neutral agent to particular outcomes
for future values of exchange rates.
This paper compares several methods of estimating risk-neutral probability density

functions with the aim of determining which method �ts more accurately observed market
option prices.1 Speci�cally, it presents the methods introduced by Shimko (1993), Madan
and Milne (1994), Malz (1996), Melick and Thomas (1997) and Bliss and Panigirtzoglou

�Monetary and Economic Department, Bank for International Settlements, Tel: +4161 280 92 79,
Fax: +4161 280 91 00, E-mail: Marian.Micu@bis.org. The views expressed in this paper are those of the
author and not necessarily the views of the BIS.

1Most of the previous studies on the extraction of risk-neutral density functions have concentrated on
estimation issues whereas less emphasis has been placed on the formal assessment of the goodness-of-�t
of such estimates. The most common instruments used to test the accuracy of �t are the pricing errors,
computed as di¤erence between observed and theoretical option prices. These pricing errors are then
averaged to compute aggregate indicators, such as the mean squared error (MSE), and the mean squared
percentage error (MSPE).
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(2001). In addition, it proposes a new technique for recovering risk-neutral density func-
tions based on the piecewise cubic Hermite interpolation of the implied volatility function.
The comparison of these techniques is made on the basis of summary statistics derived
from the estimated PDFs, using a sample of �ve years of daily data for 12 emerging market
currencies against the US dollar. The summary statistics refer to measures of location,
dispersion, asymmetry, fat-tailness and various tail percentiles. The average values of
these statistics are then compared across methods. Most of the authors found similar val-
ues for the �rst two moments across various models, and large discrepancies in the higher
moments of the distributions, which seems to suggest that the measures of skewness and
kurtosis are highly model-dependent. Our empirical tests con�rm most of the results
from previous studies. However, we �nd that the quartiles of the distributions were quite
similar across methods, except for Malz�s (1996) approach. Moreover, the estimates of
the PDF quartiles appear to be less sensitive to option pricing errors.
Before giving a detailed description of the methods used to extract risk-neutral prob-

abilities from the prices of foreign exchange options, we present the advantages and limi-
tations of risk-neutral density functions with respect to traditional time series methods.

2. Time series methods versus risk-neutral probability density functions
Exchange rate prices depend on many factors. Empirical models, based on both

macroeconomic equilibria and market microstructure, fail to explain the changes in these
prices. The failure of these models is due to the di¢ culty of modelling two basic factors:
the changing nature of investors�expectations and the change in their risk attitudes.
The analysis of investors�expectations is usually accomplished with time series meth-

ods. However, such models have a couple of drawbacks. One of these is that they are
by nature backward-looking. This means that they assume the whole set of information
about future exchange rates is fully included in their historical prices. Another inconve-
nience is that, in most of these models, the parameters do not change with the arrival
of new information, ie the parameters are not time-varying. Furthermore, the change in
exchange rate regimes is usually not easily captured.2 A third limitation of time series
models is that they only o¤er some information about a (central) point estimate of future
exchange rate prices or volatilities but not about the whole future distribution.
The forecasts based on risk-neutral distributions give the probability value of a set of

future possible exchange rate prices. These probabilities are �risk-neutral�, which means
that investors are assumed not to charge an additional premium for a change in the un-
certainty about future exchange rates.3 They also mean that all investors have similar
risk preferences. However, in the real world market participants are not risk-neutral. The
e¤ect of risk on investors�decision-making process depends on their wealth, their utility

2Some regime-switching models have been proposed to deal with this issue (see Engle and Hamilton
(1990)). However, these models are in general over-parameterised, which make them di¢ cult to be
empirically implemented. Moreover, they only have a limited number of possible regimes. This may turn
out to be problematic if the exchange rate goes though a set of multiple intermediary regimes, which is
in fact the case with most crawling peg arrangements.

3Technically, the fact that dynamic hedging is possible creates the possibility of the perfect replication
of an option�s payo¤, which determines the cancelling out of its writer�s risk exposure. If this is true, the
assumption of risk-neutrality is a natural one. However, hedging incurs costs and is usually not feasible
at very high frequencies, at least in less liquid foreign exchange markets.
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function and the perceived level of risk in the market (see Pratt (1964)). Moreover, in-
vestors have heterogeneous risk preferences and therefore risk-neutral distributions might
not perfectly match the �real�distributions used by market participants to price foreign
exchange options. Some recent papers investigate the di¤erences between the risk-neutral
and subjective distributions.4

Various techniques have been proposed to extract risk-neutral PDFs from option
prices. These techniques can be classi�ed in four broad categories (Bahra (1996)): I)
the probability density function is estimated by assuming a particular stochastic process
for the underlying asset (eg Bates (1991), Malz (1996)); II) a functional form for the PDF
is assumed and its parameters are estimated by minimizing the di¤erence between actual
and predicted option prices (eg Rubinstein (1994), Melick and Thomas (1997), Bahra
(1996)); III) the probability density function is implied from some parametric speci�ca-
tion of the call pricing function or the implied volatility smile (see eg Shimko (1993),
Madan and Milne (1994), Malz (1997)); IV) the risk-neutral density function is estimated
non-parametrically (see eg Aït-Sahalia and Lo (1998), Bondarenko (2003), etc.). How-
ever, the implied PDFs by these methods are not always similar. Moreover, there is no
consensus on which of these techniques provides a better �t.

3. The Garman-Kohlhagen model
Before pricing any derivative security, we need to be able to characterise the behaviour

of its underlying asset. Usually, the price changes in the underlying asset are described by
making some assumptions about their future distribution. One of these assumptions traces
its roots to Bachelier (1900). Bachelier assumed that bond prices follow an arithmetic
Brownian motion. He used this assumption to model options on French government
bonds. However, such a stochastic process can also take negative values. This led to
anomalous approximations of the prices of bonds with long maturities. An alternative
to this hypothesis was proposed by Samuelson (1965). He considered long-term equity
options, and used the geometric Brownian motion to model the random behaviour of the
underlying stock price. Based upon this, he modelled the random value of the option at
exercise. The model required two assumed parameters. The �rst was the expected rate
of return � for the stock price. The second was the rate � at which the option�s value
at exercise should be discounted back to the pricing date. These two factors depended
upon the unique risk characteristics of, respectively, the underlying stock and the option.
Neither factor was observable in the market. Depending upon their degree of risk aversion,
di¤erent investors might propose di¤erent values for the factors. Accordingly, Samuelson�s
formula was largely arbitrary. It o¤ered no means for a buyer or a seller with di¤erent
risk aversions to agree on a price for an option.
Black and Scholes (1973) proposed a completely new approach. They considered an

options trader who is about to sell an option. The trader is assumed to dynamically hedge
the exposure until the option expires.5 Therefore, the trader needs to evaluate the cost of

4See for example Ait-Sahalia and Lo (2000), Bliss and Panigirtzoglou (2004), Jackwerth (2000), Rosen-
berg and Engle (2002). This area of research looks very promising for the re-evaluation of the role the
risk-premium hypothesis plays in explaining the forward premium puzzle.

5Dynamic hedging is a procedure for hedging an option position by periodically changing the exposure
in the underlying asset, so that the change in the price of the option is fully compensated by the change
in the price of the underlying asset.
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dynamically hedging the short option. Given certain simplifying assumptions, they found
that this cost could be known in advance. One of the basic assumptions in their model
is that the asset price is part of a continuous process.6 More precisely, the price of the
underlying asset is assumed to follow a random walk in continuous time, with the variance
proportional to the square of the underlying asset price change. Thus, the distribution
of the underlying price at the end of any �nite interval is lognormal and the variance
of the return on the underlying asset is constant. Another hypothesis of their model is
that the risk-free interest rate is known and constant through time, which means that if
an investor holds a risk-free security for � years, the value of every unit of this security
will grow to exp(r�), where r is the continuously compound risk-free constant interest
rate. Moreover, Black and Scholes assumed that there are no arbitrage opportunities,
every investor can trade continuously with no transaction costs and can borrow or lend
any fraction of a security at the risk-free interest rate. A �nal assumption was that
short-selling was allowed.7

Black and Scholes (1973) started with the observation that if the frequency of re-
hedging increases, dynamic hedging becomes more predictable. Using stochastic calculus,
they took the limiting case as the frequency of re-hedging approaches in�nity. In that
limiting case, the cost of dynamic hedging is independent of the actual path taken by the
price of the underlying asset. It depends only upon the price�s volatility. If that volatility
is constant and known in advance, the cost of dynamic hedging an option is certain. Being
certain, it entails no risk, so it can be discounted at a risk-free rate to obtain the price of
the option.
Based upon this approach, Black and Scholes derived a partial di¤erential equation

for valuing claims contingent on a traded stock. The equation is, however, general. By
applying di¤erent boundary conditions, it can be solved to price any such contingent
claim.
Garman and Kohlhagen (1983) adapted the Black and Scholes (1973) model for the

pricing of European-type currency options. They used similar assumptions as Black and
Scholes (1973), and considered that the spot exchange rate St follows a geometric Brown-
ian motion, ie the di¤erential representation of spot price movements is

dSt = �Stdt+ �StdWt (1)

where � and � represent the instantaneous mean and volatility and Wt is a standard
Wiener process. Additionally, they considered that markets are frictionless and interest
rates, both in foreign and domestic markets, are constant.
Under these assumptions they showed that in a risk-neutral world the process St can

be written as:

dSt = (r � r�)Stdt+ �StdWt (2)

where r and r� are the domestic and foreign continuously compounded risk-free interest
rates. Using Itô�s lemma, this can be further developed as:

6This means that asset prices do not exhibit jumps, which in fact is not the case in many markets,
including the foreign exchange market.

7Short-selling means selling some securities the seller does not own. Speci�cally, a seller who does not
own a security accepts the price of the security from a buyer and agrees to settle the buyer on some future
date by paying him an amount equal to the price of the security on that date.
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ln (ST ) = ln (St) +

�
r � r� � 1

2
�2
�
dt+ �dWt (3)

where T denotes the expiration date of an option contract and ST is the exchange
rate at the maturity of the contract. The di¤usion process in equation (3) can again be
represented as:

ln (ST ) = ln (St) +

�
r � r� � 1

2
�2
�
� + � (WT �Wt) (4)

where � = T � t is the time to maturity of an option contract, expressed in years.
Knowing that WT �Wt is a random variable with mean 0 and variance � = T � t, we can
express the mean of the di¤usion process as ln (St) +

�
r � r� � �2=2

�
� and its variance

as �2� . Under the hypothesis of log-normality of the underlying asset, the risk-neutral
density function is given by:
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Garman and Kohlhagen (1983), following the methodology outlined by Black and Sc-
holes (1973) and Merton (1973) derived the following formulae for European-type foreign
exchange option prices:

C = e�r
��StN (d1)� e�r�KN (d2) (6)

P = Ke�r�N (�d2)� Ste�r
��N (�d1) (7)
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�
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�
�

�
p
�

(8)

d2 =
ln (St=K) +

�
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�
�

�
p
�

(9)

where C is the price of a call option, P is the price of a put option, K is the exercise
price and N (x) is the cumulative normal distribution function for a standardised normal
random variable given by:

N (x) =
1p
2�

Z x

�1
e�

1
2 z

2

dz; z � N(0; 1) (10)

Option prices calculated with the Garman-Kohlhagen formulae depend on six elements:
(1) the spot price of the underlying asset St, (2) the price at which the currency can be
bought K, (3) the time at which the option expires T , (4) the risk-free interest rate
in domestic currency r, (5) the risk-free interest rate in foreign currency r�, and (6)
the volatility of the exchange rate �. The only unknown parameter in the Black and
Scholes model is the volatility of the underlying asset. This is usually not a constant
parameter, nor is there even general agreement on the best procedure for estimating it.
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On the contrary, actual volatility, and also the market�s volatility estimate, appear to vary
randomly over a wide range of methods.8

4. The volatility smile: straddles, strangles and risk reversals

The volatility derived from quoted option prices is called the implied volatility.9 The
Garman-Kohlhagen model implies that all options on the same underlying currency have
identical implied volatilities, regardless of time to maturity and moneyness. However,
there are well known stylised facts from the practice of options trading showing that
the Garman-Kohlhagen formula does not hold. One of these is that options with the
same exercise price but di¤erent tenures often have di¤erent implied volatilities, giving
rise to a term structure of implied volatility. This indicates that market participants
expect the implied volatility of short-term options to change over time. A rising term
structure suggests that market participants expect short-term implied volatility to rise or a
willingness to pay more to protect against longer-term exchange rate volatility (see Campa
and Chang (1995)). Another well-known stylised fact is that out-of-the money options
on currencies with �exible exchange rates often have higher implied volatilities than at-
the-money options, indicating that the market perceives the distribution of exchange rate
changes to be leptokurtic, that is, the likelihood of large exchange rate moves is greater
than its theoretical value obtained from the lognormal distribution.10 This is often referred
to as the "volatility smile".
An interesting feature of the implied volatility is related to the asymmetry between

the volatilities of out-of-the-money put and call options with the same deltas. In general,
out-of-the-money call options have implied volatilities which di¤er from those of equally
out-of-the money put options, suggesting that the market perceives the distribution of the
future exchange rate to be skewed.11 This is very common in the stock markets and it
is called the "volatility smirk". In foreign exchange markets, a persistent volatility smirk
might suggest a "peso problem".
In the foreign exchange over-the-counter market options are frequently sold in com-

binations. The most common in the interbank currency option markets is the straddle.
This is a combination of an at-the-money forward call and an at-the-money forward put
with the same time to maturity. This combination has a V -shaped payo¤ function: the
further the spot price is away from the strike price at the time of expiry, the higher is
the payo¤. The price of a straddle conveys information about the expected variance of
the exchange rate: the higher the variance is expected to be, the higher is the pro�t ex-
pected from holding a straddle, and as a result, the higher its price. The standard quoted
over-the-counter straddle contract is the at-the-money straddle, where the strike price for
both options is equal to the current forward price. This also means that the delta for

8See Poon and Granger (2003) for an extensive survey on the di¤erences in the forecasting performance
of di¤erent methods.

9 In organised exchange markets where currency option prices are known, the implied volatility can
be easily deduced from observed option prices by solving for the parameter � in the Garman-Kohlhagen
model. In the foreign exchange over-the-counter market, the volatility is directly quoted by traders.
10Such patterns may be generated if implied volatility is stochastic or if the exchange rate follows a

jump-di¤usion process (see Heynen (1994) or Taylor and Xu (1994, 1995)).
11Such patterns are generated if the exchange rate follows an asymmetric jump-di¤usion (eg Bates

(1991) or Bates (1996a, 1996b)).
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both options that make a standard straddle is approximately equal to 0.5. Straddles are
quoted in terms of volatility, therefore, the quoted price of a straddle gives us the implied
volatility of an option with an approximate delta of 0.5. The straddle price therefore is
often referred to as the at-the-money implied volatility.

There is also active trading in option combinations with which participants can
take directional ("informed") positions in the foreign exchange options market. The most
representative are the strangles and the risk reversals, both consisting of out-of-the money
put and call options. Thus, a strangle consists of a purchase or sale of an out-of-the-money
put and call option on the same underlying asset, with the same expiration date. To buy
a strangle is similar to "buying the volatility" because this strategy leads to pro�ts only
if there is a drastic move in the price of the underlying asset, outside the two strike prices
for call and put options.
Dealers usually quote strangles by stating the implied volatility at which they want to

buy or sell the options and record strangle prices as the spread of the strangle volatility
over the at-the-money forward volatility. If market participants were convinced that
exchange rates move lognormally, the out-of-the-money options would have the same
implied volatility as at-the-money options and strangle prices would be zero. Strangles,
then, indicate the degree of curvature of the volatility smile. The most popular strangle
contracts traded on the foreign exchange over-the-counter market correspond to levels of
the delta of 25% and 10%. The midpoint of the 25% strangle price can be expressed as:

str25�t = 0:5

�
�
(�c

0:25)
t + �

(�p
0:25)

t

�
� �ATMt (11)

where �(�
c
0:25)

t and �
(�p

0:25)
t are the implied volatilities of 25% delta call and 25% delta

put options, and �ATMt is the at-the-money forward implied volatility. The higher the
dispersion of implied volatilities for out-of-the-money call and put options, the higher the
price of the strangle.12

A risk reversal consists of a simultaneous purchase of an out-of-the-money call option
and sale of an equally out-of-the-money put option on the same underlying asset. Since
prices of over-the-counter options are quoted in terms of implied volatility, and these
options are equally out-of-the money, the price of a risk reversal is by convention quoted
as the volatility of the long option minus the volatility of the short option. Risk reversals
are a measure of the relative value of options with strikes above or below the current
at-the-money forward rate. They consequently express the skew that may exist in the
volatility smile. The price of a risk reversal re�ects market participants� view of the
balance of risk towards an appreciation (if the di¤erence is positive) or a depreciation (if
the di¤erence is negative) of the domestic currency. If the directional view is correct, the
strategy makes a pro�t. However, if the directional view is incorrect, there is unlimited
risk in the short open position. The degree of the "out-of-the-moneyness" of risk reversals
is expressed in terms of delta. Thus, a purchase of a 25% delta call accompanied by a
sale of a 25% delta put would be referred to as a 25% delta risk reversal. Usually, in
the FX over-the-counter market, risk reversals are traded for levels of delta equal to 25%
and 10%. In practice, the market is more liquid for 25% deltas, and to a lesser degree
for 10% deltas. As a rough guideline, 25% delta call and 25% delta put options have
approximately a 25% probability of �nishing in-the-money. In comparison, 10% delta

12For a more analytical description of this instrument see Malz (1996, 1997).



Extracting expectations from currency option prices: a comparison of methods 8

options have approximately a 10% probability of �nishing in-the-money. The 1-month
25% delta risk reversal is the reference risk reversal for most interbank market makers.
The price of a risk reversal is given in terms of the di¤erence between call and put

volatilities. Thus, the formula for a 25% delta risk reversal is

rr25�t = �
(�c

0:25)
t � �(�

p
0:25)

t (12)

A plausible model for explaining the skewness in the distribution of exchange rates,
and therefore the pricing of risk reversal spreads, is to assume that changes in volatility
are correlated with changes in exchange rates. For example, suppose that the Mexican
peso against the US dollar exchange rate is correlated with its volatility. Then, if the
peso depreciates, volatility is more likely to go up, and if the peso appreciates, volatility is
more likely to go down. Thus, if market participants expect a peso depreciation, the out-
of-the-money put options are sold for a higher implied volatility than out-of-the-money
call options. This would lead to a skewed distribution. Thus, if the market is postured
defensively against signi�cant exchange rate moves in one direction, the risk reversal prices
are non-zero.13

In the foreign exchange over-the-counter market, the implied volatility for out-of-the-
money options can be easily inferred from the prices of straddles, strangles and risk
reversals. Thus, the volatility of the 50% delta call and put options is equal to the price
of the straddle. The volatility of the 25% delta call option is

�
�c
0:25

t = �ATMt + str25�t + 0:5rr25�t (13)

and the corresponding volatility of the 25% delta put option is

�
�p
0:25

t = �ATMt + str25�t � 0:5rr25�t (14)

To close a straddle deal, the counterparties use the Garman-Kohlhagen formulae to
translate the straddle price expressed in volatilities into currency units. In the same way,
to close a strangle or a risk reversal deal, the exercise prices of the individual components
must �rst be set, which in part requires the counterparties to agree on ��

c
0:25

t and ��
p
0:25

t ,
the implied volatilities of the 25% delta call and the 25% delta put. The counterparties
then translate the price expressed in volatilities into currency units by using equations
(6) and (7).

5. Comparison of methods used to infer risk-neutral density functions
from option prices

The existence of a multitude of methods to extract risk-neutral distributions from
option prices raises the question of which method is better. Two criteria are usually used
to compare these methods: the goodness-of-�t and the stability.
The goodness-of-�t means how well theoretical option prices calculated with each of

these methods �t observed market prices. Practically, synthetic measures for the pricing

13Risk reversal prices of zero do not indicate that no skew is perceived in exchange rates, since a
modest skew is implied by lognormality. For a more technical analysis of this instrument, see McCauley
and Melick (1996a, 1996b).
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errors are used: mean squared error, mean absolute error, mean squared percentage error,
mean absolute percentage error, etc. The best method is considered to be the one which
has the smallest pricing errors.
The stability of implied PDFs refers to their robustness to small changes in option

prices. In general, the stability is tested by using bootstrapping or Monte-Carlo methods
to perturb the option prices or the parameters of estimated distributions.
One of the earliest papers which compared the goodness-of-�t of risk-neutral PDFs

extracted from option prices was the paper by Sherrick, Garcia and Tirupattur (1996).
They compared two PDF approximating function approaches, using double lognormal and
Burr III speci�cations. They performed a series of tests to compare the two functional
forms including: evaluation of average pricing errors, comparisons of implied PDF mean
prices with future prices, and assessment of the predictability of resulting futures price
variability. In the �rst two cases, they found evidence of marginal improvement in the
Burr III method. Moreover, their estimates showed that the Burr III method substantially
outperformed the mixture of lognormals in depicting future price variability.
Campa, Chang and Reider (1998) compared the performance of three methods used to

extract exchange rate expectations from option prices: cubic splines, an implied binomial
tree and a mixture of lognormals, and showed that, despite their methodological di¤er-
ences, the three approaches led to similar probability density functions, clearly distinct
from the lognormal benchmark, and typically characterised by skewness and leptokurtosis.
They also documented a striking positive correlation between the skewness and the spot
rate, which they interpreted as a rejection of the hypothesis that innovations in exchange
rates are independent of the position of spot exchange rates within the ERM band.
In a similar paper, Jondeau and Rockinger (2000) used over-the-counter options data

for the FRF/DEM exchange rate for various dates between May 1996 and June 1997, and
considered a mixture of lognormal distributions, a Hermite polynomial approximation,
Malz�s (1996) jump-di¤usion model, Heston�s (1993) stochastic volatility model and a
maximum entropy model based on the Edgeworth expansion of Jarrow and Rudd (1982).
First, they empirically tested the lognormal assumption. The hypothesis of normality
of exchange rate returns was clearly rejected by the presence of concave implied volatil-
ity functions with respect to the strike price and of a non-linear term structure of im-
plied volatilities. These features con�rmed that more complicated models than Garman-
Kohlhagen should be considered. Their estimates from the jump di¤usion model showed
an upward sloped term structure of implied volatilities, which indicated that investors
were more uncertain about price movements in the long run. Their estimated probability
of a jump before maturity varied from 0:0399 to 0:0699, suggesting that, for that period,
the likelihood of an exchange rate jump was rather small.14

Another interesting �nding of their study was that the expected jump size decreases
with the option�s tenure. Recent empirical studies by Andersen and Andreasen (1999) and
Carr and Wu (2003) con�rmed this pattern and suggested that pure jump models seem
to be more appropriate to explain the behaviour of short term option prices, whereas a
di¤usion price coupled with a di¤usion in volatility are needed to describe the behaviour
of long term options.
Jondeau and Rockinger�s estimates of Heston�s (1993) stochastic volatility model con-

�rmed their results obtained with the geometric jump-di¤usion model. In this case, their

14This might also be a feature of the jump-di¤usion model, given that it has been con�rmed by other
similar studies using other currency pairs and time periods (see, for instance, Bates (1996a) and Malz
(1996)).
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results showed unambiguously that on a normal day the term structure of implied volatil-
ities was upward sloped, while a �at or slightly decreasing pattern was observed on a day
with agitated markets. This was consistent with the mean reversion of volatility.15

They also compared the estimated moments of risk-neutral distributions and found
that the �rst two moments, the mean and the variance, were quite homogeneous across
methods. However, the volatility implied by the lognormal model appeared to be sys-
tematically smaller than the one obtained with the other approaches. Their estimates of
skewness and kurtosis were much more contrasted. The skewness obtained from Hermite
polynomial and Edgeworth expansion models was systematically lower than the one ob-
tained with other models, although the di¤erence appeared to be small. Nonetheless, con-
cerning kurtosis, they noticed pronounced di¤erences between models, with the mixture
of lognormals and stochastic volatility approaches giving generally very large estimates of
excess kurtosis.
One of the papers which focused explicitly on the goodness-of-�t of implied distribu-

tions was the paper by McManus (1999). He used options on Eurodollar futures traded
at the Chicago Mercantile Exchange (CME) and applied the Black (1976), the mixture
of lognormals, the jump-di¤usion, the Hermite polynomials and the maximum entropy
methods to estimate risk-neutral probability density functions. He found that the double
lognormal method ranked �rst in terms of pricing errors. However, the mixture of log-
normals method appeared to be slow to converge, especially if the true risk-neutral PDF
was close to being lognormal. The Hermite polynomial method ranked second yielding
similar results to the mixture of lognormals, and was quicker to converge. The only draw-
back with the Hermite polynomials method was that the estimation of the risk-neutral
PDF occasionally yielded negative probability values.16 He also found that the higher
moments, skewness and kurtosis, vary widely across methods.
Most of the empirical papers tested the properties of the methods used to extract risk-

neutral distributions by using observed options data. However, Cooper (1999) compared
two approaches to estimating implied risk-neutral probability density functions from the
prices of European-style options by using simulated arti�cial options price data. He
examined the mixture of lognormals and a method based on the cubic spline interpolation
of implied volatility and tested the ability of these techniques to recover the risk-neutral
distributions. Cooper tested both the accuracy and stability of the estimated PDFs. He
also performed a Monte Carlo test to evaluate the ability of each of these techniques to
match simulated distributions based on Heston�s (1993) stochastic volatility model. He
found that the second method performed better in �tting the �rst two moments of the
risk-neutral PDFs. Moreover, the cubic spline method was systematically more stable
than the mixture of lognormals. His empirical results showed that the higher moments
of the distribution appeared to be much more di¢ cult to estimate accurately with both
techniques, often resulting in estimates that are quite far from the simulated ones.
Weinberg (2001) examined how useful is the information contained in option prices

for predicting future price movements of the underlying assets. He developed a semi-
parametric cubic spline methodology for estimating risk-neutral PDFs and applied this
technique to options on the dollar-yen, dollar-mark, and S&P 500 index futures. He
compared the second and third moments of the risk-neutral distribution with the corre-

15However, their empirical estimates of the parameter which describes the mean-reversion showed high
variability, which illustrates the di¢ culties their model has in pinning down the mean-reversion pattern.
16These negative probability values can occur because the fourth and sixth order Hermite polynomial

approxinations involve truncating an in�nite polynomial series.
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sponding moments of daily returns and found that implied volatility predicts reasonably
well future realised volatility. Interestingly, he found that at-the-money volatility outper-
formed the volatility implied by the risk-neutral PDF in predicting the realised volatility.
However, the PDF-implied skewness measure failed to predict the realised skewness.17

More recently, Bliss and Panigirtzoglou (2002) used option contracts written on sterling
futures and the FTSE 100 index to test the stability of mixture of two lognormals and
natural spline methods. They perturbed randomly option prices by no more than plus or
minus one half of the quotation tick size and found that the double lognormal method was
systematically less stable than the smoothed implied volatility smile method, even when
the latter was calibrated to have the same goodness-of-�t. They motivated these results
by the sensitivity of the mixture of lognormals method to computational problems, such
as local optima, non-convergence, spikes in the estimated PDFs, etc. They also found
that the con�dence intervals for the higher moments of the distribution were very wide
for both methods, which may suggest a high sensitivity of these statistics to option pricing
errors.
Anagnou et al. (2002) also tested the ability of risk-neutral PDFs extracted from the

S&P 500 index options and from options on the sterling-dollar exchange rate to predict
future asset price distributions. They proposed two new approaches to estimate the risk-
neutral PDFs: the generalised beta and the normal inverse Gaussian, and compared the
estimates with those obtained from mixture of two lognormals and B-spline approaches.
They found that the normal inverse Gaussian approach provided slightly better estimates
than the generalised beta or the mixture of lognormals. Despite its high �exibility, the
B-spline approach does not recover the tails of the risk-neutral distribution outside the
range of available strike prices, which requires either an extrapolation or a truncation of
the risk-neutral PDF. Anagnou et al. (2002) opted for the second solution and truncated
and then rescaled the estimated distributions for the range of available strike prices. Their
empirical tests showed that the implied risk-neutral distributions extracted from option
prices do not represent an appropriate forecast of the true underlying asset�s distribution at
expiry, regardless of the functional form (parametric or non-parametric) chosen to model
them. Not surprisingly, they found that the main reason for rejecting the predictive ability
of risk-neutral distributions is given by misspeci�cation of the tails outside the range of
available strike prices. The second reason of the rejection appeared to be the bias in the
variance, ie an underestimation of the underlying asset�s realised variance.

6. Data
While options on currencies and currency futures of developed countries are traded

both on exchanges and over-the-counter, the options written on currencies of emerging
countries are almost exclusively traded over-the-counter. Over-the-counter options are
European-type. They are usually traded for standardised maturities. Price quotes are
expressed as implied volatilities corresponding to de�ned levels of options�delta, which
traders by agreement substitute into the Garman-Kohlhagen formula to determine the
option premium. Since the volatility is the only unobservable parameter in the Garman-
Kohlhagen formula, these volatilities uniquely determine the options�prices. However,

17The inability of implied skewness to translate into realised price movements indicates that there were
pro�t opportunities available from betting against the market.
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this does not necessarily mean traders believe that the Garman-Kohlhagen formula gives
a fair evaluation of option prices. This market convention simply allows a direct mapping
from implied volatility quotes into option prices. One reason for this market convention
is that if option prices were expressed as a premium for a �xed strike, most intra-day
changes in the option premium would result from innovations in the spot rate, requiring
much greater coordination between spot and option markets. Another possible reason is
that quoting volatility, ie the perceived risk in the foreign exchange market, facilitates the
task of foreign exchange risk managers in hedging their exposures.
Our data consists of market quotes of over-the-counter options on 12 emerging market

currencies against the US dollar. These currencies are: the Brazilian real, Chilean peso,
Czech koruna, Indonesian rupiah, Malaysian ringgit, Mexican peso, Polish zloty, South
African rand and South Korean won. In particular, we use the information from straddles,
strangles and risk-reversals corresponding to 50%, 25% and 10% levels of delta, as well as
Eurocurrency interest rates recorded by currency option traders at a major global foreign
exchange dealer bank. Observations are for options with maturities of one, three and six
months, with a daily frequency from 10 November 1997 to 10 November 2002.
Although the Garman-Kohlhagen model assumes constant volatilities across exercise

prices, the implied volatility quoted by option traders for our selected currencies typically
varies as a function of options�strike prices. This re�ects a departure from the Garman-
Kohlhagen formula�s assumptions, implying that traders assume a non-lognormal distri-
bution for the future exchange rates when they price these options. In general, our data
shows that the implied volatility is lowest for at-the-money options, increasing for both
in- and out-of-the money options. This pattern is referred to as the �volatility smile�and
is consistent with the leptokurtosis of the distribution of future exchange rate returns.
In general, the probability of future exchange rate realisations is not symmetrically dis-
tributed around the at-the-money strike price. For most of the selected currencies in our
sample, we noticed a greater probability of a large depreciation. This is translated into
positive risk-reversal quotes and positive skewness of the risk-neutral distributions.
The prices used as inputs for estimating risk-neutral probability density functions

are subject to various errors that may cause the observed prices to deviate from those
we would expect in a frictionless world.18 One of these possible errors may be due to
mistakes in the recording and reporting of these prices. We visually inspect all data
series and eliminate from our sample obvious typos and other data records which appear
implausible.19 Another potential data problem is the non-synchronicity of these prices,
which arises from the need to use multiple simultaneous variables as inputs to the model.
However, this was not a concern for our study as all prices used are collected at the same
time by our data provider. Another potential concern about the data is the liquidity of
the options contracts. If the daily quotes on these options are illiquid, the information
content of the implied PDFs may become noisy. A graphical inspection of our data series
suggests that for some short periods stale prices are present, especially for risk-reversals
and strangles. This may reduce the information content of estimated PDFs.

18See Bliss and Panigirtzoglou (2002) for an in-depth analysis of possible data errors in option prices.
19This kind of data errors accounted for less than 0.05% from the total number of observations.
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7. Methods used to extract risk-neutral probability density functions
from option prices

In this study we estimate the risk-neutral distributions using six di¤erent methods:
the quadratic interpolation of the implied volatility (Shimko (1993)), Hermite polynomials
(Madan and Milne (1994)), geometric jump-di¤usion (Malz (1996)), mixture of lognor-
mals (Melick and Thomas (1997)), cubic spline interpolation (Bliss and Panigirtzoglou
(2002)), and the piecewise cubic Hermite interpolation method. The estimation proce-
dure follows two steps. First, we calculate the option prices from at-the-money volatilities,
risk reversals and strangles using the market convention described in Section 4. Second,
we recover the risk-neutral density functions using our selected estimation methods.

7.1. Shimko�s method. Shimko�s (1993) method consists of �tting the volatility
smile with a parabola to obtain a continuous function of call prices within the range
covered by the data. Shimko estimated by ordinary least squares the following regression:

� = �0 + �1K + �2K
2 + " (15)

where � is the vector of implied volatilities, K is the vector of strike prices corre-
sponding to these volatilities and " is the residual of this OLS regression. For strike prices
outside the observed range, one can extrapolate by extending the quadratic function out-
wards. The coe¢ cients of this parabola are used to obtain a continuous call function
with respect to the strike price. Breeden and Litzenberger (1978) showed that the second
derivative of the option price function with respect to the strike price yields the implied
risk-neutral probability density function pSM (ST ):

@2C

@K2
= e�r�pSM (ST ) (16)

The implied probability density function can be used to calculate numerically the
implied moments of the distribution. The �rst moment, the mean of the distribution is
calculated as:

�pSM (ST ) =

Z 1

K=0

KpSM (ST ) dK (17)

In order to obtain the higher moments of the distribution, the �rst four central mo-
ments are used. The n-th central moment of the implied empirical distribution is de�ned
as:

�(n) =

Z 1

K=0

h
K � Ste(r�r

�)�
in
pSM (ST ) dK (18)

Thus, the implied standard deviation of the �tted risk-neutral density function is given
by:

�pSM (ST ) =

vuuut ln

�
�(2)

[�(1)]
2 + 1

�
�

(19)

and the implied skewness and kurtosis are de�ned as follows:
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SkewpSM (ST ) =
�(3)�
�(2)

�3=2 (20)

KurtpSM (ST ) =
�(4)�
�(2)

�2 (21)

Shimko used this method to recover risk-neutral density functions from the S&P 500
index options. He showed that the results of the analysis are very sensitive to the choice
of the interpolation method. Call option prices can be interpolated directly. However,
Shimko suggested that, in general, the option price function can be made smoother by
interpolating instead implied volatility. The results of his analysis showed that for the
S&P 500 index options the implied volatility pro�le was negatively sloped, implying a
negative skew to the distribution of future index values. This suggests that the market
was placing a relatively greater weight on a fall in the index than on a rise. He also
documented a slight convexity of the implied volatility function, which indicates that the
market was placing a greater weight on larger movements (positive or negative) than those
implied by the Black and Scholes model.
Shimko calculated the distribution only between the endpoints from the smoothed

volatility values. However, this did not cover the entire risk-neutral distribution. Outside
the available strike prices there is a mass of probability which has to be approximated.
To solve this, Shimko assumed that the tail distributions were lognormal.
The main advantage of this method is given by the stability of the optimisation al-

gorithm, which has an analytic solution. The major drawback is that irregular volatility
smile functions are (sometimes) poorly approximated with a parabola.20

7.2. Madan and Milne�s method. Madan and Milne (1994) modelled the
prices of contingent claims as elements of a separable Hilbert space that has a count-
able orthogonal basis. They noticed that one may think of the basis elements as analo-
gous to factors in asset pricing. Thus, pricing in terms of a Hilbert space is analogous
to the use of discount bonds as a basis for pricing �xed income securities or the con-
struction of branches of a binomial tree in pricing options. However, a Hilbert space
basis is in general di¢ cult to construct because it requires a knowledge of the stochas-
tic process of the underlying asset prices. Madan and Milne showed that, under fairly
general conditions, one can specialise the Hilbert space basis to the family of Hermite
polynomials. Using this assumption, one can infer the underlying risk-neutral density
from traded security prices. This model has been applied to extract risk-neutral probabil-
ity distributions from options written on stock index futures (Madan and Milne (1994),
Coutant (1999)), interest rate futures (Abken, Madan and Ramamurtie (1996), McManus
(1999), Coutant et al. (2001)) and exchange rates (Jondeau and Rockinger (2000)). In
the case of exchange rates, the Garman-Kohlhagen model is a parametric special case of
the Madan and Milne (1994) model. Thus, the Hermite polynomials approximation is
equivalent to performing a Fourier expansion to the baseline lognormal solution obtained

20A direct implication of this drawback is on the value of skewness, which is sometimes close to zero,
ie its theoretical value from a lognormal distribution.
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from the Garman-Kohlhagen model. More precisely, the risk-neutral distribution is ob-
tained through successive orthogonal perturbations to a normalised density function.21

Thus, in the case of European currency options, the Hermite polynomial adjustments are
constructed with respect to the normalised stochastic variable:

z =
ln
�
ST
Ft

�
�
�
�� 1

2�
2
�
�

�
p
�

; z s N (0; 1) (22)

where Ft = Ste(r�r
�)� is the forward price and � = ln (St) +

�
r � r� � �2=2

�
� is the

mean of the di¤usion process from the Garman-Kohlhagen model. Thus, the risk-neutral
normal distribution used as reference for the Hermite polynomials approximation is:

n (z) =
1p
2�
exp

�
�z

2

2

�
(23)

The Hermite polynomials approximation of the risk-neutral density function, pHP (z),
can be written as:

pHP (z) = � (z)n (z) (24)

where � (z) denotes the departures from the reference distribution n (z), which are
captured by an in�nite summation of Hermite polynomials, that is:

� (z) =

1X
k=0

bk�k (z) (25)

where bk are constants which have to be estimated and

�k (z) =
(�1)k

k!

1

n (z)

@kn (z)

@zk
= � 1p

k

@�k�1 (z)

@z
+

1p
k
z�k�1 (z) (26)

is an orthogonal system of standardised Hermite polynomials. The �rst four standard-
ised Hermite polynomials are:22

�0 (z) = 1

�1 (z) = z

�2 (z) =
1p
2

�
z2 � 1

�
�3 (z) =

1p
6

�
z3 � 3z

�
(27)

�4 (z) =
1p
24

�
z4 � 6z2 + 3

�
21 In other words, rather than assuming speci�c expressions for the change in the risk-neutral probabil-

ities, as one does under the martingale approach for option valuation, Madan and Milne (1994) assume a
parametric structure for the risk-neutral density function itself.
22Higher-order Hermite polynomials can be easily calculated using the recurrence relationship: �k (z) =
zp
k
�k�1 (z)�

q
k�1
k
�k�2 (z). The polynomials are orthogonal because

R1
�1 �k (z)�j (z)n (z) dz equals

one if k = j and zero otherwise.
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With the above notations and d2 = 1
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, one can write

the Garman-Kohlhagen formula for the European-style call currency option as:23
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By substituting the risk-neutral density function pHP (z) from equations (24) and (25),
we obtain the Hermite polynomial approximation of the call option price:

CHP (z) = e�r
��St
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bk�k (z)n (z) dz (29)

To evaluate the price of this option, one needs to replicate its payo¤ and estimate the
coe¢ cients bk. The expected payo¤ of the option can be expressed as:

gCHP
(z) =

Z 1

�d2

�
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� 1X
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bk�k (z)n (z) dz (30)

and the call option price from equation (29) can be represented as follows:

CHP (z) = e
�r�

1X
k=0

�kbk (31)

where

�k =

Z 1

�1
gCHP

(z)�k (z)n (z) dz (32)

Madan and Milne (1994) showed that, given the assumed probability model, the Her-
mite polynomial coe¢ cients �k are well de�ned and hence the bk can be inferred from the
observed option prices. The �k coe¢ cients are de�ned as:

�k =
1p
k!

@k� (u)

@uk
ju=0 (33)

where the generating function � (u) is given by:

� (u) = Ste
(r�r�)�e��+�

p
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p
�

+
1

2
�
p
� + u

d2 (u) = d1 (u)� �
p
� (34)

23To simplify the presentation we only give the derivation for the call option. The analysis for the
put option valuation with a Hermite polynomial approximation is straightforward and follows the same
reasoning as for the call option.
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For practical estimation purposes, the in�nite sum of Hermite polynomials must be
truncated at a �nite order in z. In our study we truncate it at the fourth order.24 In
order to ensure that the risk-neutral PDF for the Hermite polynomial approximation
behaves as a density function, the following restrictions are usually imposed (see Abken,
Madan and Ramamurtie (1996)): �0 = 1, �1 = 0 and �2 = 0. Under these restrictions,
the risk-neutral probability density function for the fourth-order Hermite polynomials
approximation is given by:

pHP (z) =
1p
2�
e�

z2

2

�
1 +

3b4p
24
� 3b3p

6
z � 6b4p

24
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6
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24
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�

(35)

and the risk-neutral PDF for the exchange rate at the maturity of the call option is:

pHP (ST ) =
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The mean �, the standard deviation � and the parameters b3 and b4 are estimated by
minimising the sum of squared di¤erences between theoretical and observed option and
forward prices. The mean of the risk-neutral PDF is equal to the theoretical forward price
and is given by:

�pHP (ST ) = Fte
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(37)

The implied standard deviation of the PDF is �pHP (ST ) = �
p
� and the higher order

moments, skewness and kurtosis, are calculated directly from the estimated parameters
b3 and b4, namely:

SkewpHP (ST ) = b3
p
6 (38)

KurtpHP (ST ) = 3 + b4
p
24

A drawback of this method is that it occasionally provides unreliable estimates for
the tails of the risk-neutral PDFs. This is because of the truncation of the in�nite sum
of Hermite polynomials, which may lead to anomalous negative values for the estimated
tails of the risk-neutral distributions. Jondeau and Rockinger (2001) proposed a way of
applying positivity constraints on the estimated risk-neutral density functions. They used
a constrained expansion referred to as a Gram-Charlier density. Gram-Charlier expan-
sions allow for additional �exibility over the normal density because they introduce the
skewness and kurtosis of the distribution as parameters. However, being polynomial ap-
proximations, they have the drawback of yielding negative values for certain parameters.
Jondeau and Rockinger (2001) showed how it is numerically possible to restrict the pa-
rameters of such densities. Their essential contribution was to delimit the domain in the
skewness-kurtosis space over which the Gram-Charlier expansion is positive. Based on
these boundaries, they presented a mapping which transforms the constrained estimation
problem into an unconstrained one. For the empirical part of their paper they used foreign
exchange over-the-counter FRF/DEM options and carried out two simulation exercises.

24Given the data restrictions, higher-order approximations are practically infeasable for foreign exchange
over-the-counter options.
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In the �rst simulation experiment they considered as the true data generating process
random variables distributed according to the Gram-Charlier density. They found that
the estimates for the �rst and second moments were very close to the theoretical ones.
They also found that, on average, the estimates for skewness and kurtosis matched fairly
well the simulated higher-order moments. However, they noticed that the estimates for
kurtosis di¤er by a larger percentage from the theoretical values than the other moments.
In particular, they found that for a given level of theoretical kurtosis, the smaller the
skewness, the worse the average of the estimated kurtosis. Moreover, they noticed that
as kurtosis increases, the dispersion of the parameters decreases. These results indicate
that the Gram-Charlier density provides better results the more the distribution di¤ers
from the normal one. In their second simulation exercise, they assessed the ability of
the Gram-Charlier density to capture correctly the moments of the data simulated from
a mixture of two lognormal distributions. They showed that the �rst two moments of
the simulated data were on average, up to the third decimal, identical with the theoret-
ical ones. Moreover, the higher moments, skewness and kurtosis, were also close to the
theoretical moments.

7.3. Malz�s method. One of the basic assumptions used in the Garman-Kohlhagen
model is the continuity and the normal distribution of the stochastic process that charac-
terises the exchange rate changes. However, several empirical studies showed that nominal
exchange rate distributions at high frequencies are signi�cantly leptokurtic, which means
that the probability of larger jumps in exchange rates is higher than that predicted by
the lognormal assumption.25 Empirical studies also suggested that there is an inverse
relationship between excess kurtosis and the length of the holding period.26 If jumps in
either direction are equally likely, then there will be an excess kurtosis without having an
impact on the skewness of the distribution. However, if jumps in one direction are larger
and more frequent, the distribution will also be skewed. The skewness and kurtosis of
such a stochastic process appear to be successfully captured with a class of jump-di¤usion
models proposed by Merton (1976).27 Bates (1996a, 1996b) also found strong evidence
that �exible exchange rate returns follow jump-di¤usions, that is, a sum of independent
identically distributed normal and Poisson distributed jump components. In his model the
evolution of exchange rate returns is represented by two components, a di¤usion process
and a Poisson jump process:

ST = St +

Z T

0

(r � r� � �E [�])Stdt+
Z T

0

�wStdWt +

Z T

0

St�dqt;T (39)

where �w denotes the di¤usion volatility of the exchange rate, qt;T is a Poisson counter
over the interval (t; T ) with intensity �, denoting the average rate of occurrence of jumps,
and � is the average random jump size.28

25See, inter alia, Boothe and Glassman (1987), Hsieh (1988), and de Vries (1994).
26For instance, Hsieh (1988) estimated unconditional kurtosis of 12.8 for daily changes in the USD/DEM

exchange rate, while Meese (1986) estimated kurtosis of 4.2 for monthly returns.
27See Akgiray and Booth (1988), Tucker and Pond (1988), Jorion (1988) and Bates (1996a).
28The option valuation formuale for this model are derived by Merton (1976) and Bates (1991). An

important issue in deriving the option value is that the risk generated by an increase in the option price
following a jump in the underlying asset price cannot be managed by a continuous-adjusted hedging
strategy. Thus, the option might jump further in-the-money, in which case the option writer will be
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Malz (1996) proposed a simpli�ed version of the jump-di¤usion model to estimate the
realignment probabilities for the sterling-mark exchange rate, for the period 31 March - 16
September 1992. During this period sterling came several times under speculative attacks.
This seems to have been successfully re�ected in option prices. Thus, the densities based
on the jump-di¤usion model had fatter tails than the lognormal, and the left tail was fatter
than the right, indicating higher probabilities of exchange rate realignments, ie of sterling
pound depreciation beyond the 4:5% band level established by the ERM. Following Ball
and Torous (1983, 1985), Malz (1996) considered � to be non-stochastic, ie it was speci�ed
as either zero or one over the life of the option.29 In this model, option pricing formulae
consist of a weighted sum of the lognormal solutions where the weights are given by the
probability of no jumps occurring and one jump occurring over the lifetime of the option.
Thus, the formulae for call and put option prices are:

CM = (1� ��)
�
Ste

�r��

1 + ���
N (d1)�Ke�r�N (d2)

�
(40)

+��

�
Ste

�r��

1 + ���
(1 + �)N (d3)�Ke�r�N (d4)

�

PM = (1� ��)
�
Ke�r�N (�d2)�

Ste
�r��

1 + ���
N (�d1)

�
(41)

+��

�
Ke�r� (1 + �)N (�d4)�

Ste
�r��

1 + ���
N (�d3)

�
where

d1 =
ln (St=X)� ln (1 + ���) +

�
r � r� + �2w=2

�
�

�w
p
�

(42)

d2 = d1 � �w
p
� (43)

d3 =
ln (St=X)� ln (1 + ���) + ln (1 + �) +

�
r � r� + �2w=2

�
�

�w
p
�

(44)
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p
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The jump-di¤usion model postulates that the parameters �w, � and � are constants.
These parameters are estimated by minimising the sum of squared deviations of predicted
from actual option prices.
The cumulative distribution function is given by the following expression:

underhedged. If an option seller attemps to hedge in advance of jumps, he will be overhedged unless a
jump occurs. Therefore, in contrast to the Garman-Kohlhagen model, the jump-di¤usion model does not
permit risk-neutral pricing techniques without additional assumptions (see Ball and Torous (1983, 1985)
and Jarrow and Rudd (1982)).
29This is often referred to as the Bernoulli distribution version of the jump-di¤usion model. In the

Bernoulli distribution model, the Poisson counter qt;T is zero with probability 1� � and one with prob-
ability �.
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The mean of the PDF is equal to the forward price and its variance is equal to �2w� .

The higher moments of the distribution, skewness and kurtosis, are calculated using equa-
tions (18), (20) and (21), where pSM (ST ) is replaced by the probability density function
corresponding to the distribution in equation (46).
The advantage of this method resides in its high capacity for characterising the evo-

lution of exchange rate prices. Its main disadvantage is that the results may (sometimes)
depend on the initial values used in the optimisation algorithm. This is often referred to
as the local optima problem.

7.4. Melick and Thomas� method. This method is based on a mixture of
lognormal distributions. Its main advantage is that it imposes little structure on the
process by which exchange rates evolve and permits the estimation of relatively �exible
functional forms for their distributions. A reasonably �exible functional form, such as
the mixture of a �nite number of lognormal distributions, can easily accommodate a wide
variety of shapes for the terminal distribution. As Melick and Thomas (1997) pointed out,
starting with an assumption about the terminal risk-neutral distribution function, rather
than the stochastic process by which the underlying price evolves, has the advantage
of being a more general approach. This is because a given stochastic process implies a
unique terminal distribution, but the converse is not true, that is, any given risk-neutral
distribution function may be consistent with many di¤erent stochastic processes. However,
placing structure on the terminal distribution rather than on the stochastic process is not
without costs. Thus, the recovered distribution does not give any guidance about the
evolution of the asset price prior to expiration. This means that the resultant distribution
cannot be directly used for constructing dynamic hedges or replication strategies for the
option.
The speci�cation of the distribution function for a mixture of n lognormals is as follows:

pMLN (ST ) =
nX
i=1

�ip
MLN
i (ST ) (47)

where

pMLN
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1

�iST
p
2�
exp

"
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2

�
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�i

�2#
(48)

and

nX
i=1

�i = 1; and 0 < �i 6 1, i = 1; 2; : : : ; n (49)
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The mixture of lognormals method also has the advantage of retaining the Garman-
Kohlhagen model as a special subcase.30

The number of lognormals is usually dictated by the data constraints. On the foreign
exchange over-the-counter market only �ve unique strike prices can be identi�ed. This
makes very di¢ cult the estimation of the mixture of lognormals. We choose a mixture of
two lognormals which has �ve parameters to be estimated. As the number of parameters
is equal to the number of unique strike prices, it is practically impossible to carry out the
estimation without imposing additional restrictions. To solve this, we adopt a two-stage
estimation strategy. First, we de�ne a grid of probabilities � between 0 and 0:5 with a
step size of 0:01 and estimate the parameters �1; �2; �1 and �2.

31 Second, we calculate
the di¤erence between theoretical and observed prices and choose the pair of parameters
� = (�1; �2; �1; �2; �) which minimises the loss function:

min
�

mX
j=1

[C � C (�)]2 +
mX
j=1

[P � P (�)]2 +
mX
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h
Ste

(r�r�)� � F (�)
i2

(50)

where m = 5 is the number of unique strike prices used to estimate each individual
probability density function, C and P are observed call and put option prices and C (�),
P (�) and F (�) are theoretical call, put and forward prices, expressed as follows:
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with
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1
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d2 = d1 � �1 (55)
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d4 = d3 � �2 (57)

30The Garman-Kohlhagen model is given by: i = 1, � = 1, �1 = ln (St) +
�
r � r� � �2=2

�
� and

�1 = �
p
� .

31 It is not necessary to de�ne a grid of probabilities from 0:5 to 1 because �2 = 1 � �1, so that after
0:5 the lognormal distributions are reversed.
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The moments of the distribution are calculated following the same approach as in
the case of Shimko�s (1993) method. The cumulative distribution function for the mixture
of two lognormal distributions is expressed as:

Pr (ST � K) = �N
�
ln (K)� �1

�1

�
+ (1� �)N

�
ln (K)� �2

�2

�
(58)

Melick and Thomas (1997) applied this methodology to extract implied risk-neutral
density functions from the prices of American-style options on crude oil futures during the
Persian Gulf war. They assumed that the terminal price distribution is a mixture of three
independent lognormal distributions. They found that the option markets were consistent
with the market commentary at the time, in that they re�ected a signi�cant probability of
a major disruption in oil prices. They also showed that the standard lognormal assumption
performed poorly compared with the mixture of lognormals in characterising the observed
option prices.

7.5. Bliss and Panigirtzoglou�s method. Following Shimko�s (1993) approach,
Bliss and Panigirtzoglou (2002) �tted the implied volatility function. However, they used a
spline instead of the parabolic function proposed by Shimko (1993). The risk-neutral PDF
is then easily obtained by taking the second derivative of �tted option prices with respect
to the strike price. The essence of the method is to smooth implied volatilities rather than
option prices and then convert the smoothed implied volatility function into a smoothed
price function, which can be numerically di¤erentiated to produce the probability den-
sity function. In their study, Bliss and Panigirtzoglou (2002) used the Newton-Raphson
algorithm to recover the implied volatilities from observed option prices. The implied
volatility function is then smoothed with a natural spline. The spline function can also
be weighted. A natural weight would be the trading volume, as the information content
of option prices is directly linked to the liquidity of these instruments. However, detailed
data on options trading volumes is quite scarce and unreliable for index options, and
nonexistent for currency options. As an alternative the vega of the option could be used.
The vega is the �rst derivative of option�s price with respect to its implied volatility. Vega
weighting places less weight on deep out-of-the money options, which is consistent with
the observed lower liquidity of such options. The natural spline minimises the following
function:

min
�

mX
i=1

wi [�i � � (�i; �)] + �
Z 1

�1
g
00
(x; �)

2
dx (59)

where �i is the implied volatility of the i-th option in the cross-section, � (�i; �)
is the �tted implied volatility which is a function of the i-th option delta �i, and the
parameters, � that de�ne the smoothing spline g (x; �), and wi is the weight applied to
the i-th option�s squared implied volatility error.32 The parameter � is a smoothing
parameter that controls the tradeo¤ between goodness-of-�t of the �tted spline and its
smoothness measured by the integrated squared second derivative of the implied volatility

32Following Bliss and Panigirtzoglou (2002), we initially use the vega parameter to weight the implied
volatility function. However, the impact on option pricing appears to be very small. Therefore, in our
study, we decide not to weight the spline function. Thus, wi is equal to one for all i.



Extracting expectations from currency option prices: a comparison of methods 23

function. Bliss and Panigirtzoglou (2002) tested various values of �, between 0.99 and
0.9999 and found that the results were insensitive to the choice of �. They chose 0.99 for
their �nal estimations. In our study we also choose � = 0:99.
When �tting a PDF it is necessary to extrapolate the spline beyond the range of

available strike prices. Since one can rarely observe extreme realisations of the underlying
asset, there is little information as to the appropriate shape to impose on the tails of
the density function. Bliss and Panigirtzoglou (2002) used a horizontal extrapolation of
the spline function outside the range of available data points. Another alternative was
proposed by Anagnou et al. (2002) who truncated the implied density function to the
range of available strikes and then rescaled. This unusual procedure avoids extrapolating
the tails of the PDF, but cannot handle realisations falling outside the range of strikes
available when the PDF was constructed.

7.6. Piecewise cubic Hermite interpolation method. Fitting a single poly-
nomial to a large number of datapoints is likely to yield unsatisfactory behaviour of the
PDFs, especially in the tails of the distribution.33 Piecewise polynomial interpolation pro-
vides an alternative to the practical and theoretical di¢ culties associated with high-degree
polynomial interpolation. Since the early 1960s, the subject of piecewise polynomial func-
tions has become increasingly popular. These functions have been used in a large variety
of ways in approximation theory, data �tting, numerical integration and di¤erentiation.
The basic idea is to decompose a function in a number of subintervals and interpolate on
each subinterval. The points where the function is delimited are called knots, breakpoints
or nodes. The simplest example of such an interpolation is piecewise linear interpolation,
in which successive data points are connected by straight lines.
In Hermite interpolation the derivatives as well as the values of the interpolating

function are speci�ed at the data points. Specifying derivative values simply adds more
equations to the linear system that determines the parameters of the interpolating func-
tion. In order to have a well-de�ned solution, the number of equations and the number
of parameters to be determined must be equal.
To provide adequate �exibility while maintaining simplicity and computational e¢ -

ciency, piecewise cubic polynomials are the most common choice for Hermite interpolation.
A Hermite cubic interpolant is a piecewise cubic polynomial interpolant with a continuous
�rst derivative.34

Although piecewise cubic Hermite interpolation eliminates the problems of excessive
instability of the tails of implied risk-neutral density functions, it appears to sacri�ce
smoothness of the interpolating function. The moments of the distribution are obtained
through numerical integration of implied density functions, as in the case of Shimko�s
(1993) method.

33See for example McManus (1999) for a discussion on the instability of the tails of implied risk-neutral
density functions.
34See Appendix A for a mathematical description of the piecewise cubic Hermite interpolation method.
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8. Statistical tests for comparison of methods
Our empirical comparison of the methods used to extract risk-neutral PDFs from

option prices focuses on three main issues. First, we test whether there are signi�cant
di¤erences between the PDF measures (moments and quartiles) across methods. Second,
we check the accuracy of our selected methods in replicating observed option prices. Third,
we rank the methods based on their robustness to option pricing errors.
In order to verify whether our selected methods give signi�cantly di¤erent estimates

for the implied PDF measures, we apply Student�s t tests. The null hypothesis of these
tests is that the unconditional mean of the di¤erences between the PDF moments or
quartiles estimated with two di¤erent methods is not signi�cantly di¤erent from zero. If
we reject the null hypothesis, we conclude that the methods provide signi�cantly di¤erent
estimates for the tested PDF moment or quartile.
One approach to test this is to compute the con�dence interval for the sample mean

di¤erences. If we let Xt denote the di¤erence between the estimates of an implied PDF
measure with two di¤erent methods, then the t statistics is calculated as follows:35

t =
X � �
s=
p
n

(60)

where X is the unconditional mean of the estimated di¤erences, � is the theoretical
mean assumed by the null hypothesis (in our case zero), s is the sample standard deviation,
and n is the number of observations. In essence, the approach assumes that if we subtract
the population mean from the sample mean, and then divide by the estimated standard
deviation of the sample, we get a standard Gaussian curve (with mean zero and variance
one). This assumption is incorrect when sample sizes are small.36 However, if the sample
size is su¢ ciently large, the Student�s t test provides accurate results, even when the
distributions are not normal.37 In general, we test the validity of the null hypothesis
at certain con�dence levels. The con�dence level represents the probability of rejecting
the null hypothesis when this hypothesis is true. The usual con�dence levels are 0.1,
0.05 and 0.01. If we denote with � the con�dence level, the null hypothesis that the
mean di¤erences between an estimated PDF measure with two di¤erent methods is zero
is rejected when

35For the sake of making the samples comparable across methods, we only selected those observations
for which both methods provided meaningful estimates of the risk-neutral density function.
36A sample is considered small if it has less than 30 observations, when the empirical distribution is

close to being normal. However, if the distribution displays leptokurtosis and non-zero skewness, the
sample size should be of at least 100 observations to ensure proper asymptotic properties of the t test
(Wilcox (2001)).
37We also use a bootstrap technique described by Efron and Tibshirani (1993) to check whether the

results di¤er signi�cantly from those obtained by using the Student�s t distribution. We suppose that
the observations sampled for di¤erences are X1; X2; : : : ; Xn and their unconditional mean and standard
deviation are X and b� respectively. The bootstrap test is based on the t-statistic: t =

p
n
�
X=b��.

We de�ne eXt = Xt � X, for t = 1; 2; : : : ; n. The null hypothesis of the test is that the distribution
of these di¤erences corresponds to the distribution where eX1; eX2; : : : ; eXn are equally likely. We refer
to this distribution, which has the mean of zero, as the null distribution. We sample 1000 times with

replacement from the null distribution and calculate tB =
p
n
�
X
B
=b�B�, where X B and b�B are the

sample bootstrapped mean and standard deviation. By comparing t with the appropriate percentile of
this distribution, we are able to test whether the null hypothesis can be rejected at a particular con�dence
level. We �nd that the results do not di¤er signi�cantly from those obtained by using the Student�s t
distribution.
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��X�� > ht1��=2�

p
n
i
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where � = n � 1 denotes the number of degrees of freedom, equal to the number
of observations minus the number of tested parameters. If we cannot reject the null
hypothesis, we conclude that there is no systematic di¤erence between estimated PDF
measures across methods.
In order to test the goodness-of-�t of our selected methods, we construct some synthetic

measures of option pricing errors. These measures are based on cross-sectional di¤erences
between theoretical and observed option prices. In particular, we use the mean squared
error, the mean squared percentage error, the mean absolute error and the mean absolute
percentage error. The pricing errors are calculated for each day across strike prices, and
then averaged across time. In order to rank the methods we apply again Student�s t
tests. In particular, if we denote with X1t and X2t the daily pricing errors of two PDF
estimation methods and with Xt = X1t�X2t the di¤erence between these errors, the null
hypothesis that the pricing errors of the �rst method are not higher than those of the
second method is rejected if

X >
h
t1��=2�

p
n
i
s (62)

The tests are carried out for all currencies and maturities. The tables present the
average p-values of these tests. If we reject the null hypothesis, we conclude that the
second method has smaller pricing errors than the �rst method. A method is considered
better if it has smaller pricing errors.
In order to test the robustness of the PDF estimation methods to option pricing errors,

we perturb implied volatilities with random uniformly distributed amounts of maximum
�10% of their actual level. This approach is similar to that followed by Bliss and Panigirt-
zoglou (2002). The di¤erence between our method and theirs is that we perturb implied
volatilities rather than actual option prices. Our approach has the advantage of elimi-
nating by construction possible violations of the arbitrage conditions.38 We repeat our
simulation 100 times and recalculate the PDF moments, quartiles and pricing errors. A
method is considered stable if the estimated PDF moments or quartiles do not change dra-
matically when implied volatilities are randomly perturbed. In order to test the stability
of the PDF measures, we calculate for each day the variance of the estimates and apply
one-sided Student�s t tests. The null hypothesis of the tests is that the cross-sectional
variances of the �rst method are not higher than those of the second method. If we can-
not reject the null hypothesis, we conclude that the �rst method is more stable to option
pricing errors than the second method.39

38This might have a substantial impact on the results of the Monte-Carlo simulation. Indeed, much
of the di¤erence between the cubic spline and the mixture of lognormals approaches found by Bliss and
Panigirtzoglou (2002) might be due to the fact they did not control for the arbitrage conditions violation
of the simulated option prices.
39 In the literature on implied risk-neutral density functions, the analysis of the stability of a PDF

estimation technique to errors in option prices is much more complex. The stability of an estimated PDF
is considered to have two components: 1) the theoretical stability at the solution; and 2) the stability
of the convergence to a solution (see Bliss and Panigirtzoglou (2002)). Söderlind and Svensson (1997)
and Melick and Thomas (1998) examined the stability at the solution. Their method assumed a normal
distribution of the estimated parameters. However, actual parameter distributions may not be normal.
The stability of the convergence to the �true�distribution has been analysed by Cooper (1999). He created
European-type arti�cial option prices based on Heston�s (1993) stochastic volatility model and tested how
accurately a mixture of lognormals and a cubic spline method can �t the simulated distributions. Bliss
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9. Empirical results
In order to compare the implied PDFs across methods, we look at conventional mea-

sures of location, dispersion, asymmetry, fat-tailness and various tail percentiles of the
estimated risk-neutral distributions. On average, we �nd that the distributions exhibit
slightly positive skewness and excess kurtosis. At times, the parametric methods (mixture
of lognormals, Hermite polynomials and the geometric jump-di¤usion) fail to converge.
In order to eliminate possible distortions in the estimated means induced by the occa-
sional non-convergence of the optimisation algorithm, we exclude from our sample those
observations for which we could not obtain a PDF for the methods we compare. We then
apply the three statistical tests described above. The results of the tests are presented in
Appendix B.

9.1. Tests of the equality of the estimated distributions across methods.
Table B.1 shows the tests of the mean equality of PDF means. The tests are carried
out for all currencies and maturities. The table shows the average p-values of the tests.
We are unable to reject the null hypothesis that the means of the estimated PDFs are
equal across methods. This result is not surprising, since it was already con�rmed by other
studies that used currencies of developed countries or other underlying assets. It suggests
that, regardless of the method we choose, we obtain similar estimates for the mean of the
implied risk-neutral density functions. However, in the case of the variance, the results
are slightly di¤erent. Table B.2 shows that variances estimated with Hermite polynomials
and the geometric jump-di¤usion methods are signi�cantly di¤erent from those estimated
with other methods. One possible reason of this is that the Hermite polynomials method
tends to underestimate the variance of the PDFs compared with other methods, whereas
the geometric jump-di¤usion method tends to overestimate it.
Tables B.3 and B.4 present the tests of the mean equality of skewness and kurtosis

across methods. We �nd that the higher moments of implied risk-neutral density functions
(skewness and kurtosis) vary widely across methods. The parametric methods (mixture of
lognormals, Hermite polynomials and the geometric jump-di¤usion) exhibit higher excess
kurtosis than the semi-parametric ones (quadratic, cubic spline or piecewise cubic Hermite
interpolation). The sign of the skewness estimate is rather consistent across methods,
albeit its magnitude varies substantially, being more or less model-dependent.
Tables B.5 - B.9 show the tests of the mean equality of the estimated PDF quar-

tiles. Interestingly, we �nd that the quartiles are very similar across methods, except for
the geometric-jump di¤usion approach. The reason might be that the estimated jump-
di¤usion volatilities, which are used for the computation of cumulative distribution func-
tions, are signi�cantly di¤erent from those obtained with other methods.

9.2. Tests of the goodness-of-�t. We use four synthetic pricing error measures
to test for the goodness-of-�t of the estimated risk-neutral PDFs: the mean squared error,
the mean squared percentage error, the mean absolute error, and the mean absolute
percentage error. The results are presented in Tables B.10-B.13.
We �nd that the piecewise cubic Hermite interpolation method ranked �rst, with the

smallest pricing errors. This may be explained by the fact being a local interpolation it

and Panigirtzoglou (2002) critisised Cooper�s (1999) approach, arguing that perturbing �tted rather than
actual prices may in�uence signi�cantly the convergence behaviour of the optimisation algorithm.
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is very �exible and can easily capture irregular changes in the implied volatility function.
However, the piecewise cubic Hermite interpolation sacri�ces smoothness for its goodness-
of-�t performance.
The second best method in terms of pricing errors appears to be the Hermite polynomi-

als. The Hermite polynomials method is quite �exible to changes in the shape of implied
risk-neutral PDFs. However, one drawback of this method is that, at times, the tails
of the implied distributions might take negative values. Jondeau and Rockinger (2001)
proposed an algorithm to constrain the higher order parameters of the implied PDFs
and avoid negative probability estimates. However, their algorithm requires constrained
optimisations, which have a much higher likelihood of non-convergence.
The next ranked method is the cubic spline. This method is theoretically more robust

to estimation errors, as it does not require a numerical optimisation to obtain the implied
density functions. Moreover, it has the capacity to control the smoothness of the distri-
bution, by changing the parameter �. Despite these advantages, for a small number of
cross-sectional observations the �tting might not be very good. This is because the cubic
spline polynomial requires at least 5 observations to get a solution and imposes constant
derivatives at the endpoints of the distribution, which may hamper the goodness-of-�t.
The geometric jump-di¤usion method ranked fourth in terms of pricing errors. Given

that the exchange rate distributions exhibit stylised facts consistent with a jump-di¤usion
process (ie leptokurtosis, non-zero skewness and discrete jumps) the jump-di¤usion method
would seem a preferred candidate for the estimation of risk-neutral density functions.
However, this method has a couple of disadvantages. First, the expected jump-size is
relatively dependent on the initial values provided to the optimisation algorithm. We use
as initial values a 15% jump size and a 10% probability of such a jump over the lifetime
of an option contract. The estimated jump-size ranges between 5% and 32% whereas the
probability of a jump varies more widely, between 3% and 44%, depending on the currency
and the time period. Usually, for �xed exchange rates, the expected jump size is higher
and the jump probability is lower than for �exible exchange rates. Second, the quartiles of
the distribution appear to be highly dependent on the estimated jump-di¤usion volatility,
which suggests that the goodness-of-�t of the distribution is crucially determined by the
estimated volatility parameter.
The mixture of lognormals performed rather poorly in �tting the observed option

prices. The advantage of the mixture of lognormals is that it can accommodate more �ex-
ible functional forms for the implied risk-neutral distributions (eg. bi-modal distributions).
However, given that the number of parameters is equal to the number of cross-sectional
observations, the estimation of this method is time-consuming. Moreover, this method is
quite sensitive to the optimisation algorithm and initial values of parameters. We use a
combination of the Nelder-Mead simplex and BFGS algorithms for the optimisation. As
initial values we use the estimated parameters from the Garman-Kohlhagen model.
The quadratic interpolation method performs equally bad in �tting observed option

prices. However, this is not surprising given that this method is less �exible to changes in
the shape of the implied volatility function. Despite its relative in�exibility, the quadratic
interpolation method is very stable to errors in option prices and gives meaningful es-
timates for the implied PDFs even when the majority of the previous methods fail to
converge to a solution.
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9.3. Tests of the stability. The results of the tests are presented in Tables B.14-
B.22. A method is considered stable if the standard deviation of a PDF measure obtained
from randomly perturbed implied volatilities is small. The null hypothesis of the tests is
that the mean value of the daily standard deviations of a PDF measure estimated with the
row method is not higher than the mean value of the daily standard deviations estimated
with the column method. The tables present the average probability of the t tests. The
average is across currencies for PDFs with 1-month time to expiry.
We �nd that quadratic interpolation and cubic spline methods are the most robust

to errors in option prices for the estimation of the mean and quartiles of implied PDFs,
whereas Hermite polynomials, mixture of lognormals and geometric jump-di¤usion meth-
ods are the most stable for the estimation of the variance, skewness and kurtosis. There
seems to be a tradeo¤ between the goodness-of-�t and the stability of a PDF estimation
method. Thus, methods which have a better accuracy in �tting observed option prices
appear to be more sensitive to option pricing errors, while the most stable methods have
a fairly disappointing �tting.
Given the tradeo¤between goodness-of-�t and stability, the choice of a PDF estimation

method is not clear cut. To make a selection, we need to know how big are the pricing
errors and how sensitive are the PDF estimation methods to errors in option prices.
Given that we need comparable measures of option pricing errors across methods, we

only examine the mean absolute and mean squared percentage errors. We �nd that the
average errors vary substantially across methods and tend to increase with the maturity
of option contracts. Thus, the average mean absolute percentage errors for the piecewise
cubic Hermite interpolation method is 0.24% for options with 1-month time to maturity,
and increases to 0.26% and 0.28% for 3- and 6-month option contracts respectively. The
mean squared percentage errors are much smaller, namely 0.002%, 0.002%, and 0.003% for
1-, 3- and 6-month time to maturity options. The spectrum of errors for the other meth-
ods is relatively wide compared with the piecewise cubic Hermite interpolation method,
ranging from 1.86% to 20.98%, in the case of the mean absolute percentage errors, and
from 0.41% to 9.88%, in the case of mean squared percentage errors. The quadratic
interpolation method exhibits the largest pricing errors.
In order to check how sensitive are our selected PDF estimation methods to possible

errors in the implied volatility quotes, we perturb the implied volatilities with random
uniformly distributed numbers of maximum �10% of their level. We then test for each
day whether the average of the simulated PDF measures is equal to the original estimate
for that day.40 We �nd that, for all methods, we cannot reject the null hypothesis that
the average of the simulated PDFs is equal to the unperturbed PDF estimates, which
means that errors of up to 10% in the quoted implied volatility do not signi�cantly a¤ect
the PDF estimates, regardless of the method used. This result suggests that our selected
methods are relatively robust to possible errors in option prices.

10. Conclusions
In this paper we compare the goodness-of-�t and the stability of six methods used

to extract risk-neutral probability density functions from currency option prices. We
use quadratic interpolation, Hermite polynomials, geometric jump-di¤usion, mixture of

40To get synthetic measures of these tests, we average the p-values of the t tests across time and
currencies, for option contracts with 1-month time to expiry.
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lognormals, cubic spline and piecewise cubic Hermite interpolation methods. We �nd
that the piecewise cubic Hermite interpolation method is by far the method with the best
accuracy in �tting observed option prices. We also �nd that there is a relative tradeo¤
between the goodness-of-�t and the stability of the methods. Thus, methods which have
a better accuracy in �tting observed option prices appear to be more sensitive to option
pricing errors, while the most stable methods have a fairly poor �tting. However, for the
�rst two PDF moments as well as the quartiles of the risk-neutral distributions we �nd
that the estimates do not di¤er signi�cantly across methods. This suggests that there
is a large scope for selection between these methods without essentially sacri�cing the
accuracy of the analysis. Nonetheless, depending on the particular use of these PDFs,
some methods may be more suitable than others.
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11. Appendices
A. Piecewise cubic Hermite interpolation method

Hermite interpolation �nds a polynomial p(x) that interpolates a function f(x) and
a polynomial p

0
(x) that interpolates f

0
(x), when f(x) and f

0
(x) are given at each data

point xi, for i = 1; : : : ; n: The basic interpolation problem is given as follows:

p(xi) = yi; p
0
(xi) = y

0

i; i = 1; : : : ; n (63)

The interpolating polynomials can be stated in an analogous form to Lagrange�s
formula. The Hermite interpolation polynomial is given by:

Hn(x) =
nX
i=1

yihi(x) +
nX
i=1

y
0

i
�hi (x) (64)

where

hi (x) =
h
1� 2l

0

i (x) (x� xi)
i h
l
0

i (x)
i2

(65)

�hi (x) = (x� xi) [li (x)]2 (66)

and

li (x) =
(x� x1) : : : (x� xi�1) (x� xi+1) : : : (x� xn)
(xi � x1) : : : (xi � xi�1) (xi � xi+1) : : : (xi � xn)

(67)

To determine the Hermite polynomials, we do not need to determine and eval-
uate the Lagrange polynomials and their derivatives. An alternative method, based on
Newton�s divided di¤erence formula, is the following:

p2n�1 (x) = f (z1) + (x� z1) f [z1; z2] + : : : (68)

+(x� z1) : : : (x� z2n�1) f [z1; : : : ; z2n]

De�ning a sequence of knots z1; z2; : : : ; z2n by

z2i�1 = z2i = xi (69)

for all i = 1; 2; : : : ; n we obtain

p2n�1 (x) = f (x1) + (x� x1) f [x1; x2] + : : : (70)

+(x� x1)2 f [x1; x1; x2] + : : :
+(x� x1)2 (x� xn� 1)2 (x� xn) f [x1; x1; : : : ; xn; xn] :

From equations [69] and [70] we have that

f [z2i�1; z2i] = f
0
(z2i�1) = f

0
(xi) (71)

Thus we can use the derivatives

f
0
(x1) ; f

0
(x2) ; : : : ; f

0
(xn) (72)
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in place of the divided di¤erences

f [z1; z2] ; f [z3; z4] ; : : : ; f [z2i�1; z2i] : (73)

Knowing that the Hermite form of the cubic polynomial which solves

p (xi�1) = f (xi�1) ; p
0
(xi�1) = f

0
(xi�1) and (74)

p (xi) = f (xi) ; p
0
(xi) = f

0
(xi)

is the following (see Atkinson (1989)):

H2 (x) =

�
1 + 2

x� xi�1
xi � xi�1

� �
xi � x
xi � xi�1

�2
f (xi�1) (75)

+

�
1 + 2

xi � x
x� xi�1

� �
x� xi�1
xi � xi�1

�2
f (xi)

+
(x� xi�1) (xi � x)2

(xi � xi�1)2
f
0
(xi�1)

� (x� xi�1)
2
(xi � x)

(xi � xi�1)2
f
0
(xi)

The divided di¤erence formula becomes

H2 (x) = f (xi�1) + (x� xi�1) f
0
(xi�1) (76)

+(x� xi�1)2 f [xi�1; xi�1; xi]
+ (x� xi�1)2 (x� xi) f [xi�1; xi�1; xi; xi]

where

f [xi�1; xi�1; xi] =
f [xi�1; xi]� f

0
(xi�1)

xi � xi�1
(77)

and

f [xi�1; xi�1; xi; xi] =
f
0
(xi)� 2f [xi�1; xi] + f

0
(xi�1)

(xi � xi�1)2
(78)

Hermite piecewise polynomial interpolation is a local interpolation, where the poly-
nomial p (x) on each subinterval [xi�1; xi] is determined by its interpolating data points.
When we have a cubic Hermite interpolation polynomial the piecewise polynomial has
four degrees.

The algorithm to �nd the piecewise polynomial interpolation function based on
cubic Hermite interpolation polynomial using divided di¤erences is given as follows: 8x 2
[xi�1; xi] where i = 1; 2; : : : ; n, if we note with
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xx = (x� xi�1)2 ; F =
f (xi)� f (xi�1)

xi � xi�1
; Fi�1 =

F � f 0 (xi�1)
xi � xi�1

and (79)

Fi =
f
0
(xi)� 2F + f

0
(xi�1)

(xi � xi�1)2

then

H = f (xi�1) + (x� xi�1) f
0
(xi�1) + xxFi�1 + xx (x� xi)Fi: (80)
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B. COMPARISON OF METHODS  
 

Table B.1. Test of the mean equality of PDF means across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.41 1.00     

JDM 1.00 0.41 1.00    

MLM 0.46 0.44 0.46 1.00   

CSM 0.48 0.63 0.48 0.48 1.00  

PIM 0.46 0.63 0.46 0.47 0.79 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of the PDF mean estimated 
with the row method is equal to the mean value of the PDF mean estimated with the column method. The average is across currencies and 
maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM – Hermite 
polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals method 
(Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite interpolation 
method. 

 

Table B.2. Test of the mean equality of PDF variances across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.04 1.00     

JDM 0.03 0.01 1.00    

MLM 0.15 0.08 0.03 1.00   

CSM 0.14 0.08 0.00 0.27 1.00  

PIM 0.34 0.04 0.01 0.22 0.31 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of the PDF variance 
estimated with the row method is equal to the mean value of the PDF variance estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 
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Table B.3. Test of the mean equality of PDF skewness across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.02 1.00     

JDM 0.01 0.01 1.00    

MLM 0.03 0.10 0.01 1.00   

CSM 0.04 0.05 0.01 0.01 1.00  

PIM 0.03 0.07 0.00 0.01 0.05 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that that the mean value of the PDF skewness 
estimated with the row method is equal to the mean value of the PDF skewness estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 

 

Table B.4. Test of the mean equality of PDF kurtosis across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.02 1.00     

JDM 0.02 0.01 1.00    

MLM 0.02 0.04 0.00 1.00   

CSM 0.04 0.01 0.00 0.04 1.00  

PIM 0.02 0.01 0.00 0.02 0.05 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of the PDF kurtosis 
estimated with the row method is equal to the mean value of the PDF kurtosis estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 
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Table B.5. Test of the mean equality of PDF 10% quartiles across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.33 1.00     

JDM 0.00 0.11 1.00    

MLM 0.87 0.37 0.00 1.00   

CSM 0.93 0.34 0.00 0.85 1.00  

PIM 1.00 0.32 0.00 0.84 0.98 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of PDF 10% quartiles 
estimated with the row method is equal to the mean value of PDF 10% quartiles estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 

 

 

Table B.6. Test of the mean equality of PDF 25% quartiles across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.42 1.00     

JDM 0.00 0.12 1.00    

MLM 0.55 0.30 0.00 1.00   

CSM 0.93 0.46 0.00 0.52 1.00  

PIM 0.94 0.43 0.00 0.74 0.88 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of PDF 25% quartiles 
estimated with the row method is equal to the mean value of PDF 25% quartiles estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 
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Table B.7. Test of the mean equality of PDF 50% quartiles across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.48 1.00     

JDM 0.00 0.07 1.00    

MLM 0.77 0.26 0.03 1.00   

CSM 0.96 0.50 0.00 0.79 1.00  

PIM 1.00 0.48 0.01 0.83 1.00 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of PDF 50% quartiles 
estimated with the row method is equal to the mean value of PDF 50% quartiles estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 

 

 

Table B.8. Test of the mean equality of PDF 75% quartiles across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.40 1.00     

JDM 0.00 0.09 1.00    

MLM 0.92 0.33 0.00 1.00   

CSM 0.88 0.51 0.00 0.75 1.00  

PIM 0.88 0.49 0.00 0.74 0.86 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of PDF 75% quartiles 
estimated with the row method is equal to the mean value of PDF 75% quartiles estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 

 

 



 42

Table B.9. Test of the mean equality of PDF 90% quartiles across methods1 

 QIM HPM JDM MLM CSM PIM 

QIM 1.00      

HPM 0.38 1.00     

JDM 0.00 0.18 1.00    

MLM 0.77 0.32 0.00 1.00   

CSM 0.67 0.36 0.00 0.83 1.00  

PIM 0.93 0.36 0.00 0.79 0.88 1.00 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of PDF 90% quartiles 
estimated with the row method is equal to the mean value of PDF 90% quartiles estimated with the column method. The average is across 
currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM 
– Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals 
method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite 
interpolation method. 

 

 

Table B.10. Test of the goodness of fit – mean squared error (MSE)1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.00 0.00 0.06 0.00 0.00 

HPM 1.00 ─ 0.80 1.00 0.66 0.16 

JDM 1.00 0.20 ─ 1.00 0.52 0.16 

MLM 0.94 0.00 0.00 ─ 0.08 0.07 

CSM 1.00 0.34 0.48 0.92 ─ 0.06 

PIM 1.00 0.84 0.84 0.93 0.94 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of mean squared errors of 
the row method is not higher than the mean value of mean squared errors of the column method. The average of the test is across currencies 
and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM – Hermite 
polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals method 
(Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite interpolation 
method. 
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Table B.11. Test of the goodness of fit – mean squared percentage error (MSPE)1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.00 0.00 0.14 0.06 0.00 

HPM 1.00 ─ 0.51 0.94 0.56 0.17 

JDM 1.00 0.49 ─ 1.00 0.48 0.17 

MLM 0.86 0.06 0.00 ─ 0.14 0.10 

CSM 0.94 0.44 0.52 0.86 ─ 0.07 

PIM 1.00 0.83 0.83 0.90 0.93 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of mean squared percentage 
errors of the row method is not higher than the mean value of mean squared percentage errors of the column method. The average of the test 
is across currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko 
(1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of 
lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic 
Hermite interpolation method. 

 

 

Table B.12. Test of the goodness of fit – mean absolute error (MAE)1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.00 0.00 0.06 0.00 0.00 

HPM 1.00 ─ 0.78 1.00 0.65 0.10 

JDM 1.00 0.22 ─ 1.00 0.41 0.06 

MLM 0.94 0.00 0.00 ─ 0.08 0.00 

CSM 1.00 0.35 0.59 0.92 ─ 0.47 

PIM 1.00 0.90 0.94 1.00 1.00 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of mean absolute errors of 
the row method is not higher than the mean value of mean absolute errors of the column method. The average of the test is across currencies 
and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation method (Shimko (1993)); HPM – Hermite 
polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – Mixture of lognormals method 
(Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – Piecewise cubic Hermite interpolation 
method. 
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Table B.13. Test of the goodness of fit – mean absolute percentage error (MAPE)1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.00 0.00 0.16 0.00 0.00 

HPM 1.00 ─ 0.51 0.99 0.53 0.06 

JDM 1.00 0.49 ─ 1.00 0.39 0.09 

MLM 0.84 0.01 0.00 ─ 0.14 0.00 

CSM 1.00 0.47 0.61 0.86 ─ 0.04 

PIM 1.00 0.94 0.91 1.00 0.96 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of mean absolute 
percentage errors of the row method is not higher than the mean value of mean absolute percentage errors of the column method. The 
average of the test is across currencies and maturities. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

Table B.14. Test of the stability of the PDF mean1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.99 1.00 1.00 1.00 1.00 

HPM 0.01 ─ 0.01 0.35 0.87 0.90 

JDM 0.00 0.99 ─ 1.00 1.00 1.00 

MLM 0.00 0.65 0.00 ─ 1.00 1.00 

CSM 0.00 0.13 0.00 0.00 ─ 0.83 

PIM 0.00 0.10 0.00 0.00 0.17 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of the PDF mean resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than the 
mean value of cross-sectional standard deviations of the PDF mean obtained with the column method. The average of the test is across 
currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation method 
(Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – 
Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 
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Table B.15. Test of the stability of the PDF variance1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.15 0.75 0.17 0.55 1.00 

HPM 0.85 ─ 0.85 0.85 0.57 0.85 

JDM 0.25 0.15 ─ 0.17 0.08 0.69 

MLM 0.83 0.15 0.83 ─ 0.58 1.00 

CSM 0.45 0.43 0.92 0.42 ─ 1.00 

PIM 0.00 0.15 0.31 0.00 0.00 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of the PDF variance resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of the PDF variance obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

Table B.16. Test of the stability of the PDF skewness1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.72 0.42 0.46 0.50 1.00 

HPM 0.28 ─ 0.31 0.11 0.36 0.86 

JDM 0.58 0.69 ─ 0.41 0.42 1.00 

MLM 0.54 0.89 0.59 ─ 0.50 1.00 

CSM 0.50 0.64 0.58 0.50 ─ 0.95 

PIM 0.00 0.14 0.00 0.00 0.05 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of the PDF skewness resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of the PDF skewness obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 
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Table B.17. Test of the stability of the PDF kurtosis1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.89 0.00 0.89 0.61 1.00 

HPM 0.11 ─ 0.02 0.02 0.11 0.42 

JDM 1.00 0.98 ─ 1.00 1.00 1.00 

MLM 0.11 0.98 0.00 ─ 0.42 0.92 

CSM 0.39 0.89 0.00 0.58 ─ 0.99 

PIM 0.00 0.58 0.00 0.08 0.01 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of the PDF kurtosis resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of the PDF kurtosis obtained with the column method. The average of the test is across 
currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation method 
(Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); MLM – 
Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

Table B.18. Test of the stability of the PDF 10% quartile1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.99 0.92 1.00 0.75 1.00 

HPM 0.01 ─ 0.18 0.01 0.01 0.01 

JDM 0.08 0.82 ─ 0.08 0.08 1.00 

MLM 0.00 0.99 0.92 ─ 0.41 1.00 

CSM 0.25 0.99 0.92 0.59 ─ 0.92 

PIM 0.00 0.99 0.92 0.00 0.08 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of PDF 10% quartiles resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of PDF 10% quartiles obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 
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Table B.19. Test of the stability of the PDF 25% quartile1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.98 0.92 0.83 0.50 1.00 

HPM 0.02 ─ 0.26 0.02 0.02 0.02 

JDM 0.08 0.74 ─ 0.08 0.08 0.08 

MLM 0.17 0.98 0.92 ─ 0.42 1.00 

CSM 0.50 0.98 0.92 0.58 ─ 0.75 

PIM 0.00 0.98 0.92 0.00 0.25 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of PDF 25% quartiles resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of PDF 25% quartiles obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

Table B.20. Test of the stability of the PDF 50% quartile1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.96 0.92 1.00 0.67 1.00 

HPM 0.04 ─ 0.28 0.04 0.04 0.04 

JDM 0.08 0.72 ─ 0.08 0.08 0.08 

MLM 0.00 0.96 0.92 ─ 0.49 1.00 

CSM 0.33 0.96 0.92 0.51 ─ 0.99 

PIM 0.00 0.96 0.92 0.00 0.01 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of PDF 50% quartiles resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of PDF 50% quartiles obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 
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Table B.21. Test of the stability of the PDF 75% quartile1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.98 0.92 1.00 0.58 1.00 

HPM 0.02 ─ 0.25 0.02 0.03 0.03 

JDM 0.08 0.75 ─ 0.08 0.08 0.08 

MLM 0.00 0.98 0.92 ─ 0.42 1.00 

CSM 0.42 0.97 0.92 0.58 ─ 1.00 

PIM 0.00 0.97 0.92 0.00 0.00 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of PDF 75% quartiles resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of PDF 75% quartiles obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

Table B.22. Test of the stability of the PDF 90% quartile1 

 QIM HPM JDM MLM CSM PIM 

QIM ─ 0.96 0.92 0.91 0.47 1.00 

HPM 0.04 ─ 0.19 0.04 0.04 0.04 

JDM 0.08 0.81 ─ 0.08 0.08 0.08 

MLM 0.09 0.96 0.92 ─ 0.38 1.00 

CSM 0.53 0.96 0.92 0.62 ─ 0.67 

PIM 0.00 0.96 0.92 0.00 0.33 ─ 

1 The table presents average probability values of the t-test. The null hypothesis of the test is that the mean value of cross-sectional standard 
deviations of PDF 90% quartiles resulted from randomly perturbed implied volatilities and estimated with the row method is not higher than 
the mean value of cross-sectional standard deviations of PDF 90% quartiles obtained with the column method. The average of the test is 
across currencies for PDFs with 1-month time to expiry. The acronym names of the methods are as follows: QIM – Quadratic interpolation 
method (Shimko (1993)); HPM – Hermite polynomials method (Madan and Milne (1994)); JDM – Jump-diffusion method (Malz (1996)); 
MLM – Mixture of lognormals method (Melick and Thomas (1997)); CSM – Cubic spline method (Bliss and Panigirtzoglou (2002)) ; PIM – 
Piecewise cubic Hermite interpolation method. 

 

 


