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Abstract

The literature on optimal monetary policy typically makes three major as-
sumptions: 1) policymakers’ preferences are quadratic, 2) the economy is
linear, and 3) stochastic shocks and policymakers’ prior beliefs about un-
observed variables are normally distributed. This paper relaxes the third
assumption and explores its implications for optimal policy. The separa-
tion principle continues to hold in this framework, allowing for tractability
and application to forward-looking models, but policymakers’ beliefs are no
longer updated in a linear fashion, allowing for plausible nonlinearities in
optimal policy. We consider in particular a class of models in which pol-
icymakers’ priors about the natural rate of unemployment are diffuse in a
region around the mean. When this is the case, it is optimal for policy to
respond cautiously to small surprises in the observed unemployment rate,
but become increasingly aggressive at the margin. These features of optimal
policy match statements by Federal Reserve officials and the behavior of the
Fed in the 1990s.
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1. Introduction

The literature on optimal monetary policy under uncertainty typically makes three major

assumptions: 1) policymakers’ preferences are well-approximated by a quadratic function,

2) the economy is well-approximated by a linear system of equations, and 3) stochas-

tic shocks and policymakers’ priors about unobserved variables are normally distributed.

While these assumptions contribute much in the way of tractability and simplicity to the

models and their solutions, it is important to understand the effects of relaxing these con-

straints on the prescriptions for optimal policy. In particular, we demonstrate that relaxing

the assumption of normality in favor of a prior that is more diffuse in a region around the

mean provides a very plausible source of nonlinearity in optimal policy. Relaxing priors in

this way also seems to match statements by Federal Reserve officials and the Fed’s behav-

ior in the late 1990s, demonstrating that the optimal nonlinearities in this paper may be

important in practice as well as in principle.

It is well known that the Linear-Quadratic-Gaussian model defined by assumptions

1–3 above yields an optimal policy response function that is linear in the observable state

variables of the model. One can go beyond the linear response of policy to the state vari-

ables by relaxing any of the three assumptions. For example, Orphanides and Wieland

(2000) consider a case where policymakers’ preferences are non-quadratic by introducing

a “zone of indifference” for inflation rates between 0 and 2 percent (motivated, for exam-

ple, by some inflation-targeting central banks’ official charters). Orphanides and Wieland

(2000) also consider a model with a nonlinear Phillips curve with a concave-to-convex

shape (i.e., a shape similar to y = x3) that is like the one estimated by Filardo (1998).

These approaches effectively relax assumptions 1 and 2 above, yielding an optimal nonlin-

ear policy response to unemployment and inflation even in a world of perfect certainty, as

well as a world in which disturbances and policymakers’ priors are all normally distributed.

The present paper argues that relaxing the third assumption provides in many cases

a more realistic model of nonlinearities in the conduct of policy. For example, a number

of statements by Federal Reserve officials in the late 1990s suggest that it was primarily

uncertainty about the economy and its natural rate of unemployment or potential out-
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put that drove their behavior, rather than zone-type preferences or a significant belief in

nonlinear Phillips curves. In Levy (2000), Roger Ferguson states that: “Even now as we

talk about imbalances, there is an implicit short-run Phillips curve concept embedded in

the discussion without necessarily saying that the unemployment rate at which inflation

starts to pick up is exactly 4.5 percent, or 4.9 percent, or 5.2 percent or 5.5 percent. [I’m]

in the middle in believing that there is a short-term trade-off between resource utilization

and inflation, but not necessarily being wed to a specific point estimate on the short-run

Phillips curve where inflation is likely to accelerate.” In a similar vein, Laurence Meyer

(1999) argues that: “Policymakers could attenuate the response of the real federal funds

rate to declines in the unemployment rate in a region around their estimate of the NAIRU.

But once the unemployment rate gets far enough below (or above) the estimated NAIRU

so that confidence returns that the labor market is experiencing excess demand (or sup-

ply), then the more normal response of real interest rates to incremental declines in the

unemployment rate would again become appropriate.”

This paper shows that relaxing the assumption of normally-distributed priors in favor

of distributions that are more diffuse in a region around the mean provides a very simple

rationale for optimal nonlinear policy responses that also matches the intuition in the above

statements very closely. Meyer, Swanson, and Wieland (2001) also discuss this motive for

a nonlinear policy response. The present paper goes beyond that derivative work in several

respects: 1) the key features of policymakers’ priors that lead to an attenuated response of

policy are derived and discussed; 2) this paper shows how such “diffuse-middled” priors can

arise naturally in a dynamic model with structural change; 3) the persistence properties and

evolution of policymakers’ beliefs over time is investigated, so that the dynamic behavior

of beliefs in the model is explicitly considered; and 4) the present paper shows how this

analysis extends to optimal policy in a forward-looking model.

The remainder of the paper proceeds as follows. Section two sets up an illustrative

model of the economy and a univariate signal extraction problem which conveys the basic

intuition for the results. Section three shows that the basic results continue to hold in

more realistic cases by extending the basic model along three dimensions: considering

dynamic behavior of the priors as they evolve over time, multivariate rather than univariate
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signal extraction, and forward-looking rather than backward-looking models. Section four

compares the predictions of the model to actual Fed behavior in the 1990s, and section

five concludes. A mathematical Appendix derives the technical conditions under which

policymakers’ priors lead to policy attenuation for small surprises in unemployment and

inflation.

2. A Simple Model

The main points of this paper are independent of the exact model under consideration;

thus, for the purposes of clarity and illustration, it is advantageous to begin with a model

that is as simple as possible while still conveying all of the relevant intuition. The following

two-equation, backward-looking model serves as a useful baseline:

(ut − u∗) = θ(ut−1 − u∗) + α(rt−1 − r∗) + εt (1a)

πt = πt−1 − β(ut−1 − u∗) + νt (1b)

where ut is the unemployment rate at time t, rt the real interest rate, πt the inflation rate,

u∗ the natural rate of unemployment, r∗ the natural rate of interest, and εt and νt are

stochastic shocks to the system that are orthogonal to all variables dated t − 1 or earlier.

Note that we assume for simplicity that policymakers have direct control over the real

interest rate rt and that although we have stated model (1) in terms of unemployment,

one can just as easily frame it in terms of output or some broad measure of capacity

utilization.

Policymakers set interest rates so as to minimize a discounted sum of squared devi-

ations of unemployment and inflation from target values:

min (1 − δ) Et

∞∑
s=t

δs−t
[
(πs − π∗)2 + γ(us − u∗)2

]
(2)

where π∗ denotes policymakers’ objective for inflation, δ is a discount factor, γ is the rela-

tive weight on unemployment stabilization, and policymakers’ objective for unemployment

agrees with the natural rate u∗.

An interesting feature of the model—and one that is of primary relevance for the

present paper—is that u∗ is never observed. Policymakers observe current and past values



4

of u and π, and their own past choices for r, which they use to help infer the true value

of u∗ by Bayesian updating. It is assumed for simplicity that the structure of model (1)

and the parameters α, β, θ, and r∗ are all known with certainty.

Policymakers’ problem is thus a standard linear-quadratic (LQ) programming prob-

lem with an unobserved state variable, the solution to which is well known (e.g., Bertsekas

(1987)):
rt − r∗ = a Et(ut − u∗) + b (πt − π∗) (3)

where Et denotes the mathematical expectation conditional on all information It available

at time t:

It ≡ {α, β, γ, δ, θ, σ2
ε, σ

2
ν , Fu∗|0(·), π∗, r∗, πt, ut, πs, rs, us | s < t} (4)

Fu∗|0(·) denotes policymakers’ prior distribution on u∗ at time 0. The constants a and b in

(3) are determined by the parameters of the model and are independent of the variances

σ2
ε and σ2

ν of ε and ν (the property of certainty equivalence). Solution (3) also has the

well-known property of separability of estimation and control: first, the unemployment

gap (ut − u∗) is estimated on the basis of all information available at time t, and second,

the interest rate rt is set based on this estimate. It is important to note that solution (3)

and the properties of certainty equivalence and separability of estimation and control are

completely general properties of the LQ model and do not require normality of ε, ν, or the

prior on u∗.1

The problem of estimating u∗ is inherently one of signal extraction: policymakers

never observe the true value of u∗; instead, they receive noisy observations of u∗ through

realizations of ut and πt.2 Policymakers enter period t with prior beliefs about u∗, the ex-

pected value of which is Et−1u
∗, and based on this prior and lagged variables policymakers

have prior forecasts for ut and πt, namely:

Et−1ut = (1 − θ)Et−1u
∗ + θut−1 + α(rt−1 − r∗) (5a)

Et−1πt = πt−1 − β(ut−1 − Et−1u
∗) (5b)

1See, e.g., Bertsekas (1987), pp. 102–6, 292–3. We will return to this point for the forward-looking LQ
model in section 3, below.

2To emphasize the signal extraction properties of equations (1), u∗ could be shifted from the left-hand
side to the right-hand side of equation (1a), which would put equations (1) into standard form with the
observed variables on the left-hand side.
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Policymakers use the ex post realizations of ut and πt to update their beliefs about the

true value of u∗ via Bayesian updating. When policymakers’ priors for u∗ and the shocks

ε and ν are all normally distributed, then this estimation stage of policymakers’ problem

is linear in the observed state variables u, π, and r. In order to maintain a simple, linear

form for optimal policy in terms of the observable state variables, the literature on optimal

monetary policy has thus maintained the assumption of normality.

However, given the uncertainty policymakers face about the natural rate of unem-

ployment and the possibility of structural change, it seems reasonable to think that pol-

icymakers might have beliefs about u∗ that, rather than being normally distributed, are

more diffuse in a region around the mean. Figure 1 below presents density functions for

three distributions that might be used to model policymakers’ beliefs about u∗ (all the

distributions have been centered around a mean of 5 for concreteness and comparability):

3 4 5 6 7 8
u�

0.2

0.4

0.6

0.8

ft�1�u
��

Figure 1

The short-dashed line plots a Gaussian density, which is standard in the literature. The

solid line plots a uniform density over the interval [4, 6], which implies a much greater

degree of uncertainty about u∗ in a region around the mean (although it has the unrealistic

feature that policymakers are absolutely certain the true value of u∗ lies neither below 4

nor above 6). The long-dashed line represents an intermediate case—it has a density

that is proportional to exp(−0.5(u∗ − 5)4).3 Throughout this paper, we will argue that

these latter two “diffuse-middled” distributions are more plausible models of policymakers’

beliefs than is the standard Gaussian assumption, where the term “diffuse-middled” refers

3The exact formula is ke−
1
2 ((x−5)/.8)4 , where the normalization constant k = 1/((.8) 25/4 Γ(5/4)). The

(short-dashed) normal density is distributed N(5, .16).
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to distributions that are more diffuse in a region around the mean than is a Gaussian

distribution of the same variance. In the Appendix, we provide a detailed analysis and

proofs of the relationship between “diffuse-middled” priors in general and the features of

optimal policy discussed below. In section 3, below, we show how such beliefs can evolve

naturally in a dynamic model that allows for the possibility of structural change.

The non-normality of policymakers’ priors will be reflected in their posterior esti-

mates of u∗ and the unemployment gap, ut − u∗, hence in the setting of optimal policy

in (3). Figure 2 illustrates this process when policymakers only have to perform univari-

ate signal extraction, which we achieve by temporarily dropping equation (1b) from the

model—while multivariate signal extraction is not unduly difficult, the figures are much

simpler for the univariate case and no intuition is lost from the simplification.4 Policy-

makers’ estimates of u∗ and (ut −u∗), which would have been linear in ut had we assumed

priors to be Gaussian, have the following functional forms when we assume the uniform

prior (solid line in Figure 1):5

2 3 4 6 7 8
u
 t
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5.5

5.75

E_t u*

Figure 2a

3 4 5 6 7 8
u
 t

-3

-2

-1

1

2

3

E_t(u_t-u*)

Figure 2b

Intuitively, because policymakers are so uncertain about u∗ within the interval [4, 6], they

are very willing to revise their estimate of u∗ for observations of ut that are well inside

this interval, as is evident in Figure 2a. As observed unemployment moves farther away

4The more general case of multivariate signal extraction is demonstrated as one of the extensions in
section 3, below.

5 In these figures, policymakers’ prior forecast Et−1ut equals 5 (and the expected unemployment gap
Et−1(ut−u∗) is zero); it is easy to show for this simple one-equation version of the model that policymakers
will always have set rt−1 so that this is the case. The standard deviation of εt is set equal to 0.5,
corresponding to annual U.S. data.
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from policymakers’ prior point estimate of 5, however, policymakers assign an increasingly

smaller fraction of each increment of unemployment to u∗, this fraction approaching zero as

ut becomes more and more extreme relative to policymakers’ priors. Correspondingly, the

fraction of each increment of unemployment assigned to the unemployment gap, ut − u∗,

is close to 0 near the middle of Figure 2b, and approaches 1 as ut moves out toward the

edges of that figure.

As a result, policymakers set rt very cautiously for small surprises in the realized

unemployment rate, but respond increasingly aggressively at the margin as the surprise

in unemployment becomes larger, approaching the marginal certainty-equivalent response

in the limit. Thus, the theory in this paper provides a refinement of the linear signal-

extraction-based motive for optimal policy attenuation discussed in Svensson and Wood-

ford (2003) and Swanson (2004).6 The non-normal priors in this paper accentuate the

attenuation effect by increasing the variance of policymakers’ priors without making the

tails implausibly large; moreover, optimal policy in this paper returns to a more aggressive

policy response at the margin for larger surprises, a feature of policy that seems to match

the intuition offered by Fed Governor Meyer in the Introduction.

Finally, note that these basic features of the results—policy attenuation for small

surprises followed by increasingly aggressive responses at the margin—are not specific to

the uniform prior. In the Appendix, we prove that these properties hold for a wide class of

distributions that we will refer to as “diffuse-middled”—distributions that are more diffuse

in a region around the mean than a Gaussian distribution of the same variance. Swanson

(2000) provides additional examples of such distributions.

3. Extensions of the Model

The simple model of the previous section illustrates the basic intuition underlying the

non-normal-priors justification for optimal nonlinear policy. In this section, we extend the

6Sack and Wieland (2000) survey the literature on optimal policy attenuation. The motivation given
by Svensson and Woodford (2003) and Swanson (2004) is based on signal extraction, as in the present
paper. Note also that, unlike the present paper, Swanson (2004) takes the signal extraction problem one
step further by assuming the estimated unemployment gap Et(ut − u∗) is itself an indicator for the true
underlying state variable of interest, Xt, which one might think of as “excess demand.” That feature could
be incorporated into the analysis of the present paper as well, but we do not do so for simplicity.
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illustrative model of the previous section along three dimensions to investigate the robust-

ness of this basic intuition to the following features: 1) dynamic evolution of policymakers’

beliefs over time (including how policymakers might arrive at such “diffuse-middled” pri-

ors to begin with), 2) multivariate signal extraction, and 3) optimal monetary policy in a

forward-looking model.

3.1 Dynamic Evolution of Policymakers’ Beliefs

The Bayesian updating in the illustrative model above was essentially static, being com-

puted for only a single period t given priors from period t − 1. This section investigates

two questions: First, how might policymakers have arrived at such a “diffuse-middled”

prior in the first place? Second, how persistent is this diffuse-middled prior—i.e., for how

many periods should the implied nonlinearities in the optimal policy be expected to last?

To answer the first question, we use a simple stylized model of structural change. We then

simulate the model forward to show how priors in the model evolve over time to provide

an answer to the second question.

Assume that u∗ is constant over time except for the possibility of structural change,

which follows a Poisson process with arrival probability p each period. Conditional on a

structural break arriving, a jump in u∗ is drawn from a normal distribution with mean 0

and variance σ2. Thus, model (1) is augmented with the following equation for u∗:

u∗
t = u∗

t−1 + ηt (1c)

ηt =
{

0
X ∼ N(0, σ2)

with probability
with probability

1−p

p

Note that the shock η has mean 0 and constant variance, so that equation (1c) preserves

the underlying LQ structure of model (1).7

We set up initial conditions and then simulate model (1) forward over time to see

how policymakers’ beliefs evolve. To keep the simulation simple and focus on the dynamic

evolution of beliefs, we continue to abstract away from inflation equation (1b)—which

7The variance of η can be allowed to vary over time, so long as this variation is exogenous (i.e., not
related to any of the endogenous state variables of the model).
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keeps policymakers’ signal extraction problem a univariate one—and we drop interest rates

from the model (α = 0 in equation (1a)), so that policymakers just observe the economy

and update their beliefs about u∗ over time. These simplifications reduce the number of

variables we must keep track of over time and make the simulation very clear and intuitive.

We initialize the model in period 0 with a prior distribution on u∗ that is normally

distributed with mean 6 and standard deviation 0.3, which is a rough calibration to the

U.S. economy in the mid-1990s. We choose a normal distribution as the initial prior

to demonstrate that even starting from a purely Gaussian prior, we can arrive at the

more diffuse types of distributions discussed above. Moreover, after many periods without

structural change, policymakers’ beliefs would evolve to a distribution that is close to

normally distributed anyway, so one can argue that a normal distribution is also roughly

calibrated to the U.S. economy in the mid-1990s, when there had not been a substantial

structural break in u∗ for many years. We set p = .01 and σ = 1, so that a break in u∗

occurs roughly once every 25 years and each break draws a jump in u∗ from a N(0, 1)

distribution. Based on quarterly U.S. data, we set θ = .8 and σε = .3 in equation (1a).8

These parameters are all known by policymakers with certainty.

Figure 3 presents the results from simulating this model forward for 18 quarters. The

solid line in each panel plots policymakers’ beliefs in each period for the model described

above, while the dotted line plots results for the same model without structural change

(i.e., setting p = 0) for comparison. The time 0 prior for each model is plotted in the upper

left-most panel; the results for the first four quarters (t = 1, . . . , 4) are not reported in the

figure because they are not very different from the t = 0 and t = 5 cases. Simulating the

model forward requires drawing values for ut each period; we use the quarterly values of

unemployment realized in the U.S. from 1997Q1 through 2001Q1, which are listed at the

top of each panel.9

The simulation becomes interesting after about 5 or 6 quarters. By this point, re-

peated realizations of ut below policymakers’ prior mean of 6 cause them to place noticeable

8We estimate these parameters over the period 1964–2002. We HP-filter ut to measure u∗. The
unemployment gap fits an AR(2) process better than an AR(1), but to keep the simulation down to a
single state variable (ut−1), we just use the dominant root of the AR(2) polynomial.

9Realized unemployment rates for t = 1, . . . , 4 are 5.2, 5.2, 5.1, 4.9, respectively.
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Figure 3: Dynamic Simulation of Policymakers’ Beliefs
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probability on a structural break having occurred. This is seen as a fat left tail of the dis-

tribution for u∗, which shows that beliefs about u∗ are becoming increasingly diffuse. After

about 11 or 12 quarters, policymakers’ beliefs display a clear bimodal pattern, with “New

Economy” (low u∗) and “Old Economy” (high u∗) regimes. Once policymakers’ beliefs

reach this point, they are extremely uncertain about the true value of u∗ over a wide

range of intermediate values, and they begin to revise their beliefs very strongly as new

information comes in. This uncertainty persists for several quarters, and is still evident 18

quarters from the start of the simulation in the bottom right panel.

By contrast, in the model without structural change (dotted lines in Figure 3), poli-

cymakers’ beliefs have a Gaussian distribution in every period. Even though policymakers

update their beliefs each period in response to incoming data, the Gaussian prior and

Gaussian shocks ensure that only the mean of the distribution is revised (with the variance

gradually shrinking over time), while the overall Gaussian functional form is preserved.

Figure 4 maps these sequences of beliefs into policymakers’ optimal estimate of the

unemployment gap over time (left panel) and with respect to the observed unemployment

rate (right panel).

2.5 5 7.5 10 12.5 15 17.5
t

-1.2
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-0.8

-0.6

E_t(u_t-u*)

Figure 4a

4 4.25 4.5 4.75 5 5.25 5.5
u_t

-1.2
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-0.8

-0.6

E_t(u_t-u*)

Figure 4b

The solid (dashed) lines plot policymakers’ estimates in the model with (without) struc-

tural change. In the model without structural change, policymakers revise their estimates

of the unemployment gap essentially linearly with the observed unemployment rate, the

only deviation from linearity arising from the gradual shrinking of the variance of policy-

makers’ beliefs about u∗ over time. By contrast, the model with structural change begins
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to show very strong departures from linearity after about 6 or 7 quarters—at this point,

policymakers are starting to place substantial weight on the possibility that structural

change has occurred, and that they may have been overestimating the size of the unem-

ployment gap. Thus, their optimal estimate of the gap (in this simulation) is actually

backward-bending, since they begin to revise their estimate of the gap backward (revising

u∗ at the margin even more rapidly than ut is falling) to make up for possible previous

overestimates. Although the backward-bending feature of Figure 4 depends on the specifics

of the model and the simulation, the basic intuition underlying policymakers’ estimates of

u∗ and the unemployment gap is identical to the simple model in the previous section.

Note that an interesting feature of this model of structural change is that the usual

state of the world is one in which policymakers’ beliefs are close to normal—and thus

that optimal updating and optimal policy are usually close to linear. The nonlinearity

emphasized here and in the previous section only becomes relevant when policymakers

beliefs about u∗ become sufficiently diffuse in a region around the mean—in this case,

when policymakers begin to suspect that a structural break in the model might have

occurred. This nonlinearity persists for several quarters and then gradually dies out as

policymakers’ beliefs converge gradually back toward normality once again.

3.2 Multivariate Signal Extraction

For simplicity, the previous sections have considered stylized models with only a single

indicator variable—univariate signal extraction. In this section, we reinstate the inflation

equation (1b) of the baseline model, and let policymakers update their beliefs about the

unobserved variable u∗ in response to both indicators: unemployment and inflation. For

this more general case, policymakers’ optimal inference and response functions are no

longer functions simply of ut, but now also depend on the realized inflation rate πt, resulting

in graphs that are no longer two-dimensional, as in section 2, but are instead surface plots

of policymakers’ optimal estimates of u∗ and ut − u∗ as functions of the surprises in

unemployment and inflation both, as in Figures 5a and b below.

To graph these functions, we roughly calibrate the parameters of the model to the

U.S. economy from 1965–2000, this time to annual data since we will focus on a single
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period t rather than trace the dynamics of the model over time. These parameter values

are set as follows: θ = 0.4, α = 0.15, β = 0.4, r∗ = 2.5, σε = 0.5, and σν = 0.6. We

allow for a correlation between εt and νt of −0.5, also in line with annual U.S. data over

this period. We initialize the model with values of πt−1 = 2.0 percent, ut−1 = 4.2, and

rt−1 = 3.0, which correspond to core PCE inflation, unemployment, and the real federal

funds rate in the U.S. in 1999. We use the uniform prior on u∗ from Figure 1, which has

Et−1u
∗ = 5 percent. From model (1), this implies prior forecasts for unemployment ut in

2000 of 4.76 percent and inflation πt of 2.32 percent, respectively.

When data on unemployment and inflation for 2000 come in, policymakers in the

model revise their beliefs about u∗ and the unemployment gap ut−u∗ on the basis of these

observations as depicted in Figure 5, below:
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In these figures, we can consider simultaneous surprises in unemployment and inflation of

any magnitudes, and their effects on policymakers’ optimal estimates.

The same intuition as in the baseline model holds in Figure 5: as can be seen in the

right-hand panel, policymakers will update their estimate of the unemployment gap (and

hence set rt) very cautiously in response to small surprises in unemployment and inflation,

where the “size of the surprise” here is the size of the joint surprise in unemployment and

inflation both, as measured from the bivariate distribution that describes the shocks to

these variables (in this example, a bivariate normal distribution). As the size of the surprise

gets larger, policymakers will set rt more aggressively at the margin, as they become less

willing to revise their estimates of u∗ further.
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3.3 Forward-Looking Models

The results of this paper also apply more broadly than to just the simple backward-looking

model (1) considered so far. The same ideas of signal extraction and optimal updating with

a non-normal prior apply just as easily to any model that exhibits separation of estimation

and control, including forward-looking models that possess this property. For example,

Pearlman, Currie, and Levine (1986), Pearlman (1992), and Svensson and Woodford (2003)

show that the forward-looking LQ model possesses this property. Thus, if we consider a

forward-looking version of model (1):

(ut − u∗) = θ1(ut−1 − u∗) + θ2 Et(ut+1 − u∗) + α(rt−1 − r∗) + εt (6a)

(πt − π∗) = φ1(πt−1 − π∗) + φ2Et(πt+1 − π∗) − β(ut−1 − u∗) + νt (6b)

and policymakers’ preferences and information set are given, as before, by:

min (1 − δ) Et

∞∑
s=t

δs−t
[
(πs − π∗)2 + γ(us − u∗)2

]

It ≡ {α, β, γ, δ, θ1, θ2, φ1, φ2, σ
2
ε , σ2

ν , Fu∗|0(·), π∗, r∗, πt, ut, πs, rs, us | s < t}

then the above authors show that the optimal policy under commitment satisfies:10

rt − r∗ = c Et(ut − u∗) + d (πt − π∗) (7)

where c and d are constants that can be computed from the parameters θ1, θ2, φ1, φ2,

α, β, γ, and δ using the methods described in those papers.11 The analysis of optimal

policy with a non-normal prior is then exactly the same as before: policymakers form an

optimal estimate of the unemployment gap, Et(ut − u∗), and then set policy according

to this estimate. So long as the control stage of the problem is separate from that of

estimation, the same types of diagrams presented earlier remain relevant for thinking

about the problem, and the same intuition applies.

10The optimal policy under discretion is also linear, although the coefficients c and d would be different.
11Note that the property of separability of estimation and control in equation (7) is a special feature

of the LQ model under optimal policy. For example, if one considers a simple rule rather than the fully
optimal rule, then estimation and control are not separable and the solution to the model becomes much
more difficult computationally (Meyer, Swanson, and Wieland (2001) consider this case). Similarly, if
any of the parameters of the model are not known with certainty, then the optimal policy must take into
account learning about these parameters by policymakers, which again becomes computationally much
more difficult (Wieland (2003) analyzes this case).



15

1986 1988 1990 1992 1994 1996 1998 2000
4

4.5

5

5.5

6

6.5

7

7.5

8
Unemployment Rate

Figure 6a

1986 1988 1990 1992 1994 1996 1998 2000
2

3

4

5

6

7

8

9

10
Fed Funds Rate and Taylor−type Rule

Figure 6b

4. Discussion

For the diffuse-middled class of prior distributions analyzed above and in the Appendix, it

is optimal for policy to respond cautiously to small surprises in the observed unemployment

rate, but to respond increasingly more aggressively at the margin as the size of the surprise

gets larger. These features of optimal policy match statements by Federal Reserve officials

in the late 1990s presented in the Introduction, and Figure 6 suggests that it also matches

the behavior of the Fed over this period.

The left-hand panel, Figure 6a, plots the quarterly U.S. unemployment rate from

1986 to 2001, along with a dashed horizontal line at ut = 6 to depict a common estimate

of the natural unemployment rate in the mid-1990s (e.g., Staiger, Stock, and Watson

(1997)). The right-hand panel, Figure 6b, compares the Federal Reserve’s actual interest

rate policy (solid line) to what would have been prescribed by a Taylor (1993) type rule

(dashed line) based on GDP deflator inflation (not shown) and the unemployment rate

data in Figure 6a.12

The Taylor-type rule in Figure 6b tracks the Fed’s actual behavior fairly well until

about 1997, at which point the two diverge noticeably. In particular, the Fed appears

to have been much less aggressive between 1997 and 1999 than a Taylor rule based on

12The Taylor-type rule in Figure 6b is given by it = r∗ +πt + α(πt −π∗)−β(ut −u∗), where r∗ = 2.75,
π∗ = 2, u∗ = 6, α = 0.5, and β = 1.8, ut denotes the unemployment rate in Figure 6a, and πt the
four-quarter change in GDP deflator inflation.
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previous estimates of u∗ would have implied. Beginning sometime in 1999, however, the Fed

appears to have returned to the marginal responsiveness implied by the Taylor Rule—i.e.,

the marginal prescriptions from the Taylor rule seem to coincide with the Fed’s marginal

interest rate moves in 1999 and 2000, even though the levels had diverged as a result of

the Fed’s earlier cautiousness. The Fed’s behavior over this recent historical episode—an

attenuation in the responsiveness of policy for a time, followed by a return to a more

aggressive response at the margin—seems to match the intuition behind optimal updating

and optimal policy presented in this paper.

5. Conclusions

The literature on optimal monetary policy typically makes three major assumptions for

tractability and simplicity: 1) policymakers’ preferences are quadratic, 2) the economy is

linear, and 3) stochastic shocks and policymakers’ priors about unobserved variables are

normally distributed. The linearity of the optimal policy that results from these assump-

tions is an advantage when maximum simplicity is required, but arguably detracts from

the realism of the model in many cases.

This paper argues that relaxing the third assumption provides a tractable and real-

istic model of nonlinearities in the optimal and actual conduct of policy. Tractability is

maintained through the principle of separation of estimation and control, which continues

to hold in the LQ framework despite the non-normal priors that are the focus of this pa-

per. For example, separability of estimation and control allows the basic insights of the

paper to be extended in a natural way to forward-looking LQ models, which have become

a baseline for much of the recent literature on optimal monetary policy.

The empirical relevance of the nonlinearities presented in this paper are demonstrated

in two ways. First, a simple simulation shows how “diffuse-middled” priors can arise

naturally in a dynamic model with structural change. Second, statements by Federal

Reserve officials and the behavior of the Fed in the 1990s are shown to line up with the

basic insights of the model. Thus, the optimal nonlinearities demonstrated in this paper

appear to be relevant in practice as well as in principle.
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Finally, the results demonstrated in this paper are not specific to models of monetary

policy comprising an output equation and an inflation equation, but rather apply to any

signal extraction problem with non-normal priors on a key unobserved variable of the

model. Since policymakers in a variety of contexts face the problem of updating priors

about unobserved variables through signal extraction, and these priors may well be more

diffuse in a region around the mean than a Gaussian distribution, the basic insights in this

paper should be regarded as being potentially applicable to a wide variety of situations.
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Appendix: Mathematical Derivations

Let policymakers’ prior (time t − 1) distribution on u∗ be given by the density function

f(u∗). The mean of this distribution is assumed to exist, and without loss of generality,

equals 0. The variance is assumed to exist and equals σ∗2. Given u∗, the (observable)

unemployment rate ut is distributed N(u∗, σ2), with density denoted by φ. We now show

what qualities of the density f lead to the features of optimal nonlinear policy emphasized

in the text, namely: (1) that the responsiveness of policy is attenuated relative to normal

for small surprises (ut ≈ 0), and (2) that the marginal responsiveness of policy increases

in the size of the surprise in ut.

We restrict attention to the case of one observable variable, ut, for clarity. The

analysis for multiple observable variables is essentially identical—one need only calculate

the size of the joint surprise to determine the extent of updating of policymakers’ priors

that takes place.

The formula for policymakers’ posterior on u∗, Etu
∗ ≡ E[u∗|ut], is the usual:

E[u∗|ut] =
∫

u∗φ(ut−u∗)f(u∗)du∗∫
φ(ut−u∗)f(u∗)du∗ (A1)

We will make use of the following Lemma:

Lemma 1: Assume that policymakers set the interest rate rt as a decreasing linear function
of the estimated unemployment gap, ut − E[u∗|ut]. Then the marginal responsiveness of
policy to observed unemployment, ∂rt/∂ut, is proportional to:

∂E[u∗|ut]
∂ut

− 1 =
1
σ2

Var[u∗|ut] − 1 (A2)

the convexity of policy, ∂2rt/∂u2
t , is proportional to:

∂2E[u∗|ut]
∂u2

t

=
1
σ4

Skew[u∗|ut] (A3)

and ∂3rt/∂u3
t , is proportional to:

∂3E[u∗|ut]
∂u3

t

=
1
σ6

Exc. Kurt [u∗|ut] (A4)

where Exc. Kurt[u∗|ut] ≡ E[(u∗ − µ)4|ut] − 3
(
Var[u∗|ut]

)2 and µ ≡ E[u∗|ut].

Proof: (A2)–(A4) follow from (A1) by successive differentiation through the integral.

Note that for f normally distributed, Var[u∗|ut] is independent of ut and less than 1,

so that the marginal responsiveness of policy to ut is constant and negative.
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By equation (A2), property (1) above is equivalent to Var[u∗|ut] being larger than

normal when evaluated at ut = 0.13 We begin with the assumption that f is Gaussian, and

consider what perturbations increase the conditional variance in (A2). This is essentially

a calculus of variations problem. The following diagram serves as a useful illustration:

-2 -1 1 2

0.2

0.4

0.6

0.8

1

Figure A1

where the solid line in the figure depicts the density f , the short-dashed line φ, and the

long-dashed line the function y = x2. The quantity Var[u∗|ut = 0] is (up to a constant

factor) the integral of the product of these three functions:

Var[u∗|ut =0] =
∫

u∗2φ(−u∗)f(u∗)du∗∫
φ(−u∗)f(u∗)du∗ (A5)

Holding the denominator constant, we can think of increasing the value of this quantity by

reducing f where the product u∗2φ(u∗) is small, and increasing f where the same product

is large. Thus, we reduce f near 0, and increase f for intermediate values of u∗.

We prove this formally via a variational argument on f as follows:

Proposition 1: For prior distributions fδ that are sufficiently close to a Gaussian distri-
bution f , property (1) (policy attenuation near 0) is possessed by distributions fδ that are
more diffuse than f in a region around the mean.

Proof: Consider a perturbation of the density function f by an amount δ over the interval
[ξ−h, ξ+h], and call this new function fδ. We have:

∂

∂δ

∫
u∗2φ(u∗)fδ(u∗)du∗ =

1
δ

∫ ξ+h

ξ−h

u∗2φ(u∗)δdu∗ (A6)

≈ 2hξ2φ(ξ)

13There is nothing that prevents Var[u∗|ut] > 1 and (A2) from being positive (e.g., in a two-regime
model such as in section 3 or Swanson (2000)). In such a situation, we interpret a further increase in (A2)
(toward infinity) as the desired policy attenuation.
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Similarly,

∂

∂δ

∫
φ(u∗)fδ(u∗)du∗ =

1
δ

∫ ξ+h

ξ−h

φ(u∗)δdu∗ (A7)

≈ 2h φ(ξ)

The derivative of (A5) with respect to the δ-perturbation is then:

2hξ2φ(ξ)
∫

φ(u∗)f(u∗)du∗ − 2h φ(ξ)
∫

u∗2φ(u∗)f(u∗)du∗

(∫
φ(u∗)f(u∗)du∗

)2 (A8)

This quantity is less than 0 for ξ = 0. It is actually greater than 0 as |ξ| tends toward
infinity, though the effect is very small (because φ(ξ) is so small). More specifically, it
is negative for ξ2 < E[u∗2|ut = 0] and positive for ξ2 > E[u∗2|ut = 0]. Thus, perturbing
f downward at 0 (and pushing it upward for intermediate and large values of |ξ|) leads
policy to have property (1) emphasized in the text.

Note that equation (A8) holds for non-Gaussian base distributions f as well, so that

the variational argument is valid for f significantly different from a normal distribution,

as well as very close to Gaussian.

We can use the same technique to determine what distributions f possess prop-

erty (2). We’ll make use of the following lemma:

Lemma 2: Let f be a density function and let fδ be a perturbation of f by an amount δ

over the interval [ξ−h, ξ+h]. Let

µδ,n ≡
∫

u∗nφ(−u∗)fδ(u∗)du∗∫
φ(−u∗)fδ(u∗)du∗ (A9)

be the nth moment of fδ conditional on ut = 0. Then

∂µδ,n

∂δ
=

2hφ(ξ)∫
φ(u∗)f(u∗)du∗ (ξn − µ0,n) + o(h) (A10)

where limh→0 o(h)/h = 0.

Proof: Simple generalization of equations (A6)–(A8).

Proposition 2: For prior distributions fδ that are sufficiently close to a Gaussian dis-
tribution f , property (2) (an increasingly aggressive response to unemployment at the
margin) is possessed for ut near 0 by distributions fδ that are more diffuse than f in a
region around the mean and with tails that are thinner than f .
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Proof: Property (2) states that policy should be concave for ut > 0 and convex for
ut < 0. From equations (A3) and (A4), this is equivalent to Skew[u∗|ut =0] = 0 and Exc.
Kurt[u∗|ut =0] < 0. We wish to know for which distributions fδ this is the case.

A straightforward calculation yields:

Exc. Kurt[u∗|ut =0] = µδ,4 − 4µδ,3µδ,1 − 3µ2
δ,2 + 12µδ,2µ

2
δ,1 − 6µ4

δ,1 (A11)

where µδ,n is the nth moment of fδ as defined in (A9). Differentiating (A11) with respect
to δ, evaluating at δ = 0, and noting that µ0,1 = 0 for the base Gaussian density f yields:

∂

∂δ

(
Exc. Kurt[u∗|ut =0]

)
= µ′

δ,4 − 4µ3µ
′
δ,1 − 6µ2µ

′
δ,2 (A12)

where µn ≡ µ0,n and a prime denotes differentiation with respect to δ. Using Lemma 2
yields:

∂

∂δ

(
Exc. Kurt[u∗|ut =0]

) ≈ 2hφ(ξ)∫
φ(u∗)f(u∗)du∗

[
ξ4 − µ4 − 4µ3(ξ − µ1) − 6µ2(ξ2 − µ2)

]
(A13)

which simplifies to:
2hφ(ξ)∫

φ(u∗)f(u∗)du∗
[
ξ4 − 6µ2ξ

2 + 3µ2
2

]
(A14)

after using µ1 = 0, µ3 = 0, and µ4 = 3µ2
2 for the base Gaussian density f .

Now, the polynomial in ξ inside the square brackets in (A14) is positive at ξ = 0,
is positive as |ξ| → ∞ (though the effect on (A14) is small because φ(ξ) is small), and

has four real roots at ξ = ±
√

(3 ±√
6) µ2, hence is negative for intermediate values of ξ—

specifically, those values for which |ξ|∈
[√

(3 −√
6)µ2,

√
(3 +

√
6)µ2

]
. Thus, property (2)

is satisfied by distributions fδ that are perturbed downward at 0, downward in the tails,
and upward for intermediate values of ξ. Keeping the density fδ symmetric ensures that
Skew[u∗|ut =0] = 0.

Note that—in contrast to property (1)—property (2) is a feature of distributions

that have thin tails, but both property (1) and (2) are possessed by distributions that are

more diffuse in a region around the mean than a base Gaussian density f .
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