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Abstract

Simple operations transform Hamilton�s equations for particle mo-
tion in classical mechanics into energy units. Then one obtains a
single equation in location, location-changes, momenta and momenta-
changes with the interpretation: income from capital, in units of en-
ergy, balances with current investment expenditure on location changes
and momenta changes, also in units of energy. For the special case of
periodic motion, the inßow-useßow sub-accounts for distinct position
variables and for distinct momenta variables balance over the period
of motion.

1 Introduction

�Output� is particle motion for many problems in classical mechanics and

this �output� can be expressed, using the Hamilton equations, as an energy

value-sum of current position-change for the particle and current velocity-

change for the particle. This energy expression appears as prices multiplied

∗This work was done while I was on leave at UBC. Thanks to economists there for
hospitality. An earlier version was presented in an economics seminar at Johns Hopkins.
Thanks to participants for comments and to Canada�s SSHRC for Þnancial support. Dis-
cussions with Alexei Cheviakov were helpful. Errors and shortfalls are my responsibility
alone.
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by quantities, where a price translates a quantity into units of energy. The

quantities are time-changes in current co-ordinates of location for the parti-

cle and time-changes of current momenta1 for the particle. �Output� is then

expressable as an energy value of current simultaneous position-change and

momentum-changes for the particle in motion. Balancing the current value

of output is an energy value of current inputs (location co-ordinates �car-

rying� forces and momenta �driving� current particle motion). This energy

value of current �input� is also easily derivable from the Hamilton equations,

characterizing current motion of the particle and this energy value takes the

form of rental-prices multiplied by quantities. A rental-price translates a unit

of quantity into units of energy here. Quantities here are the inputs which

operate as capital goods in the sense standard in economics.2 Hence �small�

manipulations of the Hamilton equations for a particle in motion in classi-

cal mechanics, changes which place the equations in units of energy, yield a

quite standard instantaneous balance of input value with output or expendi-

ture value. This we demonstrate below. The energy representations we make

use of or the energy representations we derive from the Hamilton equations

are roughly speaking forms from the Virial Theorem, a long-standing energy

1Momentum in classical mechanics is deÞned as a particle�s mass, m multiplied by its
current velocity, v. Velocity can be positive or negative. Momentum-change is then mdv

dt
or mass mutiplied by acceleration (velocity time-change). In classical mechanics, one takes
mass as unchanging and the co-ordinate system as Þxed, independent of current particle
motion.

2Location co-ordinate capital has a ßow of services deÞned by current, local �force� and
this service ßow results in or yields current investment or disinvestment in momentum, this
latter a distinct capital good. Momentum-change is interpreted as current investment or
disinvestment in momentum capital. Current momentum has a service ßow which results
in or yields current position-change (co-ordinate change) for the particle in motion. Co-
ordinate change becomes investment or disinvestment in the co-ordinate capital goods.
The new position (new co-ordinate capital levels) is usually then associated with a new
level of force and in turn a new level of momentum change. This is brief overview of what
is capital and what is investment and how they relate to particle motion. Our concern
here is the energy accounting associated with this view of particle motion.
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balance result for periodic motion. Hence one might refer the energy repre-

sentations as Virial Theorem Energies (VTEs). If one is going to check the

Virial Theorem or establish it for a special case, one is pretty well obliged to

proceed via the Hamilton equations and in this proceeding one constructs and

makes use of energy representations of forces, momenta, momenta-changes

and position-changes. It is these Virial Theorem representations which we

focus on here and from which we construct an economics-type energy account

for classical mechanics. Also, the economics interpretation of the Virial The-

orem has co-state variables operating as shadow prices of capital inputs.

Our value balance of inputs and outputs is a standard economics concept

and stands in contrast the traditional energy value balance in classical me-

chanics, namely that in �the work energy theorem� where current output is

the current �excess� in kinetic energy of the particle in motion over a base

value and current input in the current �shortfall� in the potential energy,

from a base value, of the particle. This notion of value balance is explicit

Þrst in Newton�s Principia and is the one we are in a sense replacing in this

analysis. Our complaint against the traditional concept of value balance is

that it is not like anything in economics, whereas what we present is standard

economics. Clearly in setting out our alternative energy account, we bring

classical mechanics and economic dynamics under a single tent, perhaps for

the Þrst time. Whether our new energy account leads to new substantive

physics is open, though we do list three items of apparently new physics

at the end, albeit small items, it seems. The traditional value balance is

a version of �conservation of energy� in classical mechanics and has been

immensely productive as an organizing principle.

In Hartwick [2004], we developed this line of interpretation for classi-

cal mechanics for the special case of periodic or sustained motion. We re-
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state that view here somewhat more compactly and inquire about particle

motion of a non-periodic sort. We observe at each instant value balance

between �capital incomes� and �expenditure on investment� but of a cross-

subsidization sort. Some energy inßow from say location variables ends up

currently funding some investment in momenta variables or vice versa. For

periodic motion there was no such cross-subsidization, period by period. So

we observe that general motion indeed exhibits the fundamental value bal-

ance of �income� with �expenditure� in units of energy at every instant but

does not exhibit the income-expenditure INDEPENDENCE for input type

that we observe per period for periodic motion. A straightforward intuition

here is that over a very long interval, periodic motion is associated with dis-

tinct location and momenta variables being self-sustaining on average but

non-periodic motion will exhibit some cross-subsidization of one input type

by the other. It turns out that the general instantaneous balance reduces

to the Hamilton equations quite directly and thus is capturing the Hamilton

equations in disguise. It is the reverse that is of interest however - compli-

cated equations characterizing equilibrium motion have a natural expression

as a basic, value balance relation. Alternatively, the equations of equilibrium

motion (Hamilton equations) can easily be written as balance relations be-

tween capital income and expenditure on capital investment, at each instant.

Periodic motion has the property of �input restoration� over each period.

Location variables and momentum variables get returned to their initial val-

ues over each period. This seems obvious. Our observation here is that

there is a straightforward income-expenditure balance relation over the pe-

riod which sustains or drives this restoration process. The energy inßow

(capital goods rental income) per period equals the energy use-ßow (invest-

ment expenditure) per period; hence input restoration. Distinctive for pe-
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riodic motion is OWN capital good funding per period. Location variable

incomes balance with location variable expenditures per period (the Virial

Theorem3) and momentum variable incomes balance with momentum vari-

able expenditures per period (the complementary virial theorem (Hartwick

[2004])). We can say that for sustained motion, input value from location

variables precisely fund the expenditure value associated with restoration of

the location variables, over the period. Similarly for momentum variables.

There is energy inßow balanced with use-ßow per period in aggregate as well

as by �sector�.

Our formal result is then: �small� manipulations of the Hamilton equa-

tions in classical mechanics transforms them into two families of energy bal-

ance relations and these relations combine to form a straight-forward, com-

plete, instantaneous energy inßow-useßow account. This instantaneous en-

ergy account has the interpretation of income from inputs in units of energy

balances with expenditure on input-changes, in units of energy.

We review.

(1) Particle motion in classical mechanics is �system output� and motion

�reduces to� or is represented by current position-change for the particle

and current velocity-change for the particle. Velocity-change equates with

momentum-change in classical mechanics.

(2) There is a natural representation of current position-change for a

particle in motion in classical mechanics in units of energy and there is a

3Goldstein, et. al. [2002; pp. p. 86]. Most physics textbooks do not mention the Virial
Theorem but a few do. It is a result for periodic and quasi-periodic motion relating a
measure of energy input from forces per period to twice kinetic energy per period. Inspec-
tion reveals that the inßow side is a sum over the period of input rental income, in the
terminology of economics, and the �consumption� side of the account is the sum of ex-
penditures on investment in the location variables, again in the terminology of economics.
Of course the balance is in units of energy, not dollars.
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natural representation of current velocity-change for the same particle in

units of energy.

(3) For the special case of periodic motion of a particle (eg. the motion

of the bob of an undamped simple pendulum), the balance of energy inßow,

linked to particle position, with energy use-ßow associated with position-

change of the particle, per period is captured in the Virial Theorem.

(4) With regard to (3), there is a complementary virial theorem associated

with periodic motion of a particle, dealing with energy balance and velocity-

change of the particle. In this account, there is energy inßow linked to the

current momentum levels of the particle in motion and energy use-ßow linked

to current momentum change of the particle in motion.

(5) Position variables operate as capital inputs in one energy account for

periodic motion and momentum variables operate as capital inputs in the

other energy account. Position-change variables operate as investment terms

in one energy account and momentum-change variables operate as investment

terms in the other energy account.4 Energy balance per period has the

interpretation of income from capital in units of energy equal to investment

expenditures over the same interval. There are two generic accounts here, one

for location variables as capital inputs and another for momentum variables

as capital inputs. There is income-investment expenditure balance then for

each type of input, per period. One might say that each input type sustains

itself, period by period, with its own income stream (energy inßow stream).

4This curious role-reversal of variables in the two accounts can be attributed to the fact
that particle momentum is so closely linked to particle position-change. Particle position-
change seems to generate particle momentum. We will adopt the other view: particle
momentum causes particle position-change. Nevertheless, the entwining of momentum
and position-change for a particle results in an entwined pair of energy accounts. Roughly
speaking, position-change and momentum-change for a particle in motion are joint prod-
ucts, linked in a subtle, yet elegant way � in a way unlike that for any standard economics
problem.
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There is no cross-subsidization over the period.

Our central result here for the case of general conservative particle-motion

in classical mechanics is: (a) capital income is balanced with investment ex-

penditure at each instant, in the sum over different capital inputs, but (b)

cross-subsidization of one use-ßow by an income ßow from a different type

of capital input at each instant is the rule. If all this sounds reasonable

to an economist, a physics outsider, there are some subtleties. The com-

plete instantaneous energy account is the sum of two sub-accounts and in

one of these sub-accounts co-state variables operate as capital goods shadow

prices and state variables as capital inputs to current �production�. This is

what an economist would anticipate since classical mechanics problems can

be posed as dynamic optimization problems (problems in �action�-sum min-

imization over an interval). However the other half of the energy account has

the same co-state variables now operating as capital inputs (momenta) and

the same state variables now operating as capital goods shadow prices. The

same variables appear in each energy sub-account, but with essentially dual

roles. A capital good in one sub-account is operating as a capital good price

in the other sub-account and vice versa. This sort of duality has no coun-

terpart in economic dynamics.5 Roughly speaking the root of this duality

lies in the fact that current output or particle-motion in classical mechan-

ics comprises simultaneous position or co-ordinate change and velocity or

momenta-changes and momenta are represented by co-state variables in the

Hamilton equations. Physicists, I believe, see current kinetic energy or twice

5In the Appendix we set out a problem from textbook capital theory which has shadow
prices as capital goods prices and the location and momentum variables as capital goods.
In other words the seemingly strange situation of co-state variables operating both as
shadow prices and as capital goods in fact has a standard expression in a multi-good
capital theory model. What is strange in a problem of dynamic optimization is in fact not
strange in a different formulation of classical mechanics.
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current kinetic energy as the measure of current �output� in a problem of

particle-motion in classical mechanics. In our view twice current kinetic en-

ergy is measuring only current position-change of the particle in motion and

we of course exposit this view below. A complete account must also deal with

current velocity or momenta-changes as well. Hence our accounting system

below.

More guidance to economists. We view periodic motion as essentially cap-

ital goods restoration over the period of motion. Sustained motion involves

restoring inputs to their initial productive state over each period. Phelps

[1961] model of golden rule investment reduces to this same scenario when

labor force growth is removed. At each instant decayed capital must be

replaced in order for consumption to be sustained at its golden rule value.

Alternatively, the golden rule level of capital must be restored, period by

period by replacement investment.6 A period in this Phelps, continuous-

time world is an instant, rather than a discrete interval. Nevertheless, we

argue that Phelps model with no labor force growth provides an economics

template for interpreting periodic motion in classical mechanics. There is

of course no consumption sink for part of current product in classical me-

chanics. In classical mechanics all output over the period is soaked up as

replacement investment whereas in Phelps�s model some current output �e-

vaporates� as current consumption by people. The rest of output goes to

replacement investment. Detail on this is provided below.

Though the two energy accounts in question are very similar to look at,

momentum and location variables are rather different. Energy is needed to

increase the velocity of a particle (increase its momentum) as well as to de-

6We present a multi-sector extension of this argument in the Appendix. In the Appen-
dix we start with a capital theory model and �specialize� it to approximate the behavior
of particle motion in classical mechanics.
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crease the velocity (decrease its momentum). With regard to location, energy

is needed simply to change the position of the particle, whether �forward� or

�backwards�. And with regard to levels, location variables �yield� energy be-

cause they capture the relative intensity of forces at various locations whereas

momentum variables �yield� energy because momentum itself is intrinsically

�motion preserving� (Newton�s Þrst law). We deal with an energy repre-

sentation of momentum in our energy account (in the complementary virial

theorem). In general then, local particle motion involves velocity-change

occuring simultaneously with position-change and velocity-changes are also

energy using. Velocity-change �consumes� or uses up energy. One must

think then of two simultaneous energy accounts associated with particle mo-

tion in classical mechanics, one associated with position-change (here one

has the Virial Theorem for the case of periodic motion) and another with

velocity-change. Velocity-change in classical mechanics takes the more for-

mal representation as momentum-change and for the special case of periodic

motion, momentum varibles must get returned to their initial values over the

period. Hence there is a sequence of energy usings or investments associated

with momentum changes over the period when each momentum variable gets

returned to its intial value over the period of motion.

2 Energy Accounting for Particle Motion in
Classical Mechanics

In brief, our argument is the following. Particle motion satisÞes the Hamilton

equations

∂H

∂qi
= − úpi
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and
∂H

∂pi
= úqi, i = 1, ..., 3

for H the Hamiltonian, qi a component of a vector of location (state) vari-

ables, and pi a component of a vector of momentum (co-state) variables. We

are comfortable with reading the Hamilton equations as: Þrst, net force is

causing current momentum-change and secondly, velocity is causing current

position-change for the particle. Lemons [2002; p. 53] for example speaks

of particle motion characterized by �force� causing �change of velocity�, a

particular case of the Þrst equation, and �velocity� causing �change of posi-

tion�, a particular version of the second equation.7 We multiply the Þrst by

qi and the second by pi to get equations in units of energy8.

qi
∂H

∂qi
= −qi úpi

and pi
∂H

∂pi
= pi úqi.

qi
∂H
∂qi

is �generalized net work� in units of energy.9 It is a measure of the

net effect of force on the particle in its current location. (We illustrate

with examples below.) We interpret this �generalized work� as a measure

or current energy inßow, attributable to location, on the particle in motion.

pi
∂H
∂pi
is an energy measure of the effect of the particle�s momentum on itself.

We interpret this as a measure in units of energy of the particle�s current

7�Newton�s second law identiÞes the net force F(t) per unit particle mass, M with the
rate at which the particle changes its velocity V(t). This velocity, in turn, describes the
rate at which the particle changes its position.�

8These energy representations are motivated by a derivation of the Virial Theorem.
Hence a label, �Virial Theorem Energies� or VTEs.

9Work is force multiplied by distance and is in units of energy. Work usually refers
to energy involved in the horizontal movement of a mass. By generalized work, we mean
�force multiplied by distance� in an abstract setting.
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momentum on its motion.10 Again we see this as an energy measure of current

energy inßow to current particle motion. The right hand sides are respective

measures of energy useßow associated respectively with momentum-change

for the particle and position-change for the particle. A verbal rendering

of these equations is: Þrst, net force, in units of energy is causing current

momentum-change, in units of energy, and secondly, momentum, in units

of energy is causing current particle position-change, measured in units of

energy.

Our aggregate capital income-expenditure balance, per instant, energy

equation is then
3X
i=1

½½
pi úqi − qi∂H

∂qi

¾
+

½
−qi úpi − pi∂H

∂pi

¾¾
= 0, (1)

where qi is a capital good in the Þrst bracket and pi is a capital good in the

second bracket. úqi and úpi operate as respective investment terms. ∂H
∂qi

and
∂H
∂pi
are operating as respective rental prices, which translate �quantities� into

units of energy. pi in the Þrst bracket is a capital goods price which translates

investment, úqi into units of energy and qi in the second bracket is a capital

goods price which does the analogous thing for investment, úpi. ∂H∂qi and
∂H
∂pi

operate as rental prices for capital goods. The physics interpretation here

is that instantaneous energy inßow from forces and momenta balance with

current energy �demands� made by current position-change of the particle

in motion AND current momenta-changes. What we should infer from this

equation is that �equilibrium motion� has a representation as an instanta-

neous value inßow-useßow balance at each instant. Clearly one could not
10We like the interpretation of generalized work causing momentum change, in units of

energy, and momentum, in units of energy, causing particle position-change. Our approach
may part with standard textbook classical mechanics most when we deÞne and make use
on an energy representation of current momentum. But we also depart from conventional
energy accounting by substituting generalized work for potential energy, roughly speaking.
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look at this equation and infer the appropriate Hamilton equations. Hence

the equation is capturing or representing the full Hamilton equations weakly,

at best. Being aware that this equation was equal to zero at every point

in time is weakly informative about the equations of motion for a parti-

cle. Buried in this equation are a number of �zero relations�, including the

Euler-Lagrange equations, which constitute the equations of motion for the

particle. We do not contend that this inßow-useßow balance relations �cap-

tures� the key Euler-Lagrange equations.11 The interesting aspect is �the

opposite� so to speak. The key equations of motion have an inßow-useßow

value balance representation which translates very directly into economics.

Periodic motion captures a special case of this equation. We report on this

below.

3 Momenta as Capital Inputs

Our treatment of momentum variables as capital goods might strike an econo-

mist as odd. One can obtain Hamilton�s equations from a dynamic optimiza-

tion problem as �action sum� minimization over a Þnite interval.12 In such

a problem, the location variables are natural state variables and the mo-

mentum variables are natural co-state variables. Hence an economist might

see it as natural to interpret location variables as capital goods and co-state

variables as capital goods shadow prices. This goes through well in the in-

11Early on we jumped to the conclusion that since we were dealing with an equation
equal to zero, that there must be a conserved quantity in a time-integral. Clearly this is
not the case. An equation equal to zero may be an Euler-Lagrange equation and in this
case the conserved quantity is not of the usual �integral� sort, as with conservation of
energy. I beneÞted from conversations with Alexei Cheviakov on this matter.
12Hamilton�s principle is that our �aciton sum� is extremized by a path of equilibrium

motion of a particle. We label action, current potential energy minus current kinetic
energy. This appears not standard. More standard is referring to our �action sum� as
�action�.
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terpretation of the Virial Theorem as a statement of energy inßow balanced

with energy useßow, per period. But in physics, the co-state variables cap-

ture much more than being prices or �translators� of quantities into units

of energy. For example, when a simple pendulum swings through its low

point, there is no external force acting to move the bob. All force is acting

to create tension on the rod holding the bob and yet the bob (the particle in

motion) is moving most rapidly and is exhibiting most kinetic energy. The

answer to this paradox is of course that it is the momentum of the bob that

is causing the �large� motion at this low point. This momentum �driving�

the bob has an energy representation analogous to force having an energy

representation. Energy inßow from current momentum is captured above in

the term pi
∂H
∂pi
. This energy inßow is the analogue of net generalized work,

namely qi ∂H∂qi . One might refer to the latter as the energy inßow associated

with local net force. We see a large symmetry here with momentum having

an energy inßow representation and location, standing in for local force, hav-

ing an energy inßow repesentation. This may be our central departure from

textbook physics, namely the symmetric treatment of location variables and

momentum variables as capital goods or inputs, in units of energy.13 This

view stems from our distinction between velocities and position-changes14

since velocity becomes a rental price associated with a momentum input.

We will comment on signs of inputs, outputs, prices and rentals below.

Newton�s First Law can be paraphrased as: �a particle�s current mo-

mentum, in the absence of an �outside� force, is responsible for its current

�linear� position-change�. And his Second Law can be paraphrased as: �cur-

13We still retain the interpretation of co-state variables as shadow prices of location
co-ordinates in one energy account but these same co-state variables operate as momenta
(capital inputs) in the complementary energy account.
14This may be our second large departure from textbook physics, our �separating out�

velocity from position-change for the particle.
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rent force on a particle in motion is responsible for its current change in

momentum�. One can argue that Newton�s mathematical theory of forces

and particle motion was built up from this second law while the Þrst law re-

mained in the background, unformalized. Our contention is that Hamilton�s

formalization of classical mechanics incorporates Newton�s Þrst law in the

equation: �velocity causes current position-change of the particle� and mass

multiplied by velocity is momentum. Our preferred approach to this Hamil-

ton equation is to multiply both sides by current momentum of the particle

to formalize, in units of energy, the idea that current momentum causes cur-

rent position-change of the particle, with position-change as p úq, which ends

up aggregated to twice current kinetic energy of the particle. Twice current

kinetic energy, central to Newton�s analysis, is the energy measure of current

position change in the particle. And there remains another energy account

dealing with force and current momentum-change.

4 Three Illustrations from Classical Mechan-
ics

(i) Particle Free-fall.

This classic Galilean problem in a locally-unchanging gravitational Þeld

has potential energy,mgz for potential energy normalized to be zero when z is

zero. m is particle mass, g is �gravitational acceleration�, and z is a �vertical�

co-ordinate. The particle falls from some initial positive value of z toward z

equal to zero. The Galilean (constant acceleration) �work-energy theorem�

can be illustrated with an apple of mass m (in kilograms) dropped from an

outstretched hand at height z0 (in meters).15 Potential energy is mgz0 for

15A feather and cannon-ball descended in free fall at the same speed or accelerated
at the same rate. For free fall, we have d = 1

2gt
2, where g is the constant acceleration
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g the gravitational acceleration (9.8 meters per second squared).16 Kinetic

energy is zero, 1
2
m úz20 for úz0 = 0. After a lapse of a small interval, the particle

is at z1, with potential energy mgz1 and possesses kinetic energy, 12m úz
2
1 with

velocity, úz1 (a negative number). The work-energy theorem indicates that the

change in potential energy, mgz0−mgz1 equals the change in kinetic energy,
factor, t is time elapsed, and d is distance. Here the initial velocity is zero. This formula
formalizes Galileo�s famous Leaning Tower of Pisa experiments in free fall. In fact, it is
doubtful that Galileo learned much from such experiments or even performed them at
the Tower. His notes reveal that he tested uniform acceleration with balls rolling down
inclined planes because he could time a slower descending body more accurately. In the
Two New Sciences, we read of his experimentation with uniform acceleration:

�A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and
three Þnger-breadths thick, was taken; on its edge was cut a channel a little more than
one Þnger in breadth; having made this groove very straight, smooth and polished, and
having lined it with parchment, also as smooth and polished as possible, we rolled along
it a hard, smooth round bronze ball. Having placed this board in a sloping position, by
lifting one end some one or two cubits above the other, we rolled the ball, as I was just
saying, along the channel, noting, in a manner presently to be described, the time required
to make the descent. We repeated this experiment more than once in order to measure the
time with an accuracy such that the deviation between two observations never exceeded
one-tenth of a pulse beat. Having performed the operation and having assured ourselves
of its reliability, we now rolled the ball only one-quarter of the length of the channel; and
having measured the time of its descent, we found it precisely one-half of the former. Next
we tried other distances, comparing the time for the whole length with that for the half, or
with that for two-thirds, or three-fourths, or indeed for any fraction; in such experiments,
repeated a full hundred times, we always found that the spaces traversed were to each
other as the squares of the times, and this was true for all inclinations of the... channel
along which we rolled the ball...�

16Energy in every day life is power-ßow as in watts multiplied by time. The units of
measurement are watt-hours or kilowatt-hours or horsepower-hours. One also hears of so
many BTU�s of energy being used (BTU standing for British Thermal Unit). A BTU is
252 calories and a calorie is 4.184 joules. (The calories in food are actually kilo calories.)
A joule is the energy associated with 1 watt of power acting for one second. One kilowatt
hour is 3.6 million Joules. Joule (1818-89) is the English scientist who established the heat
equivalent of mechanical energy. He very precisely measured the rise in the temperature
of water in a beaker when a particular amount of agitation was directed to the water,
agitation being associated with mechanical energy. The modern notion of energy dates
from Joule and other scientists who were concerned about the physics of steam engines.
A steam engine turns a heat ßow into a mechanical power ßow or heat energy into work
ßow.
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1
2
m úz21 − 1

2
m úz20 .

17 Observe that if we differentiate both sides with respect to

time, at z1 we get −g = d úz1
dt
, which says that local acceleration downward of

the apple is g, the constant gravitational acceleration in the neighborhood of

the surface of the earth. d úz1
dt
is negative.

Consider some illustative examples.18 How far does a body, near the

surface of the earth, fall in 3 seconds in free fall? The formula is z = v0t+ 1
2
gt2

or 0+ 1
2
×9.8m

s2
t2 = 9.8×32 = 44 meters. This is Galileo�s formula. The mass

of the body has no effect on distance travelled in free-fall. What speed does

the body achieve after 70 meters? Here we use the work energy formula:

v2t = v20 + 2gz or v
2
t = 0 + 2 × 9.8m

s2
× 44m yielding vt = 37m

s
. How long

does it take for the body to reach a speed of 25m
s
? We use the formula,

vt = v0 + at = 0 + 9.8
m
s2
t = 25m

s
which implies t = 7.8 seconds. How much

time elapses by the time the particle has fallen 300 meters? We use the

formula z = v0t+ 1
2
gt2 or 300m = 0 + 1

2
× 9.8m

s2
× t2 to get t = 7.8 seconds.

This last formula was known to medieval thinkers as Merton�s Theorem in

the form z
t
= v0+ [t/2]a for zt average speed over the interval in question. ¥

Here change in kinetic energy is work done.19 This simple link between

work and change in potential energy is true only because potential energy

is linear in the location variable. In general one cannot equate change in

potential energy to work so directly. Central to our analysis below is �work�

and the energy inßow that it corresponds with. Generalized work takes the

17This is the basic physics idea that current output value should balance with current
input value. This is found in Newton�s Principia. Here output is current change in kinetic
energy and input is current change in potential energy. Our view is that economics �offers�
a different notion of current input value balanced with current output value, one where
twice current kinetic energy is a principal component of current output value and linearized
potential energy is a principal component of current input value. In addition output in
our view comprises an energy representation of current momentum-change for the particle
in motion and input comprises an energy representation of current momentum.
18From Halpern [1988].
19See for example Moore [1983; p. 16].
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form of a force multiplied by a distance. Clearly change in kinetic energy

(work) is an outcome or �product� of an �action�. The cause here involves

some energy inßow. Our focus is on (a) the change in position of a particle

and (b) on its change of velocity at an instant and on the energy representa-

tions of these outcomes and the energy representation of the causes of these

outcomes.

The Hamiltonian formalism can be taken up here. The Hamiltonian func-

tion has current potential energy on the particle minus current kinetic en-

ergy of the particle plus pv, for p the co-state variable (here momentum), and

úz = v, an equation of motion. úz is negative. That is, H(t) = mgz− 1
2
mv2+pv.

There are rules, in the form of Hamilton equations, for operating on the

Hamiltonian. The Hamilton equations are

−∂H
∂z

= úp or −mg = úp

∂H

∂p
= úz or v = úz

and
∂H

∂v
= 0 or p = mv and úp = m úv.

One sees directly that the central equation is d úz
dt
= −g, as we observed above.

We read the Þrst equation as: force is causing current momentum-change for

the particle in motion. The second equation we read as: current velocity is

causing position change for the particle. One can Þnd this interpretation of

particle motion in textbooks but it is not common. Since gravitational force

is the only �outside agent� here, one thinks of force causing position-change

or �force is moving the particle�. In fact in addition to the operation of

force is the operation of momentum. Recall that Newton�s Þrst law says that

momentum can keep a moving particle in motion indeÞnitely in a straight

line, provided no force is intervening. We go so far as to suggest a missing
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law in Newton: the Þrst law should have two components - that momentum

causes a moving particle to possess velocity of a linear sort, and velocity in

turn causes local linear position-change in the moving particle, in the absence

of an intervening force.

Our last Hamilton equation is so to speak deÞnitional. It gives us the

deÞnition of momentum, p. It derives from the fact that at each instant the

Hamiltonian is extremized by the control variable, here v. Implicit for the

moment is the fact that our Hamiltonian set up is part of a control theory

problem in dynamic optimization (action sum minimization over an interval

of time). Physics textbooks tend to start with a Lagrangian and derive the

deÞnition of p, as above, from this function and then substitute to express

the Hamiltonian as a function of location and co-state (momentum) variables

alone, i.e. as H = mgz+ p2

2m
. The Hamilton equations are then worked using

this reduced-form H. More on this below. We proceed somewhat differently.

We have been inspired by the use of control theory in dynamic optimization

in economics. We consider the control theory approach to the Hamiltonian

as �structural� or less �reduced-form� than is standard in physics textbooks.

In particular we Þnd it valuable to maintain a distinction between a velocity

variable, v and a position-change variable, úz. Physicists do not maintain this

distinction. They proceed as if these two variables were capturing the same

physical phenomenon. We maintain the notion throughout that velocity

is causing position-change in the particle in motion.20 We go so far as to

suggest that Newton over-looked the law: velocity causes position-change.

Newton�s Þrst law can be formalized as momentum causes �linear, particle

20For example, Lemons [2002; p. 53] comments: �Newton�s second law identiÞes the
net force F(t) per unit particle mass, M with the rate at which the particle changes its
velocity V(t). This velocity, in turn, describes the rate at which the particle changes its
position.�
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motion� in the absence of force. We suggest reÞning this to momentum

causes velocity AND velocity causes �linear� position-change in the absence

of force. Force on the other hand is causing velocity-change or momentum-

change. In classical mechanics velocity-change and momentum-change can

be treated almost synonymously.

From the Hamilton equations we have energy balance relations21

−z∂H
∂z

= z úp or −mgz = úpz

p
∂H

∂p
= p úz or pv = p úz

Net investment here is

{p úz − zmg}− {z úp+ pv}

which is zero at each instant of motion. The energy associated with current

changes in location and momentum (investment expenditure, in units of en-

ergy), namely p úz− z úp,associated with z and p, namely zmg+ pv, is supplied
by capital rentals.22 The Þrst pair of terms in brackets will be negative (and

�large�) when the particle is initally dropped while the second pair of terms

will be positive (and �large�) when the particle is initially dropped from

z0. Near the ground the signs will be reversed since force and momentum-

change will approach zero near the ground and kinetic energy and energy

inßow from momentum will be �large� and positive. There will be a cross-

over point bz when each pair of terms in each of the brackets is zero. And
21We change the Hamilton equations into equations in units of energy by multiplying

the Þrst by z and the second by p. We proceed this way because these �transformations�
lead to the Virial Theorem for periodic motion. More on the Virial Theorem below.
22In the Appendix we start with a text book capital theory model with two capital

goods and, with it, approximate the solution to the problem of particle free-fall.
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the sum
R T
t0
{p úz − zmg} dt−R T

t0
{z úp+ pv} dt equals zero. What distinguishes

PERIODIC motion here is that each integral equals zero on average over the

LONG RUN.23 More on this below.

(ii) The simple undamped pendulum.

In this case of periodic motion, the is a single location (state) variable,

θ, the pendulum rod angle with respect to the vertical �origin�. p is the

single co-state variable. Potential energy is mgh for h = [1 − cos θ].24 This
normalizes the potential energy function to have value zero when the particle

or bob swings through its low point. Kinetic energy is 1
2
mgv2 for v = l úθ, l

being the length of the pendulum rod holding the bob. The Hamiltonian is

H = mg[1 − cos θ]− 1
2
mgv2 + pv. p get deÞned here by ∂H

∂v
= 0 or p = mv.

The Hamilton equations are

∂H

∂θ
= − úp and ∂H

∂p
= úθ

and in units of energy are25

θ
∂H

∂θ
= −θ úp and p∂H

∂p
= p úθ.

At an instant, net investment is½
p úθ − θ∂H

∂θ

¾
+

½
−θ úp− p∂H

∂p

¾
23Physicists also take up quasi-periodic cases in which the length of the period varies

but again our separate integrals would equal zero in the long run.
24Simple triganometry yields this deÞnition of h, the vertical height of the bob above

the baseline, this latter being the horizontal deÞned by the low-point in the swing of the
bob.
25Generalized work here is θ∂H/∂θ. Our analysis turns on the symmetric object, also

in units of energy, namely p∂H/∂p. This latter is the energy representation of current
momentum. A label might be the work representation of current momentum. There is of
course work exerted and a task deÞned by work expended. Physics seems to choose the
last view; i.e. work as change in kinetic energy. We are thinking of work as input and
energy used up in �production� activity as use-ßow.
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which is zero. Net investment expenditure on current position-change, namelyn
p úθ − θ ∂H

∂θ

o
, plus net investment expenditure on current momentum-change,

namely
n
−θ úp− p∂H

∂p

o
, is zero.

The Virial Theorem (Goldstein et. al. [2002; p. 86]) for this problem26

is, Z B

0

½
p úθ − θ∂H

∂θ

¾
dt = 0

for B the period of motion.27 One also hasZ B

0

½
θ úp− p∂H

∂p

¾
dt = 0

which we refer to as the complementary virial theorem, a zero energy re-

lationship, per period, for the momentum variable. Each equation has the

interpretation of investment expenditure per period, balancing with own cap-

ital rentals per period. The sum over the period of energy inßow and useßow

is POSITIVE in each sub-account above. This is an accounting of particular

energy inßows sustaining distinctive OWN motion over the period: posi-

tion change and momentum change. This was the central message of our

earlier paper. We should emphasize that this �rentals supporting own in-

vestment� should not be interpreted as causal. It is more like an accounting

�co-incidence� but is highly relevant for energy accounting balance or con-

sistency over the very long run, for periodic motion.
∂H
∂θ
is ∂U

∂θ
or force here and ∂H

∂p
is a measure of velocity of the particle here.

Hence energy inßow reduces to θ ∂U
∂θ
in the Þrst equation. θ ∂U

∂θ
is �generalized

work� as distinct from U(θ), potential energy. Hence �generalized work� be-

26The Virial Theorem is usually expressed as a time-average or in energy per instant
rather than energy per period.
27We suggest that the natural normalization of the potential energy function for this

problem yields
R B
0
U(θ)dt =

R B
0
θUθ(θ)dt.
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comes a central concept in our formulation of energy accounting for classical

mechanics.28

In addition to satisfying these �sustained motion� equations immediately

above, one has capital income-expenditure balance per instant, in the sense

of equation (1). Particle motion is generally then: capital income sustaining

current expenditure on capital investment and disinvestment. The general

case requires a summing over different types of capital. For the special case of

periodic motion, each type of capital stands on its own bottom, so to speak;

there is no cross-subsidization of investment in either location or momentum.

(iii) The Closed Orbit Kepler Problem

The Hamilton equations specialize to

dU

dr
− dT
dr

= − úpr
0 = úpθ

vr = úr

vθ = úθ

for H = U(r)−T +prvr+pθvθ, U(r) = −χ/r,29 T = 1
2
mv2r +

1
2
mr2v2θ , vr = úr,

and vθ = úθ. dT
dr
is the centripetal force �holding� the particle in orbit. The

periodicity property here is
R B
0
−r úprdt =

R B
0
pr úrdt. The Virial Theorem can

be expressed as
R B
0
r
©
dU
dr
− dT

dr

ª
dt =

R B
0
úrprdt for B the period of orbital

motion.30 This can be re-written as
R B
0
r
©
dU
dr

ª
dt =

R B
0

n
úrpr + úθpθ

o
dt which

has the interpretation of location capital rentals, r
©
dU
dr

ª
funding investments

28In our earlier paper we emphasized that one could always make
R B
0 θ

∂U
∂θ dt equal toR B

0
U(θ)dt by an appropriate normalization of U(θ).

29Potential energy is negative for this problem. Convention has the potential energy
function normalized so that potential energy tends to zero, far from the central force.
30Here generalized work is r

©
dU
dr

ª
, distance multiplied by force. The Virial Theo-

rem is usually presented in this context as a time average, i.e. as
R B
0
r
©
dU
dr

ª
dt/B =
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in location variables.31 The complementary virial theorem is
R B
0
prvrdt =R B

0
−r úprdt, which as the interpretation of rentals associated with capital good

pr funding investment in pr, over the period of motion.

Capital good pθ supplies energy in amount pθvθ. This energy can be

equated to the ßow required to hold pθ unchanging, i.e. to the energy rep-

resentation of centripetal force, namely r2v2θ . Hence pθ does indeed have an

energy balance with its need for restoration over the period, but in this case

it is �restoratioń� at each instant of time.

The full energy account is (a) position variable r supplies energy to restore

both position variables to their initial values over the period (the Virial The-

orem), (b) momentum variable pr supplies energy to restore pr to its initial

value over the period, and (c) momentum variable pθ supplies energy to hold

pθ unchanging at each instant or variable pθ supplies energy corresponding

to the centripetal force, at each instant.

In the special case of CIRCULAR motion around a central force, all of

the central force is centripetal. And this centripetal force, rTr is an energy

useßow with corresponding energy inßow, pθ ∂H∂pθ just as we observe for the

elliptical orbit here. This is very striking. For both the closed Kepler orbit

and the circular orbit cases, the energy representation of centripetal force

equals the energy representation of �rotation� activity, úθpθ. This seemed

striking for the case of the circular orbit alone, but the same property shows

up for the case of the closed Kepler orbit. The Hamilton equations for theR B
0

n
úrpr + úθpθ

o
dt/B. Also

n
úrpr + úθpθ

o
is twice kinetic energy and is thus usually writ-

ten as 2T.
31r
©
dU
dr

ª
= −U(r) under the traditional normalization of the potential function. We

identify
R B
0
−U(r)dt, with total energy associated with the action of central force on the

particle in motion, per period.
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case of a circular orbit are then

rUr − rTr = 0

and pθvr = pθ úθ.

U(r) = −χ/r is potential energy, for χ a positive constant. The so-called
Huygens-Newton result is rUr = pθ úθ. And the complementary energy account

is pθvr = rTr, that is the energy corresponding to centripetal force is supplied

by momentum, pθ in pθvr.

Some exercises.32

(a) Constancy of Angular Momentum in the Kepler
Problem: An Implication
For the Kepler problem, pθ unchanging is constancy of angular momentum

and pθ and the ends of the orbit (perihelion and aphelion (long end)) have

úr = 0 or pθ = mvara = mvprp. Hence motion at the ends satisÞes

vp
va
=
ra
rp

or relative speed on the orbit is faster at the perihelion in accord with vp =

[ ra
rp
]va. Since v = r úθ, we also infer that úθp = [

r2a
r2p
] úθa.

(b)Mass of the EarthUsing theHuygens-NewtonForce
Formula for Circular Orbits
Centripetal force, according to the Huygens-Newton formula ( úθpθ = 2T ),

is mr
2 úθ
2

r
= mv2

r
. And the gravitational force between two masses is GMm

r2
. The

moon has an approximately circular orbit with radius 3.8×108m.G=6.7×10−11Nm2

kg2
.

in SI units. The period of the moon�s rotation is 27 days or úθ = 2.7×10−6rad/s.
Hence equating forces yields the earth�s mass in

M =
v2r

G
=
úθ
2
r3

G
= 6.0× 1024kg.

32From Halpern [1988].
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Note that the mass of the moon washes out of the calculation.

(c) Mass of the Earth Using the Weight of an Object
at the surface
Radius of the earth is 6370km and an object at the surface weighs mg or

m × 9.8m/s2. The gravitational force between the earth and this test mass
is GMm

r2
. Equating weight of the object and force of gravity involves

9.8m/s2 =
M × 6.67× 10−11Nm2/kg2

[6.37× 106m]2
= 6.0× 1024kg.

(d) Weight of an Object on Mars
From the above problem we have

w =
GmM

r2
, for w = mg.

Hence we
wm
= Me

Mm
= r2e

r2m
. For an object that weighs 200N on earth, we have

wm = 0.11× [6370
3440

]2 × 200N = 75N

for radius of earth at 6370km and the radius of mars at 3440km and mars

having 0.11 the mass of the earth. Since

we
wm

=
ge
gm

we have gm = 9.8N × [ 75200 ] = 3.7m/s2.
(e) Kepler�s Third Law
The Huygens-Newton formula for centripetal force for a circular orbit

(mv
2

r
) can be written as m4π

2r
T 2

. Equating this to GMm
r2

yields period, T = 2πr3/2√
GM
.

Hence for M the mass of the sun, we have the orbits of planets satisfying T 2

proportional to r3, which is known as Kepler�s Third Law.
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Since the mass of a spherical object is ρ4πr3/3 for ρ the density, we can

substitute for M above to obtain

T =

r
3π

ρG
.

Hence for a low altitude orbit (one near the surface of the spherical object),

we have the period independent of the radius of the object. The period

reßects only the density, ρ. ¥

Clearly with periodic motion, one can look at a very long interval and see

average energy inßow from location varibles being just enough for �restor-

ing� location variables �on average� and similarly for momentum variables.

(This is a kind of time homogeneity.) This provides a particular deÞnition

of periodic motion, a particular form of variable restoration per period. It

happens to be an economics type of deÞnition � a balance between inßow

and useßow in units of energy, per period, per capital good type in the long

run. What about non-periodic motion? Clearly this can be viewed as non-

restoration of each and every variable at regular intervals in the long run. Of

interest is that per instant we observe value balance between energy inßows

and useßows (income from capital and expenditure on investment in capi-

tal), even though over the long run we are not seeing this value balance BY

INPUT TYPE. Roughly speaking the key equations of equilibrium motion

(slightly amended Hamilton equations) assume a basic zero value-balance

form at each instant. This suggests to us the strong economics quality of

classical mechanics. Classical mechanics can be expressed in different types

of capital income-expenditure balance relations. We Þrst noted this for peri-

odic motioin �via� the Virial Theorem and we now observe the balance more

generally.
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5 Phelps�s Golden Rule and Sustained Mo-
tion

A template for understanding periodic motion in classical mechanics is Phelps

[1961] model without labor growth. The current physical output isQ equal to

F (K). At each moment output gets divided between replacement investment

δK and consumption, C. There is no growth in this model, i.e. úK = 0.

There is no discounting of the utility of consumption. Maximum C at each

moment (in each period) is satisÞed by steady state, K∗, FK(K∗) = δ or

the value of capital rentals, K∗FK(K∗) equal to expenditure on investment

in replacement capital, δK∗. Note that capital is restored per �period� here

by own rental income from K∗.3334 Hence this model is analogous to those

exhibiting periodic motion in classical mechanics.

The Phelps model provides a template for interpreting what is going on in

periodic models in classical mechanics. Attention gets directed to investment

for capital restoration being funded by own rentals. Periodic motion also has

capital income equal to investment expenditure, per period. One can see this

above for the pendulum and Kepler problems and we discussed it in more

detail in our earlier article. Periodic motion has location variable rentals

funding location variable restoration or replacement investment and momen-

tum variable rentals funding momentum variable restoration or replacement

investment per period. Own rental income is funding own investment. There

is no �cross-subsidization�. Above we observed that in general, at each in-

33We have left open the question of how the economy moves to the Phelps level of K,
given some initial stock, K0. One might start with an optimal savings formulation with a
concave utility function for consumption and a positive utility discount rate, ρ, and then
let ρ tend to zero.
34In the Appendix we present a multi-sector version (two capital goods, one for location

and one for momentum) of this golden rule result.
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stant of time, particle motion does exhibit �cross subsidization�, though total

investment expenditure equals total rental income from capital. Hence, peri-

odic motion is a special case of capital income-expenditure balance, with no

cross-subsidization per period. In contrast, our free-fall problem exhibited

no cross-subsidization at point bz but this was in a sense an anomaly. Over
the period, the distinct inputs, the location co-ordinate and momentum were

not independently self-sustaining in an energy sense.

6 Problems with the Economics Interpreta-
tion of Classical Mechanics

We have put forth the view that classical mechanics has a natural economics

interpretation. We see input ßows balanced in value terms with output ßows.

We see capital inputs with capital goods prices and rentals and we see a

production function (potential energy funtion) that works like a production

function in economics. We also see co-state variables operating as capital

goods prices. What is wrong then with the economics interpretation of clas-

sical mechanics? Prices, rentals, and inputs can be negative and this seems to

violate economics sense. We do not dispute this �problem�. However we see

periodic motion as essentially economic because energy ßows PER PERIOD

are positive. Hence inßow and useßows or input value and product value per

period are of the correct sign from the standpoint of economics. The neg-

ative sign �problems� suggest to us that classical mechanics is a somewhat

more general type of economic system, given its attendant sign �problems�.

Some might argue that economics is the general case since it makes such

tight demands on the signs of prices and goods. We see no problem with this

view.
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Secondly, classical mechanics departs from economics with its special

duality. Particle motion involves the simultaneous production of position-

change and momenta-changes (velocity changes) and these joint products

are convolved in a special way. Co-state variables work as capital goods

prices in one energy account and the same variables work as capital inputs in

another energy account. This may not be too surprising because momentum

is mysteriously bound up with particle motion. A particle takes on momen-

tum because it is in motion but a careful analysis suggests that it is this same

momentum which is �causing� current position-change in the particle. Hence

we should not be surprised that the production of both position-change and

velocity-change should be convolved in the energy accounts somehow. The

way they are convolved is certainly elegant and in its own way quite reason-

able. The two energy accounts for position variables and momenta variables

are distinct and inter-connected. One would be hard-pressed to Þnd or create

such a complicated production system in economics. If someone had come up

with such a production system, they might well have worked up to Hamilton

equations as the basic valuation accounts. Hamilton, it seems, did not come

up with his formalization of classical mechanics by thinking about conven-

tional problems in classical mechanics. He Þrst developed his Hamiltonian

formalism in his analysis of optical phenomena and then realized that what

he had developed could be used to describe standard phenomena in classical

mechanics.

Economic dynamics is to many, dynamics with an explicit discount rate.

In many ways this is post Cass-Koopmans economics. It was quite re-

spectable to think about economic dynamics before Cass-Koopmans with-

out taking discounting into account. The Phelps model above is of course

a leading example of economic dynamics without discounting. Hence our
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appeal to it. We do not deny that economic dynamics with discounting is

very interesting but our analysis here suggests that as economists, we should

keep our perspective broad and not gloss over action-sum minimization in

classical mechanics because there is no discounting involved. Hence our view

that one can distil a fairly clear economics story in classical mechanics, even

though there is no discount rate in classical mechanics (classical dynamics).

7 Is Classical Mechanics Intuitive?

Generalized work on the input side has an energy value the same as �product

value� at each instant. The notion of �generalized work� must be expanded

to include energy inßows from current momentum values as well as current

location values, where these latter capture the values of local forces. �Product

value� is the energy representation of current particle position-change and

momenta-changes. A system with friction, a non-conservative system, will

not possess this value balance relation since some energy input will not show

up in current position-change and momenta-changes. Some energy inßow

will be lost to heat or the manifestation of the friction.

Our energy account and view of what is going on with particle-motion

in classical mechanics is very different from the standard textbook view in

physics. The standard view sees the current diminution in potential energy as

�input� and the current increase in the particle�s kinetic energy as �output�.

This is �the work-energy theorem� and was set out by Newton in Proposition

39, Book 1 of his Principia. He was not focusing on energy relations there

but did produce �the work-energy theorem� in his analysis of particle free-fall

in a general force Þeld. Though �the work-energy theorem� and the related
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�conservation of energy�35 has served physics extremely well since Newton,

it is not a conceptual scheme that connects well to ways of conceptualizing

in say economics. Once one asks about the nature of current �product� in

classical mechanics and current �input�, one is drawn back to the drawing

board to, we suggest here, an account such as we have developed. It may not

be an account that yields new physics but it allows for a different conceptual

framework for what is going on in classical mechanics.

The great and iconclastic Feynman suggested somewhat indirectly that

there is a need for a re-conceptualization of what the equations of classical

mechanics are saying. Consider this passage from Feynman�s well-known

lectures. This passage follows his own explanation or reporting of particle

motion on a closed Kepler orbit.

�What is gravity? ...All we have done is to describe how the earth moves

around the sun, but we have not said what makes it go. Newton made

no hypotheses about this; he was satisÞed to Þnd what it did without get-

ting into the machinery of it. No one has since given any machinery.

It is characteristic of physical laws that they have this abstract character.

The law of conservation of energy is a theorem concerning quantities that

have to be calculated and added together, with no mention of the machin-

ery, and likewise the great laws of mechanics are quantitative mathematical

laws for which no machinery is available. Why can we use mathematics to

describe nature without a mechanism behind it? No one knows.� (Feynman,

35One way to view this is to write down the Hamiltonian for a problem in conservative
motion, as in H(t) = U(q(t))− 1

2v(t)
2+p(t)v(t), and then write down the derivative, úH(t)

and observe that the Hamilton equations of equilibrium motion imply úH(t) = 0. This is
a proof of: equilibrium motion implies conservation of energy, where H (t) is the so-called
current total energy (the sum of current kinetic and potential energies) for the problem
under consideration.

31



Leighton, and Sands [1963, p. 7-9], their emphasis)

Feynman is actually making a number of different observations here but

he is explicit in asserting that conservation of energy is not intuitive. He also

seems to be saying that the detailed equations of motion do not pay the effort

at intuiting. Our view is that the reason the equations are counter-intuitive is

that force and momentum are generally scrambled together in the equations.

In a sense the Hamilton formalism allows for the separation of the roles of

location and momentum in particle motion in classical mechanics. This is of

course not Feynman�s explicit observation here. He is not rejecting the view

that conservation of energy provides a valuable benchmark for organizing

thinking about problems in physics but the law itself possesses no compelling

intuition, directly. Indirectly however, conservation of energy is linked to the

�time symmetry� or �time autonomousness� of the laws of physics.

A further critique of physics textbooks. The Virial Theorem for periodic

motion has twice the sum of kinetic energy over the period as the implicit

measure of �ouput�. And it has the sum of �generalized work� over the pe-

riod as the implicit measure of �input�. This to us is Þne but we would like

to see the labels energy inßow over the period and energy �consumption� or

use-ßow over the period attached to the two sides of the energy equation.

What is missing is what we call �the complementary virial theorem� deal-

ing with energy inßow linked to momentum variables and energy use-ßows

linked to momentum changes over the period. The energy representation of

a current momentum, pi ∂H∂qi , requires a label, a counterpart to the general-

ized work associated with force. And the energy representation of current

momentum-change, namely − úpiqi, also requires a label. Kinetic energy is the
term used for energy associated with current particle position-change. We

are not asking for new physics, here. We are asking for new labels of terms in

32



a new energy account, an account built around the idea of current �product�

factoring back into current �input�.

We recognize that one can read key equations backwards. For example

when one sees kinetic energy on the right hand side in the Hamilton equa-

tions, one has a left hand side with �energy from momentum�. Hence the

energy used up in position-change for the particle is not independent of the

energy representation of momentum. The energy of position change seems

convolved with that of momentum �inßow�. We ask for a conceptual separa-

tion here, namely the view that particle position-change is energy using AND

particle velocity change is independently energy using. This does not seem

to be a standard intuitive take on what is going on in classical mechanics in

large part we believe because problems end up being solved in terms of loca-

tion variables. This makes a �location variable view� of what is going on the

�view� that dominates textbook expositions. This is easy to understand but

we suggest that this fails to communicate the fact that particle motion is a

production system with simultaneous position-change and momenta-changes

as current outputs.

Newton created modern classical mechanics from Galileo�s treatment of

local, particle free-fall and Kepler�s three laws. In his own words, Newton

created a mathematical theory of force, both local and celestial. Newton

very explicitly asked that his theory generate observed trajectories of par-

ticle motion. He said (we paraphrase) on many occasions in the Principia:

�Proposition i involves solving for the position of a particle and the interval

of its motion, relative to its initial position.� He then solved for equations

generating trajectories and time lapses of motion. Never did he say �Propo-

sition i involves solving for the trajectory and the corresponding path of

velocity-changes of a particle and its interval of motion, relative to its ini-
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tial position and velocity�. Such a formulation would have emphasized our

point about particle-motion being a production system, with current �pro-

duct� being deÞned by current particle position-change and velocity-change.

Newton was not wrong. He seems to have been intellectually cautious. He

was able to analyze motion to his satisfaction with his mathematical theory

of force but it seems that he was aware that force was a fairly controversial

entity.36 He chose not to digress into a larger theory of motion involving

energy accounting or �input� and �output� detail. There is a sense in which

the Principia contains the bare-bones theory of particle motion and that

suited Newton�s purposes. SigniÞcant �extensions� were made by Euler, La-

grange and Hamilton. Hamilton�s view of particle motion, implicit in �the

Hamilton equations� is, in our view, a signiÞcant reÞnement of Newton�s view

since it treats particle motion as �equally weighted�, simultaneous position-

change and velocity-change. Newton focused his analysis of particle motion

on position-change and the interval of motion. But Hamilton�s view has not

displaced Newton�s view in collge-level textbooks. In Hartwick [2004] we pre-

sented an energy accounting based on Hamilton�s view for periodic motion

and here we re-present that accounting, with extension to general particle

motion, not simply periodic motion. We did not start out to construct an

energy account for particle motion based on the Hamilton equations but our

inquiry about current �product� and current �input� in classical mechanics

led us to develop such an account.

36In a recent short essay, Frank Wilczek [2004] takes issue with the wide use of the
concept of force. To him �force� is not a fundamental concept in modern physics and as
such is somewhat vague. �While force itself does not appear in the foundational equations
of modern physics, energy and momentum certainly do, and force is very closely related
to them: Roughly speaking, it�s the space derivative of the former and the time derivative
of the latter (and F = ma just states the consistency of those deÞnitions.)� p. 12.
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8 Concluding Remarks

We have been motivated to investigate the nature of motion in classical

mechanics from the standpoint of economic accounting. One has a system

with a product, namely particle motion, and one is motivated to factor back

output into inputs. And one has the large question of current value balance:

the value of current output being reducible to the value of current inputs.

We have succeeded in a re-conceptualization of what is going on in particle

motion in classical mechanics. One can tell the story with physics concepts

alone as current inßow of energy from a location variable �going� to support

a particular momentum-change, but the appeal to economics thinking and

terminology makes our re-conceptualization very natural. There is income

(in units of energy) going to investment expenditure and there is input or

capital good restoration over a period. Distinct from this economics-based re-

conceptualization, we have presented bits of new physics, it seems. First we

have suggested a natural normalization for the potential function for periodic

problems. Of interest here is the seeming, somewhat accidental normalization

for the Kepler problem is the one we would endorse from the perspective of

energy accounting. Secondly, we have dwelt on a basic complementary virial

theorem. This seems like a very valuable �result� but is by no means based

on an excursion into deep technical realms of physics or mathematics. It is

easy to see, once it is pointed out. And thirdly, we have observed a striking

energy account associated with centripetal force in the Kepler problem. The

energy representation of centripetal force has the same value as the energy

representation of current angular momentum. Perhaps some more technical

new physics will emerge from our conceptualization in the future.

(1) The starting point of our analysis is the view that at each instant of
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time, particle motion in classical mechanics is a system with a �product� and

�inputs�. We have observed that this intuition can be made concrete, par-

ticularly by drawing upon economics ideas. The �output� associated with

particle motion is in general a simultaneous bit of position-change for the

particle and momenta-changes for the particle. In units of energy these out-

puts can be �factored back� into values of inputs, at a moment in time.

Twice current kinetic energy is the energy measure of current particle posi-

tion change, and − úpiqi is the energy value of current change in momentum
i.

(2) The Virial Theorem in classical mechanics for periodic and quasi-

periodic motion provides a concrete case of �input value� (rental income from

capital inputs) in units of energy balanced with �product value� (investment

expenditure) in units of energy per period. However the Virial Theorem deals

only with the energy balance of position variables.

(3) There is a complementary virial theorem for periodic motion dealing

with energy inßow per period associated with momentum variables balanced

with energy use-ßows associated with change-in-momentum values. This

balance relation holds for momentum variables in a precisely analogous way

as does the Virial Theorem for location variables.

(4) For non-periodic motion, we observe at each instant of time a balance

of the energy value of �product� with the energy value of �input�, with �pro-

duct� comprising the SUM of the energy values of current position-change

and momenta-changes for a particle in motion. There is in general cross-

subsidization of energy from one type of input to the other over an arbitrary,

long interval. Periodic motion, in contrast, exhibits no cross-subsidization,

on average, over an arbitrary, long interval. Periodic motion corresponds

with an economics steady state and resembles economics in the sense that
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each �product� factors back in value terms to the value of �own inputs�.

Non-periodic motion possesses the striking property of current input value

equalling current product value, but in aggregate over the �products� in-

volved, not �product by product� as with periodic motion, dealt with on a

period basis. The balance of instantaneous input value with product value

for motion in general in classical mechanics suggests a deep constant returns

to scale property in classical mechanics, akin to that for so-called balanced

growth in economic dynamics. Again, we emphasize that it is input, �pro-

duct� value balance in aggregate rather than on a �product� by �product�

basis.

(5) Position-change and momenta changes in their energy representations

have the interpretation of current investment expenditure in economics. The

energy inßow associated with force or with the position of the particle has

the interpretation of capital good incomes or rental ßows. And the analogous

energy inßow associated with momenta variables has the interpretation of

capital good incomes or rental ßows. The main instantaneous energy account

in classical mechanics reads: the sum of capital input rentals at an instant

balances with investment expenditures on capital, all in units of energy.

(6) Periodic motion is motion involving the restoration of inputs, location

and momenta variables in �physical� units, over the period and there are

simultaneous inßow-useßow value relations, in units of energy, sustaining the

restoration process, over each period. Restoration of inputs can be referred

to as capital input maintenance, over the period.
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Appendix: From Capital Theory to Classical Mechanics

GENERAL (NON-PERIODIC) MOTION

Here is a basic Dorfman, Samuelson, Solow [1957 p. 290 and 294] capital

theory program:

max K1[C1 +∆S1] +K2[C2 +∆S2]

subject to:

[C1 +∆S1]− (1− a11)X1 + a12X2 5 0
[C2 +∆S2] + a21X1 − (1− a22)X2 5 0

b11X1 + b12X2 5 S1

b12X1 + b22X2 5 S2
with variables non-negative. Ci is a consumption ßow, Ki is a capital

goods price, Si is a quantity of capital, ∆Si is an increment in capital good i

(an investment), and the a0s and b0s are technical coefficients, capturing given

production or transformation relationships. Here the services to two capital

goods are �creating� ßows of consumption goods and investment goods with

a Þxed technology of �transformation�. The X 0
is are activity levels.

Their dual program is

min r1S1 + r2S2

subject to:

p1 = K1

p2 = K2

−p1(1− a11) + p2a21 + b11r1 + b12r2 = 0
p1a12 − p2(1− a22) + b21r1 + b22r2 = 0
and non-negativity constraints. Here ri is a capital goods rental price

and pi is a capital goods �stock� price. We can compress this problem by
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assuming that p1 = K1 and p2 = K2 solve with equalities. The compressed

formulation becomes

max K1[C1 +∆S1] +K2[C2 +∆S2]

subject to

B11[C1 +∆S1] +B12[C2 +∆S2] 5 S1

B12[C1 +∆S1] +B22[C2 +∆S2] 5 S2
and non-negativity constraints. The dual problem compresses to

min r1S1 + r2S2

subject to

B11r1 +B21r2 = K1

B12r1 +B22r2 = K2

and non-negativity constraints.

To specialize this system to an approximation37 of a conservative classical

mechanics problem, one (1) requires capital good Si to be the input for the

production of ∆Sj and (2) eliminates any consumption (sets C1 = C2 = 0 a

priori). The Þrst restriction might be referred to as production reciprocity

or the reciprocal production property of classical mechanics. That is, our

system becomes

max K1[∆q] +K2[∆p]

subject to:

B21[∆q] 5 p
B12[∆p] 5 q
with variables non-negative.

The dual program is

min r1q + r2p

37The approximation we have in mind is that we have an essentially linear link between
a capital input and its product whereas in classical mechanics this link is in general not
linear. But our linear representation of classical mechanics illustrates key issues very well.
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subject to:

r2B21 = K1

r1B12 = K2

and non-negativity constraints. The capital inputs have been relabelled

q for S1 and p for stock S2.

RESULT: This specialized capital theory program, solved with equalities,

has the property that

r1q = K2[∆p]

r2p = K1[∆q].

The demonstration involves solving for r1q in the second system and for

K2[∆p] in the Þrst system and observed that they are the same. These are

two equations of �capital rentals equal to reciprocal investment expenditure�.

The other specialization of our capital theory problem that classical me-

chanics asks for is the substitution for capital goods prices K1 and K2 with

values p and q respectively. Yes, as we emphasized in the text, capital goods

have levels p and q and capital goods prices have levels q and p. This is the
striking specialization which classical mechanics �asks� of our general
capital theory problem. This might be referred to as the dual roles of co-

state and state variables.38 Hence we have capital rentals equal to investment

expenditures in

r1q = q[∆p]

r2p = p[∆q].

38In economics we think of prices K1 and K2 as deriving from preferences of agents
or a planner, preferences for a preferred current bundle of product. Classical mechanics
endogenizes these preferences in the above curious and profound fashion. Preferences
�evolve� in a special classical mechanics fashion.
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These two equations are our analogues to the Hamilton equations,
here in units of energy as they are often expessed in the text above. Particle

motion induces systematic changes in both capital stocks and capital goods

prices period to period.

Finally, classical mechanics does not require variables to be non-negative.

Given these departures from the general model set out above Þrst, we ar-

gue that the resulting program is a good approximation to say the problem

of particle free-fall in classical mechanics. In summary, particle motion in

classical mechanics is a specially structured problem in capital theory, with

location and co-state variables operating as capital goods. And the same co-

state variables and location co-ordinates also are operating as capital goods

prices in the sense above.

Let us solve for our analogue to particle free fall. We revert to our earlier

notation. We can treat the above model as solved with equalities and get

∆S1 = S2/B21 and ∆S2 = S1/B12. We depart from the non-negativity con-

straint and set out ∆S1 = S2/[−B21]. Then we can take S2 as momentum
and S1 as location (vertical co-ordinate for the free fall problem). We take

S1 equal to 1000 meters initially and S2 equal to an initial momentum of

0.001. If we �run� our model we will have S1 declining in increasing incre-

ments at a constant rate over each period and S2 increasing over each period,

also at a constant rate. Though these behaviors are not quite those of clas-

sical mechanics, they are reasonable approximations. They emerge from a

canonical, simple, purely economics model with two capital inputs.

PERIODIC MOTION

The special case of periodic motion involves capital good restoration at

the �end� of each period. Hence periodic motion can be viewed as a problem
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in stationary capital stocks. We follow Dorfman, Samuelson and Solow again

(p. 234). The specialization for periodic motion is set out with ∆q = δq and

∆p = δp for δ the exogenously-given, constant decay rate. That is, current

product (investments) must exactly replace decayed capital and q and p levels

must remain unchanging. This is the essence of periodic motion. The decay

of capital corresponds to energy used up by motion of the particle over the

period.

That is, our system becomes

max p[∆q] + q[∆p]

subject to:

B21[∆q] 5 p
B12[∆p] 5 q
with variables non-negative.

The dual program is

min r1q + r2p

subject to:

r2B21 = p

r1B12 = q
and non-negativity constraints.

The �maintain capital intact� problem here has ∆q = δq and ∆p = δq at

each period and capital stocks, q and p unchanging. Dorfman, Samuelson and

Solow argue that with a smooth technology, a particular consumption vector

(∆q and ∆p) corresponds to a �right� technology and an efficient vector of

capital inputs.39 The �right� technology will be that for which the own rate

39This section of Dorfman, Samuelson and Solow compels one to infer that they pre-
sented the golden rule, attributed to Phelps, well before Phelps, unless one believes that
one must be working in a population growth (at a constant rate) context in order to obtain
the correct golden rule investment condition. We see population growth as a somewhat
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of interest for each sector is the same. This is a golden rule argument. We

pursued this above. If the technology is such that own interest rates are

equal in: r1/p = r2/q, then the technology satisÞes the condition

K1

K2

=

µ
B21
B12

¶1/2
.

for K1 and K2 standing in for capital goods prices, p and q. And if each

capital good is shrinking from use at the same rate δ over each period, then

replacement capital, ∆q and ∆p are δq and δp respectively. In such a case

we observe that the condition ∆q/q = ∆p/p implies that

S1
S2
=

µ
B12
B21

¶1/2
.

for S1 and S2 standing in for capital stocks, q and p. Since K1

K2
= p

q
= S2

S1

in classical mechanics, we have the result that: Proportional investment

replacement across sectors implies equal own interest rates and vice versa.

In addition, such restrictions on the technology yield the condition that own
rentals are funding own current investment or K1∆S1 = r1S1 and

K2∆S2 = r2S2. This is a multi-good extension of our version of the golden

rule of investment (Phelps with no labor force growth) in the text above.

This is the condition we observe for periodic motion in classical mechanics,

namely own funding of own investment over the period in question. Hence

our simple capital theory model is picking up (replicating?) key conditions

we noted for the classical mechanics �model�.
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