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Abstract: 

Diba and Grossman (1988) and Hamilton and Whiteman (1985) recommended unit root 

tests for rational bubbles. They argued that if stock prices are not more explosive than 

dividends, then it can be concluded that rational bubbles are not present.  

Evans (1991) demonstrated that these tests will fail to detect the class of rational bubbles 

which collapse periodically. When such bubbles are present, stock prices will not appear 

to be more explosive than the dividends on the basis of these tests, even though the 

bubbles are substantial in magnitude and volatility. 

                                                 
1 The authors would like to thank Professor James Hamilton and Professor Anil K. Bera for their comments 
and recommendations. Any remaining errors are the responsibilities of the authors. 
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Hall et al. (1999) show that the power of unit root test can be improved substantially 

when the underlying process of the sample observations is allowed to follow a first-order 

Markov process. 

Our paper applies unit root tests to the property prices of Hong Kong and Seoul, 

allowing for the data generating process to follow a three states Markov chain. The null 

hypothesis of unit root is tested against the explosive bubble or stable alternative. 

Simulation studies are used to generate the critical values for the one-sided test. 

The time series used in the tests are the monthly price and rent indices of Seoul’s housing 

(1986:1 to 2003:6) and Hong Kong’s retail premise (1980:12 to 2003:1). The 

investigations show that only one state appears to be highly likely in all series under 

investigation and the switching unit root procedure failed to find explosive bubbles in 

both prices.  

 

I. Introduction 

 

A rational bubble reflects a self-confirming belief that the price of an asset depends on a 

variable, or a combination of variables, that is intrinsically irrelevant, or on truly relevant 

variables in a way that involves parameters that are not part of market fundamentals. A 

basic difficulty in testing for rational bubbles is that the contribution to asset prices by 

hypothetical rational bubbles would not be directly distinguishable from that by an 

unobservable market fundamental.  
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Diba and Grossman (1988) implements stationarity tests for the existence of explosive 

rational bubbles without precluding the possible effect of unobservable market 

fundamentals. They argued that if the first differences of the unobservable variables and 

the first differences of dividends are stationary in the mean, and if rational bubbles do not 

exist, then the first differences of stock prices are stationary; or if the levels of the 

unobservable variables and the first differences of dividends are stationary, and if rational 

bubbles do not exist, then stock prices and dividends are conintegrated of order (1,1). If, 

however, stock prices contain a rational bubble, differencing stock prices a finite number 

of times would not yield a stationary process. Although the finding that the first 

differences of stock prices are nonstationary, or that stock prices and dividends are not 

cointegrated do not automatically establish the existence of rational bubbles due to the 

unobservable variable, the converse inference is however possible. That is, evidence that 

the first differences of stock prices have a stationary mean or evidence that stock prices 

are cointegrated with dividends would be evidence against the existence of rational 

bubbles.  

 

Evans (1991) shows that the stationarity tests, suggested by Diba and Grossman (1984, 

1988) and Hamilton and Whiteman (1985), is in fact unable to detect the periodically 

collapsing bubbles. He demonstrates, using simulations, that when such bubbles are 

present, stock prices will not appear to be more explosive than dividends on the basis of 

these tests, even though the bubbles are substantial in magnitude and volotilaty. 
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Hall, Psaradakis and Sola (1999) argue that testing for collapsing bubbles is essentially 

one of identifying the expanding phase from the collapsing phases of the bubbles. They 

proposed a generalized ADF unit root test, which allows for the data generating process 

(DGP) to switch parameters in different states. They concluded that, unlike standard unit 

root tests, which have little power to detect periodically collapsing bubbles, their 

switching ADF tests are able to give sensible inferences about the DGPs. 

 

This paper intends to apply the switching ADF test, suggested by Hall, Psaradakis and 

Sola (1999), to the property prices in Hong Kong and Seoul. The remaining paper 

consists of three sections: the first introduces the literature of unit root tests for rational 

bubbles; the second give our estimation and test results; and the last section concludes the 

paper with discussions on our findings. 

 

II. Review 

 

2.1 Diba and Grossman’s (1988) tests 

 

In their stationairy test, Diba and Grossman assume that the data generating process can 

be described by the model consists of equation (2.1.1) to (2.1.5). 

 )()1( 111
1

+++
− +++= ttttt udPErP α      (2.1.1) 

where tP : the real stock price at time t; 

 r : the constant real discount rate. 

 tE : the conditional expectations operator; 
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α : a positive constant that valuates expected dividends relative to expected 

capital gains. 

 1+td : the real dividends payment between time t and t+1; 

1+tu : a variable that market participants either observe or construct, but that the 

researcher does not observe. 

The fundamental solution for equation (2.1.1) is 

 [ ]∑
∝

=
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− ++=
1

)1(
j

jtjtt
j

t udErF α      (2.1.2) 

Whereas the general solution would include a rational bubble component, tB   

 ttt BFP +=         (2.1.3) 

and tB satisfy 

 11 )1( ++ ++= ttt zBrB        (2.1.4) 

The random variable 1+tz is an innovation comprising new information available at date 

t+1. This information can be intrinsically irrelevant, or it can be related to relevant 

variables through parameters that are not present in 1+tF . The expected future values of 

1+tz  are always zero 

 01 =+− tjt zE  for all 0≥j       (2.1.5) 

Assume that td  is nonstationary is levels, but the first differences of td and tu  are 

stationary. Then tP  will be nonstationary in levels but stationary in first difference, when 

rational bubbles do not exist. However, when rational bubbles are in presence, 

differencing tP  a finite number of times would not yield a stationary process, since tB  

would have the generating process 
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 ( )[ ]( ) ( ) tt zLBLLr −=−+− 1111      (2.1.6) 

which is neither stationary nor invertible. 2 

 

By examining the sample autocorrelations and by applying the standard ADF tests, Diba 

and Grossman concluded that both real stock prices and dividends are nonstationary in 

levels but stationary in first differences. They also conducted a conintegration test on the 

stock prices and dividends. Rearranging equation (2.1.2) and substitute it into equation 

(2.1.3) yields 
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∞

=
+

−
∞
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∆++=−
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j
jtt

j
ttt uErdErrBdrP αα  (2.1.7) 

If tu  is stationary in levels, and td is stationary in first difference, and if tB equals zero, 

then tP  and td are cointegrated of order (1,1), with cointegrating vector (1, - 1−rα ). Their 

tests, however, show mixed results.  

 

The lack of cointegration in stock prices and dividends could be due to the 

nonstationarity of the unobservable variable, tu . They explore this possibility by using 

the following equation, implied by equation (2.1.1), 

 ( ) 1111 1 ++=+ −=+−+ ttttt uePrdP α  

where 1+te  is the expectation error. That is 

1111 ++++ ++= tttt udPe α )( 111 +++ ++− tttt udPE α  

                                                 
2 A similar demonstration is given by Evans (1991) in page 923. 
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The assumption of rational expectation implies that 1+te  are not serially correlated. Thus, 

if 11 ++ + tt dP α  and tP  are cointegrated of order (1,1) with cointegrating vector (1, -(1+r)), 

then tu  is stationary in level. Their tests suggests that the null hypothesis of no 

cointegration  can be rejected.  

 

The conclusion that 1+∆ td , 1+∆ tP  and ( )( )ttt PrdP +−+ =+ 111 α  are all stationary would 

imply that tt drP 1−−α is stationary. Therefore, they lamented that the lack of 

cointegration between tP  and td  is puzzling. Given these problems, they appealed to an 

alternative, the Bhargava Tests, to further investigate the stationarity properties of 

tt drP 1−−α . Bhargava tests yield the most powerful invariant tests of random-walk 

hypothesis against the one-sided stationary and explosive alternatives. The existence of 

explosive rational bubbles would imply that tt drP 1−−α has an explosive, rather than a 

unit, root. The Bhargava tests strongly suggest that stock prices and dividends are 

cointegrated, and, thus, are consistent with the finding that any unobservable fundamental 

variables, and the first differences of stock prices and dividends are all stationary.  

 

To verify that their tests would detect explosive bubbles if they were present, they 

applied the same tests to simulated time-series. Their findings are positive. Hence they 

concluded in their paper that explosive rational bubbles do not exist in stock prices. 

 

2.2 Evan’s (1991) Criticism 
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Evans argued that, when applied to periodically collapsing rational bubbles, the test 

procedures suggested by Diba and Grossman can, with high probability, incorrectly lead 

to the conclusion that these bubbles are not present. 

 

Suppose that the data generation process for stock prices can be adequately represented 

by the standard present value model given in equation (2.2.1) to (2.2.11) 

)()1( 11
1

++
− ++= tttt dPErP , 1)1(0 1 <+< −r    (2.2.1) 

variables in the equation have the save interpretations as in equation (2.1.1). This 

representation ignores the possibility of unobservable fundamentals, since they are not 

consequential to the point to be made. 

 

The fundamental solution to (2.2.1) is  

[ ]∑
∝

=
+

−+=
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j

jtt
j

t dErF        (2.2.2) 

and the general solution is 

ttt BFP +=          (2.2.3) 

Where tB  ,the rational bubble, satisfies 

ttt BrBE )1(1 +=+         (2.2.4) 

 

If the first difference the dividends series is a stationary ARMA process and if there are 

no bubbles, then it can be shown that the first difference of the price series is also a 

stationary ARMA process, and that tP  and td  are cointegrated with cointegrating vector 

(1, - 1−r ). If, instead, 1+∆ td  is stationary but tB is not absent, then for some tC  
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jCFE ttt λ+→  as ∞→j      (    2.2.5) 

where )( tFE ∆=λ  

But 

t
j

jtt BrBE )1( +=+        (    2.2.6) 

That is the conditional expectations of the future fundamental price grows linearly in the 

forecast horizon j , reflecting the unit root in the process, whereas the conditional 

expectations of future bubbles contains the root (1+r)>1. If tB  is nonzero, as j  increases, 

the conditional expectation  jtP +  will eventually be dominated by the explosive root 

(1+r), if a bubble is present. Furthermore, differencing the price will not render the 

process stationary, since  

)(lim tjttj
FEFE ∆=∆ +∞→

 , a constant     (2.2.7) 

but 

t
j

jtt BrrBE 1)1( −
+ +=∆ , which is explosive if 0≠tB    (2.2.8) 

Hence, the conditional expectation of jtP+∆  will be stable if the bubble is absent, but 

explosive otherwise. 

 

These considerations are the motivations behind the unit root and cointegration tests by 

Diba and Grossman (1988).  

 

Evans, however, demonstrated that if the bubbles collapse periodically, such tests have 

very little power in detecting the presence of bubbles. 
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Consider the class of rational bubbles that are always positive but collapse periodically 

11 )1( ++ += ttt uBrB  ,    α≤tB     (2.2.9) 

1
1

1
1

1 )])1(()1([ +
−

+
−

+ +−++= tttt urBrB δθπδ  , if α>tB  (2.2.10) 

where α  and δ  are positive parameters with αδ )1(0 r+<< , and  

 tu : an exogenous i.i.d positive random variable, with 11 =+ttuE . 

 1+tθ : an exogenous i.i.d Bernoulli process independent of u , with  

πθ ==+ )1Pr( 1t  

πθ −==+ 1)0Pr( 1t , 10 ≤< π  

Assume 

 ⎟⎟
⎠

⎞
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⎝

⎛
−=

2
exp

2τ
tt yu , ty Χ ),0(, 2τNiid     (2.2.11) 

The frequency with which bubbles erupt, the average length of time a bubble expands, 

and the magnitude of bubble are affected by the process parameters α , δ  and π . 

 

When the Bhargava test is applied to the 200 simulated samples of size 100, generated by 

DGPs described by equations (2.2.1) to (2.2.11), Evans found that the results of tests 

depend critically on π , the probability per period that the bubble does not collapse. 

When π  is close to one, the tests results are close to those obtained by Diba and 

Grossman. However, for 95.0≤π , quit different results are obtained. In fact, when 

75.0≤π , more than 90% of the simulation reject the null hypothesis of a unit root in 

favor of stable alternatives for both N1 and N2 statistics. These results appear to be 

robust to moderate changes in the other model parameters. 
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Evans explains that the maintained hypothesis for the Bhargava test is a first order 

autoregressive process. When π  is close to one, the process for (2.2.10) converges to 

(2.2.9). But when 1≤π , the bubble process in (2.2.10) is a complex nonlinear process, 

which falls outside the maintained hypothesis. Thus, unless π  is close to one, the pattern 

of periodic collapse generated by (2.2.10) looks more like a stable AR(1) process other 

than an explosive one, despite of the explosive root in the conditional expectation of the 

bubble sequence.  

 

Evans also applied the Dickey-Fuller unit root tests and cointegartion tests to the 

simulated stock prices and dividends, assuming 

ttt dd εµ ++= −1  tε ~ ),0(, 2
εσNiid     (2.2.12) 

The results clearly show that the DF 3φ  statistic is unable to find the bubble when it is 

present. The cointegration tests, using the Durbin-Watson statistic and the Engle and 

Granger (1987) 2ξ  and 3ξ  statistics also incorrectly indicate the absence of bubbles in the 

majority of simulations.  

 

In summary, periodically collapsing bubbles are not detected by standard unit root and 

cointegration tests. 

 

2.3 Markov-Switching Unit Root Test 
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Hall, Psaradakis and Sola (1999) argued that, when rational bubbles exist, the dynamics 

of asset prices are driven by the dynamics of the bubbles. If the bubbles collapse 

periodically, the values taken by the parameters of the price generating process in the 

bubble expansion state will differ from that in the bubble collapsing state. That is the 

model governing the price behavior experiences structural break. When the model has 

structural breaks, ADF tests have little power. In such cases, allowing for the ADF 

regression parameters to take on different values in different states will improve the 

power of the tests. In particular, the authors suggested to make use of the class of 

dynamic Markov-switching models explored in Hamilton (1989, 1990), and base the unit 

root test on the following regression model 

( ) ( )[ ] ( )[ ] tejt

k

j
tjtjtttttt eyssyssssy σψψφφµµ +∆+−++−++−=∆ −

=
− ∑

1
1011010 111  

(2.3.1) 

where te Χ )1,0(, Niid  

and ts is a state variable independent of me  for all t and m , and follows first-order 

Markov chain on the state space { }1,0 with transition probabilities 

( ) pSS tt === − 11Pr 1   

( ) pSS tt −=== − 110Pr 1   

( ) qSS tt === − 00Pr 1   

( ) qSS tt −=== − 101Pr 1        (2.3.2) 
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The coefficient on 1−ty provides the basis for testing. For example, existence of an 

explosive rational bubble in prices is consistent with 00 >φ  or 01 >φ . On the other hand, 

when 010 == φφ  for both price and dividends, there is no rational bubble. A test of the 

unit root null hypothesis may be based on the asymptotic t-ratios associated with the ML 

estimates of 0φ  or 1φ . 

 

The authors conducted a simulation study based on 500 independent realizations of 

{ }tP from DGPs identical to those used by Evans (1991). Two alternative assumptions 

about the generating mechanism of real dividends are used, namely, 

ttt dd εµ ++= −1        (2.3.3) 

and  

ttt dd εµ ++= −1lnln        (2.3.4) 

where 

tε ⎯→⎯d ),0(, 2
εσNiid     

Their results show that, unlike the conventional ADF test, Markov-switching ADF 

procedure has considerable power to detect the presence of bubbles in { }tP . They 

cautioned, however, these results do not imply that switching ADF tests would 

successfully detect all types of periodically collapsing bubbles. For example, if the 

contribution of the bubble to the volatility of the prices is not substantial or the 

probability of the bubble collapse π−1  is relatively large, it would be difficult for any 

tests to confirm the presence of the bubble. 
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The authors then went on to apply the test procedure to investigate the integration 

properties of consumer prices in Argentina. As argued in Diba and Grossman, whether or 

not the nonstationarity in prices reflects a rational bubble depends on the time-series 

properties of the economic fundamentals driving the prices. One known and observable 

economics fundamental to consumer prices is the money supply. The nonstantionariy in 

prices could also be caused by the nonstationarity of other unobserved economic 

fundamentals, rather than a rational bubble. Hence, the authors included two other time 

series in their tests, the monetary base and exchange rate in Argentina. Since both 

consumer prices and exchange rate are likely to be driven by common fundamentals, 

evidence of simultaneously change in these two series would suggest that the 

nonstationarity in prices is attributable to their market fundamentals. On the other hand, 

asynchronous changes across the two series may be explained by the presence of a 

rational bubble. For example, if both series switch simultaneously to the explosive 

regime, represented by 1=ts , while the money process remains in the no-explosive 

regime ( 0=ts ), one can infer that the event is driven by some unobservable economic 

fundamental common to price and exchange rate, rather than by explosive rational 

bubbles. Conversely, when price switch to explosive regime whereas the two other series 

remains in the non-explosive regime, one can conclude there is a rational bubble in the 

price.  

 

Again, the authors were able to identify rational bubbles presented in the consumer prices 

and exchange rates of Argentina. 
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III. Application of Switching ADF to Property Prices 

 

The property markets in many Asian countries boomed in the early 1990s, but busted 

following the South-East Asian financial crisis in late 1997. Markets reflecting this 

general trend are Hong Kong, Singapore, Malaysia, etc. An exception to this trend is 

Korea property market. The large up-swing in property prices during early 1990s in many 

of the Asian countries, and the recent rise in Korea property prices are generally taken as 

reflecting speculative bubbles in the popular press. 

 

This paper intends to inquire into the possibility of existence of rational bubbles in the 

property markets of Hong Kong and Korea, using the switching ADF procedure. 

 

3.1 Data 

 

A price and its associated rent series are selected for each market under consideration 

from CEIC database. In Hong Kong, these are the retail premise price and rent indices 

deflated by CPI. Each series make use of two data sets of different frequencies---the first 

set is quarterly data running from December 1980 to September 2000, the second 

monthly data stretching from January 1993 to January 2003. In order to combine them, 

we convert the first set into monthly data by cubic spline. Thus the first half of our data 

set, running from December 1980 to December 1992, consists of the splined output from 

the first data set, whereas the remaining half from the second data set. The raw data has 

266 observations for both price and rent series. The series for Korea are CPI deflated 
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monthly housing price and housing rent indices between January 1986 and June 2003, 

with a total of 210 observations of raw data. 

 

3.2 Estimation of the Switching ADF Regression Model3 

 

A casual examination of figure one suggests that there might be three regimes governing 

the movement of each price series. In the first state, price is more or less stable or its 

movement is coupled by rent (e.g. Hong Kong after August 1998; Seoul between 

September 1987 and February 1990). We call such a state, preliminarily, one in which 

bubble is dormant. In the second state, price is rising sharply, with little or no 

corresponding movement in rent (e.g. Hong Kong between October 1993 and July 1994, 

and between December 1996 and September 1997; Seoul between February 1990 and 

May 1991). We call such a state one in which bubble is expanding. In the third state, 

price plunges, with little or no co-movement in rent (e.g. Hong Kong between July 1994 

and June 1996, and between September 1997 and August 1998; Seoul between January 

1986 and September 1987). We call such a state one in which the bubble is collapsing. 

 

                                                 
3 For more details, please refer to James Hamilton (1994). 
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Figure 3.1.  Property Prices and Rents 
(HK: Jan 93=100; Seoul: Dec 95=100)
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Source: CEIC database 

 

Thus, the following ADF model is fitted to each of the four series 

 ∑
=

−− +∆++=∆
K

k
tkt

st
kt

stst
t yyy

1
1 εψφµ  tε Χ ),0(, 2σNiid   (3.2.1) 

where { }3,2,1∈ts , a state variable following the first order Markov Chain 
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( )

ij
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===
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1

111

Pr

,...,,Pr ζ

     (3.2.2) 

with ),...,,( 11 yyy ttt −=ζ , the information set available at time t, and ijp the state 

transition probability. Equation (3.2.2) says that the probability distribution of 1+ts  

depends on past events only through the value of ts . 
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The state variable ts  is not observed, but can be inferred using the discrete Kalman filter 

described by Hamilton (1994), and summarized below. 

 

Rewrite equation (3.2.1) as 

 tsttt xy εβ += '  tε Χ ),0(, 2σNiid     (3.2.3) 

Assume ij
st
k

stst p,,, ψφµ and σ are known with certainty. If the Markov chain is 

stantionary and ergodic, the iteration to evaluate ( )1Pr −= tt is ζ  ( 3,2,1=i  and 

( )∑
=

− ==
3

1
1 1Pr

i
tt is ζ ), can start at date 1=t with the unconditional probabilitiesπ , where 

( )321' πππ=π , and )Pr( isti =≡π . 

 

We can evaluate π  by solving the system of two equations 

 
1=

=
π1

ππ
`

F
        (3.2.4) 

where F is the matrix of state transition probabilities 
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and  

( )111=̀1  
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At step t, the inputs are ( ){ }3

11Pr
=−=

itt is ζ  and the outputs are ( ){ }3

11Pr
=+ =

jtt js ζ , with 

( ) iis πζ == 01Pr . Given ( )1Pr −= tt is ζ  and given the normality assumption, the 

conditional density function for ty is 

 ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−== − 2

2

21 2
'exp

2
1,,

σ
β

πσ
ζ itt

tttt
xyxisyf    (3.2.6) 

Since tx is predetermined 

 ( ) ( )11 Pr,Pr −− === ttttt isxis ζζ  

Hence the joint density of ty  and ist = , given tx  and 1−tζ  

 ( ) ( ) ( )111 Pr,,,, −−− ==== tttttttttt isxisyfxisyf ζζζ ,  

3,2,1=i   (3.2.7) 

Thus the density of ty  conditional on tx  and 1−tζ  

 ( ) ( )∑
=

−− ==
3

1
11 ,,,

i
ttttttt xisyfxyf ζζ      (3.2.8) 

By Bayse Rule, the optimal filter of ts  given tζ , the information set available at time t, is 

 ( ) ( )
( )1

1,

,
,

Pr
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−=
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ttt

tttt
tt xyf

xisyf
is

ζ
ζ

ζ      (3.2.9) 

and the prediction of 1+ts  

 ( ) ( )∑
=

+ ===
3

1
1 PrPr

i
ttijtt ispjs ζζ      (3.2.10) 

A more efficient inference about ts  can be obtained by using the entire set of information 

available to the researcher, Tζ  
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1
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where 

 ( ) ( ) ( ) ( )
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       3,2,1, =ji   (3.2.12) 

( )Tt is ζ=Pr  is called the smoothed inference of the state variable. This smoothed 

probability sequence ( ){ }T

tTt is
1

Pr
=

= ζ can be computed by backwards iteration. The 

iteration starts with ( )TT is ζ=Pr  obtained from the filtering process using equation 

(3.2.9). 

 

So far we have assumed that ij
st
k

stst p,,, ψφµ andσ  are known to us, where { }3,2,1=ts . 

But in fact these parameters need to be estimated. We can estimate them by maximizing 

the log likelihood function of the observed data using EM algorithm, since EM algorithm 

is an efficient approach (Hamilton, 1994). The log-likelihood function to be maximized is 

( )∑
=

−=
T

t
ttt xyfLL

1
1,log ζ , with ( )1, −ttt xyf ζ given by (3.2.8), The steps of the estimation 

are given below. 

 Step one: make an arbitrary guess on ij
st
k

stst p,,, ψφµ andσ ; 

 Step two: calculate the smoothed probabilities of ts  using (3.2.3) to (3.2.12); 

Step three: OLS regress ( )Ttt isy ζ=Pr  on ( )Ttt isx ζ=Pr , 3,2,1=i , which 

gives ML estimates  st
k

stst ψφµ ~,~,~ , ( )Kk ,...2,1= . 
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 Step four: update 2σ  using the OLS residuals; 

  
( ) ( )

( )NT

xyxy stttsttt
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−×
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=
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12
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σ     (3.2.13) 

where N: the number of parameters estimated. 

 Step five: update ijp  
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 Step six: update π  

  ( )Ti is ζπ == 1Pr       (3.2.15) 

Step seven: repeat step two to six until the parameters and the likelihood 

converge. 

 

3.3. Asymptotic Properties of ML Estimators 

 

Suppose θ~  is the ML estimator of θ , and 0θ  the true value of θ , where 

θ `={ ij
st
k

stst p,,, ψφµ ,σ }. Subject to certain regularity conditions (Caines, 1988, Ch7), θ~  

is consistent and asymptotically normal, with limiting distribution 

 ),0()~( 0
2
1

,2 INT d
TD ⎯→⎯−θθϕ      (3.3.1) 

i.e. 

 ),(~ 1
,2

1
0

−−⎯→⎯ TD
d TN ϕθθ       (3.3.1’) 
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where TD ,2ϕ  is the information matrix from the sample of size T 
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⎛
=

∂∂
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−= ∑
=
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t

t
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LogL
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T 1
0

2

,2 `
1 θθ

θθ
ϕ      (3.3.2) 
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⎝
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=

∞→

T
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TDT

LogL
T 1

2

,2
~

`
1ˆlim θθ

θθ
ϕϕ    (3.3.3) 

The reported standard errors for θ~  are the square roots of the diagonal elements of 

( )
1

1

2
1 ~

`
ˆ

−

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂∂
∂

−= ∑
T

t

tLogL
T θθ

θθ
ϕ  

 

3.4 Computing Hessian by Numerical Method (Wheatley, 2004) 

 

In this experiment, we use the numerical approach to Hessian computation. Consider a 

continuous function f  , and the value )( xxf ∆+ . By Taylor’s expansion 

 ( )2

2
)('')(')()( xxfxxfxfxxf ∆+∆+≈∆+     (3.4.1) 

rearrange 

 
( )

2)(')()()('' 2 ×
∆

∆−−∆+
≈

x
xxfxfxxfxf     (3.4.1’) 

Also consider the value )( xxf ∆− . By Taylor’s expansion 

 ( )2

2
)('')(')()( xxfxxfxfxxf ∆+∆−≈∆−     (3.4.2) 

which gives 

  

 
( )

2)(')()()('' 2 ×
∆

∆+−∆−
≈

x
xxfxfxxfxf     (3.4.2’) 



  23   

Combining (3.4.1’) and 3.4.2’) 

   

 
( )2

)()(2)()(''
x

xxfxfxxfxf
∆

∆++−∆−
≈     (3.4.3) 

Let LLf = , then 

 ( )
2

2 )(2)(
` ∆

∆−+×−∆+
≈

∂∂
∂ θθθ

θθ
LLLLLLLL     (3.4.4) 

 

In our experiment, a range of values of ∆ , from 110−  to 510− , are tried out to allow for 

variation in the values of  log-likelihood function. The results are fairly stable under 

different choices of ∆ . 

 

3.5 Lag Selection in ADF Regression 

 

Consider 

 t

p

j
jtjtt yyy εδγα +∆++=∆ ∑

=
−−

1
1  

where p is to be determined. 

 

Taking the general-to-specific procedure, we start by setting kp = , where 

Tkk ≈= max , and T is the size of the sample. Estimate the above equation by OLS, 

and test: 

 
max:1

1max:0
kkH
kkH

=
−=  
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if H0 is rejected, set maxkk = . Otherwise, test: 

 
1max:1
2max:0

−=
−=

kkH
kkH  

… 

Stop when H0 is rejected. 

 

The test results are presented in the table below. 

 

3.6 Smoothed State Probabilities 

 

The smoothed probabilities computed using method described in section 3.2 suggests that 

only the first state is highly likely throughout the sample period for both price and rent 

series of Hong Kong and Seoul4. Refer to figure 3.2 through figure 3.5. This is consistent 

with the values of state transition probabilities, which show that there is a tendency for 

the DGPs to switch into the first state from other states, and that there is a lack of 

tendency to switch into other states from the first state. Refer to table 3.2. 

 

However, the first state is not an absorbing state as the state probability is less than one 

(Hamilton, 1994). Given the large probability of the first state, we nevertheless 

investigate the possibility that the entire series is generated by parameters governing this 

state. We first obtain artificial data using those parameters. We then feed these artificial 

data to the same estimation procedure. But the results could not repeat what are shown in 

Figure 3.2 to 3.5.  

                                                 
4 The estimation of a 2-state switching model also suggests only the first state is highly likely. 
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The maximum likelihood estimates of model parameters are listed in Table 3.3 to 3.6. 

 

3.7 Unit Root Hypothesis Testing 

The unit root test statistic is the t-ratio associated with φ , under the null hypothesis of 

0=φ . The null distribution of this statistic is unknown but can be generated by 

bootstrapping. Since only the first state is likely for both Hong Kong and Seoul, we will 

bootstrap only the parameters associated with that state. 

 

3.7.1 The Theory and Practice of Bootstrap5 

 

The bootstrap is a method for estimating the distribution of an estimator or test statistic 

by re-sampling one’s data. It amounts to treating the data as if they were the population 

for the purpose of evaluating the distribution of interest. Under mild regularity 

conditions, the bootstrap yields an approximation to the distribution of an estimator or 

test statistic that is at least as accurate as the approximation obtained from first-order 

asymptotic theory. Thus, the bootstrap provides a way to substitute computation for 

mathematical analysis if calculating the asymptotic distribution of an estimator or statistic 

is difficult.  

 

In fact, the bootstrap is more accurate in finite samples than first-order asymptotic 

approximations and does not entail the algebraic complexity of higher-order expansions.  

                                                 
5 Please refer to Handbook of Econometrics, vol. 5, Ch. 52. 
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The bootstrap is important in hypothesis testing. First-order asymptotic theory often gives 

poor approximations to the distributions of test statistics with the sample sizes available 

in applications. As a result, the nominal probability that a test based on an asymptotic 

critical value rejects a true null hypothesis can be very different from the true rejection 

probability (RP). The bootstrap often provides a tractable way to reduce or eliminate 

finite-sample errors in the RP’s of statistical tests.  

 

The method nevertheless has its own limitations6 and should not be used blindly, but it 

works well in general. The readers are referred to Handbook of Econometrics, Volume 5 

for details on the sampling procedure and the consistency of the bootstrap. 

 

3.8.4 Our application 

 

The steps of bootstrapping in our particular case are described below. 

 Step one: save the ML parameter estimates θ~  and residuals { }T
tt 1

~
=ε ; 

Step two: construct an artificial random variable u Χ ( )2~,0... σNdii , where 2~σ the 

ML estimates of 2σ  

 Step three: take a random draw from u , denote as )1(
1u , and set 

  ∑
=

− +∆+=∆
K

k
kk uyy

1

)1(
1

)1(
1

~~ ψµ  

  ∑
=

− +∆+∆+=∆
K

k
kk uyyy

2

)1(
1

)1(
11

)1(
2

~~~ ψψµ  

                                                 
6 Handbook of Econometrics, vol. 5, Ch 52. 
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  … 

  ∑
=

− +∆+=∆
K

k
kTkT uyy

1

)1(
1

)1()1( ~~ ψµ  

 where: )1(
ty∆ : simulated values of ty∆ ; 

  ky−∆ : actual observed values of ty∆ ; 

  kψµ ~,~ : ML estimates. 

 This gives a full sample  { }Ttty 1
)1(

= . 7 

Step four: fit the artificial sample to equation (3.2.1), producing estimates of 

model parameters, )1(~θ , and their associated t-ratios.  

Step five: repeat step three and four 520 times, gives { }520

1
)(~

=i
iθ  and their associated 

t-ratios. The 95% confidence interval for ML estimates θ~ and its t-ratio 

constructed under the null hypothesis include 95% of the values of )(~ iθ  and their 

associated t-ratios respectively. 

 

4. Adjustment for Non-spherical Disturbances 

 

In (3.2.1), it is assumed that tε  has a spherical distribution, whereas in fact the ML 

residuals displays ARCH pattern. Refer to figure 4.1 and 4.2.  

 

Notice, by assuming normality, the ML estimator is also the OLS estimator, which is 

consistent in the presence of non-spherical disturbances but inefficient, and hypothesis 

                                                 
7 T=206 for Seoul and 255 for Hong Kong. 
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testing based on standard covariance matrix will not be appropriate. To be specific, 

consider 

 εβ += Xy  

where  

 
[ ]
[ ] Ω=

=
2'

0
σεε

ε

E
E

 

and Ω  is a positive definite matrix. 

 

In large sample, if 
T

XXp 'lim  and 
T

XXp Ω'lim  (T is the size of sample) are finite 

positive definite matrices, OLS estimator is consistent. However, the asymptotic 

covariance matrix is not ( ) 12 ' −XXσ . In general, if the regressors are sufficiently well 

behaved and off-diagonal terms in Ω  diminish sufficiently rapidly, the asymptotic 

covariance matrix of OLS estimator is given by  

( )
112 'lim'lim'lim.
−−

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ Ω

⎟
⎠
⎞

⎜
⎝
⎛=

T
XXp

T
XXp

T
XXp

T
VarAsy σβ       Equation 1 

Thus inferences based on ( ) 12 ' −XXσ  will be misleading and the familiar inferences 

procedures based on F- and t- distributions will no longer be appropriate.  

 

4.1 Robust Estimation of Asymptotic Covariance Matrices 

 

The estimator of the asymptotic covariance matrix is 
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 ( ) 121 '''1 −−
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However Ω2σ  is unknown. Denote 

 Ω=Σ 2σ  

Σ  has 2/)1( +KK  ( K is the number of parameters in β ) unknown elements in the 

matrix 

 ∑∑
==

∗ =
T

j
jiij

T

i
xx

T
pQp

11
'1limlim σ  

Since OLS estimator β~ is a consistent estimator of β , the OLS residuals te are point-

wise consistent estimators of their population counterparts tε . The general approach, 

then, will be to use X  and e to devise an estimator of ∗Q . 

  

Consider the heteroscedasticity case first. We seek an estimator of  

 ∑
=

∗ =
T

i
iii xx

T
Q

1

2 '1 σ  

White (1980) has shown that under very general conditions the estimator  

 ∑
=

=
T

i
iii xxe

T
S

1

2
0 '1

       Equation 2 

has  

 ∗= QpSp limlim 0  

Hence the White heteroscedasticity consistent estimator 

 ( ) ( ) ( ) 1

1

21 ''1'.. −

=

− ⎟
⎠

⎞
⎜
⎝

⎛
= ∑ XXxxe

T
XXTVarAsyEst tt

T

t
tβ    Equation 3 
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can be used to estimate the asymptotic covariance matrix of β~ . 

 

This result implies that without actually specifying the type of heteroscedasticity we can 

still make appropriate inferences based on the results of least squares. This is especially 

useful if we are unsure of the precise nature of the heteroscedasticity, which is probably 

case most of the time. 

 

The extension of White’s result to the more general case of autocorrelation is much more 

difficult. Newey and West (1987) have devised an estimator  of the form 

 ( )''1ˆ
11

0 tltlttlt

T

lt
tl

L

l

xxxxeew
T

SQ −−−
+==

∗ ++= ∑∑  

where  

( )1
1
+

=
L

wl  

The Newey-West autocorrelation consistent covariance estimator is simple and relatively 

easy to implement. However, in general, there is little theoretical guidance as to the 

choice of L . 

 

4.2 Test and Model the ARCH Effect 

 

To examine the ARCH effect in the ML residuals of our model, we conduct the following 

test: H0: ARCH(q) verses H1: ARCH(0). The LM test statistics is 2TR  which has a 

2χ distribution with degree of freedom equals to q. 2R  is the goodness of fit measure of 

the regression 
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 ⎥
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iti
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i
t ee αα  

where te  is the ML residual. The test statistics for ARCH(4)8 are given Table 4.1, which 

are highly significant in all cases. 

 

Since the ML residuals display ARCH(4) patterns, we estimated the following model 

 [ ]212
44

2
33

2
22

2
110 −−−− ++++= tttttt u εαεαεαεααε    

where  

 ( )1,0iidu d
t ⎯→⎯  
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   Equation 4 

The following estimation procedures are used (refer to Greene Ch12.) 

1. Regress the squared ML residuals on its four lagged values to give the first estimates 

of iα , denoted by ia , 4,...,1,0=i . 

2. Compute the conditional variances using 2
44

2
33

2
22

2
110

2ˆ −−−− ++++= ttttt aaaaa εεεεσ . 

Run the regression ⎟⎟
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8 The choice of ARCH(4) is based on observations of plots of ARCH of different lags, not based on formal 
tests, hence is a bit arbitrary and can be strengthened by imposing more formal tests. However, the main 
implications of the ARCH pattern on unit root tests should not be affected by incorporating longer lags.  
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3. The asymptotically efficient estimator of α  is given by da +=α̂ , where da,,α̂  are 

all 15×  vectors. and the ( ) ( )ZZVarAsy '2. =α , where 5: ×TZ  and 

[ ]2
4

2
3

2
2

2
11 −−−−= ttttt eeeez . 

 

The estimation results for the four time series are summarized in Table 4.2 to 4.5, which 

show that all the ARCH parameters are highly significant. The squared ML residuals and 

their predicted values using the estimates of ARCH(4) model are plotted in Figure 4.3 to 

4.6. These plots demonstrate that the estimated models capture the patterns of the ML 

residuals. 

 

4.3 Calculate the Standard Errors for Model Parameters 

 

The previous section shows that Equation 2 is a reasonable description of the processes of 

the ML residuals. Since the covariance is zero between tε  and it−ε  for all 1≥i  in this 

model, the ML exhibit heteroscedasticity but not autocorrelations. Hence we may use the 

White heteroscedasticity consistent estimator for the asymptotic variance of model 

parameters 

 ( ) ( ) ( ) 1

1

21 ''1'.. −

=

− ⎟
⎠

⎞
⎜
⎝

⎛
= ∑ XXxxe

T
XXTVarAsyEst tt

T

t
tβ     

Tables 4.6 to 4.9 display the standard errors for model parameters in each state and their 

associated t-ratios, using White’s estimator. 
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4.4 Bootstrapping 

 

In this section, we incorporate ARCH(4) pattern of the ML residuals into out 

bootstrapping procedure in generating the distribution of parameters and their associated 

t-ratios. 10,000 replications are used for each series. Only states one is considered as the 

probability of state one dominates throughout the sample period for each series.  

 

To examine the robustness of the bootstrapping exercise, we display table 4.10 to 4.17 

the distribution of parameters and their associated t-ratios not only for φ , the parameter 

of interest in terms of unit root testing, but also for all the other parameters. These tables 

show that, in general, the distributions of parameters are not strictly symmetric, but the 

skewness is not severe except fof the constant term. The t-test show that the null 

hypothesis of 0=β  can be rejected for all parameter estimates at 99% level. Given these 

results, we can confidently say that the null hypothesis of unit root is rejected at 99% 

significance level in favor of stationarity.  

 

5. Conclusions 

In this paper, we have applied the unit root test to examine the question whether or not 

the prices of interests contain speculative bubbles. This is done by comparing the 

properties of a price series with that of its associated rent series. Theoretically speaking, 

if price exhibit explosive behavior whereas rent does not, then one may infer that the 

price contains speculative bubbles. If both price and rent exhibit explosive behavior at the 

same time, then, the explosiveness in price is driven by fundamentals rather than 
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speculative bubbles. Since such tests are typically weak in power when there are 

structural breaks in the time series, we incorporate Markov-switching process to capture 

the possibility of structural change. 

 

Our estimation show that, all the four series considered are dominated by one state, that 

is, there is little evidence of regime switch in the structures of the data generating 

processes. As the ML residuals exhibit heteroscedasticity, we incorporate the non-

spherical disturbances in our bootstrapping which is used to generate critical values for 

our test statistics. The critical values used for tests are generated with 10,000 replications. 

The evidences of tests show no sign of speculative bubble in any of the two price series. 
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Appendix One: Tables 
 
Table 3.1. Lag Selection 

Seoul Housing Hong Kong Retail premise  

Price Rent Price Rent  

No. of lags 3 1 10 8 

Original T 210 266 

T after lag and 

difference 

206 208 255 257 

 
Table 3.2. State Transition Probabilities 

  
11p 9 12p  13p  21p  22p  23p  31p  32p  33p  

Price 0.85 0.11 0.04 0.67 0.23 0.10 0.57 0.28 0.15 

t-ratio 6.83 2.74 0.96 2.74 1.81 0.16 0.95 0.17 0.82 

Rent 0.95 0.05 0.00 0.92 0.08 0.00 0.89 0.10 0.01 

Hong 

Kong 

t-ratio 13.57 1.23 0.10 1.22 0.38 0.01 0.10 0.01 0.02 

Price 0.84 0.03 0.13 0.95 0.01 0.04 0.91 0.02 0.07 

t-ratio 8.36 0.69 2.65 0.73 0.05 0.03 2.61 0.07 0.40 

Rent 0.90 0.05 0.05 0.95 0.02 0.03 0.80 0.15 0.05 

Seoul 

t-ratio 10.20 1.09 1.15 1.28 0.09 0.02 0.97 0.20 0.22 

 

Table 3.3. Parameter Estimates of Price (HONG KONG) 

Model Parameters  

St=1 St=2 St=3  

DGP Parameters 

 Estimates se10 Estimates se Estimates se  Estimates se 

                                                 
9 ijp : probability of switch to state j at time 1+t  if the time t state is i . 
10 se: Standard Error 
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φ  -0.01 0.00 -0.01 0.01 -0.01 0.01 2σ  7.95 1.15 

1ψ  0.12 0.08 0.12 0.18 0.12 0.26 
1π  0.89 1.00 

2ψ  0.17 0.08 0.17 0.21 0.17 0.30 
2π  0.10 1.00 

3ψ  -0.03 0.08 -0.03 0.16 -0.03 0.23 
3π  0.01 1.00 

4ψ  0.19 0.08 0.19 0.20 0.19 0.29    

5ψ  0.19 0.10 0.19 0.12 0.19 0.18    

6ψ  -0.03 0.07 -0.03 0.32 -0.03 0.41    

7ψ  -0.03 0.13 -0.03 0.10 -0.03 0.15    

8ψ  0.21 0.08 0.21 0.20 0.21 0.28    

9ψ  -0.25 0.09 -0.25 0.15 -0.26 0.21    

10ψ  -0.05 0.08 -0.05 0.21 -0.05 0.29    

µ  0.74 0.22 0.73 1.10 0.73 2.34    

 
Table 3.4. Parameter Estimates of Rent (HONG KONG) 

Model Parameters 

St=1 St=2 St=3 

DGP Parameters  

Estimates se Estimates se Estimates se 

 

Estimates se 

φ  -0.02 0.00 -0.02 0.01 -0.02 0.04 2σ  5.71 1.82 

1ψ  -0.27 0.07 -0.27 0.19 -0.27 0.63 
1π  0.99 1.00 

2ψ  -0.09 0.07 -0.09 0.19 -0.09 0.63 
2π  0.01 1.00 

3ψ  0.07 0.07 0.07 0.22 0.07 0.73 
3π  0.00 1.00 

4ψ  0.02 0.07 0.02 0.19 0.02 0.64    

5ψ  -0.02 0.06 -0.02 0.32 -0.02 1.05    
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6ψ  0.06 0.07 0.07 0.22 0.07 0.73    

7ψ  0.19 0.07 0.19 0.23 0.19 0.77    

8ψ  -0.03 0.07 -0.03 0.16 -0.03 0.54    

µ  
1.23 0.16 1.25 2.12 1.26 9.46    

 
Table 3.5. Parameter Estimates of Price (SEOUL) 

Model Parameters 

St=1 St=2 St=3 

DGP Parameters  

Estimates se Estimates se Estimates se 

 

Estimates se 

φ  -0.005 0.00 -0.005 0.00 -0.005 0.00 2σ  1.29 0.24 

1ψ  0.48 0.07 0.48 0.25 0.48 0.14 
1π  0.85 1.0 

2ψ  0.20 0.07 0.20 0.28 0.20 0.16 
2π  0.03 1.0 

3ψ  -0.17 0.07 -0.17 0.28 -0.17 0.16 
3π  0.12 1.0 

µ  0.45 0.09 0.45 1.20 0.45 1.26    

 
Table 3.6. Parameter Estimates of Rent (SEOUL) 

Model Parameters 

St=1 St=2 St=3 

DGP Parameters  

Estimates se Estimates se Estimates se 

 

Estimates se 

φ  -0.02 0.00 -0.02 0.01 -0.02 0.01 2σ  1.29 0.43 

1ψ  0.50 0.08 0.50 0.13 0.50 0.14 
1π  0.90 1.00 

µ  2.12 0.12 2.12 1.54 2.12 1.51 
2π  0.05 1.00 

       
3π  0.05 1.00 

 

Table 4. 1 Test Statistic for ARCH(4) 
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HK price HK rent Seoul price Seoul rent 

5.002 20.015 4.916 7.604 

Note: the critical value for ( )42χ  is1.06 at 10% level, and 0.711 at 5% significance level. 

Table 4.2  ARCH Modeling of ML Residuals for Hong Kong Price 

 Parameter Standard Error T-Ratio 

0α  3.90 0.01 397.80 

1α  0.12 0.00 12084.07 

2α  0.24 0.00 24288.20 

3α  0.15 0.00 15004.31 

4α  0.03 0.00 2760.60 

 

Table 4.3 ARCH Modeling of ML Residuals for Hong Kong Rent                  

 Parameter Standard Error T-Ratio 

0α  0.86 0.01 88.89 

1α  0.19 0.00 8270.07 

2α  0.23 0.00 10259.14 

3α  0.10 0.00 4479.15 

4α  0.41 0.00 18019.22 

 

Table 4.4 ARCH Modeling of ML Residuals for Korea Price                                                                                              

 Parameter Standard Error T-Ratio 

0α  1.05 0.01 79.06 
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1α  0.13 0.00 261.66 

2α  0.07 0.00 142.12 

3α  0.10 0.00 211.94 

4α  0.03 0.00 63.93 

 

Table 4.5 ARCH Modeling of ML Residuals for Korea Price                                                                                                  

 Parameter Standard Error T-Ratio 

0α  2.18 0.01 193.73 

1α  0.29 0.00 5167.17 

2α  -0.06 0.00 -967.42 

3α  0.03 0.00 535.66 

4α  -0.04 0.00 -726.55 

 
Table 4.6 HK Price 

 St=1 St=2 St=3 

 Parameter SE T_ratio Parameter SE T_ratio Parameter SE T_ratio 

φ  -0.01 2.13 -0.01 -0.01 5.12 0.00 -0.01 8.19 0.00 

1ψ  0.12 2.79 0.04 0.12 6.71 0.02 0.12 10.75 0.01 

2ψ  0.17 2.55 0.07 0.17 6.13 0.03 0.17 9.82 0.02 

3ψ  -0.03 2.53 -0.01 -0.03 6.08 0.00 -0.03 9.73 0.00 

4ψ  0.19 2.51 0.08 0.19 6.03 0.03 0.19 9.64 0.02 

5ψ  0.19 2.67 0.07 0.19 6.42 0.03 0.19 10.28 0.02 
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6ψ  -0.03 2.95 -0.01 -0.03 7.08 0.00 -0.03 11.34 0.00 

7ψ  -0.03 3.00 -0.01 -0.03 7.23 0.00 -0.03 11.58 0.00 

8ψ  0.21 2.90 0.07 0.21 6.99 0.03 0.21 11.23 0.02 

9ψ  -0.25 3.42 -0.07 -0.25 8.24 -0.03 -0.26 13.24 -0.02 

10ψ  -0.05 3.49 -0.02 -0.05 8.36 -0.01 -0.05 13.34 0.00 

µ  0.74 164.61 0.00 0.73 395.67 0.00 0.73 633.53 0.00 

 

Table 4.7 HK Rent 

 St=1 St=2 St=3 

 Parameter SE T_ratio Parameter SE T_ratio Parameter SE T_ratio 

φ  -0.02 7.94 0.00 -0.02 35.39 0.00 -0.02 122.27 0.00 

1ψ  -0.27 5.24 -0.05 -0.27 23.37 -0.01 -0.27 80.75 0.00 

2ψ  -0.09 5.26 -0.02 -0.09 23.38 0.00 -0.09 80.75 0.00 

3ψ  0.07 5.27 0.01 0.07 23.41 0.00 0.07 80.84 0.00 

4ψ  0.02 5.40 0.00 0.02 24.19 0.00 0.02 83.69 0.00 

5ψ  -0.02 5.51 0.00 -0.02 24.64 0.00 -0.02 85.21 0.00 

6ψ  0.06 5.68 0.01 0.07 25.47 0.00 0.07 88.13 0.00 

7ψ  0.19 5.55 0.03 0.19 24.75 0.01 0.19 85.53 0.00 

8ψ  -0.03 5.10 -0.01 -0.03 22.72 0.00 -0.03 78.47 0.00 

µ  1.23 687.21 0.00 1.25 3065.22 0.00 1.26 10592.21 0.00 

 

Table 2.8 KR Price 
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 St=1 St=2 St=3 

 Parameter SE T_ratio Parameter SE T_ratio Parameter SE T_ratio 

φ  -0.01 8.89 0.00 0.00 236.56 0.00 0.00 63.70 0.00 

1ψ  0.48 67.56 0.01 0.48 1798.44 0.00 0.48 483.69 0.00 

2ψ  0.20 103.63 0.00 0.20 2761.09 0.00 0.20 741.23 0.00 

3ψ  -0.17 79.11 0.00 -0.17 2106.97 0.00 -0.17 566.00 0.00 

µ  0.45 111516.92 0.00 0.45 2966600.80 0.00 0.45 798625.30 0.00 

 

Table 4.9 KR rent 

 St=1 St=2 St=3 

 Parameter SE T_ratio Parameter SE T_ratio Parameter SE T_ratio 

φ  -0.02 57.62 0.00 -0.02 57.62 0.00 -0.02 57.62 0.00 

1ψ  0.50 13.24 0.04 0.50 13.24 0.04 0.50 13.24 0.04 

µ  2.12 570469.15 0.00 2.12 570469.15 0.00 2.12 570469.15 0.00 

 
Table 4.10 Parameters, HK Price         
    

    φ  1ψ  2ψ  3ψ  4ψ  5ψ  6ψ  7ψ  8ψ  9ψ  10ψ  µ  

Model estimates   -0.01 0.12 0.17 -0.03 0.19 0.19 -0.03 -0.03 0.21 -0.25 -0.05 0.74 

Minimum -0.02 -0.24 -0.19 -0.39 -0.14 -0.05 -0.32 -0.30 -0.06 -0.53 -0.31 -4015.29 

0.01 -0.01 -0.07 -0.03 -0.21 0.01 0.02 -0.19 -0.19 0.05 -0.39 -0.21 -919.97 

0.05 0.00 -0.02 0.03 -0.15 0.06 0.08 -0.15 -0.14 0.09 -0.35 -0.17 -415.07 

0.10 0.00 0.01 0.06 -0.12 0.09 0.10 -0.12 -0.12 0.12 -0.33 -0.14 -245.44 

0.45 0.00 0.10 0.15 -0.04 0.16 0.18 -0.04 -0.04 0.19 -0.25 -0.07 31.99 

Median 0.00 0.11 0.16 -0.03 0.17 0.19 -0.03 -0.03 0.20 -0.25 -0.06 57.98 

mean 0.00 0.11 0.16 -0.03 0.17 0.19 -0.04 -0.03 0.20 -0.25 -0.06 120.16 

Probability 

Less than  

an entry 

  

  

  

  

  0.55 0.00 0.12 0.17 -0.02 0.18 0.20 -0.03 -0.03 0.21 -0.24 -0.05 85.34 
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0.90 0.00 0.21 0.26 0.06 0.26 0.28 0.05 0.05 0.28 -0.16 0.02 570.28 

0.95 0.00 0.24 0.29 0.09 0.29 0.30 0.07 0.07 0.30 -0.14 0.04 832.13 

0.99 0.00 0.29 0.34 0.15 0.34 0.35 0.12 0.12 0.34 -0.09 0.09 1491.87 

  

  

  

  

  

Max 0.01 0.43 0.51 0.25 0.49 0.47 0.23 0.23 0.43 -0.02 0.18 3994.26 

 
Table 4.11  T-Ratio, HK Price 
    φ  1ψ  2ψ  3ψ  4ψ  5ψ  6ψ  7ψ  8ψ  9ψ  10ψ  µ  

estimates -0.005 0.043 0.066 -0.011 0.075 0.073 -0.010 -0.011 0.074 -0.074 -0.016 0.004 

Minimum -0.002 -0.001 -0.001 -0.027 0.000 0.000 -0.017 -0.023 0.000 -0.043 -0.016 0.000 

0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 

0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.55 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.99 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 

Probability 

Less than  

an entry 

  

  

  

  

  

  

  

  

  

  
Max 0.000 0.030 0.052 0.011 0.051 0.039 0.008 0.013 0.050 0.000 0.006 0.003 

Note: H0: β =0 rejected at conventional level for µψ &10...1, =ii  in favor of the right 

region ⎟
⎠
⎞

⎜
⎝
⎛ <> 0:10:1 ββ HorH , indicating the reliability of the exercise. 

 

Table 4.12 Parameters,  HK Rent 
    φ  1ψ  2ψ  3ψ  4ψ  5ψ  6ψ  7ψ  8ψ  µ  

Estimates   -0.02 -0.27 -0.09 0.07 0.02 -0.02 0.06 0.19 -0.03 1.23 

Minimum -0.05 -0.79 -0.65 -0.56 -0.93 -0.65 -0.35 -0.35 -0.68 -4136.64 

0.01 -0.01 -0.52 -0.38 -0.20 -0.28 -0.25 -0.18 -0.05 -0.25 -1044.21 

Probability 

Less than  

an entry 0.05 0.00 -0.44 -0.29 -0.11 -0.19 -0.18 -0.11 0.03 -0.18 -515.76 
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0.10 0.00 -0.40 -0.24 -0.07 -0.14 -0.14 -0.07 0.06 -0.15 -326.00 

0.45 0.00 -0.29 -0.12 0.04 -0.02 -0.04 0.03 0.16 -0.05 12.40 

Median 0.00 -0.27 -0.11 0.05 0.00 -0.03 0.04 0.17 -0.04 33.28 

mean 0.00 -0.27 -0.11 0.05 -0.01 -0.03 0.04 0.17 -0.04 93.30 

0.55 0.00 -0.26 -0.10 0.06 0.01 -0.02 0.05 0.18 -0.03 58.27 

0.90 0.00 -0.15 0.02 0.17 0.13 0.08 0.15 0.27 0.06 537.25 

0.95 0.00 -0.11 0.06 0.21 0.17 0.12 0.18 0.30 0.09 817.86 

0.99 0.01 -0.02 0.14 0.29 0.27 0.19 0.25 0.37 0.16 1644.23 

  

  

  

  

  

  

  

  

  

  

Max 0.02 0.18 0.65 0.69 0.79 0.40 0.48 0.59 0.41 7791.40 

 

Table 4.13 T-Ratio, HK Rent 
    φ  1ψ  2ψ  3ψ  4ψ  5ψ  6ψ  7ψ  8ψ  µ  

Estimates  -0.002 -0.051 -0.017 0.013 0.003 -0.003 0.011 0.035 -0.006 0.002 

Minimum -0.002 -0.031 -0.023 -0.006 -0.046 -0.049 -0.014 0.000 -0.011 0.000 

0.01 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.55 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

Probability 

Less than  

an entry 

  

  

  

  

  

  

  

  

  

  
Max 0.002 0.000 0.099 0.040 0.026 0.017 0.016 0.051 0.020 0.004 

Note: H0: β =0 rejected at conventional level for µψ &8...1, =ii  in favor of the right 

region ⎟
⎠
⎞

⎜
⎝
⎛ <> 0:10:1 ββ HorH , indicating the reliability of the exercise. 

  

Table 4.14 Parameters, KR Price 
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    φ  1ψ  2ψ  3ψ  µ  

Estimates   -4.6× 10-3 0.48 0.20 -0.17 0.45 

Minimum -0.01 0.57 0.16 -0.21 -0.28 

0.01 -0.01 0.51 0.23 -0.28 -27.99 

0.05 0.00 0.43 0.17 -0.23 -41.09 

0.10 0.00 0.60 0.08 -0.22 -3.33 

0.45 0.00 0.56 0.12 -0.06 30.16 

Median 0.00 0.50 0.15 -0.08 0.73 

mean 0.00 0.47 0.19 -0.17 57.93 

0.55 0.00 0.57 0.17 -0.22 120.93 

0.90 0.00 0.53 0.18 -0.20 60.85 

0.95 0.00 0.45 0.26 -0.15 -23.04 

0.99 0.00 0.34 0.33 -0.24 774.35 

Probability  
Less than  
an entry 
  
  
  
  
  

Max 0.01 0.58 0.18 -0.26 131.19 

 
Table 4.15 T-Ratio, KR Price 
    φ  1ψ  2ψ  3ψ  µ  

Estimates   -0.001 0.007 0.002 -0.002 4.1× 10-6 

Minimum -0.001 0.000 0.000 -0.024 -0.001 

0.01 0.000 0.000 0.000 -0.001 0.000 

0.05 0.000 0.000 0.000 0.000 0.000 

0.10 0.000 0.000 0.000 0.000 0.000 

0.45 0.000 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.000 0.000 0.000 

mean 0.000 0.000 0.000 0.000 0.000 

0.55 0.000 0.000 0.000 0.000 0.000 

0.90 0.000 0.000 0.000 0.000 0.000 

0.95 0.000 0.000 0.000 0.000 2× 10-7 

0.99 0.000 0.002 0.001 0.000 4.5× 10-6 

Probability 

Less than 

an entry 

  

  

  

Max 0.003 0.042 0.019 0.000 0.002 

Note: H0: β =0 rejected at conventional level for µψ &3...1, =ii  in favor of the right 

region ⎟
⎠
⎞

⎜
⎝
⎛ <> 0:10:1 ββ HorH .  
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Table 4.16 Parameters, KR Rent 
    φ  1ψ  µ  

Estimates   -0.021 0.503 2.125 

Minimum -0.002 0.143 -1212.315 

0.01 -0.001 0.291 -672.970 

0.05 -0.001 0.351 -388.897 

0.10 -0.001 0.383 -260.475 

0.45 0.000 0.474 -0.204 

Median 0.000 0.483 9.498 

mean 0.000 0.480 18.735 

0.55 0.000 0.492 24.547 

0.90 0.001 0.573 311.242 

0.95 0.001 0.595 440.566 

0.99 0.001 0.641 700.374 

Probability 

less than 

an entry 

  

  

  

  

  

Max 0.002 0.776 1522.573 

 

Table 4.17 T-Ratio, KR Rent  
    φ  1ψ  µ  

Estimates   -0.0004 0.0380 3.7× 10-6 

Minimum -0.0009 0.0000 0.0000 

0.01 0.0000 0.0000 0.0000 

0.05 0.0000 0.0000 0.0000 

0.10 0.0000 0.0000 0.0000 

0.45 0.0000 0.0000 0.0000 

Median 0.0000 0.0000 0.0000 

mean 0.0000 0.0000 0.0000 

0.55 0.0000 0.0000 0.0000 

0.90 0.0000 0.0000 0.0000 

0.95 0.0000 0.0004 1.7× 10-6 

Probability  

less than 

an entry 

0.99 0.0032 0.0089 0.0038 
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Note: H0: β =0 rejected at conventional level for µψ &1, =ii  in favor of the right 

region ( )0:1 >βH .  

 



  47   

Appendix Two: Figures 
 

Figure 3.2. State Probabilities of Price (HONG KONG) 
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Figure 3.3. State Probabilities of Rent (HONG KONG)
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Figure 3.4. State Probabilities of Price (SEOUL)
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Figure 3.5.  State Probabilities of Rent (SEOUL)
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Figure 4.1.  ML Estimation Residuals (HONG KONG)
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Figure 4.2.  ML Estimation Residuals (SEOUL)
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Figure 4.3 HK Price ARCH(4) 
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Figure 4.4HK Rent ARCH(4) 

Figure 4.5 KR Price ARCH (4) 
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Figure 4.6 KR Rent ARCH(4) 
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