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Abstract

Sub-sample estimates of dynamic general equilibrium models of the U.S. economy since
1959 suggest that monetary policy underwent structural breaks that moved the economy
from a determinate equilibrium to indeterminacy and back. Dating these structural breaks
in policy determinacy would facilitate an understanding of what caused monetary policy to
go off course and would provide more accurate parameter estimates with which to study the
welfare consequences of indeterminacy. We rely on methods from Sims (2002) and Lubik
and Schorfheide (2003) to solve the DSGE model in the presence of indeterminacy and apply
Chib’s (1998) change-point algorithm to a state-space representation of Woodford’s (2003)
linearized DSGE model. To make the model applicable to a long sample period, we add, in
addition to the structural breaks, a time-varying inflation target and interest rate smoothing
to the monetary policy equation. The resulting empirical model provides a robust represen-
tation of U.S. monetary policy regimes since 1959.

Keywords: State-Space model, change-point, regime switching, Kalman Filter, MCMC,
DSGE model, Indeterminacy, Metropolis-Hastings, Gibbs, Bayes



1 Introduction

Macroeconomic models that are linearized reduced forms of general-equilibrium optimizing

(DSGE) models with sticky prices are now widely considered to be ready for prime time—

in the sense that they can confront the data, yield sensible parameter estimates, and provide

useful policy analysis [Smets and Wouters (2002); McCallum and Nelson (1999)]. With specific

reference to monetary policy, two issues that estimated DSGE models have begun to address

are whether policy rules are indeterminate and whether monetary policy rules include interest

rate smoothing [Rotemberg and Woodford (2002); Lubik and Schorfheide (2004)]. The promise

of estimated DSGE models is that one can take the parameter estimates, plug them into the

underlying optimizing model, and perform welfare calculations. In this way, policymakers could

get a handle on the welfare implications of key features of monetary policy reaction functions,

such as the choice to smooth interest rates or steps to avoid policy indeterminacy.

Lubik and Schorfheide (2004) present a Bayesian estimation method for DSGE models that

evaluates the likelihood function under monetary policy indeterminacy. Without having struc-

tural breaks, however, one has to assume either determinacy or indeterminacy for the entire

sample period in question. For U.S. data from 1960-1979, Lubik and Schorfheide show that

the posterior odds ratio that is overwhelmingly in favor of monetary policy indeterminacy. For

the period 1983-1997, in contrast, the posterior odds ratio is greatly in favor of monetary pol-

icy determinacy. These ad hoc estimation periods strongly suggest that at least one structural

break took place in U.S. monetary policy between 1960 and 1990. Further consideration of U.S.

monetary policy—and stable long-term interest rates—from the 1950s through the early 1960s

would suggest that monetary policy might well have been determinate until at least the late

1960s. Thus, we apply a change-point model to an estimated DSGE model, in which two breaks

can occur: first from policy determinacy to indeterminacy and then back. Parameter estimates

that correspond with the sub-sample periods implied by the break points will provide the best

inferences of the welfare consequences of the form of monetary policy indeterminacy that took

place in the United States in the late 1970s. Another advantage of our change-point modelling

approach over ad hoc sub-sample estimation is that parameters that are not subject to the

structural breaks are estimated using all of the available data. In macroeconometrics, it is not

desirable to re-estimate deep macroeconomic parameters, such as the rate of time preference or

relative risk aversion, from scratch in sub-samples that delineate changes in monetary policy.
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2 Solving the DSGE Model

With the above interest rate representation and a time-varying target rate of inflation, we log-

linearize the New Keynesian monetary DSGE model from Woodford (2003) and express variables

as deviations from the steady state levels:

G̃DP t = EtG̃DP t+1 − τ(R̃t − Etπ̃t+1) + gt

π̃t = βEtπ̃t+1 + κ(G̃DP t − zt)

R̃t = ρRR̃t−1 +

+(1− ρR)[π̃Tt + ψ1(π̃t − π̃Tt ) + ψ2(G̃DP t − zt)] + εR,t

π̃Tt = ρππ̃
T
t−1 + επ,t (1)

where z is a technology shock, g is a demand shock, εR is a monetary policy shock, and νt is an

inflation target shock. Note that in the linearized model certainty equivalence holds, so we can

add the additional linear shock process for the inflation target, or introduce other changes in

the monetary policy equation, without disturbing the basic structure of the reduced form of the

model. The first 2 equations in our model emerge from the GE theory, and the third equation

takes the form of a Taylor rule with interest rate smoothing.

In canonical econometric form, the above LRE model can be re-written as:

yt = A+Bst (2)

Γ0st = Γ1st−1 + Ψεt + Πηt, (3)

where the vector of rational expectations forecast error

ηt = [G̃DP t − Et−1G̃DP t, π̃t − Et−1π̃t]′

We solve the resulting linear rational expectations model using the time-series techniques in-

troduced by Sims (2002) and later improved upon by Lubik and Schorfheide (2003) and (2004)

dubbed LS(03) and LS(04) for convenience in what follows. Essentially the econometric problem

that they are addressing is closely related to the common-sense perception of the proliferation

of the impact that the interest rate rules have on the economy. The fact that the forecast errors

might be influenced not only by the structural shocks in the economy (determinacy) but also by

sunspot fluctuations (indeterminacy) amounts to a simultaneous equations setting and precludes
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direct estimation of the model. In order to proceed with estimation, an econometrician (even

without any regard for macroeconomic implications) must find a way to express ηt as a function

of εt. Sims (2002) provided precise necessary and sufficient conditions to distinguish between 3

possible cases, depending on the parameters in the transition equation: a) such a function might

be a deterministic one-to-one map, which would correspond to determinacy; b) there might be

multiple solutions (indeterminacy), in which case LS(03) and LS(04) suggest a simple (linear)

model for ηt which would uniquely determine it as a function of both structural shocks εt and

one sunspot shock for the case of one-degree indeterminacy; c) no solution.

In this paper, we will fit Woodford’s 3-equation DSGE model enriched with time-varying

inflation target and smoothing in monetary policy, while allowing for 1 or 2-degree indeterminacy

for the sample period between 1959 and 2004. In solving the above LRE model, following Sims

(2002), we used Generalized Schur (QZ) decomposition of (Γ0,Γ1) to avoid possible problems

with inverting Γ0, and used the column space spanning conditions to rule out the “no solution”

parameter configurations, and then applied Singular Value Decomposition to the matrix formed

using the rows corresponding to unstable eigenvalues resulting from Schur Decomposition1. The

resulting canonical multidimensional linear Gaussian state-space model has the following form:

yt = A+Bst (4)

st = Γ∗
1st−1 + Γ∗

2εt (5)

where the measurement equation can be re-written in greater detail:


G̃DP t

πt

Rt

 =


0

π∗

R∗ + π∗

 +


1 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0





G̃DP t

π̃t

R̃t

π̃Tt

Et[GDPt+1]

Et[πt+1]

gt

zt



(6)

The output measure does not require removal of a mean because we use Hodrick-Prescott filtered
1see Sims (2002) or LS(04) for details
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GDP data, which is mean-zero by construction. Matrix A and transition equation matrices Γ∗
1,Γ

∗
2

are respectively 2x1, 8x8, and 8x4 convoluted functions of the original LRE model’s parameters

Θ = {τ, β, k, ψ1, ψ2, ρπ, ρR, ρg, ρz, π
∗, r∗}.

In case of determinacy, εt is a 4x1 vector of fundamental exogenous shocks:

εt =



εR∗,t

εg,t

εz,t

επ∗,t


∼ N(0,Ω), where Ω =



σ2
εR

0 0 0

0 σ2
εg

ρgzσεzσεg 0

0 ρgzσεzσεg σ2
εz

0

0 0 0 σ2
επ∗


In case of 1- or 2-degree indeterminacy, we will assume that ηt could be expressed as a linear

combination of the 4-dimensional exogenous shock and one-dimensional sunspot shock2. Then,

εt is a 5x1 vector of fundamentals and the sunspot shock, which is orthogonal by assumption:

εt =



εR∗,t

εg,t

εz,t

επ∗,t

ζ1,t


∼ N(0,ΩInd), where ΩInd =



σ2
εR

0 0 0 0

0 σ2
εg

ρgzσεzσεg 0 0

0 ρgzσεzσεg σ2
εz

0 0

0 0 0 σ2
επ∗

0

0 0 0 0 σ2
ζ1


Our quarterly data Yn is given by 3x1 vector yt, where t = 1959Q2, ..., 2004Q3. Note that

the first element of the state vector st is actually an observed data point3. The remaining 7

elements are latent, although the second and the third elements are latent only up-to π∗ and R∗

parameter values. The first three elements of s correspond to H-P filtered GDP, the deviation

from steady-state quarterly PCE inflation, and the deviation of the average quarterly funds rate

from its steady state level.
2We could easily allow for 2- or higher-dimensional vector of sunspot shocks, but we would expect to get poor

identification of high-dimensional sunspot shocks given such relatively short data series for the period attributed
to indeterminacy

3Kalman Filter can still be used for a linear Gaussian state-space model even if some elements of the state
vector are observed (see Harvey p.109). In that case, Kalman filter will produce an updated forecast of the state
vector with observed elements exactly matching the data and zeros in the rows and columns corresponding to
such elements in the covariance matrix.
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3 Structural Breaks

So far we have presented a fully consistent GE-based model that leads to a likelihood function

of the data that depends on the constant determinacy state of the economy dt = d (∀t = 1, ...n).

However, in reality US economy was subject to several structural breaks in the past. In order

to account for these regime changes, let’s assume that our sample starts with determinacy D1:

d0 = 1, but then, at some time point t1 there is one structural break to indeterminacy Ind:

dt1 = 2, and then at time t2 there is a second break to a new determinacy D2: dt2 = 3.

As discussed above, because certainty equivalence holds in our model, neither I-S nor Phillips

curve equations, derived as log-linearizations of (respectively) the consumer utility and firm

profit maximization conditions, coupled with market clearing, are effected by the introduction

of structural breaks - optimization conditions are still the same. The only change across the

states occurs to the parameters (not the form) of the policy rule equation.

Define these regime-driving parameters as (ψ(1)
1 , ψ

(1)
2 ), (ψ(2)

1 , ψ
(2)
2 ), (ψ(3)

1 , ψ
(3)
2 ) resulting in Θ(i) =

Θ\{ψ1,ψ2}
⋃
{ψ(i)

1 , ψ
((i)
2 }, i = 1, 2, 3. Also, as discussed above, indeterminacy regime has a ”big-

ger” error covariance matrix Ω(2) = ΩInd, while Ω(1) = Ω(3) = Ω.

It is important to mention that indeterminacy in our model could be 1 or 2-dimensional4,

depending on the parameter vector Θ(2) from the indeterminacy region, leading to a particular

form of the likelihood function for that region. Essentially, there are only 3 states in our model,

but the second state could produce two different forms of the likelihood function. Given Ind, one

can think of the likelihood consisting of two distinct pieces corresponding to two possible degrees

of indeterminacy, which will be constructed using the logic similar to LS(04) by introducing

indicator functions for parameter vector lying in 1 or 2-degree indeterminacy region.

From GE prospective, at each time point there is uncertainty about the state of the economy

driven by an exogenous to our model mechanism (transition from ψ
(i)
j to ψ

(i+1)
j , i, j = 1, 2)

controlling the Federal Monetary Policy, which is in turn a part of our model. We do not

attempt to model that transition mechanism in this paper. Instead, we take it as a given

exogenous event that creates structural breaks in our economy at some two random time points

t1 and t2 by changing the parameters of monetary policy rule. Conditional on such exogenous

structural break occurring, we are back to the full GE paradigm. Timing of the structural breaks
4The maximum degree of indeterminacy in our model with two expectational errors is 2. An alternative would

be to follow LS(04) restricting the indeterminacy to be only one-dimensional, which is by no means a required
condition for our model.
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is the main focus of our paper. Namely, we attempt to deduce the probability of a structural

break occurring at each point in the past conditional on the observed data.

4 Estimation of the State-Space Model with Structural Breaks

The state-space model with structural breaks estimated in this paper has the following form

yt = A+Bst (7)

st = Γ∗
1(dt)st−1 + Γ∗

2(dt)εt (8)

where Γ∗
1(dt) and Γ∗

2(dt) are determined according to the dynamics of the economy in the deter-

minacy state dt at each time t.

The prevalent estimation approach for the above model in the past was to draw from the joint

posterior π(Θ,Ω, t1, t2|Yn) using the following blocking scheme:

1. π(Θ,Ω|Yn, t1, t2)

2. π(t1, t2|Θ,Ω, Yn) = π(t1|Θ,Ω, Yn)π(t2|Θ,Ω, Yn, t1).

However, in our paper we will follow a modern ”multiple change-point” estimation approach

originally introduced in Chib (1996) and further generalized in Chib (1998). The centerpiece of

this method is a transformation in terms of a latent discrete state variable that indicates the

regime from which a particular observation has been drawn. In other words, instead of using

a single-move sampler to draw times t1 and t2 at which the structural break occurred, we will

draw states Dn = {dt ∈ {1, 2, 3}}nt=1 in a multi-move sampler, which is by far more efficient

than a single-move, because it groups highly correlated elements of a Markov Chain in one block

drastically reducing autocorrelation of the draws.

Following Chib (1998), we construct Markov state transition probability matrix5

P =


p11 p12 0

0 p22 p23

0 0 1

 (9)

with the joint prior of its elements given by
5where pij = Pr(dt = j|dt−1 = i)
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π(P ) ∝
∏2
i=1 p

(a−1)
ii (1− pii)(b−1),

where a� b are selected to result in reasonable prior moments.

Our objective is to draw from the posterior π(Θ,Ω, P,Dn|Yn) which can be accomplished by

simulating the following full conditional distributions:

1. π(Θ,Ω, P, Sn|Dn, Yn) = π(P |Dn)π(Θ,Ω|Yn, Dn, P )π(Sn|Θ,Ω, P,Dn, Yn)

2. p(Dn|Yn,Θ,Ω, P, Sn) =
∏n−1
t=1 p(dt|Yn, Dt+1,Θ,Ω, P, Sn),

where we adapt the notation similar to Chib (1998): Dt = (d1, ..., dt), Dt+1 = (dt+1, ..., dn), Sn =

(s1, ..., sn), Yt = (y1, ..., yt) and use p(·) to denote a discrete mass function, while π(·) denotes a

density function of some random variable with one or more continuous components. To avoid

ambiguity we would like to emphasize the difference between the latent state of determinacy dt

and the latent state variable st from the state-space model in equation 4.

4.1 Parameter sampler

The first block is sampled using method of composition in three parts.

First, let nii be the number of one-state transitions from state i to state i (i.e. staying put).

Then, a Bernoulli likelihood p(Dn|pii) multiplied by the Beta prior π(pii) given above results in

pii|Dn ∼ Beta(a+ nii, b+ 1), i = 1, 2.

Second, for convenience of notation, let t0 = 0, t1 and t2 be the time points of the first and

second structural breaks respectively, and t3 = n. As discussed above, the likelihood function

will differ across states, although it will still be multivariate normal. Let f (i) denote Gaussian

density function given state i. Then, the density π(Θ,Ω|Yn, Dn, P ) could be sampled using the

usual Kalman Filter recursion formula:

π(Θ,Ω|Yn, Dn, P ) ∝ f(Yn|Θ,Ω, Dn)π(Θ,Ω|Dn) = (10)
3∏
i=1

ti∏
t=ti−1+1

f (i)(yt|Yt−1,Θ(i),Ω(i), Dn)π(Θ,Ω|Dn) (11)
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where

f (i)(yt|Yt−1,Θ(i),Ω(i), Dn) = N(yt|A+Bs
(i)
t|t−1, f

(i)
t|t−1) (12)

such that the log-likelihood term is proportional to:

log(f(Yn|Θ,Ω, Dn)) ∝ −
3∑
i=1

ti∑
t=ti−1+1

[log((det(f (i)
t|t−1))

+ (yt −A−Bs
(i)
t|t−1)

′(f (i)
t|t−1)

−1(yt −A−Bs
(i)
t|t−1)]

where, suppressing the (i) superscript for transparency, the details of Kalman filter updates are

as follows:

1) state forecast mean st|t−1 = Γ∗
1st−1|t−1

2) state forecast variance Pt|t−1 = Γ∗
1Pt−1|t−1(Γ∗

1)
′ + Γ∗

2Ω(Γ∗
2)

′

3) data forecast variance ft|t−1 = BPt|t−1B
′ + 0

4) Kalman gain Kt = Pt|t−1B
′f−1
t|t−1

5) update state mean st|t = st|t−1 +Kt(yt −A−Bst|t−1)

6) update state variance Pt|t = (I −KtB)Pt|t−1

The above equations require an initialization of st=0|t=0 and Pt=0|t=0. We set all elements of

st=0|t=0 to equal 0 in order to ensure that the linear combination of the state variables associated

with unstable roots of the LRE system is zero6.

The density π(Θ,Ω|Yn, Dn, P ) found in equation 10 serves as a target density for Tailored7

Metropolis-Hastings (MH) algorithm originally proposed by Chib and Greenberg (1994).

Third, sampling of Sn|Θ,Ω, P,Dn, Yn is straightforward, because conditional on Dn, we

are faced with a simple linear Gaussian state-space model with time-varying coefficients. The

standard approach is to draw Sn using one-period smoothing, which amounts to adding two

more steps to the Kalman filter procedure above:

7) Mt = Pt|t(Γ∗
1)

′(Pt+1|t)−1

8) Pt|t+1 = Pt|t −MtPt+1|t(Mt)′

and then sampling the states backwards starting with

sn ∼ N(sn|n, Pn|n)

6see LS(03)
7see Chib (2001) for discussion of various MH algorithms and their tuning
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followed by (∀t = n− 1, ...1)

st ∼ N(st|t+1, Pt|t+1), where st|t+1 = st|t +Mt(st+1 − Γ∗
1st|t).

4.2 Determinacy state sampler

One important observation to make about our SSM in equation (7) is that determinacy state dt

only appears in the transition equation, which means that yt is independent of dt given st and

Θ. Therefore, we have:

p(Dn|Yn,Θ,Ω, P, Sn) = p(Dn|Sn,Θ,Ω, P ) =
∏n−1
t=1 p(dt|Sn, Dt+1,Θ,Ω, P )

Effectively, for the purposes of sampling determinacy states Dn, the latent variables Sn have

entirely replaced the actual data Yn, thereby reducing this block to the linear regression model

with multiple change-points. Following Chib (1998), we use method of composition to sample

Dn|Sn,Θ,Ω, P by drawing dt backwards from time t = n− 1 conditional on Dt+1. Chib (1996)

has shown that

p(dt|Sn, Dt+1,Θ,Ω, P ) ∝ p(dt|St,Θ,Ω, P )p(dt+1|dt, P ),

where p(dt+1|dt, P ) = pdtdt+1

Starting with t = 1, Chib (1998) utilizes a recursive forward calculation to find the mass function

p(dt|St,Θ,Ω, P ) (∀t = 1, ..., n) by recursively transforming p(dt−1|St−1,Θ,Ω, P ) through:

p(dt = k|St,Θ,Ω, P ) =
p(dt = k|St−1,Θ,Ω, P )f(st|St−1,Θ(k),Ω(k))∑m
l=1 p(dt = l|St−1,Θ,Ω, P )f(st|St−1,Θ(l),Ω(l))

where p(dt = k|St−1,Θ,Ω, P ) =
∑k

l=k−1 plk × p(dt−1 = l|St−1,Θ,Ω, P )

and f(st|St−1,Θ(l),Ω(l)) = N(Γ∗
1(dt = l)st−1,Γ∗

2(dt = l)Ω(l)(Γ∗
2(dt = l))′)

5 Estimation Results

6 Conclusion
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