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Abstract

Fully specified DSGE models are increasingly successful in explaining
observed macroeconomic data. Thinking about the specification of &ncerta
equation in a DSGE approach has the drawback of imposing many implicit
priors on the specification of the remaining equations. Mis-specifications
in one block can have effects on the structural parameter estimates of the
remaining equations. One resort from this problem is to use a VAR as an
auxiliary model and to impose the structural equations stepwise on the unre-
stricted VAR. In a linear framework, we can interpret the unrestricte@-equ
tions as an approximation of the solution process of the structural model.
Once the model contains unobservable variables the solution process doe
not have a finite VAR representation anymore and the VAR approximation to
the solution process is misspecified. The method of indirect inference allows
to correct for mis-specification in the auxiliary model. The approach is illus-
trated with the example of the basic New Keynesian Phillips Curve and an
extended version containing unobservable variables. In a Monte Garlo e
ercise the estimation properties of Kalman filter based maximum likelihood
and indirect inference are evaluated for both models.
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1 Introduction

The methods and the modelling approach from the Real Busineds (@grature
in combination with various forms of rigidities in the New Yeesian tradition
provide a successful strategy for macroeconomic modelrygamic Stochastic
General Equilibrium (DSGE) models, with rich specificaaas in Christiano,
Eichenbaum, and Evans (2001) and Smets and Wouters (2093pb to pro-
vide a good fit to macroeconomic data. However, there is mest tonsensus
on the preferred method to bring the models to the data. Mdbeavailable es-
timation procedures remain problematic. Due to varioustifleation problems
and the focus on selected moments only limited informati@thmds seem less
suitable for the estimation of DSGE models. With increasimgension of the pa-
rameter space direct full information methods suffer fromitple local optima
in the likelihood and small sample problems in typical macanomic applica-
tions. The actual implementation of the estimation procedisually includes
various priors on the size of the structural parameterssédlpeiors occur either
in the implicit form of starting values in the classical esition procedure or as
modelled priors in a Bayesian approach (Schorfheide (2000 simultaneous
interdependence between the estimation results on diffeguations is intrinsic
to the full information method. A misguided prior on one paeder can have
an influence on the estimation result for another paramé&trthermore model
misspecification in one block of the model can have an effadhe estimation
results for other blocks. Especially in situations whereréssearcher is interested
in a certain specification embedded into a larger model, théeinand parameter
priors affect the estimation results for the specificatibmterest.

This paper works with an approach aiming to estimate theifspestioon of
interest in an otherwise unrestricted system. We use thewaatoregressive rep-
resentation of the solution process of (a class of) ratierpectation models to
build a hybrid model. This hybrid model consists of somedtral and some
reduced form equations. Using the corresponding equatibas estimated VAR
as an approximation of the solution process the method affowstimate a subset
of structural parameters in a full information setting waitit having to estimate all
structural parameters jointly.

From a statistical point of view it is fair to say that the fu#itructural model as
a description of the underlying data generating processlsef at least in some
respects. Nevertheless the full model is needed to estiswete parameters of
interest. In order to avoid misspecification from the pathefmodel that is not in
the central interest of the research these equations dexeelby an instrumental



or auxiliary model. The problematic structural model isr{jadly) replaced by an
auxiliary model which is easier to estimate. Gourieroux,nféot, and Renault
(1993) analyze indirect inference on a structural modelaniaauxiliary model.
Complementary to their approach in this paper the methoddifdat inference
is used to estimate the equations of the model in a stepwiseg@ure. While the
partial approach has the merit of reducing the cross-eguatifect of misspeci-
fication the method of indirect inference allows to corrextrhisspecification in
the auxiliary model. This approach is related to the work bidi) Guay, and
Renault (2003) and Dridi and Renault (2000) formalizing thidocation method
of Cechetti, Lam, and Mark (1993). The basic idea of their apph is to divide
the set of parameters into deep parameters that are ofshterde researcher and
nuisance parameter needed only to be able to estimate tlutusal parameters.
They start that from the assumption that "the model is fabsad try to extract
some elements of truth (deep parameters) from the false Imddee auxiliary
model is then used to examine the nuisance parameterseligestimation of
the structural parameters.

A comparison of the small sample properties in a partial @@ghm of indirect
inference and maximum likelihood sheds some light on thatikel advantages
of the indirect inference in this setting. There is a brantiterature on the
estimation properties of indirect inference in comparigoth other estimation
techniques. Michaelides and Ng (2000) use a rational eapentmodel with
speculative storage as a benchmark to compare the simutetidd of moments
(SMM by Duffie and Singleton (1993)), with Efficient Methodidbments (EMM
by Gallant and Tauchen (1996)) and Indirect Inference byr{eoaux, Monfort,
and Renault (1993)). Ruge-Murcia (2003) compares the estimptoperties of
different techniques using a one sector Real Business cyaelmath indivisible
labor as in Hansen (1985). He includes maximum likelihood tlassical (Ire-
land (2003b)) and in a Bayesian interpretation (Chang, Goares Schorfheide
(2002)) as well as simulated methods of moments, genedatizethod of mo-
ments (GMM) and Indirect Inference into the comparison. Batimparisons are
explicitly focused on the estimation properties in a smgdtem.

The proposed method of partial estimation is applicablangdr models. The
estimation of larger systems with a higher number of stmatfparameters is less
troublesome if the estimation can be performed equatiombggon without leav-
ing the full information setting.

Section 2 gives an overview on the chosen partial estimatpproach, fol-
lowed by a short excursion on a statistical example. In sectithe framework
of the partial estimation strategy for structural modelsitsoduced, describing
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the relation between structural model, solution procesistia@ hybrid combining

structural and solution process equations. Section 5ssthteused estimators.
The economic model used is described in section 6, sectiepatts the results
from a Monte Carlo exercise on the properties of the two estirmapplied to the

economic model. Finally section 8 concludes.

2 The Estimation Strategy

Various methods and approaches are used to evaluate toerpanice of macroe-
conomic models with rational expectations.

A first class of evaluation strategies works with a well dediset of moments a
successful model has to match. Prominent examples of thieaph can be found
in real business cycle literature such as King, PlosserRaeizklo (1988), where
basic correlations and cross-correlations are chosereasdiments to match. In
another branch of applications theoretical moments arergésd to estimate the
model by GMM (Clarida, Gali, and Gertler (1998)). Focusingtba dynamic
responses of the model to different shocks Christiano, Bichem, and Evans
(2001) estimate the model parameters using the corresppimdpulse response
functions as the moments to match. The definition of key masi@match is an
indispensable tool to construct empirically successfutlet® To test and evalu-
ate the stochastic process implied by the structural moaleeter it is necessary
to switch to full information methods.

Maximum likelihood based full information methods haveawrity been used
to estimate rational expectation models in a classicallémie (2003a) and Kim
(2000)) or in Bayesian interpretation (Schorfheide (2000$mets and Wouters
(2002)). Using a Kalman filter based calculation of the likebd functions these
approaches are able to estimate models containing unatervariables. The
main merit as well as mayor difficulty in the full informati@stimation of struc-
tural model lies in the formulation of a full stochastic pess for all involved
variables. Small changes in the assumed nature of the yimdgshock processes
can have a considerable impact on the structural estimeggarits. In addition to
the uncertainty attached to the model specification thecehaii starting values in
the numerical estimation procedure or the choice of prioeshayesian approach
have an impact on the estimation results. The high dimensigrarameters to
estimate makes it very hard to distinguish local from glajatima.

Another branch in macroeconometrics uses an auxiliary mmdevaluate
theoretical models. The predominance of vector autoregmnes (VAR) in the



representation of the unrestricted version of the datargéing process is mir-
rored in its manyfold applications One way to combine the full information
approach with the VAR approach is offered by Fuhrer, Moong, &chuh (1995)
and Fuhrer (2000). This approach is related to the earliema expectation lit-
erature in macroeconomics where it is common practice taltesmplication of
economic models by a likelihood ratio test of restricted noestricted model. If
restrictions are imposed on one or more equations of thewibe unrestricted
model the common interpretation for the unrestricted aqoas to represent the
information set on which expectations are formed. Fuhré®Q2 starts with es-
timating a VAR as an approximation to the data generatinggs®e. In a second
step he imposes the structural representation of a halmitafiton consumption
equation onto the VAR and estimates the correspondingtatalparameters by
maximume-likelihood.

In a linear framework however, we can interpret the unretgtti equations as an
approximation to the solution process of the structural @ho@his interpretation
allows to estimate a structural model by imposing the moefgtictions block- or
eguationwise on an unrestricted VAR.

More complex models involving unobservable variables doearrelated struc-
tural shocks do not have a finite VAR representation in theeoladble variables
in general. Using a finite VAR as an approximation to the nonletled equation
results in a misspecification possibly affecting the estiomeresults for the struc-
tural parameters. The approach of indirect inference @oouwix, Monfort, and
Renault (1993) provides a method to base estimation on agetsied) auxiliary
model.

To analyze the estimation properties of Indirect Infereinca partial estima-
tion approach to structural models the following steps hauge taken.

First it must be shown that the principle of indirect infecercan be extended
to a situation where the auxiliary model is also used to ayiprate a part of the
true data generating process directly. In Section 3 thegrtigs of indirect in-
ference in a partial approach are investigated in a Monteodaxercise using a
purely statistical example. Second it must be shown thatapproach is applica-
ble to the estimation of structural economic models. Sactioelates the partial
approach to the estimation of structural economic modeladiyg the straight-
forward relation between the structural form and its solufprocess. With this
relation it is possible to build hybrid models consistingsoime structural equa-
tions and some solution process equation with the propleatytihe hybrid models

IChristiano, Eichenbaum, and Evans (2001); Rotemberg aratii/ad (1998)



have the same solution process as the fully structural model

This equivalence of the solution process of structural rhade hybrid model
allows for a partial estimation strategy, where the sotuppoocess equations are
approximated by an unrestricted VAR.

3 Partial Indirect Inference on a Statistical Model

Before we turn to the estimation of a structural economic rhode analyze the
properties of the partial approach in a statistical expentmvhich is related to the
estimation of DSGE models. Once the economic model contamoebservable
variables and or autocorrelated shocks the reduced forineo$tructural model
does not have a finite VAR representation in observable bi@saanymore. In fact
the reduced form of the model has a VARMA representation wtierenoving
average terms capture the dynamics of the unobservabbblesi

We assume that the data generating process is given by a VARMIehand
try to estimate this model using a VAR as auxiliary model i itidirect inference
approach. This situation is comparable to the situationstifreating a model
containing unobservable variables using a VAR as auxilaogel.

For the statistical experiment we assume that the data g@mgprocess is
given by the following VARMA representation:

Y = Ayt Ay, e (1)

where the error terms are autocorrelated according to

e = w+Mu+---+ Mu,, (2)

Instead of a direct estimation of the VARMA model we can useniathod
of Indirect Inference. In a first step an auxiliary model witarameter$3; is
estimated. The auxiliary model is required to give a gooadetson of the statis-
tic properties of the underlying DGP but need not be well Bget A VAR is
misspecified for a VARMA DGP but the inclusion of a sufficientmoer of lags
will provide a good fit to the data. Formally this procedurdirmkes abinding
function (Gourieroux and Monfort (1992)) from the structural onte twuxiliary
parameters.



b(DGP) : 0 — b(DGP,0) = ©)

If the binding function was non and one-to-one we could eg#ithe structural
parameters from the inversion of the binding function. 8ittds is generally not
the case we have to rely on simulations. Therefore in a sest@pdthe VARMA
model is simulated and the auxiliary parametég& are estimated on the simu-
lated data.

The vector of structural paramete®) (s determined by minimizing the dis-
tance between both auxiliary parameters.

0 = arg mgn[BT - BST(0>],Q[BT - BST(O)] (4)

wheres2 is the optimal weighting matrix

With the same logic we can estimate a subset of structurahpaters in the
partial approach. Assume that the researcher is interastbeé VARMA speci-
fication of the second equation only. The estimated auyilmodel can then be
used to approximate the first equation. With this approxiomasome structural
parameters are replaced by a combination of auxiliary parars. This implies
that the respective parameters in the binding function agpad onto themselves.

Table 1 gives the results for different specifications of aRVAs auxiliary
model from the following Monte Carlo exercise. The data gatieg process is
given by a two variable VARMA(1,1) model. We estimate a VAR wtifferent
lag lengths and replace the first equation of the VARMA by theresponding
equation from the auxiliary VAR. Using the method of indirederence we re-
trieve the VARMA parameters of the second equation. We retesitexercise
using maximum likelihood directly on the hybrid model.

The most important result can be seen in the property thamisen of the
simulation exercise converges to the true value for all ppatars in the indirect
inference approach. The moving average term is slightlyetestimated for a
medium sample size using a VAR(3) as auxiliary model. This Badue to the
fact that the VAR(3) does not capture the full degree of autetation present in
the data. The partial approach in a maximum likelihoodsgiproduces unbiased

2Sections?? and?? give a more detailed description of the method of indirefetrience. Com-
pare also Gourieroux, Monfort, and Renault (1993) for tharegion properties of indirect infer-
ence in a related univariate exercise.



Table 1: Misspecification in large samples: VARMA with VAR asxdiary
model, samplesize=950, 400 path simulations

A(2,1)=06 A(2,2)=03 M(2,2)=0.9

M.L. Ind.Inf. M.L. Ind.Inf. M.L. Ind.Inf.
mean 0.601 0.600 0.294 0.300 0.924 0.886
VAR(2)* std.dev. 0.025 0.034 0.026 0.032 0.064 0.061
RMSE 0.025 0.038 0.026 0.032 0.068 0.062
mean 0.598 0.599 0.299 0.304 0.923 0.890
VAR(3) std.dev. 0.024 0.071 0.026 0.053 0.061 0.075
RMSE 0.024 0.071 0.026 0.053 0.065 0.075
mean 0.600 0.604 0.293 0.314 0.925 0.904
VAR(4) std.dev. 0.024 0.045 0.027 0.042 0.064 0.095
RMSE 0.023 0.045 0.028 0.044 0.069 0.095

Notes. The bivariate DGP is given by, = Ay, 1 + u; + Mwu,;_; where a VAR
with various lag lengths is chosen as the auxiliary modele fitst equation is
approximated by the corresponding auxiliary model equatiote thatV/ (2, 1) =
M(1,2) = 0.

estimates for all autoregressive parameters. The movieigge term seems to be
bias upwards. Taken a closer look at the density functiorguré 1 we can see
that there is a high density dﬁ(Q, 2) around 1.2

Looking at the standard deviations and the root mean sqeared RMSE) maxi-
mum likelihood is outperforming the indirect inference eggch. The differences
between maximum likelihood and indirect inference are &mafor the mov-
ing average term in the large sample using a VAR(3) as auxihiaodel. The
increased RMSE of the point estimates from indirect infeeecmmes from the
additional variance in the weighting matrix.

4  Structural form and solution process

The intuition for the approach is straightforward: the nedi estimation proce-
dures is based on a possibly misspecified model which givesadescription of

3Note that this problem is also present in direct maximuniiliked estimation of the VARMA
model. The partial approach reduces this undesired effecam be seen from table 3.



Table 2: Misspecification in medium samples: VARMA with VAR asxiliary
model, samplesize=150, 400 path simulations

A(2,1)=06 A(2,2)=03 M(2,2)=0.9

M.L. Ind.Inf. M.L. Ind.Inf. M.L. Ind.Inf.
mean 0.592 0.593 0.290 0.300 0.940 0.854
VAR(2)* std.dev. 0.064 0.084 0.065 0.078 0.085 0.158
RMSE 0.065 0.085 0.065 0.078 0.094 0.164
mean 0.597 0.595 0.288 0.301 0.947 0.872
VAR(3) std.dev. 0.065 0.125 0.067 0.108 0.088 0.143
RMSE 0.065 0.124 0.067 0.108 0.098 0.145
mean 0.590 0.595 0.289 0.306 0.947 0.901
VAR(4) std.dev. 0.067 0.104 0.064 0.094 0.090 0.148
RMSE 0.067 0.104 0.063 0.094 0.100 0.148

Notes. The bivariate DGP is given by, = Ay, 1 + u; + Mwu,;_; where a VAR
with various lag lengths is chosen as the auxiliary modele fitst equation is
approximated by the corresponding auxiliary model equatiote thatV/ (2, 1) =
M(1,2) = 0.

the underlying data generating process. In a multivaria@éwork the auxiliary
model can also be used to approximate the statistical prep@f some equations.
The partial approach might be advantageous in situatiomemvine researcher is
interested in specific equation that is embedded into armsysfeequations. One
example for such a situation is the estimation of dynamiclsistic general equi-
librium models.

DSGE models are characterized by an explicit micro-foundaind the im-
portant role of the rational expectation hypothesis. Thesgacteristics define
several challenges for the empirical implementation. tFitsee micro-founded
model dynamics are completely defining the stochastic gc®econd, the high
degree of abstraction in the micro-foundation of the modeipically produc-
ing rather stylized models. Third, the rational expectagibypothesis implies a
predominance of forward looking elements. The strong retation among the
equations within the system implies that misspecificatoone equation can have
a substantial effect on the estimation results for the remgiequations.

The application of the partial approach in a DSGE settinfgdiffrom the sta-
tistical example given in section 3. The existence of foolMaoking variables



makes it necessary to perform the estimation on the redwred éf the struc-
tural model. The partial approach implies that some redfieed equations are
replaced by the approximation given by the auxiliary mod€he relation be-
tween structural model, reduced form and auxiliary model &s implications
for structural parameter estimation is given in section 4Ance the structural
model contains unobservable variables the argumentaticiminged as described
in section 4.2.

For both approaches it can be shown that the solution prade¢ise structural
model has a vector autoregressive representatiéiurthermore unconstrained
VARs are generally perceived to provide an adequate desgripf the part of
aggregate data that is relevant for empirical monetarycpaksearch. We will
therefore use a VAR as auxiliary model in the following sesws.

4.1 Structural model and auxiliary model: standard case

If the auxiliary model nests the solution process of thecttmal model we have a
natural relation between structural form, reduced formandliary model.
The structural model can be written in the following form

0 0
Z BBz = Z Cixyyi + G (5)
=1 i=—T
wherex,; denotes the vector of. (endogenous) model variables afycstands for
a vector of uncorrelated structural shotKBhe entries of the structural coefficient
matricesB; andC; as well as the number of forward and backward looking terms
are derived from the specification of the model equations.
Employing the usual solution schemes as in Blanchard and Ke980) we can
solve the model for its solution path.
—1
B = Z D;E; @y gy (6)
From the form of the solution path it is natural to chose aroastrained VAR as
an auxiliary model, nesting the reduced form of the stradtonodel®

4For the case of unobservable variables this relation is wolyif the set of state variables is
extended.

SObviously, not every structural relation must be subject &tructural shock, implying that
some entries of; can be zero

6Equation 6 is an expectational identity. Note however thateérrors of the reduced form
contain a structure implied by the structural model.

9



Furthermore this observation allows us to estimate suésystof the full
structural model. Assume that is partitioned into two subgroups' of dimen-
sion(m; x 1) andx? of dimension(m, x 1), wherem; + m, = m. Let's assume
that the analysis focuses on the structural parametersea$ithgroupe; while
the dynamics are determined by the full system Assume for example that the
demand side is the focus of the analysis. Accordingly theatgus are ordered
such that all demand side equations belong to subgiduphile the supply side
variables are captured hy?.

We can construct a hybrid consisting of reduced form andstral form equa-
tions as follows.

i (Bgl B}z) (w) . (B%l BP) (w)
0
:Z cit c®?\ (zl, N O 0) /¢ )
o p2)\at,) T \s* 57) ¢

where theS matrices follow from the solution of the system of differi@hequa-
tions (5).

The solution process of this hybrid is again given by (6).ndghe specifica-
tion in (7) it is possible to estimate the subset of strudtpe@ameters contained
in ! without having to estimate the structural parameters doedain 2. By
approximating the solution process fet by the corresponding equations of the
auxiliary model we are able to abstain from the joint estiorabf all structural
parameters while still keeping track of the joint dynamics.

In section 7.1 this approach is demonstrated using the nuddsction 6 for the
case of serially uncorrelated structural shocks.

4.2 Structural model and auxiliary model: unobservable vari-
ables

With the introduction of latent or unobservable variables &uxiliary model no
longer nests the structural model. In this context it is ulstf switch to a state
space representation.

If we want to explain the joint distributions of the obserlebariables the struc-
tural relation explaining this distribution might be depgent on unobservable
variables like the habit formation level in consumption ralsdor measures for
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installed capital in investment models. We start with a depgosition of the com-

plete set of variables
&
== 8
i <yt) ®

where&,; denotes ar( x 1) vector of possibly unobserved state variables gnd
denotes ar{x 1) vector of observed variables. We assume that the varialtdge
according to the following law of motidn

&1 = F&+vn 9)
y = Aw,+H'E + w, (10)

It can be shown thay, is distributed normaNN(puq,, Xy,) With p = Aj x; +
Héo&?o;tlt—l andz‘@o = Héop%;t\t—lH@o + R90

The argumentation given in section 4.1 carries over to theergeneral case,
though we have to make some slight modifications. In theietlg we assume
that the statistical auxiliary model for the observablealales can be represented
as a vector autoregression:

-1

Y = Z GiYirit+ & (11)

i=—T

Wherey; is an-dimensional vector.

There are two ways to represent the observable variablestéite space for-
mulation based on the structural model and the statistigaliary model. In
contrary to the approach in section 4.1 we have to distitgbestween the set
of variables of the structural equations and the set of blegthat are actually
observed. In the following we assume that the observablahlas are chosen
in a way such that there is a one-to-one relation betweentsatal variables and
observable variables. Each observable variable is unjqiglbuted to one struc-
tural variable. All structural variables not assigned tooéservable variable are
modelled as state equations. With these assumptions isslge to combine the
statistical auxiliary model with the structural model ttoal for the estimation of
subsystems.

"For higher order autoregressive terms it is necessary tmangthe state vector containing
the lagged terms also.
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In a first step the variables are partitioned into observadimbles and state vari-
ables as in (14J. As in section 4.1 we can partition the observable variainies
two different type of structural variables. Starting wittetrepresentation of the
structural model given in equation (5), let us assume thas partitioned into
two subgroupgy; of dimension(n; x 1) andy? of dimension(n, x 1), where
ny + ny = n. The analysis focuses on the structural parameters of thegreup
y? while the dynamics are determined by the full system

&
Ty = ytl (12)

y;
As in equation (7) we can formulate a hybrid model consisthgquations

from the statistical model and structural equations, wkieedatter are allowed to
feature unobservable variables.

o (B B B &iti Bi* B{" B i+1
B;yhﬁ Blylyyl Biyl’yz ytl-i-i 4 B?thﬁ B‘ifl’yl B31;1,y2 ytl-i-l
= \ O ¢} 0 Y7 O 0 I Y7
0 ct cit ci” Eiti O O O ¢t

=> ot ey v | [yl |+ O O O |¢"]@)
= [0) G?Q G?Q yt2+i S31  §32 g33 an

We can solve this formulation and transfer it into state sgaom.
There is a conceptual difference between the interpretaifa7) and (13). In
the case without latent variables we can interpret the @umyximodel as a an ap-
proximation to the solution process. If the sample size groxe will be able to
extract the true solution process from the auxiliary modielcontrary to this we
know that the solution process ¢4?) will depend on latent variables. The statis-
tical auxiliary model (11) also provides an approximatioritie data generating
process but will not be able to produce the parameters ofdluéien process.

Instead of using this Kalman generated likelihood functi@can make use of
an indirect approach. From a statistical point of view welddry to evaluate the
distribution of the observable variables without relying @ structural model or
unobservable variables. We introduce a statistical mddesen according to its
ability to give an appropriate description of the data andive rise to a tractable

8Note at this point that the dynamics of the system cannot prioed by (16) and (15) because
the model is still in its structural form.
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likelihood functior?. Assume that the statistical auxiliary model can be parame-
terized with the parametgt and results in a normal distributiof(zes, X's).

If we assume that the data generating process is given byrtietigal model (5)
then for an infinite sample size the distribution measurethbkystatistical model
coincides with the true distribution generated by the $tnad model. This im-
plies that the parameter of the auxiliary model estimatetherobserved data and
the parameter of the auxiliary model estimated on data sitedlfrom the struc-
tural model under the true (structural) paraméyecomply with each other. Since
the value of the parameter of the auxiliary model estimatethe simulated data
depends on the vector of structural parameters we can defiimelimg function (
Gourieroux, Monfort, and Renault (1993)) mapping from tlmactral parameter
into the auxiliary parameter. If this binding function wasokvn and bijective we
could retrieve the structural parameter estimated fromftimction and the auxil-
iary parameter. Since the binding function fulfills thesegarties only in special
cases we can implicitly define the inverse of the binding fiemcby choosing
those structural parameters minimizing the distance batiee auxiliary param-
eters estimated on observed and simulated Yata

The estimation procedure makes use of the statisticaliapxinodel capturing
the dynamics of the structural model. As in the case of theehathout unob-
servable variables we can therefore combine structurastatigtical equations to
focus on a subset of structural parameters to estimate.

5 Estimation Technique

5.1 Maximum Likelihood Estimation

The estimation results from the partial indirect infereap@roach are compared
to the results from standard maximum likelihood estimatiém section 7.1 we

are working with a model having a solution with an autoregik&srepresentation
in observed variables, implying a standard maximum liladithestimation proce-
dure. All other estimation procedures involve unobsemafariables. For these

9Tractability refers to the desirable characteristic to pate the likelihood function analyti-
cally or with fast reliable numerical methods. The appragamess of the statistical model should
be evaluated along statistical specification tests.

10Since the binding function makes use of an asymptoticalraeg a large number of simu-
lated values must be drawn from the structural model to g¢eehe true distribution of the data
generating process measured by the auxiliary model.
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models the following Kalman filter based maximum likelihgmebcedure is em-
ployed. In a first step the model is written in state space feirare the complete
set of model variables, is divided into state variables and measure variables.

(e
2 — (y) (14)

whereg; denotes ar( x 1) vector of possibly unobserved state variables gnd
denotes ar(x 1) vector of observed variables. We assume that the varialitdge
according to the following law of motidh:

&1 = F&+ v (15)
Y = A'wt + Hlft -+ Wi (16)

It can be shown thay, is distributed normalN(pue,, Xy,) with p = Aj x, +
Hy o101 and Xy, = Hy Py.p-1Ho, + Ry,

Compare Hamilton (1994). Wheg;_, denotes the conditional expectation
based ont — 1 information andP,,_, denotes the variance of the conditional dis-
tribution of the state vector. Furthermafzand R denote the covariance matrices
of the state equation and the observation equation respset) = E(v,1v; )
andR = E(w,w;). The Kalman filter makes use of the following updating equa-
tions:

£ = Féa

+FPy_H (H'P,,_,H+R)" <yt —Alp, — H'Eﬂt_l)
P = FPy_F
~FPy H(H'P, \H+R) HPy, F +Q

5.2 Indirect Inference estimator

¢ we define the estimation of the auxiliary model as the coteri

%eaé QT(yT> xr, 5) (17)

IFor higher order autoregressive terms it is necessary tmangthe state vector containing
the lagged terms also.
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with

BT = arg %165% QT(yTa T, ﬁ) (18)

we assume that the limit converges
7hir}ol()QT(’.yT’:I:TMB) = QOO(F[)?AO’HOvV(-)uWOJﬁ) (19)
- QOO(%:W():GU?/B) (20)
Where(Fo, Ao, H()) =0,

we assume thad, is the unigue maximum of the limit of the criterium

/60 = argmaXQoo(‘/(bWU7007lB) (21)
BeB

furthermore we introduce the binding function mapping fribra structural
model into the criterion

b(V.W.0) = argmaxQu(V.W.0.5) (22)
€
and
/BO = b(V67W0700) (23)

If the binding function is known and one to one we could dedheestruc-
tural parameters from this relation. In more general telresinding func-
tion is difficult to compute. In these cases it is useful tdaep the analyt-
ical binding function by a functional estimator based onidations of the
structural model*?

(y™)L denotesH path simulations of lengtii’ taken from (16) undef and
a joint random seetf We can define

Br(8) = argmax Qr((y™ )1 =1, B) (24)

12For the further reasoning we have to make the following tveuasptionsh(Vy, Wy, .) is one
to one and%(vo, W, .) is of full column rank
13At this point we abstract from initial value problems.
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as the solution of the maximization problem of the critermnsimulated
data. For7" tending to infinity the solutiond) tends to the solution of the
limit problem:

max Qoo (Vo, Wo, 6, 8) (25)
Jlim Br(6) = b(Vo, Wo, ) (26)

the binding function defines a mapping from the auxiliarygpaeter (solu-
tion of the simulated criterion function) into the struclparameters.

b:3—6 (27)

the auxiliary criterion might be misspecified. The only regment on the
specification issue is that

— By is the unique maximum of the limit problem under the true vect
of structural parameters

— the solution of the limit on the simulated series tends tcstiiation of
the theoretical limit problem

this implies that the auxiliary model can be misspecifiedoag las the3,
is the unique maximum

if we combine this approach with the partial idea we have aitpar of
the set of structural parameters into structural parameitinterest and
auxiliary parameters

the approximation to the solution process can be misspéchiecause the
corresponding auxiliary parameters are mapped onto .itSéie solution
process of the non-modelled part are approximated and mezhsiith re-
spect to the same auxiliary model.

the explanatory contribution of the approximated varialite the dynam-
ics of the structural variables is also measured with rddpete auxiliary
model such that possible misspecifications do not affeattiral estima-
tion results
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6 A workhorse of macro-economics: the New
Keynesian Model

The New Keynesian model is often represented in a systenreé gqua-
tions capturing the intertemporal optimality conditiorfstiee households
("New IS-Curve”), the pricing behaviour of firms behaving asmopolisitc

competitors faced with price adjustment costs ("New Kejare$hillips

Curve”) and monetary policy rule of the central bank ("TayRule”).

"New IS Curve” in terms of output gapy()

v = By — %(Tt — Eymi1) + e (28)
"New Keynesian Phillips Curve”
T = ANy +OE g 4 e (29)
"Taylor-Rule”
re = prion+ (1= p)BEmes + (1= p)yy: + €t (30)

The empirical performance of models like (28)-(30) suffieesn the lack
of persistence generated by the model. Instead of or iniaddi internal
propagation mechanism some authors propose to introdiesakpropa-
gation mechanisms in the form of autocorrelated structhatks.

The budget constraint of the representative consumer camitien as
Mt—l + Bt—l -+ Tt + Wtht + Dt 2 PtC't + Bt/rt + Mt (31)

where M,_; denotes the money holdings stemming from the last period
and B;_, stand for the bonds household hold at the beginning of period
Furthermore the household receives a lump-sum monetargfénafrom the
central bankl;, as well as labor incom&/;h; and profitsD,. Household
expenditure is given by consumption expendit&r€’; and acquired money
and bond holdings.

The utility function of the representative consumer can bigten as fol-
lows:

Eo {Zﬁtu (Cm %a hy; ft) } (32)
t=0 t
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In this specificatiorg; represents a vector of structural disturbances to the
utility function. Furthermore we assume utility to be additseparable

in consumption and liquidity and the following specificatifor the utility
function.

M o’ M,
u(enpi6) = oo enCE - @

In this settingu, is the only disturbance to the utility function followingeh
dynamics specified by an AR:

Ay = Pali—1 + €ay (34)

Furthermore a cost-push shock is introduced by allowingafautocorre-
lated shock to the demand elasticity for each intermediatel g

0+/(0:—1)

{ / 1 m')ef”efdz’] (35)
0
with

0y = (1 — pp) In(0) + poll—1 + €04 (36)

Since the intermediate goods are imperfect substitutdseiptoduction of
the final good, intermediate producer face some monopopsitting power.
In the price setting process firms face a cost of nominal @ajaestment of
following form following Rotemberg (1982).

e 1]2” 7

Labor A, is the only factor for the production of the intermediate djad
firm ¢ Y;(4).

Zihi(i) > Yili) (38)
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whereZ, follows the process:
In(Zy) = (1 —p.)In(2) + p. In(Zi—1) + €. (39)

Following Ireland (2003b) this specification results in adified IS Curve
and Phillips-curve relation in terms of the output gap (

1 1—p,
vy = By — ;(Tt — Eymi) + 0,0 at (40)

e, 2D b

The monetary policy rule remains as specified in (30)

T = BEmq+

re = prier + (1= pp)BEm + (1= pr)vus (42)

It is straightforward to see that this formulation nests aleidhat is much
easier to deal with. If we assume that the persistence paeesnef the
shock processegq, p. andp,) are equal to zero we have a model containing
observable variables only as in equations (28), (29) anil (3bie error
terms can be interpreted as measurement errors and ard seadéons of
€at, €0+ aNde, ;.. This model is used as an example in section 4.1 while the
more general version is discussed in section 4.2.

7 Comparison of estimation properties

7.1 Well specified model (to be completed)

The following setting for the estimation experiment wass#m The re-
searcher knows that the observed data is generated by thel spmtified
in (28), (29) and (30). The values of the structural pararsdtewever are
unobserved. The researcher chooses to estimate the value @égree of
risk-aversion §) without having to make an assessment on the value of the
remaining parameters. His estimation strategy is to stiint@stimating an
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unrestricted, non-structural system on the observed data.second step
he imposes the restrictions from the economic model on theadd side
by estimating equation (28) in the otherwise unrestriciexdiesn. From the
reduced form (48) it is straightforward to chose a VAR witledag as the
representation for the unconstrained model.

In an initial step the structural system is solved and sitedlander the true
vector of structural parameters for a drawn vector of randasturbances.
In a second step a VAR is estimated on the realization of tteegknerating
process.

U 11 daiz2 A3 Tg—1
Y| = | a1 Qo2 a3 | * | Y1 | + & (43)
Tt a31 dasz2 G33 Ti—1

Taking the VAR(1) representation of equation (29) and (3Graapproxi-
mation to the solution process of the model the followingri/ionodel is
build.

M = Q11 %M1+ Qo * Y1 + Q12 * Ty 1 + €5y

1
Yo = B — ;(Tt - Et7Tt+1) (44)
Ty = Q31 *T1 T A32 ¥ Yp1 +agz *x T + €

The structural parameters of the hybrid model are estimasaty maxi-

mum likelihood and indirect inference. The results are regubin table xxx.

The standard deviation of the point estimates is ratheelavwgn though we
have a big sample. The high standard deviation of the esirh@bmes
from the fact that the structural model used as the DGP isutangn the

non-stochastic version. In the stochastic version of thdeha large pro-
portion of fluctuations is actually driven by the error teramsl not by the
structural model parameters. From a statistical point @fwi
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7.2 Unobservable Variables and mis-specification (to be
completed)

8 Conclusion

The combination of a rich economic DSGE specifications togetvith a
set of autocorrelated error processes allows to explainge llgart the ob-
served data. Parameter estimates and specification evakiat this ap-
proach are affected by the strong simultaneous effectsdegtihe equa-
tions. Mis-specifications in one equation or a misguidedrpon some
parameter estimated can have an effect on the estimatiatisésr other
equations. Imposing the restrictions from a DSGE specifinain an oth-
erwise unrestricted system allows to circumvent the ceagsgation effect of
mis-specifications. This paper states the explicit refatietween the struc-
tural model, solution process and hybrid model consistihngome struc-
tural and some solution process equations. If all variahtesobservable
the VAR provides a good approximation to the solution predeading to
an estimation approach based on the hybrid model.

If the system contains unobservable variables the finite ¥pBRroximation
is no longer appropriate. The estimation problem can be eoetpto the
estimation of a single equation in a VARMA model using a VAR ag-a
iliary model. The method of indirect inference allows to reat for this
bias. Using a statistical example in a Monte Carlo experintemestima-
tion results of the indirect inference approach are conghtanaximum
likelihood results.

In a further step the Monte Carlo experiment is extended tgé#rgal es-
timation of two DSGE models. The first DSGE model does not aont
unobservable and the partial version can be estimated bymmax likeli-
hood. The second DSGE model incorporates unobservabkblesiin the
form of autocorrelated structural error processes. Fdn butdel the esti-
mation results of a maximum likelihood approach are comp#yean indi-
rect inference approach. First results suggest that theased robustness
of the indirect inference estimator in a partial settingasmterweighted by
the inferior small sample properties when compared to dighamaximum
likelihood approach.
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9 Appendix

9.1 Solving the model: a numerical example

For sake of disposition of the approach the model given iragqgas (28) to (30)
is solved for a numerical example.

The interest rate is the only backward looking variable. Atfguess for the ex-
pectation formation is therefore:

Em = ¢7“t (45)
By = Or,

Using this guess we end up with the following relations:

p o0+ A0 — 2 4 22]
— c "o 46
¢ 1—(1—=p) [Bp+~0— 2L+ 2] (40)

g — L4+ [
1—(1=p) [B¢+70 -2+ L]
Since there is no closed form solution to these equationsraeepd with an
numerical example. Following Clarida, Gali, and Gertlerq8pPwe assume the
following values for the structural parameters:

g = 0.8
o =1

0 = 0.99
A = 03
p = 175
v = 04

With these parameter values and the above relations (467@apd:d can write the
system in backward looking form:

T4+1 0 0 1.4152 T
Et Yt+1 = 0 0 1.2275] x Yt (48)
T 0 0 0.7473 Ti—1
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Figure 1:Density Function of partial Maximum Likelihood

14+ i
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Notes: The nonparametric density function was estimated usingiagi@an kernel

If we add shocks to the model we can simulate the observapiesentation
(48). The shock in the "New IS Curve” can be interpreted as tepgace shock,
while the shock to the NKPC is a cost push shock. The shockeicdintral bank
reaction function can be interpreted as all those inteegstdecision that deviate
from the estimated rule.
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Table 3: Partial versus full estimation of VARMA model, saegze=950, 400
path simulations

Direct Maximum Likelihood Partial Maximum Likelihood

parameter mean std.devn RMSE mean std.dev RMSE
A(l,1) = 0.8 0.797 0.027 0.029 n.e. n.e. n.e.
A(1,2) =-0.1 -0.102 0.019 0.019 ne.e. n.e. n.e.
M(1,1) = 0.2 0.198 0.039 0.041 ne.e. n.e. n.e.
1) = 0.6 0599 0.025 0.023 0.600 0.024 0.023
)

A2,
A(2,2 0.3 0294 0028 0028 0293 0027  0.028
M(2,2) = 09 0967 0088 0119 0925 0064  0.069

Notes: A VAR(4) was chosen as the auxiliary model in the partial apph. As
described in section 3 the parameters of the first equatioe et estimated (n.e.).
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