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Abstract

Fully specified DSGE models are increasingly successful in explaining
observed macroeconomic data. Thinking about the specification of a certain
equation in a DSGE approach has the drawback of imposing many implicit
priors on the specification of the remaining equations. Mis-specifications
in one block can have effects on the structural parameter estimates of the
remaining equations. One resort from this problem is to use a VAR as an
auxiliary model and to impose the structural equations stepwise on the unre-
stricted VAR. In a linear framework, we can interpret the unrestricted equa-
tions as an approximation of the solution process of the structural model.
Once the model contains unobservable variables the solution process does
not have a finite VAR representation anymore and the VAR approximation to
the solution process is misspecified. The method of indirect inference allows
to correct for mis-specification in the auxiliary model. The approach is illus-
trated with the example of the basic New Keynesian Phillips Curve and an
extended version containing unobservable variables. In a Monte Carlo ex-
ercise the estimation properties of Kalman filter based maximum likelihood
and indirect inference are evaluated for both models.
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1 Introduction

The methods and the modelling approach from the Real Business Cycle literature
in combination with various forms of rigidities in the New Keynesian tradition
provide a successful strategy for macroeconomic modelling. Dynamic Stochastic
General Equilibrium (DSGE) models, with rich specifications as in Christiano,
Eichenbaum, and Evans (2001) and Smets and Wouters (2003) are able to pro-
vide a good fit to macroeconomic data. However, there is much less consensus
on the preferred method to bring the models to the data. Most of the available es-
timation procedures remain problematic. Due to various identification problems
and the focus on selected moments only limited information methods seem less
suitable for the estimation of DSGE models. With increasingdimension of the pa-
rameter space direct full information methods suffer from multiple local optima
in the likelihood and small sample problems in typical macroeconomic applica-
tions. The actual implementation of the estimation procedure usually includes
various priors on the size of the structural parameters. These priors occur either
in the implicit form of starting values in the classical estimation procedure or as
modelled priors in a Bayesian approach (Schorfheide (2000)). The simultaneous
interdependence between the estimation results on different equations is intrinsic
to the full information method. A misguided prior on one parameter can have
an influence on the estimation result for another parameter.Furthermore model
misspecification in one block of the model can have an effect on the estimation
results for other blocks. Especially in situations where the researcher is interested
in a certain specification embedded into a larger model, the model and parameter
priors affect the estimation results for the specification of interest.

This paper works with an approach aiming to estimate the specification of
interest in an otherwise unrestricted system. We use the vector autoregressive rep-
resentation of the solution process of (a class of) rationalexpectation models to
build a hybrid model. This hybrid model consists of some structural and some
reduced form equations. Using the corresponding equationsof an estimated VAR
as an approximation of the solution process the method allows to estimate a subset
of structural parameters in a full information setting without having to estimate all
structural parameters jointly.
From a statistical point of view it is fair to say that the fully structural model as
a description of the underlying data generating process is false, at least in some
respects. Nevertheless the full model is needed to estimatesome parameters of
interest. In order to avoid misspecification from the part ofthe model that is not in
the central interest of the research these equations are replaced by an instrumental
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or auxiliary model. The problematic structural model is (partially) replaced by an
auxiliary model which is easier to estimate. Gourieroux, Monfort, and Renault
(1993) analyze indirect inference on a structural model viaan auxiliary model.
Complementary to their approach in this paper the method of indirect inference
is used to estimate the equations of the model in a stepwise procedure. While the
partial approach has the merit of reducing the cross-equation effect of misspeci-
fication the method of indirect inference allows to correct for misspecification in
the auxiliary model. This approach is related to the work by Dridi, Guay, and
Renault (2003) and Dridi and Renault (2000) formalizing the calibration method
of Cechetti, Lam, and Mark (1993). The basic idea of their approach is to divide
the set of parameters into deep parameters that are of interest to the researcher and
nuisance parameter needed only to be able to estimate the structural parameters.
They start that from the assumption that ”the model is false”and try to extract
some elements of truth (deep parameters) from the false model. The auxiliary
model is then used to examine the nuisance parameters, before the estimation of
the structural parameters.

A comparison of the small sample properties in a partial approach of indirect
inference and maximum likelihood sheds some light on the relative advantages
of the indirect inference in this setting. There is a branch of literature on the
estimation properties of indirect inference in comparisonwith other estimation
techniques. Michaelides and Ng (2000) use a rational expectation model with
speculative storage as a benchmark to compare the simulatedmethod of moments
(SMM by Duffie and Singleton (1993)), with Efficient Method ofMoments (EMM
by Gallant and Tauchen (1996)) and Indirect Inference by Gourieroux, Monfort,
and Renault (1993)). Ruge-Murcia (2003) compares the estimation properties of
different techniques using a one sector Real Business cycle model with indivisible
labor as in Hansen (1985). He includes maximum likelihood ina classical (Ire-
land (2003b)) and in a Bayesian interpretation (Chang, Gomes,and Schorfheide
(2002)) as well as simulated methods of moments, generalized method of mo-
ments (GMM) and Indirect Inference into the comparison. Bothcomparisons are
explicitly focused on the estimation properties in a small system.

The proposed method of partial estimation is applicable to larger models. The
estimation of larger systems with a higher number of structural parameters is less
troublesome if the estimation can be performed equation by equation without leav-
ing the full information setting.

Section 2 gives an overview on the chosen partial estimationapproach, fol-
lowed by a short excursion on a statistical example. In section 4 the framework
of the partial estimation strategy for structural models isintroduced, describing
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the relation between structural model, solution process and the hybrid combining
structural and solution process equations. Section 5 states the used estimators.
The economic model used is described in section 6, section 7 reports the results
from a Monte Carlo exercise on the properties of the two estimators applied to the
economic model. Finally section 8 concludes.

2 The Estimation Strategy

Various methods and approaches are used to evaluate the performance of macroe-
conomic models with rational expectations.
A first class of evaluation strategies works with a well defined set of moments a
successful model has to match. Prominent examples of this approach can be found
in real business cycle literature such as King, Plosser, andRebelo (1988), where
basic correlations and cross-correlations are chosen as the moments to match. In
another branch of applications theoretical moments are generated to estimate the
model by GMM (Clarida, Gali, and Gertler (1998)). Focusing onthe dynamic
responses of the model to different shocks Christiano, Eichenbaum, and Evans
(2001) estimate the model parameters using the corresponding impulse response
functions as the moments to match. The definition of key moments to match is an
indispensable tool to construct empirically successful models. To test and evalu-
ate the stochastic process implied by the structural model however it is necessary
to switch to full information methods.

Maximum likelihood based full information methods have recently been used
to estimate rational expectation models in a classical ( Ireland (2003a) and Kim
(2000)) or in Bayesian interpretation (Schorfheide (2000) or Smets and Wouters
(2002)). Using a Kalman filter based calculation of the likelihood functions these
approaches are able to estimate models containing unobservable variables. The
main merit as well as mayor difficulty in the full informationestimation of struc-
tural model lies in the formulation of a full stochastic process for all involved
variables. Small changes in the assumed nature of the underlying shock processes
can have a considerable impact on the structural estimationresults. In addition to
the uncertainty attached to the model specification the choice of starting values in
the numerical estimation procedure or the choice of priors in a bayesian approach
have an impact on the estimation results. The high dimensionof parameters to
estimate makes it very hard to distinguish local from globaloptima.

Another branch in macroeconometrics uses an auxiliary model to evaluate
theoretical models. The predominance of vector autoregressions (VAR) in the
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representation of the unrestricted version of the data generating process is mir-
rored in its manyfold applications1. One way to combine the full information
approach with the VAR approach is offered by Fuhrer, Moore, and Schuh (1995)
and Fuhrer (2000). This approach is related to the earlier rational expectation lit-
erature in macroeconomics where it is common practice to test the implication of
economic models by a likelihood ratio test of restricted to unrestricted model. If
restrictions are imposed on one or more equations of the otherwise unrestricted
model the common interpretation for the unrestricted equation is to represent the
information set on which expectations are formed. Fuhrer (2000) starts with es-
timating a VAR as an approximation to the data generating process. In a second
step he imposes the structural representation of a habit formation consumption
equation onto the VAR and estimates the corresponding structural parameters by
maximum-likelihood.
In a linear framework however, we can interpret the unrestricted equations as an
approximation to the solution process of the structural model. This interpretation
allows to estimate a structural model by imposing the model restrictions block- or
equationwise on an unrestricted VAR.
More complex models involving unobservable variables or autocorrelated struc-
tural shocks do not have a finite VAR representation in the observable variables
in general. Using a finite VAR as an approximation to the non modelled equation
results in a misspecification possibly affecting the estimation results for the struc-
tural parameters. The approach of indirect inference Gourieroux, Monfort, and
Renault (1993) provides a method to base estimation on a (misspecified) auxiliary
model.

To analyze the estimation properties of Indirect Inferencein a partial estima-
tion approach to structural models the following steps haveto be taken.

First it must be shown that the principle of indirect inference can be extended
to a situation where the auxiliary model is also used to approximate a part of the
true data generating process directly. In Section 3 the properties of indirect in-
ference in a partial approach are investigated in a Monte Carlo Exercise using a
purely statistical example. Second it must be shown that this approach is applica-
ble to the estimation of structural economic models. Section 4 relates the partial
approach to the estimation of structural economic models byusing the straight-
forward relation between the structural form and its solution process. With this
relation it is possible to build hybrid models consisting ofsome structural equa-
tions and some solution process equation with the property that the hybrid models

1Christiano, Eichenbaum, and Evans (2001); Rotemberg and Woodford (1998)
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have the same solution process as the fully structural model.
This equivalence of the solution process of structural model and hybrid model
allows for a partial estimation strategy, where the solution process equations are
approximated by an unrestricted VAR.

3 Partial Indirect Inference on a Statistical Model

Before we turn to the estimation of a structural economic model, we analyze the
properties of the partial approach in a statistical experiment which is related to the
estimation of DSGE models. Once the economic model containsunobservable
variables and or autocorrelated shocks the reduced form of the structural model
does not have a finite VAR representation in observable variables anymore. In fact
the reduced form of the model has a VARMA representation wherethe moving
average terms capture the dynamics of the unobservable variables.

We assume that the data generating process is given by a VARMA model and
try to estimate this model using a VAR as auxiliary model in the indirect inference
approach. This situation is comparable to the situation of estimating a model
containing unobservable variables using a VAR as auxiliarymodel.

For the statistical experiment we assume that the data generating process is
given by the following VARMA representation:

yt = A1yt−1 + · · · + Apyt−p + εt (1)

where the error terms are autocorrelated according to

εt = ut + M1ut−1 + · · · + Mqut−q (2)

Instead of a direct estimation of the VARMA model we can use themethod
of Indirect Inference. In a first step an auxiliary model withparameterŝβT is
estimated. The auxiliary model is required to give a good description of the statis-
tic properties of the underlying DGP but need not be well specified. A VAR is
misspecified for a VARMA DGP but the inclusion of a sufficient number of lags
will provide a good fit to the data. Formally this procedure defines abinding
function (Gourieroux and Monfort (1992)) from the structural onto the auxiliary
parameters.
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b(DGP ) : θ → b(DGP, θ) = β0 (3)

If the binding function was non and one-to-one we could retrieve the structural
parameters from the inversion of the binding function. Since this is generally not
the case we have to rely on simulations. Therefore in a secondstep the VARMA
model is simulated and the auxiliary parametersβ̂ST are estimated on the simu-
lated data.

The vector of structural parameters (θ) is determined by minimizing the dis-
tance between both auxiliary parameters.

θ = arg min
θ

[β̂T − β̂ST (θ)]′Ω[β̂T − β̂ST (θ)] (4)

whereΩ is the optimal weighting matrix.2

With the same logic we can estimate a subset of structural parameters in the
partial approach. Assume that the researcher is interestedin the VARMA speci-
fication of the second equation only. The estimated auxiliary model can then be
used to approximate the first equation. With this approximation some structural
parameters are replaced by a combination of auxiliary parameters. This implies
that the respective parameters in the binding function are mapped onto themselves.

Table 1 gives the results for different specifications of a VAR as auxiliary
model from the following Monte Carlo exercise. The data generating process is
given by a two variable VARMA(1,1) model. We estimate a VAR with different
lag lengths and replace the first equation of the VARMA by the corresponding
equation from the auxiliary VAR. Using the method of indirectinference we re-
trieve the VARMA parameters of the second equation. We repeatthis exercise
using maximum likelihood directly on the hybrid model.

The most important result can be seen in the property that themean of the
simulation exercise converges to the true value for all parameters in the indirect
inference approach. The moving average term is slightly underestimated for a
medium sample size using a VAR(3) as auxiliary model. This bias is due to the
fact that the VAR(3) does not capture the full degree of autocorrelation present in
the data. The partial approach in a maximum likelihood setting produces unbiased

2Sections??and??give a more detailed description of the method of indirect inference. Com-
pare also Gourieroux, Monfort, and Renault (1993) for the estimation properties of indirect infer-
ence in a related univariate exercise.
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Table 1: Misspecification in large samples: VARMA with VAR as auxiliary
model, samplesize=950, 400 path simulations

A(2, 1) = 0.6 A(2, 2) = 0.3 M (2, 2) = 0.9

M.L. Ind.Inf. M.L. Ind.Inf. M.L. Ind.Inf.

VAR(2)⋆
mean 0.601 0.600 0.294 0.300 0.924 0.886
std. dev. 0.025 0.034 0.026 0.032 0.064 0.061
RMSE 0.025 0.038 0.026 0.032 0.068 0.062

VAR(3)
mean 0.598 0.599 0.299 0.304 0.923 0.890
std. dev. 0.024 0.071 0.026 0.053 0.061 0.075
RMSE 0.024 0.071 0.026 0.053 0.065 0.075

VAR(4)
mean 0.600 0.604 0.293 0.314 0.925 0.904
std. dev. 0.024 0.045 0.027 0.042 0.064 0.095
RMSE 0.023 0.045 0.028 0.044 0.069 0.095

Notes: The bivariate DGP is given byyt = Ayt−1 + ut + Mut−1 where a VAR
with various lag lengths is chosen as the auxiliary model. The first equation is
approximated by the corresponding auxiliary model equation. Note thatM(2, 1) =
M(1, 2) = 0.

estimates for all autoregressive parameters. The moving average term seems to be
bias upwards. Taken a closer look at the density function in figure 1 we can see
that there is a high density on̂M (2, 2) around 1.1.3

Looking at the standard deviations and the root mean squarederror (RMSE) maxi-
mum likelihood is outperforming the indirect inference approach. The differences
between maximum likelihood and indirect inference are smallest for the mov-
ing average term in the large sample using a VAR(3) as auxiliary model. The
increased RMSE of the point estimates from indirect inference comes from the
additional variance in the weighting matrix.

4 Structural form and solution process

The intuition for the approach is straightforward: the indirect estimation proce-
dures is based on a possibly misspecified model which gives a good description of

3Note that this problem is also present in direct maximum likelihood estimation of the VARMA
model. The partial approach reduces this undesired effect as can be seen from table 3.
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Table 2: Misspecification in medium samples: VARMA with VAR asauxiliary
model, samplesize=150, 400 path simulations

A(2, 1) = 0.6 A(2, 2) = 0.3 M (2, 2) = 0.9

M.L. Ind.Inf. M.L. Ind.Inf. M.L. Ind.Inf.

VAR(2)⋆
mean 0.592 0.593 0.290 0.300 0.940 0.854
std. dev. 0.064 0.084 0.065 0.078 0.085 0.158
RMSE 0.065 0.085 0.065 0.078 0.094 0.164

VAR(3)
mean 0.597 0.595 0.288 0.301 0.947 0.872
std. dev. 0.065 0.125 0.067 0.108 0.088 0.143
RMSE 0.065 0.124 0.067 0.108 0.098 0.145

VAR(4)
mean 0.590 0.595 0.289 0.306 0.947 0.901
std. dev. 0.067 0.104 0.064 0.094 0.090 0.148
RMSE 0.067 0.104 0.063 0.094 0.100 0.148

Notes: The bivariate DGP is given byyt = Ayt−1 + ut + Mut−1 where a VAR
with various lag lengths is chosen as the auxiliary model. The first equation is
approximated by the corresponding auxiliary model equation. Note thatM(2, 1) =
M(1, 2) = 0.

the underlying data generating process. In a multivariate framework the auxiliary
model can also be used to approximate the statistical properties of some equations.
The partial approach might be advantageous in situation where the researcher is
interested in specific equation that is embedded into a system of equations. One
example for such a situation is the estimation of dynamic stochastic general equi-
librium models.

DSGE models are characterized by an explicit micro-foundation and the im-
portant role of the rational expectation hypothesis. Thesecharacteristics define
several challenges for the empirical implementation. First, the micro-founded
model dynamics are completely defining the stochastic process. Second, the high
degree of abstraction in the micro-foundation of the model is typically produc-
ing rather stylized models. Third, the rational expectations hypothesis implies a
predominance of forward looking elements. The strong interrelation among the
equations within the system implies that misspecification in one equation can have
a substantial effect on the estimation results for the remaining equations.

The application of the partial approach in a DSGE setting differs from the sta-
tistical example given in section 3. The existence of forward looking variables
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makes it necessary to perform the estimation on the reduced form of the struc-
tural model. The partial approach implies that some reducedform equations are
replaced by the approximation given by the auxiliary model.The relation be-
tween structural model, reduced form and auxiliary model and its implications
for structural parameter estimation is given in section 4.1. Once the structural
model contains unobservable variables the argumentation is changed as described
in section 4.2.

For both approaches it can be shown that the solution processof the structural
model has a vector autoregressive representation.4 Furthermore unconstrained
VARs are generally perceived to provide an adequate description of the part of
aggregate data that is relevant for empirical monetary policy research. We will
therefore use a VAR as auxiliary model in the following sections.

4.1 Structural model and auxiliary model: standard case

If the auxiliary model nests the solution process of the structural model we have a
natural relation between structural form, reduced form andauxiliary model.
The structural model can be written in the following form

θ∑

i=1

Bi Et xt+i =
0∑

i=−τ

Cixt+i + ζt (5)

wherext denotes the vector ofm (endogenous) model variables andζt stands for
a vector of uncorrelated structural shocks5. The entries of the structural coefficient
matricesBi andCi as well as the number of forward and backward looking terms
are derived from the specification of the model equations.
Employing the usual solution schemes as in Blanchard and Kahn(1980) we can
solve the model for its solution path.

Et xt+k =
−1∑

i=−τ

Di Et xt+k+i (6)

From the form of the solution path it is natural to chose an unconstrained VAR as
an auxiliary model, nesting the reduced form of the structural model.6

4For the case of unobservable variables this relation is onlytrue if the set of state variables is
extended.

5Obviously, not every structural relation must be subject toa structural shock, implying that
some entries ofζt can be zero

6Equation 6 is an expectational identity. Note however that the errors of the reduced form
contain a structure implied by the structural model.
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Furthermore this observation allows us to estimate subsystems of the full
structural model. Assume thatxt is partitioned into two subgroupsx1

t of dimen-
sion(m1 × 1) andx2

t of dimension(m2 × 1), wherem1 + m2 = m. Let’s assume
that the analysis focuses on the structural parameters of the subgroupx1

t while
the dynamics are determined by the full systemxt. Assume for example that the
demand side is the focus of the analysis. Accordingly the equations are ordered
such that all demand side equations belong to subgroupx1

t while the supply side
variables are captured byx2

t .
We can construct a hybrid consisting of reduced form and structural form equa-
tions as follows.

θ∑

i=2

(
B11

i B12
i

O O

)(
x1

t+i

x2
t+i

)
+

(
B11

1 B12
1

O I(m2)

)(
x1

t+1

x2
t+1

)

=
0∑

i=−τ

(
C11

i C12
i

D21
i D22

i

) (
x1

t+i

x2
t+i

)
+

(
O O

S21 S22

)(
ζ1

t

ζ2
t

)
(7)

where theS matrices follow from the solution of the system of differential equa-
tions (5).

The solution process of this hybrid is again given by (6). Using the specifica-
tion in (7) it is possible to estimate the subset of structural parameters contained
in x1 without having to estimate the structural parameters contained in x2. By
approximating the solution process forx2 by the corresponding equations of the
auxiliary model we are able to abstain from the joint estimation of all structural
parameters while still keeping track of the joint dynamics.
In section 7.1 this approach is demonstrated using the modelof section 6 for the
case of serially uncorrelated structural shocks.

4.2 Structural model and auxiliary model: unobservable vari-
ables

With the introduction of latent or unobservable variables the auxiliary model no
longer nests the structural model. In this context it is useful to switch to a state
space representation.
If we want to explain the joint distributions of the observable variables the struc-
tural relation explaining this distribution might be dependent on unobservable
variables like the habit formation level in consumption models or measures for
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installed capital in investment models. We start with a decomposition of the com-
plete set of variables

xt =

(
ξt

yt

)
(8)

whereξt denotes a (r × 1) vector of possibly unobserved state variables andyt

denotes a (n×1) vector of observed variables. We assume that the variablesevolve
according to the following law of motion7:

ξt+1 = Fξt + vt+1 (9)

yt = A′xt + H ′ξt + wt (10)

It can be shown thatyt is distributed normalN(µθ0
,Σθ0

) with µ = A′
θ0

xt +
H ′

θ0
ξθ0;t|t−1 andΣθ0

= H ′
θ0

Pθ0;t|t−1Hθ0
+ Rθ0

The argumentation given in section 4.1 carries over to the more general case,
though we have to make some slight modifications. In the following we assume
that the statistical auxiliary model for the observable variables can be represented
as a vector autoregression:

yt =
−1∑

i=−τ

Giyt+i + εt (11)

Whereyt is an-dimensional vector.
There are two ways to represent the observable variables: the state space for-

mulation based on the structural model and the statistical auxiliary model. In
contrary to the approach in section 4.1 we have to distinguish between the set
of variables of the structural equations and the set of variables that are actually
observed. In the following we assume that the observable variables are chosen
in a way such that there is a one-to-one relation between structural variables and
observable variables. Each observable variable is uniquely attributed to one struc-
tural variable. All structural variables not assigned to anobservable variable are
modelled as state equations. With these assumptions it is possible to combine the
statistical auxiliary model with the structural model to allow for the estimation of
subsystems.

7For higher order autoregressive terms it is necessary to augment the state vector containing
the lagged terms also.
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In a first step the variables are partitioned into observablevariables and state vari-
ables as in (14)8. As in section 4.1 we can partition the observable variablesinto
two different type of structural variables. Starting with the representation of the
structural model given in equation (5), let us assume thatyt is partitioned into
two subgroupsy1

t of dimension(n1 × 1) andy2
t of dimension(n2 × 1), where

n1 + n2 = n. The analysis focuses on the structural parameters of the subgroup
y2

t while the dynamics are determined by the full systemxt.

xt =




ξt

y1
t

y2
t


 (12)

As in equation (7) we can formulate a hybrid model consistingof equations
from the statistical model and structural equations, wherethe latter are allowed to
feature unobservable variables.

θ∑

i=2




B
ξ,ξ
i B

ξ,y1

i B
ξ,y2

i

B
y1,ξ
i B

y1,y1

i B
y1,y2

i

O O O







ξt+i

y1
t+i

y2
t+i


 +




B
ξ,ξ
1 B

ξ,y1

1 B
ξ,y2

1

B
y1,ξ
1 B

y1,y1

1 B
y1,y2

1

O O I







ξt+1

y1
t+1

y2
t+1




=
0∑

i=−τ




C
ξ,ξ
i C

ξ,y1

i C
ξ,y2

i

C
y1,ξ
i C

y1,y1

i C
y1,y2

i

O G
y2
i G

y2
i







ξt+i

y1
t+i

y2
t+i


 +




O O O

O O O

S31 S32 S33







ζ
ξ
t

ζ
y1
t

ζ
y2

t


(13)

We can solve this formulation and transfer it into state space form.
There is a conceptual difference between the interpretation of (7) and (13). In
the case without latent variables we can interpret the auxiliary model as a an ap-
proximation to the solution process. If the sample size grows we will be able to
extract the true solution process from the auxiliary model.In contrary to this we
know that the solution process of (??) will depend on latent variables. The statis-
tical auxiliary model (11) also provides an approximation to the data generating
process but will not be able to produce the parameters of the solution process.

Instead of using this Kalman generated likelihood functionwe can make use of
an indirect approach. From a statistical point of view we could try to evaluate the
distribution of the observable variables without relying on a structural model or
unobservable variables. We introduce a statistical model chosen according to its
ability to give an appropriate description of the data and togive rise to a tractable

8Note at this point that the dynamics of the system cannot be captured by (16) and (15) because
the model is still in its structural form.
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likelihood function9. Assume that the statistical auxiliary model can be parame-
terized with the parameterβ and results in a normal distributionN(µβ,Σβ).
If we assume that the data generating process is given by the structural model (5)
then for an infinite sample size the distribution measured bythe statistical model
coincides with the true distribution generated by the structural model. This im-
plies that the parameter of the auxiliary model estimated onthe observed data and
the parameter of the auxiliary model estimated on data simulated from the struc-
tural model under the true (structural) parameterθ0 comply with each other. Since
the value of the parameter of the auxiliary model estimated on the simulated data
depends on the vector of structural parameters we can define abinding function (
Gourieroux, Monfort, and Renault (1993)) mapping from the structural parameter
into the auxiliary parameter. If this binding function was known and bijective we
could retrieve the structural parameter estimated from this function and the auxil-
iary parameter. Since the binding function fulfills these properties only in special
cases we can implicitly define the inverse of the binding function by choosing
those structural parameters minimizing the distance between the auxiliary param-
eters estimated on observed and simulated data10.
The estimation procedure makes use of the statistical auxiliary model capturing
the dynamics of the structural model. As in the case of the model without unob-
servable variables we can therefore combine structural andstatistical equations to
focus on a subset of structural parameters to estimate.

5 Estimation Technique

5.1 Maximum Likelihood Estimation

The estimation results from the partial indirect inferenceapproach are compared
to the results from standard maximum likelihood estimation. In section 7.1 we
are working with a model having a solution with an autoregressive representation
in observed variables, implying a standard maximum likelihood estimation proce-
dure. All other estimation procedures involve unobservable variables. For these

9Tractability refers to the desirable characteristic to compute the likelihood function analyti-
cally or with fast reliable numerical methods. The appropriateness of the statistical model should
be evaluated along statistical specification tests.

10Since the binding function makes use of an asymptotical argument a large number of simu-
lated values must be drawn from the structural model to generate the true distribution of the data
generating process measured by the auxiliary model.
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models the following Kalman filter based maximum likelihoodprocedure is em-
ployed. In a first step the model is written in state space formwhere the complete
set of model variablesxt is divided into state variables and measure variables.

xt =

(
ξt

yt

)
(14)

whereξt denotes a (r × 1) vector of possibly unobserved state variables andyt

denotes a (n×1) vector of observed variables. We assume that the variablesevolve
according to the following law of motion11:

ξt+1 = Fξt + vt+1 (15)

yt = A′xt + H ′ξt + wt (16)

It can be shown thatyt is distributed normalN(µθ0
,Σθ0

) with µ = A′
θ0

xt +
H ′

θ0
ξθ0;t|t−1 andΣθ0

= H ′
θ0

Pθ0;t|t−1Hθ0
+ Rθ0

Compare Hamilton (1994). Whereξt|t−1 denotes the conditional expectation
based ont− 1 information andPt|t−1 denotes the variance of the conditional dis-
tribution of the state vector. FurthermoreQ andR denote the covariance matrices
of the state equation and the observation equation respectively, Q = E(vt+1v

′
t+1)

andR = E(wtw
′
t). The Kalman filter makes use of the following updating equa-

tions:

ξ̂t+1|t = F ξ̂t|t−1

+FPt|t−1H
(
H ′Pt|t−1H + R

)−1
(
yt − A′xt − H ′ξ̂t|t−1

)

Pt+1|t = FPt|t−1F
′

−FPt|t−1H
(
H ′Pt|t−1H + R

)−1
H ′Pt|t−1F

′ + Q

5.2 Indirect Inference estimator

• we define the estimation of the auxiliary model as the criterion

max
β∈B

QT (yT ,xT ,β) (17)

11For higher order autoregressive terms it is necessary to augment the state vector containing
the lagged terms also.
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with

β̂T = arg max
β∈B

QT (yT ,xT ,β) (18)

• we assume that the limit converges

lim
T→∞

QT (yT ,xT ,β) = Q∞(F0,A0,H0,V0,W0, β) (19)

= Q∞(V0,W0,θ0,β) (20)

where(F0,A0,H0) = θ0

• we assume thatβ0 is the unique maximum of the limit of the criterium

β0 = arg max
β∈B

Q∞(V0,W0,θ0,β) (21)

• furthermore we introduce the binding function mapping fromthe structural
model into the criterion

b(V ,W ,θ) = arg max
β∈B

Q∞(V ,W ,θ,β) (22)

and

β0 = b(V0,W0,θ0) (23)

If the binding function is known and one to one we could deducethe struc-
tural parameters from this relation. In more general terms the binding func-
tion is difficult to compute. In these cases it is useful to replace the analyt-
ical binding function by a functional estimator based on simulations of the
structural model.12

(yH)1
T denotesH path simulations of lengthT taken from (16) underθ and

a joint random seed.13 We can define

β̃T (θ) = arg max
β∈B

QT ((yH)1
T ,x1

T ,β) (24)

12For the further reasoning we have to make the following two assumptions:b(V0,W0, .) is one
to one and∂b

∂θ′
(V0,W0, .) is of full column rank

13At this point we abstract from initial value problems.
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as the solution of the maximization problem of the criterionon simulated
data. ForT tending to infinity the solution (̃β) tends to the solution of the
limit problem:

max
β∈B

Q∞(V0,W0,θ,β) (25)

lim
T→∞

β̃T (θ) = b(V0,W0,θ) (26)

the binding function defines a mapping from the auxiliary parameter (solu-
tion of the simulated criterion function) into the structural parameters.

b : β → θ (27)

• the auxiliary criterion might be misspecified. The only requirement on the
specification issue is that

– β0 is the unique maximum of the limit problem under the true vector
of structural parameters

– the solution of the limit on the simulated series tends to thesolution of
the theoretical limit problem

• this implies that the auxiliary model can be misspecified as long as theβ0

is the unique maximum

• if we combine this approach with the partial idea we have a partition of
the set of structural parameters into structural parameters of interest and
auxiliary parameters

• the approximation to the solution process can be misspecified, because the
corresponding auxiliary parameters are mapped onto itself. The solution
process of the non-modelled part are approximated and measured with re-
spect to the same auxiliary model.

• the explanatory contribution of the approximated variables to the dynam-
ics of the structural variables is also measured with respect to the auxiliary
model such that possible misspecifications do not affect structural estima-
tion results
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6 A workhorse of macro-economics: the New
Keynesian Model

The New Keynesian model is often represented in a system of three equa-
tions capturing the intertemporal optimality conditions of the households
(”New IS-Curve”), the pricing behaviour of firms behaving as monopolisitc
competitors faced with price adjustment costs (”New Keynesian Phillips
Curve”) and monetary policy rule of the central bank (”Taylor-Rule”).

”New IS Curve” in terms of output gap (yt)

yt = Etyt+1 −
1

σ
(rt − Etπt+1) + ǫyt (28)

”New Keynesian Phillips Curve”

πt = λyt + δEtπt+1 + ǫπt (29)

”Taylor-Rule”

rt = ρrt−1 + (1 − ρ)βEtπt+t + (1 − ρ)γyt + ǫrt (30)

The empirical performance of models like (28)-(30) suffersfrom the lack
of persistence generated by the model. Instead of or in addition to internal
propagation mechanism some authors propose to introduce external propa-
gation mechanisms in the form of autocorrelated structuralshocks.

The budget constraint of the representative consumer can bewritten as

Mt−1 + Bt−1 + Tt + Wtht + Dt ≥ PtCt + Bt/rt + Mt (31)

whereMt−1 denotes the money holdings stemming from the last period
andBt−1 stand for the bonds household hold at the beginning of periodt.
Furthermore the household receives a lump-sum monetary transfer from the
central bankTt, as well as labor incomeWtht and profitsDt. Household
expenditure is given by consumption expenditurePtCt and acquired money
and bond holdings.

The utility function of the representative consumer can be written as fol-
lows:

E0

{
∞∑

t=0

βtu

(
ct,

Mt

Pt

, ht; ξt

)}
(32)
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In this specificationξt represents a vector of structural disturbances to the
utility function. Furthermore we assume utility to be additive separable
in consumption and liquidity and the following specification for the utility
function.

u

(
ct,

Mt

Pt

; ξt

)
= at

c1−σ
t

1 − σ
+ ln(

Mt

Pt

− (1/η)hη
t ) (33)

In this settingat is the only disturbance to the utility function following the
dynamics specified by an AR:

at = ρaat−1 + ǫa,t (34)

Furthermore a cost-push shock is introduced by allowing fora autocorre-
lated shock to the demand elasticity for each intermediate good.

[∫ 1

0

Yt(i)
θt−1/θtdi

]θt/(θt−1)

(35)

with

θt = (1 − ρθ) ln(θ) + ρθθt−1 + ǫθ,t (36)

.
Since the intermediate goods are imperfect substitutes in the production of
the final good, intermediate producer face some monopolistic pricing power.
In the price setting process firms face a cost of nominal priceadjustment of
following form following Rotemberg (1982).

φ

2

[
Pt(i)

πPt−1(i)
− 1

]2

Yt (37)

Labor ht is the only factor for the production of the intermediate good of
firm i Yt(i).

Ztht(i) ≥ Yt(i) (38)
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whereZt follows the process:

ln(Zt) = (1 − ρz) ln(z) + ρz ln(Zt−1) + ǫz,t (39)

Following Ireland (2003b) this specification results in a modified IS Curve
and Phillips-curve relation in terms of the output gap (yt)

yt = Etyt+1 −
1

σ
(rt − Etπt+1) +

1 − ρa

σ
at (40)

πt = βEtπt+1 +
(θ − 1)σ

φ
yt −

(θ − 1)

φ
zt −

1

φ
θt (41)

The monetary policy rule remains as specified in (30)

rt = ρrrt−1 + (1 − ρr)βEtπt+t + (1 − ρr)γyt (42)

It is straightforward to see that this formulation nests a model that is much
easier to deal with. If we assume that the persistence parameters of the
shock processes (ρθ, ρz andρa) are equal to zero we have a model containing
observable variables only as in equations (28), (29) and (30). The error
terms can be interpreted as measurement errors and are scaled versions of
ǫa,t, ǫθ,t andǫz,t. This model is used as an example in section 4.1 while the
more general version is discussed in section 4.2.

7 Comparison of estimation properties

7.1 Well specified model (to be completed)

The following setting for the estimation experiment was chosen. The re-
searcher knows that the observed data is generated by the model specified
in (28), (29) and (30). The values of the structural parameters however are
unobserved. The researcher chooses to estimate the value ofthe degree of
risk-aversion (σ) without having to make an assessment on the value of the
remaining parameters. His estimation strategy is to start with estimating an
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unrestricted, non-structural system on the observed data.In a second step
he imposes the restrictions from the economic model on the demand side
by estimating equation (28) in the otherwise unrestricted system. From the
reduced form (48) it is straightforward to chose a VAR with one lag as the
representation for the unconstrained model.
In an initial step the structural system is solved and simulated under the true
vector of structural parameters for a drawn vector of randomdisturbances.
In a second step a VAR is estimated on the realization of the data generating
process.




πt

yt

rt


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ∗




πt−1

yt−1

rt−1


 + εt (43)

Taking the VAR(1) representation of equation (29) and (30) asan approxi-
mation to the solution process of the model the following hybrid model is
build.

πt = a11 ∗ πt−1 + a12 ∗ yt−1 + a12 ∗ rt−1 + ǫπ,t

yt = Etyt+1 −
1

σ
(rt − Etπt+1) (44)

rt = a31 ∗ πt−1 + a32 ∗ yt−1 + a33 ∗ rt−1 + ǫr,t

The structural parameters of the hybrid model are estimatedusing maxi-
mum likelihood and indirect inference. The results are reported in table xxx.
The standard deviation of the point estimates is rather large even though we
have a big sample. The high standard deviation of the estimators comes
from the fact that the structural model used as the DGP is singular in the
non-stochastic version. In the stochastic version of the model a large pro-
portion of fluctuations is actually driven by the error termsand not by the
structural model parameters. From a statistical point of view
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7.2 Unobservable Variables and mis-specification (to be
completed)

8 Conclusion

The combination of a rich economic DSGE specifications together with a
set of autocorrelated error processes allows to explain a large part the ob-
served data. Parameter estimates and specification evaluations in this ap-
proach are affected by the strong simultaneous effects between the equa-
tions. Mis-specifications in one equation or a misguided prior on some
parameter estimated can have an effect on the estimation results for other
equations. Imposing the restrictions from a DSGE specification on an oth-
erwise unrestricted system allows to circumvent the cross-equation effect of
mis-specifications. This paper states the explicit relation between the struc-
tural model, solution process and hybrid model consisting of some struc-
tural and some solution process equations. If all variablesare observable
the VAR provides a good approximation to the solution process leading to
an estimation approach based on the hybrid model.
If the system contains unobservable variables the finite VARapproximation
is no longer appropriate. The estimation problem can be compared to the
estimation of a single equation in a VARMA model using a VAR as aux-
iliary model. The method of indirect inference allows to correct for this
bias. Using a statistical example in a Monte Carlo experimentthe estima-
tion results of the indirect inference approach are compared to maximum
likelihood results.
In a further step the Monte Carlo experiment is extended to thepartial es-
timation of two DSGE models. The first DSGE model does not contain
unobservable and the partial version can be estimated by maximum likeli-
hood. The second DSGE model incorporates unobservable variables in the
form of autocorrelated structural error processes. For both model the esti-
mation results of a maximum likelihood approach are compared to an indi-
rect inference approach. First results suggest that the increased robustness
of the indirect inference estimator in a partial setting is counterweighted by
the inferior small sample properties when compared to a (partial) maximum
likelihood approach.
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9 Appendix

9.1 Solving the model: a numerical example

For sake of disposition of the approach the model given in equations (28) to (30)
is solved for a numerical example.
The interest rate is the only backward looking variable. A first guess for the ex-
pectation formation is therefore:

Etπt+1 = φrt (45)

Etyt+1 = θrt

Using this guess we end up with the following relations:

φ =
ρ

[
φδ + λθ − λ

σ
+ λφ

σ

]

1 − (1 − ρ)
[
βφ + γθ − γ

σ
+ γθ

σ

] (46)

θ =
ρ

[
θ − 1

σ
+ φ

σ

]

1 − (1 − ρ)
[
βφ + γθ − γ

σ
+ γθ

σ

] (47)

Since there is no closed form solution to these equations we proceed with an
numerical example. Following Clarida, Gali, and Gertler (1998) we assume the
following values for the structural parameters:

β = 0.8

σ = 1

δ = 0.99

λ = 0.3

ρ = 1.75

γ = 0.4

With these parameter values and the above relations (46 and 47 ) we can write the
system in backward looking form:

Et




πt+1

yt+1

rt


 =




0 0 1.4152
0 0 1.2275
0 0 0.7473


 ∗




πt

yt

rt−1


 (48)
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Figure 1:Density Function of partial Maximum Likelihood
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Notes: The nonparametric density function was estimated using a gaussian kernel

If we add shocks to the model we can simulate the observable representation
(48). The shock in the ”New IS Curve” can be interpreted as a preference shock,
while the shock to the NKPC is a cost push shock. The shock in the central bank
reaction function can be interpreted as all those interest rate decision that deviate
from the estimated rule.
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Table 3: Partial versus full estimation of VARMA model, samplesize=950, 400
path simulations

Direct Maximum Likelihood Partial Maximum Likelihood
parameter mean std. dev RMSE mean std. dev RMSE
A(1, 1) = 0.8 0.797 0.027 0.029 n.e. n.e. n.e.
A(1, 2) = −0.1 -0.102 0.019 0.019 n.e. n.e. n.e.
M (1, 1) = 0.2 0.198 0.039 0.041 n.e. n.e. n.e.
A(2, 1) = 0.6 0.599 0.025 0.023 0.600 0.024 0.023
A(2, 2) = 0.3 0.294 0.028 0.028 0.293 0.027 0.028
M (2, 2) = 0.9 0.967 0.088 0.119 0.925 0.064 0.069

Notes: A VAR(4) was chosen as the auxiliary model in the partial approach. As
described in section 3 the parameters of the first equation were not estimated (n.e.).
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