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Abstract

This paper considers two models, namely a sample selection model and a two-part model, for an

outcome variable that contains a large fraction of zeros, such as individual expenditures on health

care. The sample selection model assumes two phases that determine the outcome: a decision

process and an outcome process. Both of these processes may be correlated and, conditional on

a favorable decision, the outcome is observed. The two-part model assumes that the decision and

outcome processes are uncorrelated. The paper addresses the problem of selecting between these

two models. Under a Gaussian specification of the likelihood the models are nested and inference

can focus on the correlation coefficient. Using a fully parametric Bayesian approach, I present

sampling algorithms for the model parameters that are based on data augmentation. In addition

to the sampler output of the correlation coefficient, a Bayes factor can be computed to distinguish

between models. The paper illustrates all methods and their potential pitfalls using simulated

datasets.



1 Introduction

When modeling individual expenditures on durable goods or health care the data on the outcome

variable is typically characterized by a certain fraction of observations clustered at zero and a

distribution of positive values that is highly skewed. In a consumer optimization problem a zero,

i.e. no demand or expenditures, can be viewed as a corner solution whereas a positive outcome

indicates an interior solution.

The current paper considers two specific models that are commonly used in the literature to

analyze this kind of data. One essential difference between these two models is how they interpret

a zero in the data. In the first model, that we will refer to as a sample selection model or SSM,

the decision process of each individual is split up into two stages. In the first stage the individual

decides whether or not to spend. This stage is described by a structural equation for an underlying

latent variable such as utility. If the latent variable falls below a certain threshold, expenditures

are zero; if it exceeds this threshold positive expenditures are observed. In the second stage the

individual makes a decision on the level of spending. If the first stage dictates that expenditures

should be positive we observe the level determined in the second stage. Otherwise we observe a zero.

Thus, the zeros represent missing data: we do not observe what an individual would have spent,

had she decided to spend at all. Put differently, in a sample selection model potential expenditures

are modeled, which are only partially observed. An important consequence is that the observed

positive values of expenditures follow a pattern that is derived from the latent structure.

More generally sample selection occurs when the observed data is not obtained through ran-

domly sampling the population but rather reflects the outcome of individuals’ decision making

processes. If the goal is to learn something about the entire population it is important to have

an understanding of the process generating the sample. Individuals may select themselves into

(or out of) the sample based on observable quantities or unobserved heterogeneity. When latent

variables in the latter case also effect the outcome variable, inference using the selected sample may

be subject to selection bias.

Early contributions to the sample selection literature are Gronau (1974) and Heckman (1979),

among others. Gronau (1974) analyzes self-selection and the potential for selection bias in the

labor market when actual observed wages are used to make inference on the distribution of wage
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offers. Heckman (1979) treats sample selection as a specification error and proposes a by now very

well known two-step estimator that corrects for omitted variable bias. As the current paper takes

a Bayesian approach we do not further discuss the frequentist literature at this point. Good recent

surveys are Lee (2003) and Vella (1998) who focuses on semiparametric estimation.

The second model is referred to as a two-part model or 2PM. One of the first discussions of this

model goes back to Cragg (1971). As in the sample selection model two stages are distinguished

in the decision making process: the decision whether to spend or not and the decision how much

to spend. The level of observed positive expenditures is modeled directly, rather than potential

expenditures. The two-part model therefore focuses on actual outcomes. In this framework a zero

is truly a zero and does not represent missing data. Two-part (and more generally multi-part)

models are described in Wooldridge (2002) and used in Duan, Manning, Morris, and Newhouse

(1983) to analyze individuals’ medical expenditures.

There has been some debate in the literature as to which model is more appropriate for describ-

ing health care expenditures. Duan, Manning, Morris, and Newhouse (1983) argue that the 2PM is

to be preferred since it models actual as opposed to potential outcomes. Whether we are interested

in actual or potential outcomes depends on the particular application at hand. Regardless the SSM

can also be used to analyze actual outcomes because the latent structure implies a model for the

observed data. Hay and Olsen (1984) claim that the 2PM is nested within the SSM and imposes

error independence across equations. However, Duan, Manning, Morris, and Newhouse (1984) con-

struct a 2PM counter example in which the errors are dependent. The main difference between the

two approaches is that by construction the 2PM assumes away the selection effect. Cross-equation

correlations therefore do not appear in the likelihood. The SSM offers a different perspective by

initially modeling potential outcomes from which a model for the actual outcomes can be derived.

As a consequence the parameters of the two models have a slightly different interpretation.

In their health expenditure application Duan et al. (1983, 1984) find that the 2PM outperforms

the SSM in terms of mean squared forecast error (MSFE). Manning, Duan, and Rogers (1987)

compare the models on the basis of MSFE and mean prediction error in an extensive Monte Carlo

study. They find that the 2PM overall performs very well, even if the SSM is the true model. It

is important to note that the goal of these studies is to predict outcomes rather than accurately

estimate the model parameters.
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Under certain distributional assumptions and given the specific versions of the SSM and 2PM

we use in this paper, the 2PM is nested within the SSM.1 The null hypothesis that the 2PM is the

true model, or at least cannot be distinguished from the SSM, can then easily be tested through

a classical t-test on the relevant parameter. However, Leung and Yu (1996) present simulation

evidence suggesting that this test may perform poorly due to near multicollinearity. For that

reason Dow and Norton (2003) propose a test based on the difference in empirical mean squared

error (EMSE). A problem with this method is that the EMSE comparison is based on the null

hypothesis that the sample selection model represents the truth. This choice of null hypothesis is

arbitrary and in general it is not clear what would happen if the null and alternative hypotheses

are reversed. Moreover, in the simulation design in which the t-test has very low power, the EMSE

test fails to select the correct model.

This paper takes a Bayesian and fully parametric approach to the problem of distinguishing

between the 2PM and SSM. Our goal is to make inference about the cross-equation correlation,

rather than predicting outcomes. In the case of bivariate normal errors the relative support the

data offers to either of the models can be assessed by simulating the posterior distribution of

this correlation. To this end we present several Markov Chain Monte Carlo (MCMC) sampling

algorithms. If selecting a single model is the ultimate goal of the analysis a posterior odds ratio

or Bayes factor can be computed to guide the selection process. An interesting article that is

worth mentioning at this point is Munkin and Trivedi (2003) who use a three-equation system to

simultaneously model a count variable (visits to the doctor), a continuous nonnegative variable

(expenditures) and a treatment indicator (choice of insurance scheme). They label the choice of

treatment ’self-selection’ whereas in our context the term refers to individuals displaying a positive

outcome or not. Although their model is useful for analyzing nonnegative outcome variables, by

construction it does not allow for zeros in the continuous outcome variable.2 Therefore Munkin

and Trivedi’s (2003) model as it stands cannot be used when there are zeros in the data.

The remainder of this paper is organized as follows: section 2 presents the particular versions

of the 2PM and SSM we use and the distributional assumptions that enable a fully parametric

1Given the different interpretation of each model the word nested is slightly misleading. We take nested to mean
there is a value of the parameter vector such that the two models are observationally equivalent.

2Specifically, the continuous outcome variable is modeled as having an exponential distribution where the loga-
rithm of the mean is a linear function of covariates.
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Bayesian analysis. Section 3 discusses three Gibbs sampling algorithms. Section 4 reviews some

material on Bayes factors and two ways to compute them. Section 5 contains some simulation

evidence, whereas section 6 assesses the performance of our methods in Leung and Yu’s (1996)

simulation designs. Section 7 discusses some extensions and modifications of the Gibbs sampler

that may perform better if the likelihood has multiple local maxima. Finally, section 8 concludes

and provides directions for future research.

2 The Sample Selection and Two-Part Models

Because it facilitates the discussion we will occasionally refer to the outcome variable yi as expen-

ditures. As in Leung and Yu (1996) we use the following version of the SSM:

Ii = x0i1α+ ui1,

mi = x0i2β + ui2, (2.1)

ln yi =

⎧⎪⎨⎪⎩ mi if Ii > 0

−∞ if Ii ≤ 0
.

The subscript i denotes the ith observation in a sample of size n. The vectors xi1 and xi2 have k1

and k2 elements, respectively. The equation for Ii is a selection equation: it determines whether an

agent spends a positive amount or not, depending on whether Ii is positive or not. The equation

for mi represents the logarithm of potential expenditures. Potential expenditures are effected by

a set of covariates xi2 and only observed when Ii > 0. Thus, m is a partially observed, partially

latent variable. If expenditures yi are zero we know that Ii ≤ 0 and mi is unobserved. On the

other hand if yi is positive we know that Ii > 0 and mi = ln yi is observed.3

For the fully parametric Bayesian analysis of this model it is assumed that the joint distribution

of ui1 and ui2 is bivariate normal:⎛⎜⎝ ui1

ui2

⎞⎟⎠ ∼ N (0,Σ) , Σ =

⎡⎢⎣ σ21 ρσ1σ2

ρσ1σ2 σ22

⎤⎥⎦ , (2.2)

3This is a generic version of the sample selection model which appears in many places in the literature; see Lee
(2003).
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where ρ is the correlation coefficient. If si is the indicator of observing potential expenditures, i.e.

si = 1 {Ii > 0}, we observe (x0i1, x0i2, si) for all i = 1, ..., n. Moreover, mi is observed only if si = 1.

If si = 0 then mi is not observed and yi = 0. The random variable si has a Bernoulli distribution

with

Pr
©
si = 1|x0i1α

ª
= Pr

©
ui1 > −x0i1α

ª
= Pr

©
ui1/σ1 > −x0i1α/σ1

ª
= Φ

¡
x0i1α/σ1

¢
,

where Φ (·) denotes the cumulative distribution function of the standard normal distribution. The

likelihood of this model for the n observations can now be written as

pSSM (ln y|α, β,Σ) =
nY
i=1

£
Φ
¡
x0i1α/σ1

¢¤si £1− Φ ¡x0i1α/σ1¢¤1−si × (2.3)Y
i:yi>0

pu2|I>0
¡
ln yi − x0i2β

¢
,

where pu2|I>0 is the density of ui2 conditional on Ii > 0. To further simplify the above expression,

let fN (a|b, c) and FN (a|b, c) denote the density and cumulative distribution functions, respectively,

of a normal random variable with mean b, variance c, evaluated at a. If φ (·) denotes the standard

normal density function and ūi = ln yi − x0i2β, then

pu2|I>0 (ūi) =

R∞
0 pu2,I(ūi, I)dI

P (I > 0)

=
pu2(ūi)

Φ (x0i1α/σ1)

Z ∞

0
pI|u2(I|ūi)dI

=
fN
¡
ūi|0, σ22

¢
Φ (x0i1α/σ1)

£
1− FN

¡
0|x0i1α+ (ρσ1/σ2)ūi, σ21(1− ρ2

¢
)
¤

=
σ−1u2 φ (ūi/σ2)

Φ (x0i1α/σ1)
Φ

Ã
x0i1α+ (ρσ1/σ2) ūip

σ21(1− ρ2)

!
.
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Plugging this back into (2.3) the likelihood of the SSM becomes

pSSM (ln y|α, β,Σ) =
Y

i:yi=0

£
1− Φ

¡
x0i1α/σ1

¢¤
×

Y
i:yi>0

σ−12 φ

µ
ln yi − x0i2β

σ2

¶
Φ

Ã
x0i1α

σ1
p
1− ρ2

+
ρ (ln yi − x0i2β)

σ2
p
1− ρ2

!
. (2.4)

From the last expression it is clear that α and σ1 are not jointly identified through the likelihood.

The identification problem that is standard in the Probit model is usually resolved by imposing the

restriction σ1 = 1. Because we will present a Gibbs sampling algorithm in the next section that

involves nonidentified parameters to make inference on the identified parameters, we choose not to

impose the variance restriction at this point.

The version of the 2PM we use is

Ii = x01iα+ εi1,

ln (yi|Ii > 0) = x0i2β + εi2. (2.5)

For this exposition we take εi1 ∼ N
¡
0, σ21

¢
and εi2 ∼ N

¡
0, σ22

¢
. The selection equation is the same

as in the SSM: if Ii > 0 then yi > 0 and the logarithm is well-defined. If Ii ≤ 0 then yi = 0. The

main difference with the SSM concerns the errors εi2 and ui2. In the sample selection model ui2

is an error that corresponds to potential outcomes. Conditional on Ii > 0 the error then has a

nonzero mean that depends on Σ and x0i1α. In contrast εi2 only effects the logarithm of positive

values of expenditures and by construction E (εi2|Ii > 0) = 0. The 2PM is silent about the joint

distribution of (εi1, εi2) and assumes that conditional on εi1 > −xi1α the errors εi1 and εi2 are

independent4.

4This does not imply that εi1 and εi2 are independent. See Duan, Manning, Morris, and Newhouse (1984) for an
example.
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The likelihood of the 2PM can be written as5

p2PM (ln y|α, β, σ1, σ2) =
nY
i=1

£
Φ
¡
x0i1α/σ1

¢¤si £1− Φ ¡x0i1α/σ1¢¤1−si ×
Y

i:yi>0

¡
2πσ22

¢−1/2
exp

½
− 1

2σ22

¡
ln yi − x0i2β

¢2¾
. (2.6)

By comparing (2.4) and (2.6) it is clear that the former reduces to the latter when ρ = 0. This

suggests that in order to discriminate between the SSM and 2PM in this distributional framework

we can consider inference on the correlation coefficient.

3 Posterior Analysis Via Gibbs Sampling

In this section we will present several Gibbs samplers that will aid in distinguishing between the

2PM and SSM. Two approaches are considered. First we develop a Gibbs sampler for the SSM.

The output from this algorithm can be used to make inference about the cross-equation correlation

and to compute a Bayes factor for the hypothesis that ρ = 0. Second, a Gibbs sampler for the

2PM is given whose output can be used to compute a Bayes factor in a different way. Discussion

of the Bayes factor and its computation is postponed until the next section. The following two

subsections contain the algorithms.

3.1 The Sample Selection Model

By inspection of the likelihood (2.1) it appears that no choice of prior for ρ will yield a tractable

posterior distribution. We therefore first develop a Gibbs sampling algorithm that simulates draws

from the posterior distribution of (α, β,Σ) and then use these realizations to approximate the

posterior of ρ. Since only the selection indicator si is observed, the variable Ii is latent and

hence treated as an additional parameter in the algorithm. The same can be said about mi which

is partially observed. Hence, through data-augmentation we are able to complete the algorithm

and generate a sequence of realizations of (α, β,Σ, I,m) from the posterior6. In what follows all

5Although α and σ1 are not jointly identified we do not impose the restriction σ1 = 1 at this point for reasons
explained earlier.

6Albert and Chib (1993) provide an application of data-augmentation to binary and polychotomous response
data.
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conditional distributions are to be understood as also being conditional on the data. For convenience

of the exposition we will not denote this dependency explicitly in our notation.

The most convenient way to analyze the model is to first write it as a ’seemingly unrelated

regressions’ (SUR) model. Let I = (I1, . . . , In)
0, m = (m1, . . . ,mn)

0, u1 = (u11, . . . , un1) and

u2 = (u12, . . . , un2) be n× 1 vectors. Define the following matrices:

W =

⎡⎢⎣ I

m

⎤⎥⎦ : 2n× 1, X1 =

⎡⎢⎢⎢⎢⎣
x011
...

x0n1

⎤⎥⎥⎥⎥⎦ : n× k1,

X2 =

⎡⎢⎢⎢⎢⎣
x012
...

x0n2

⎤⎥⎥⎥⎥⎦ : n× k2, X =

⎡⎢⎣ X1 0

0 X2

⎤⎥⎦ : 2n× (k1 + k2),

δ =

⎡⎢⎣ α

β

⎤⎥⎦ : (k1 + k2)× 1, u =

⎡⎢⎣ u1

u2

⎤⎥⎦ : 2n× 1.
The model can then be concisely written as W = Xδ+u, where E(u) = 0 and V (u) = Σ⊗ In. The

likelihood of the normal SUR model is

p(W |δ,Σ) ∝ |Σ|−n/2 exp
½
−1
2
(W −Xδ)0(Σ−1 ⊗ In)(W −Xδ)

¾
∝ |Σ|−n/2 exp

½
−1
2
tr
¡
BΣ−1

¢¾
, (3.1)

where tr(·) is the trace of a square matrix and B is defined as

B =

⎡⎢⎣ (I −X1α)
0(I −X1α) (I −X1α)

0(m−X2β)

(m−X2β)
0(I −X1α) (m−X2β)

0(m−X2β)

⎤⎥⎦ . (3.2)

Starting with the conditional posterior of (α, β), note that p(α, β|I,m,Σ, s) = p(α, β|I,m,Σ) be-
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cause s is a function of I. The likelihood in (3.1) can be rewritten as

p(W |δ,Σ) ∝ |Σ|−n/2 exp
½
−1
2

h
e0S−1e+ (δ − δ̂)0X 0S−1X(δ − δ̂)

i¾
,

e = W −Xδ̂,

δ̂ = (X 0S−1X)−1X 0S−1W,

S−1 = Σ−1 ⊗ In.

Combining this with a normal N (δ0,D0) prior for δ = (α, β), the posterior is again normal:

E (δ|W,Σ) =
£
D−10 +X 0S−1X

¤−1 h
D−10 δ0 +X 0S−1Xδ̂

i
, (3.3)

V (δ|W,Σ) =
£
D−10 +X 0S−1X

¤−1
. (3.4)

To sample (Ii,mi) we need to distinguish two cases: si = 0 and si = 1. Suppose first that si = 1

so that mi is observed and Ii > 0. From (2.2) it follows that Ii conditional on mi and Ii > 0 has a

normal distribution with mean x0i1α+ρσ1σ
−1
2 (mi − x0i2β) and variance σ1

p
1− ρ2, truncated from

below at zero:

p (Ii|mi, Ii > 0, α, β,Σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∙
Φ

µ
x0i1α+ρσ1σ

−1
2 (mi−x0i2β)

σ1
√
1−ρ2

¶¸−1
×

σ−11
¡
1− ρ2

¢−1/2
φ

µ
Ii−(x0i1α+ρσ1σ

−1
2 (mi−x0i2β))

σ1
√
1−ρ2

¶ if Ii > 0

0 if Ii ≤ 0

. (3.5)

If si = 0 then it is known that Ii ≤ 0 but the actual values (Ii,mi) are not observed. A value of Ii

can be generated from the N
¡
x0i1α, σ

2
1

¢
distribution truncated from above at zero7. The value of

mi is a realization of its conditional distribution given Ii that follows from (2.2):

p (Ii|Ii ≤ 0, α, β,Σ) =

⎧⎪⎨⎪⎩ [1− Φ (x0i1α/σ1)]
−1 σ−11 φ

³
Ii−x0i1α

σ1

´
if Ii ≤ 0

0 if Ii > 0
, (3.6)

p (mi|Ii, α, β,Σ) = σ−12
¡
1− ρ2

¢−1/2
φ

Ã
mi −

¡
x0i2β + ρσ−11 σ2 (Ii − x0i1α)

¢
σ2
p
1− ρ2

!
. (3.7)

7All draws from truncated normal distributions can easily be obtained through the inverse c.d.f. method, e.g.
Lancaster (2004, p.190-191).
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Finally it remains to find the conditional posterior of Σ. By inspection of the SUR likelihood (3.1)

it can be seen that the inverse Wishart distribution is the natural conjugate prior. If an m ×m

matrix Σ has an inverse Wishart distribution with parameter matix H and degrees of freedom v

we will write Σ ∼W−1 (H, v,m) and its density is given by

p (Σ|H, v,m) ∝ |Σ|−(v+m+1)/2 exp
½
−1
2
tr
¡
Σ−1H

¢¾
, v ≥ m (3.8)

Multiplication of this density with the SUR likelihood and substituting m = 2 it can be seen that

p (Σ|α, β, I,m) ∝ |Σ|−(n+v+3)/2 exp
½
−1
2
tr
¡
Σ−1 (B +H)

¢¾
, v ≥ 2 (3.9)

where B was defined in (3.2). Thus the conditional posterior of Σ is W−1 (B +H,n+ v, 2). The

Gibbs sampler can now be summarized as follows:

Algorithm 1 (Unidentified Parameters) For given starting values of (α, β,Σ, I,m):

1. Sample (α, β) from a normal distribution with mean (3.3) and variance (3.4);

2. If si = 1 sample Ii from (3.5). If si = 0 sample Ii from (3.6) and mi from (3.7);

3. Sample Σ from (3.9);

4. Return to 1 and repeat T times.

Note that this Gibbs sampler involves the unidentified parameters α and σ1. Thus we expect the

posterior distribution of (α, σ1) to be quite uninformative. However, the output from the algorithm

can be used to approximate the posterior of an identified parameter such as ρ. McCulloch and

Rossi (1994) employ this technique in the context of a multinomial Probit model. Their finding is

that the algorithm typically converges very rapidly. Of course it remains to be seen whether this

happens in the SSM. From the discussion so far it is clear that the main advantage of working with

unidentified parameters is that standard normal and inverse Wishart priors can be used.

The Gibbs sampler with unidentified parameters cannot be trivially modified8 to satisfy the

restriction σ1 = 1. Although Σ has an inverse Wishart distribution, Σ conditional on σ1 = 1 does
8The naive solution of simply replacing the (1, 1) element of Σ by 1 may yield a matrix which is not positive

semi-definite.
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not. A reparameterization of the covariance matrix, however, will allow us to impose the restriction

σ1 = 1 and still work with easily tractable priors and posteriors. This idea is used by Koop and

Poirier (1997) to analyze the correlation in a regime-switching model. McCulloch, Polson, and

Rossi (2000) develop an algorithm for the multinomial Probit model.

When we impose the restriction σ1 = 1 and use (2.2) we know that Var(ui2|ui1) = σ22
¡
1− ρ2

¢
=

σ22 − σ212, where σ12 is the covariance between ui1 and ui2. Now define ξ2 ≡Var(ui2|ui1) and write

Σ as

Σ =

⎡⎢⎣ 1 σ12

σ12 ξ2 + σ212

⎤⎥⎦ .
The likelihood in this new parameterization is

pSSM (ln y|α, β,Σ) =
Y

i:yi=0

£
1− Φ

¡
x0i1α

¢¤
×
Y

i:yi>0

¡
ξ2 + σ212

¢−1/2
φ

⎛⎝ ln yi − x0i2βq
ξ2 + σ212

⎞⎠×
Y

i:yi>0

Φ

⎛⎝x0i1α
¡
ξ2 + σ212

¢
+ σ12 (ln yi − x0i2β)

ξ
q
ξ2 + σ212

⎞⎠ . (3.10)

In order to generate draws (σ12, ξ) in the Gibbs sampler we need the conditional posterior

p (σ12, ξ|I,m, α, β). Note that as a result of bivariate normality of (ui1, ui2) we can write

ui2 = σ12ui1 + ηi, ηi ∼ N
¡
0, ξ2

¢
.

Thus, if the vectors u1 and u2 were known (data) inference about (σ12, ξ) can be made using

standard Bayesian techniques for the normal linear model. The parameters (α, β) do not effect the

posterior. Going back to the posterior of interest we can see that conditional on (I,m, α, β) the

values of u1 and u2 are known, so that

p (σ12, ξ|I,m, α, β) = p (σ12, ξ|u1, u2, α, β)

= p (σ12, ξ|u1, u2)

∝ p (u1, u2|σ12, ξ)π (σ12, ξ) .
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The natural conjugate prior on (σ12, ξ) for this model is of the normal-inverse gamma form9:

p (ξ|c0, d0) =
2dc00
Γ (c0)

ξ−(2c0+1) exp
©
−d0/ξ2

ª
, (3.11)

p (σ12|g, τ , ξ) =
¡
2πτξ2

¢−1/2
exp

½
− 1

2τξ2
(σ12 − g)2

¾
,

where (c0, d0, g, τ) is a set of hyperparameters. As we shall see later, this prior specification induces

a prior for the correlation coefficient that can be made roughly uniform by an appropriate choice

of τ . It is easy to show that

(ξ|α, β, I,m, σ12) ∼ Γ−1
³
c̃0, d̃0

´
, (3.12)

c̃0 = c0 +
n+ 1

2
,

d̃0 = d0 +
1

2τ
(σ12 − g)2 +

1

2
(u2 − σ12u1)

0 (u2 − σ12u1) ,

and

(σ12|α, β, I,m, ξ) ∼ N

µ
g/τ + u01u2
1/τ + u01u1

,
ξ2

1/τ + u01u1

¶
(3.13)

The Gibbs sampler with identified parameters can now be summarized as

Algorithm 2 (Fully Identified Parameters) For given starting values of (α, β, I,m, ξ, σ12):

1. Sample (α, β) from a normal distribution with mean (3.3) and variance (3.4);

2. If si = 1 sample Ii from (3.5). If si = 0 sample Ii from (3.6) and mi from (3.7);

3. Sample ξ from (3.12) and σ12 from (3.13);

4. Return to 1 and repeat T times.

9 In what follows Γ−1 (c0, d0) will denote the inverse-gamma distribution with density function (3.11).

12



3.2 The Two-Part Model

Sampling from the posterior distribution of (α, β, σ2)10 in the 2PM is considerably easier than in

the SSM because the likelihood is separable in α and (β, σ2):

p2PM (ln y|α, β, σ2) =
nY
i=1

£
Φ
¡
x0i1α

¢¤si £1−Φ ¡x0i1α¢¤1−si ×
Y

i:yi>0

¡
2πσ22

¢−1/2
exp

½
− 1

2σ22

¡
ln yi − x0i2β

¢2¾
.

Thus, the likelihood consists of a probit part and a log-normal part. The posterior of α can be

sampled using data-augmentation as in Albert and Chib (1993): recall that si = 1 {Ii > 0} =

1 {yi > 0} is observed but the actual value of Ii is not. Again the vector I = (I1, . . . , In) is treated

as a parameter. The goal is now to find p(I|α, s) and p(α|I, s) = p (α|I)11. We write I = X1α+u1

where u1 ∼ Nn (0, In). Then

p(I|α) = (2π)−n/2 exp

½
−1
2

£
e0e+ (α− α̂)0X 0

1X1(α− α̂)
¤¾

,

e = I −X1α̂,

α̂ =
¡
X 0
1X1

¢−1
X 0
1I.

Combining a normal N (α0, A0) prior distribution for α with the likelihood of I given above, it

follows that

α|I ∼ N
¡
ᾱ, Ā

¢
, (3.14)

Ā =
¡
A−10 +X 0

1X1

¢−1
,

ᾱ =
¡
A−10 +X 0

1X1

¢−1 ¡
A−10 α0 +X 0

1X1α̂
¢
.

To compute p(I|α, s) we need to consider the case si = 0 and si = 1. Since Ii|α has a normal

distribution with mean x0i1α and unit variance, the distribution of Ii given α and si is truncated

10We have chosen to impose σ1 = 1 at this point because the algorithm of this section will be used in conjunction
with algorithm 2 (which imposes the same restriction) to compute Bayes factors.

11This follows because s is a function of I.
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normal:

p(Ii|α, si = 0) =

⎧⎪⎨⎪⎩
(2π)−1/2 exp

n
− 1
2(Ii−x

0
i1α)

2
o

1−Φ(x0i1α)
if Ii ≤ 0

0 if Ii > 0
, (3.15)

p(Ii|α, si = 1) =

⎧⎪⎨⎪⎩
(2π)−1/2 exp

n
− 1
2(Ii−x

0
i1α)

2
o

Φ(x0i1α)
if Ii > 0

0 if Ii ≤ 0
.

Inference on (β, σ2) only uses the subsample in which yi > 0. Let ln y+, X+
2 and u

+
2 = ln y

+−X+
2 β

all refer to this subsample of size n+. If π (σ) = Γ−1 (c0, d0) and π (β) = N (β0, B0) it follows that

σ2|β, ln y+ ∼ Γ−1
³
c̃0, d̃0

´
, (3.16)

c̃0 = c0 +
n+

2
,

d̃0 = d0 +
1

2
u+02 u+2 ,

β|σ2, ln y+ ∼ N
¡
β̄, B̄

¢
, (3.17)

B̄ =
¡
B−10 + σ−22 X+0

2 X+
2

¢−1
,

β̄ =
¡
B−10 + σ−22 X+0

2 X+
2

¢−1 ³
B−10 β0 + σ−22 X+0

2 X+
2 β̂
´
,

β̂ =
¡
X+0
2 X+

2

¢−1
X+0
2 ln y+.

The Gibbs sampler in the 2PM can now be summarized as

Algorithm 3 (Two-Part Model) For given starting values of (α, I, β, σ2):

1. Sample α from (3.14) and I from (3.15);

2. Sample β from (3.17) and σ2 from (3.16);

3. Return to 1 and repeat T times.

The next section discusses how these algorithms can be used to compute Bayes factors.
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4 Bayes Factors

The Bayes factor provides a way to compare different models on the basis of their prior predictive

distribution for the outcome variable. Suppose that two competing models, M1 and M2, are

entertained to describe the outcome ln y. A model in this context consists of a prior distribution

on the appropriate parameters and a likelihood for the data. Given prior probabilities π (M1) and

π (M2) on the two models the posterior odds ratio is computed as

p (M1| ln y)
p (M2| ln y)

=
p (ln y|M1)

p (ln y|M2)
× π (M1)

π (M2)

= B12 × prior odds ratio.

In other words, the Bayes factor transforms the prior odds ratio into the posterior odds ratio. The

Bayes factor itself is the ratio of the prior predictive distributions or marginal likelihoods. In this

context Kass and Raftery (1995) is a good survey article. In what follows we consider two ways to

compute the Bayes factor.

4.1 The Savage Density Ratio

Let M1 denote the SSM with the restriction ρ = σ12 = 0 imposed and M2 the unrestricted SSM.

The marginal likelihood mj (ln y) ≡ p (ln y|Mj) is given by

mj (ln y) =

Z
pj (ln y|α, β, σ12, ξ)πj (α, β, σ12, ξ) dα · · · dξ,

where pj (·|·) and πj (·) are the likelihood and prior under model j = 1, 2, respectively. The prior

π2 (α, β, σ12, ξ) for the unrestricted model follows from the ones used to arrive at algorithm 2 in

section 3.1:

δ ≡
¡
α0, β0

¢0 ∼ N (δ0,D0) ,

ξ ∼ Γ−1 (c0, d0) , σ12|ξ ∼ N
¡
g, τξ2

¢
.
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The Savage density ratio method lets the restricted prior, in which σ12 no longer appears, follow

from the unrestricted one:

π1 (α, β, ξ) = π2 (α, β, ξ|σ12 = 0)

=

∙
π2 (α, β, σ12, ξ)

π2 (σ12)

¸
σ12=0

,

where π2(σ12) is the marginal prior of σ12 in the unrestricted SSM. In addition let p1 (ln y|α, β, ξ) =

[p2 (ln y|α, β, σ12, ξ)]σ12=0. This greatly simplifies computations:

m1 (ln y) =

Z
p1 (ln y|α, β, ξ)π1 (α, β, ξ) dαdβdξ

=

∙Z
p2 (ln y|α, β, σ12, ξ)

π2 (α, β, σ12, ξ)

π2 (σ12)
dαdβdξ

¸
σ12=0

=

∙
p2 (ln y, σ12)

π2 (σ12)

¸
σ12=0

,

m2 (ln y) =

Z
p2 (ln y|α, β, σ12, ξ)π2 (α, β, σ12, ξ) dαdβdσ12dξ

= p2 (ln y) .

It then follows that

B12 =
m1 (ln y)

m2 (ln y)
=

∙
p2 (ln y, σ12)

p2 (ln y)π2 (σ12)

¸
σ12=0

=

∙
p2 (σ12| ln y)
π2 (σ12)

¸
σ12=0

. (4.1)

The Bayes factor is simply the ratio of the marginal posterior of σ12 and the marginal prior,

evaluated at the point of interest. The denominator of (4.1) requires a single evaluation of the

t (2c0, g, τd0/c0) density12 at the point zero.

To calculate the numerator of (4.1) note that

p2 (σ12| ln y) = E [p2 (σ12|α, β, ξ, I,m, ln y)] ,

where the expectation is taken with respect to p2 (α, β, ξ, I,m| ln y). Given a sample

12This is the t distribution with 2c0 degrees of freedom, mean g and scale τd0/c0. The result follows from observing
that ξ ∼ Γ−1 (c0, d0), σ12|ξ ∼ N

¡
g, τξ2

¢
and π2 (σ12) =

R
π2 (σ12|ξ)π2 (ξ) dξ.
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n
α(t), β(t), ξ(t), I(t),m(t)

oT
t=1

generated by algorithm 2 the value of the posterior can be estimated

through

p̂2 (σ12 = 0| ln y) =
1

T

TX
t=1

p2

³
σ12 = 0|α(t), β(t), ξ(t), I(t),m(t)

´
,

which requires T evaluations of the density (3.13) at the point zero. Finally, the estimated Bayes

factor of the 2PM versus the SSM is B̂12 = p̂2 (σ12| ln y) /π2 (σ12) evaluated at σ12 = 0. A value

smaller than 1 indicates that the data favors the SSM. Similarly, a value greater than one suggests

that the 2PM cannot be rejected and that there is little evidence of a selection effect.

4.2 Estimating The Marginal Likelihood from Gibbs Output

The second method we consider to compute the Bayes factor is the one proposed by Chib (1995).

Output from the Gibbs sampling algorithms 3 and 2 can be used to estimate m1(ln y) and m2(ln y)

separately and then report their ratio. We apply Chib’s (1995) method first to the sample selection

model. The marginal likelihood m2 (ln y) can be written as

m2 (ln y) =
p2 (ln y|α, β, σ12, ξ)π2 (α, β, σ12, ξ)

p2 (α, β, σ12, ξ| ln y)
.

Note that this equation holds for all parameter values in the support of p2 (α, β, σ12, ξ| ln y). Now

pick a specific value (α∗, β∗, σ∗12, ξ
∗), say the sample mean from the Gibbs output. Taking logarithms

we get

logm2 (ln y) = log p2 (ln y|α∗, β∗, σ∗12, ξ∗) + log π2 (α∗, β∗, σ∗12, ξ∗)

− log p2 (α∗, β∗, σ∗12, ξ∗| ln y) .

Using (3.10) and the priors on (α, β, σ12, ξ) in section 3.1 the first two terms on the right-hand side

can easily be calculated. It remains to estimate the value of the posterior. To this end, write

log p2 (α
∗, β∗, σ∗12, ξ

∗| ln y) = log p2 (ξ
∗| ln y) + log p2 (σ∗12|ξ∗, ln y) (4.2)

+ log p2 (α
∗, β∗|σ∗12, ξ∗, ln y) .
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Since

p2 (ξ
∗| ln y) =

Z
p2 (ξ

∗|α, β, σ12, I,m, ln y) p2 (α, β, σ12, I,m| ln y) dα · · · dm

and a sample
n
α(t), β(t), ξ(t), I(t),m(t)

oT
t=1

is available from the posterior, we estimate this term by

p̂2 (ξ
∗| ln y) = 1

T

TX
t=1

p2

³
ξ∗|α(t), β(t), ξ(t), I(t),m(t), ln y

´
,

where each term in the sum requires evaluating the inverse-gamma density in (3.12)13. As for the

second term in (4.2) we have

p2 (σ
∗
12|ξ∗, ln y) =

Z
p2 (σ

∗
12|α, β, ξ∗, I,m, ln y) p2 (α, β, I,m|ξ∗, ln y) dαdβdIdm.

In order to estimate this term we need a sample from the posterior distribution of (α, β, I,m),

given ln y and ξ∗. The current sample does not satisfy this condition. Therefore the algorithm

needs to implemented again, this time with ξ fixed at the value ξ∗. This yields a sequencen
α(r), β(r), I(r),m(r)

oR
r=1

that (approximately) comes from p2 (α, β, I,m|ξ∗, ln y). The estimate is

constructed as

p̂2 (σ
∗
12|ξ∗, ln y) =

1

R

RX
r=1

p2

³
σ∗12|α(r), β(r), ξ∗, I(r),m(r), ln y

´
,

where each term involves evaluating (3.13)14. Using similar logic fix σ12 = σ∗12 and ξ = ξ∗ and run

algorithm 2 again to yield a sample
©
I(q),m(q)

ªQ
q=1

from p2 (I,m|σ∗12, ξ∗, ln y). The third term in

(4.2) is then estimated as

p̂2 (α
∗, β∗|σ∗12, ξ∗, ln y) =

1

Q

QX
q=1

p2
¡
α∗, β∗|σ∗12, ξ∗, I(q),m(q), ln y

¢
.

Each term in the sum is the value of the multivariate normal density with mean (3.3) and variance

(3.4) at the point (α∗, β∗). Only the mean varies with q.

Computations in the 2PM are largely similar so we will be brief. Again the logarithm of the

13Note that the parameter d̃0 depends on t = 1, . . . , T .
14The mean and variance of the normal distribution in this case both depend on r.
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marginal likelihood m1 (ln y) is split up into the logarithms of the likelihood, the prior and the

posterior, evaluated at (α∗, β∗, σ∗2). The first two terms are easy to compute. The value of the

posterior is estimated using output from algorithm 3. Unlike the SSM the Gibbs sampler needs

to be run only once. Suppose a sample
n
α(t), I(t), β(t), σ(t)

oT
t=1

is available. The estimate of

p1 (α
∗, β∗, σ∗2| ln y) uses

p̂1(α
∗| ln y) =

1

T

TX
t=1

p1
¡
α∗|I(t), ln y

¢
,

p̂1 (σ
∗
2| ln y) =

1

T

TX
t=1

p1

³
σ∗2|β(t), ln y+

´
,

where we evaluate (3.14) and (3.16) T times. Note that p1(β∗|σ∗2, ln y) = p1(β
∗|σ∗2, ln y+) does not

have to be estimated an only requires a single function evaluation of (3.17). This concludes our

discussion of marginal likelihoods.

5 Simulation Results

In this section we examine each algorithm separately. The parameter of main interest in the sample

selection model is the correlation ρ between the selection and outcome equations. In algorithm 1

σ1 is unrestricted and we compute ρ = σ12/ (σ1σ2) whereas in algorithm 2 σ1 = 1 and ρ =

σ12/
q
ξ2 + σ212. The algorithm for the two-part model does not contain a correlation coefficient.

We will investigate to what extent ignoring a nonzero correlation effects our ability to make inference

about the remaining parameters.

Unless noted otherwise a data set is generated according to:

xi1, xi2 ∼ U (−5, 5) , α = β = 0, n = 100, (5.1)⎛⎜⎝ ui1

ui2

⎞⎟⎠ ∼ N (0,Σ) , Σ =

⎡⎢⎣ 1 0.5

0.5 1

⎤⎥⎦ .
Thus, the regressors in both the selection and outcome equations are uniformly distributed scalars.

The true model is assumed to be the SSM where the outcome variable is generated according to

(2.1). The Gibbs samplers are run for 20, 000 iterations after which the first 5, 000 draws, the
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so-called burn-in period, are discarded.

5.1 SSM with Unidentified Parameters

The prior of δ =
¡
α0, β0

¢0 is taken to be reasonably vague: δ0 = (0, 0)0 and D0 = 1000 ∗ I2 where I2

denotes the 2×2 identity matrix. Recall that in algorithm 1 the prior of Σ is of the inverse-Wishart

form, denoted by Σ ∼ W−1 (H, v, 2), where H is a symmetric positive definite parameter matrix.

Since this prior induces a prior on the correlation coefficient, the parameter that we are mainly

interested in, it is important to consider the choice of H and v carefully. We find that for v = 2,

the smallest possible value, the induced prior of ρ has large modes at ±1.15 For v = 3 the prior is

nearly uniform between −1 and +1 whereas for larger values it clusters around zero. This pattern

emerges more or less independently of the choice of H. Therefore we take v = 3 in what follows.

If h22 is the (2, 2) element of H it follows from the properties of the inverse-Wishart distribution

(e.g. Zellner 1971, pp.395-396) that σ2 ∼ Γ−1 (v/2, h22/2)16. By looking at the moments of this

distribution we decide to take h22 = 8 which yields E (σ2) = 2.2568 and V (σ2) = 2.9070. The

value of h11 is largely irrelevant for the shape of the induced priors. Finally we set h12 = h21 = 0

because a nonzero value induces a positive or negative slope in the prior of ρ.

Figure 5.1: Prior (dashed) and posterior (solid) of σ2 and ρ in algorithm 1.

15The prior is approximated by generating a large number of Wishart distributed matrices and computing ρ from
them.

16A similar result holds for σ1 but it is of less importance because σ1 is not identified.
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Figure 5.2: Autocorrelation function of σ2 and ρ in algorithm 1.

Parameter Mean Median St.Dev. 2.5% 97.5%

α -0.0125 -0.0125 0.0432 -0.0987 0.0716
β 0.0027 0.0029 0.0440 -0.0835 0.0897
σ2 0.9422 0.9353 0.0913 0.7829 1.1422
ρ 0.3243 0.3311 0.1421 0.0292 0.5847

Table 5.1: Output summary for algorithm 1

From figure 5.1 it is clear that the likelihood for this data set is very informative about (σ2, ρ). The

graphs of α and β, not depicted here, are very similar. Table 5.1 contains some summary statistics

from the Gibbs output. The 95% highest posterior density intervals for α and β are tightly centered

around zero. The autocorrelation in the sampler output of these two parameters drops almost to

zero for lags greater than 1. For σ2 and ρ the autocorrelation is more persistent, see figure 5.2.

5.2 SSM with Identified Parameters

We now use algorithm 2 in which σ12 =Cov(ui1, ui2) and ξ = (Var (ui2|ui1))1/2 are sampled sep-

arately. To ensure that the prior of ξ has a negligible effect on the posterior, see (3.12), we set

c0 = d0 = 1. When σ12 has zero prior mean (g = 0) it remains to choose a value of τ . To this end

we simulated ξ from the Γ−1 (1, 1) distribution and σ12 from N
¡
0, τξ2

¢
for different values of τ .

The correlation coefficient is calculated as ρ = σ12/
q
ξ2 + σ212. The value τ = 0.5 yields a prior for
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ρ that is roughly uniform.17

Figure 5.3: Prior (dashed) and posterior (solid) of σ2 and ρ in algorithm 2.

Figure 5.4: Autocorrelation function of σ2 and ρ in algorithm 2.

The results are very similar to the ones presented in the previous section. One difference between

tables 5.1 and 5.2 is that in the identified algorithm the distribution of σ2 is shifted slightly to the

left. It appears by comparing figures 5.4 and 5.2 that in terms of autocorrelation the two algorithms

behave similarly. McCulloch, Polson, and Rossi (2000) find that in the context of the multinomial

17Larger values of τ cause bimodality at the extremes whereas smaller values of τ put almost zero mass beyond
±0.5.
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Parameter Mean Median St.Dev. 2.5% 97.5%

α -0.0127 -0.0128 0.0427 -0.0958 0.0705
β 0.0038 0.0038 0.0404 -0.0761 0.0827
σ2 0.8885 0.8813 0.086 0.741 1.0757
ρ 0.3598 0.3682 0.1418 0.059 0.6087
σ12 0.3217 0.3226 0.1362 0.0503 0.5846

Table 5.2: Output summary for algorithm 2

probit model a sampling scheme with unidentified parameters displays much less autocorrelation

than one with identified parameters. Given our results so far, this is not the case in the sample

selection model.

5.3 2PM

We will now look at a sample obtained from running algorithm 3 from section 3.2. Because the

true correlation coefficient is nonzero it will be interesting to see how ignoring this correlation, as

the two-part model does, effects inference on the remaining parameters.

Figure 5.5: Prior (dashed) and posterior (solid) of α, β and σ2 in algorithm 3.
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Figure 5.6: Autocorrelation function of α, β and σ2 in algorithm 3.

Parameter Mean Median St.Dev. 2.5% 97.5%

α -0.0104 -0.0105 0.0442 -0.0971 0.0765
β -0.0053 -0.0047 0.0431 -0.0918 0.0794
σ2 0.881 0.8749 0.085 0.7357 1.0663

Table 5.3: Output summary for algorithm 3

By comparing tables 5.3 and 5.2 we see that the samples of (α, β, σ2) are very similar. Ignoring

the correlation does not effect the estimated posterior distribution of the remaining parameters.

5.4 Bayes Factors

We compute the Bayes factor of the 2PM versus the SSM using the two methods described in section

4. For the Savage density ratio method algorithm 2 with identified parameters is used to estimate

the ratio of posterior to prior density of the covariance σ12, evaluated at zero.18 Estimating the

marginal likelihoods directly is done with the aid of algorithms 2 and 3. Their ratio is the second

estimate of the Bayes factor. Because it is unclear how variable these estimates are the samplers

are run 20 times with differing starting values.

18We did not try this for algorithm 1 because the marginal prior and posterior of σ12 (or ρ) are hard to derive
then Σ has an inverse-Wishart distribution.
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Figure 5.7: Bayes factor estimates for 2PM versus SSM.

The mean and standard deviation of the estimate in the left panel of figure 5.7 are 0.0589 and

0.0004. The corresponding numbers for the right panel are 0.5764 and 0.0216. Therefore it seems

that Chib’s (1995) method yields an estimate that is both more ’accurate’ (i.e. it provides much

stronger evidence against the hypothesis of zero correlation) and less variable.

6 Effects of Multicollinearity

A common way to determine whether a selection effect is present is to use two-step estimation of the

parameters in (2.1) and a t-test on the coefficient of the inverse Mills ratio (e.g. Wooldridge 2002,

pp.560-564). To be more precise, let xi be the total set of covariates in the model. Previsouly section

we had xi = (xi1, xi2) but in general (with a slight abuse of notation) xi = (xi1 ∪ xi2)− (xi1 ∩ xi2).

The regression function of the logarithmic outcome, conditional on being positive is then

E [ln yi|xi, Ii > 0] = E [mi|xi, Ii > 0]

= E [E [mi|xi, ui1] |xi, Ii > 0]

= E
£
x0i2β +E [ui2|ui1] |xi, Ii > 0

¤
= x0i2β + ρσ2E

£
ui1|xi, ui1 > −x0i1α

¤
= x0i2β + ρσ2λ

¡
x0i1α

¢
,
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where λ (·) = φ (·) /Φ (·) is the inverse Mills ratio, the second equality follows from the law of

iterated expectations and the fourth from bivariate normality. Note that to arrive at this equation

bivariate normality is not strictly necessary: ui2 can be nonnormal but as long as the regression

of ui2 on ui1 is linear with coefficient γ, then ρσ2 in the last line would simply be replaced by γ.

Heckman’s (1979) two-step method now involves estimating α by α̂ via a Probit model and then

regressing the subset of ln yi for which yi > 0 on xi2 and λ (x0i1α̂) to obtain estimates β̂ and dρσ2.
A t-test can then be used to test the hypothesis H0 : ρ = 0.

As noted, among others, by Manning, Duan, and Rogers (1987) and Leung and Yu (1996)

the effectiveness of two-step methods depend on exclusion restrictions between the selection and

outcome equations and sufficient variation in the covariates of the selection part. If there are

variables in xi1 that do not appear in xi2 and/or xi1 varies substantially, two-step estimators tend

to work better. Conversely, when there are no exclusions restrictions and little variation in xi1

two-step estimators perform poorly due to multicollinearity between the regressors xi2 and the

correction term for sample selection λ (x0i1α). This problem is exacerbated when the fraction of

zeros in the data increases. The goal in this section is to assess the performance of the various

sampling algorithms in cases where multicollinearity renders the t-test based on Heckman’s two-step

estimator useless. More specifically we use Leung and Yu’s (1996) designs [1] and [2].

In design [1] xi1 and xi2 are equal, containing a constant and a uniform random variable. That is,

x0i1 = x0i2 = x0i = (1, x) where x ∼ U (0, 3). The sample size is n = 1, 000 and the error distribution

as in (5.1). Let α = (α1, α2)
0 and β = (β1, β2)

0, where α1 = β1 and α2 = β2 = 1. The value

of α1 effects the probability p0 of observing a zero outcome. We take α1 = −0.58,−1.50,−2.42

corresponding to p0 = 0.25, 0.50, 0.75. In the simulated data set the fraction of zeros will differ

slightly from p0. In what follows we mainly present results concerning ρ.
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Figure 6.1: Histograms of ρ for p0 = 0.25.

Figure 6.2: Autocorrelation function of ρ for p0 = 0.25.

Algorithm Mean Median St.Dev. 2.5% 97.5%

1 0.3397 0.3959 0.2576 -0.3164 0.6825
2 0.415 0.4821 0.2505 -0.2814 0.7069

Table 6.1: Output summary for ρ when p0 = 0.25.

Figure 6.1 indicates that although the histograms of both samples have a large mode around 0.5 the
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left tail is pretty thick. The autocorrelation function in figure 6.2 reveals that the autocorrelation

in the Markov chain is large and only decreases very slowly. This may effect the rate of convergence

of the chain to its stationary distribution.

Figure 6.3: Histograms of ρ for p0 = 0.50.

Figure 6.4: Histograms of ρ for p0 = 0.75.
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Figure 6.5: Bayes factor estimates in design [1] when p0 = 0.75.

From figures 6.3 and 6.4 it becomes clear that as the probability of observing a zero increases the

estimated posterior distributions of ρ become less and less reliable. This holds for both algorithms.

The same autocorrelation patterns continue to emerge. Trying to distinguish between the 2PM and

SSM also becomes a hopeless task: figure 6.5 shows the highly variable Bayes factor estimates from

running 20 different Markov chains.19 Interestingly the distribution of α, not shown here, is still

centered around its true value. Inference about β becomes problematic as the estimated posterior

becomes very diffuse.

Design [2] is similar except that now x ∼ U (0, 10). The values of the intercept are α1 =

−2.50,−5.00,−7.50 which correspond to p0 = 0.25, 0.50, 0.75, respectively.

19 In 5 cases we ran into numerical problems, so the histograms are based on 15 estimates.
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Figure 6.6: Histograms of ρ when p0 = 0.25.

Figure 6.7: Histograms of ρ for p0 = 0.50.
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Figure 6.8: Histograms of ρ for p0 = 0.75.

Bayes Factor p0 = 0.25 p0 = 0.50 p0 = 0.75

Density Ratio 0.7567 0.1260 0.5269
Marginal Likelihood Ratio 0.0300 0.0568 0.0438

Table 6.2: Bayes factors for design [2].

It appears that the posterior distribution of ρ obtained from either algorithm allows much better

inference in design [2]. In the absence of exclusion restrictions, as is the case in both simulation

designs, identification of the selection effect as measured by ρ comes from sufficient variation in the

covariates. Leung and Yu (1996) find that in this case frequentist two-step methods perform well.

The Bayes factor estimates in table 6.2 are also indicative of a selection effect. It remains to assess

the variability of these estimates.

7 An Alternative Sampling Algorithm

The evidence in the previous section suggests that the absence of an exclusion restriction between

the selection and outcome equations leads to difficulties in estimating the correlation, especially

when the regressors display little variation. The generated samples of α and σ2, not considered in

the previous section, were all centered around the true parameter values. Even when algorithms 1

and 2 are run for one million iterations and every 100th value is retained to reduce autocorrelation,

31



the histograms of β, σ12 and ρ show substantial dispersion and/or bimodality. However, when the

correlation (or covariance) is fixed at its true value, the samples of β are centered around the true

value and look roughly normal. Having to sample σ12 has a direct effect on β. In the following we

therefore focus on these problematic parameters. Recall that in algorithm 2 the full conditional of

σ12 is given by

σ12|α, β, I,m, ξ ∼ N

µ
g/τ + u01u2
1/τ + u01u1

,
ξ2

1/τ + u01u1

¶
.

By checking the components of the mean and variance of this distribution throughout the Markov

chain, we find that u01u2 is not very stable. At the same time u
0
1u1 is always very large, so that the

posterior draws of σ12 are close to u01u2.

An alternative sampler is obtained by sampling (β, σ12) jointly, rather than sequentially. Be-

cause of the bivariate normality of (ui1, ui2) we can write

I = X1α+ u1,

m = X2β + u1σ12 + ε,

ε ∼ N
¡
0, ξ2

¢
.

Given that π (α) = N (α0, A0) we sample α from (3.14) and I from (3.15) as in the 2PM. Using

the equation for m and natural conjugate priors for (β, σ12) and ξ it is straightforward to sample

from the posterior. Let Z = [X2 : u1] and γ =
¡
β0, σ12

¢0 so that m = Zγ + ε. If the priors are

π (ξ) = Γ−1 (c0, d0) ,

π (γ|ξ) = N (γ0, G0) ,

γ0 =
¡
β00, g

¢0
, G0 =

⎡⎢⎣ B0 0

0 τξ2

⎤⎥⎦ ,
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then the posteriors are

ξ|Z, γ,m ∼ Γ−1
³
c̃0, d̃0

´
, (7.1)

c̃0 = c0 +
n+ 1

2
,

d̃0 = d0 +
1

2τ
(σ12 − g)2 +

1

2
ε0ε,

γ|Z, ξ,m ∼ N
¡
γ̄, Ḡ

¢
, (7.2)

γ̄ =
¡
G−10 + ξ−2Z 0Z

¢−1 ¡
G−10 γ0 + ξ−2Z 0Zγ̂

¢
,

γ̂ =
¡
Z 0Z

¢−1
Z 0m,

Ḡ =
¡
G−10 + ξ−2Z 0Z

¢−1
.

Note that the zeros ofm are missing values. Given the current iteration of the sampler, u1 = I−X1α

is given. A missing value of m can then be generated according to

(mi|γ, ξ, si = 0) ∼ N
¡
x0i2β + ui1σ12, ξ

2
¢
. (7.3)

The algorithm, labeled ’Two-Step SSM’, can now be summarized as

Algorithm 4 (Two-Step SSM) For given starting values of (α, β, σ12, ξ):

1. Sample α from (3.14) and I from (3.15);

2. Generate missing values of mi from (7.3);

3. Sample γ from (7.2);

4. Sample ξ from (7.1);

5. Return to 1 and repeat T times.

The data is generated according to design [1] with p0 = 0.25, 0.50, 0.75. This corresponds to

β1 = −0.58,−1.50,−2.42. The value of ρ is 0.5 in all cases. The sampler is run for 100, 000

iterations with a burn-in period of 10, 000.
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Figure 7.1: Histograms of β1, β2, ρ for p0 = 0.25.

Figure 7.2: Histograms of β1, β2, ρ for p0 = 0.50.
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Figure 7.3: Histograms of β1, β2, ρ for p0 = 0.75.

Although the autocorrelation functions of β1, β2 and ρ now go to zero much faster, the posteriors

put no mass around the true parameter values. Both elements of β are biased towards zero, whereas

the positive correlation is not detected. As the probability of observing a zero value of m increases,

so does the variance of β1 and ρ. A variation of this algorithm in which only the observed values of

m are used, effectively reducing the sample size, yields similar results. Since the prior distributions

for β and ρ are virtually flat (take B0 = diag {100, 100} and τ = 0.5) problems arise because the

likelihood has multiple local maxima.

8 Conclusions and Directions for Future Research

This paper has developed sampling algorithms for the parameters of the sample selection and two-

part models. Since the 2PM does not contain a correlation parameter the SSM has to be used

to determine whether a selection effect is present. Since only the sign of Ii is observed and mi is

missing when Ii ≤ 0, the Gibbs samplers are based on the idea of data augmentation. From the

sampler output it is straightforward to approximate the posterior distribution of the correlation

coefficient. Our first simulation experiment indicates that if there are exclusion restrictions and

the covariates display substantial variation, the draws generated by the Markov chain are centered

around the true parameter values. Because classical two-step methods and tests often work with

generated regressors the covariance matrix of the estimates needs to be adjusted which can be
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complicated in practice. Gibbs sampling is then a comparatively easy way to conduct inference.

Leung and Yu (1996) show that in simulation designs [1] and [2] two-step estimators of the

SSM break down. Unfortunately, so do our first two sampling algorithms. We develop a third

Gibbs sampler for the SSM that samples β and σ12 jointly, rather than sequentially. Although

the autocorrelation in the resulting Markov chain is substantially reduced, the realizations of β are

biased towards zero. At the same time the sampler does not pick up the positive correlation in

our simulation design. Since the prior distribution are all relatively flat the likelihood presents a

problem, in particular for β and ρ. The sample selection likelihood in formulas (2.4) does not have

a unique maximum. Lee and Chesher (1986) analyze another way in which the likelihood can be

problematic: when the true correlation is zero and the covariates satisfy certain conditions the score

is identically zero. As a consequence the information matrix is singular and the conventional score

test breaks down. Lee and Chesher (1986) also find that some parameters have an asymptotic

nonnormal distribution and that convergence to that distribution can be at a rate much lower

than n1/2. However, ρ is still identified because it determines whether the distribution of positive

outcomes is left-skewed, right-skewed or symmetric. We suspect that local maxima are responsible

for very large autocorrelation in the Gibbs sampler and bimodality in the posterior of ρ.20 Olsen

(1982) noted that for a given value of ρ the likelihood does have a unique maximum and proposes

a grid search method to find the global maximum.

As a direction for future research we intend to develop a more general Metropolis-Hastings type

algorithm that would ideally jump away from local maxima in the likelihood. This should improve

the mixing properties of the Markov chain and more fully explore the various posterior distributions.

An improved algorithm should also decrease the amount of autocorrelation in the Markov chain

and allow less variable Bayes factor estimates. In this context the hit-and-run algorithm of Chen

and Schmeiser (1993) and the mode-jumping Metropolis algorithm of Tjelmeland and Hegstad

(2001) and Tjelmeland and Eidsvik (2004) may prove useful. Another extension of this work is

to formulate an algorithm that uses a mixture of normal distributions in the likelihood. Such a

specification is much more flexible than the current one and would undoubtedly fit the observed

distribution of the positive outcomes much better. Before even constructing such an algorithm it is

20 In some simulations, not reported in the paper, the Gibbs sampler got ’stuck’ around a value far away from the
truth.
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necessary to reformulate the sample selection model and determine how it really embodies a sample

selection effect. Of course the two-part model may be extended in several directions, for example

by adding nonlinear terms or using more general error distributions. It also remains to be seen to

what extent a more general version of the 2PM is observationally equivalent to the SSM.
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