Numerical Analysis of Asymmetric First Price
Auctions with Reserve Prices

Wayne-Roy Gaylé
University of Pittsburgh

February, 2004
Preliminary: Comments Welcome

Abstract

We develop a powerful and user-friendly program for numericallyiagl¥irst price
auction problems where an arbitrary number of bidders draw indepevaleations from
heterogenous distributions and the auctioneer imposes a reserve ptioe édbject. The
heterogeneity in this model arises both from the specification of ex-anteget®us,
non-uniform distributions of private values for bidders, as well as tssibility of subsets
of these bidders colluding. The technigue extends the work of Marshellré, Richard,
and Stromquist (1994), where they applied backward recursive Tagles expansion
techniques to solve two-player asymmetric first price auctions under omidistribu-
tions. The algorithm is also used to numerically investigate whether reveniakpce
between first price and second price auctions in symmetric models extendasytime
metric case. In particular, we simulate the model under various environmeshténa
evidence that under the assumption of first order stochastic dominarcérsthprice
auction generates higher expected revenue to the seller, while the gaammauction
is more susceptible to collusive activities. However, when the assumptiorsobfder
stochastic dominance is relaxed, and the distributions of private valugsamnce, the ev-
idence suggests that the second price auction may in some cases gagaeatexpected
revenue to the seller.
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1 Introduction

In this paper, we develop a powerful and computationallgtédale algorithm for numerically
solving first price single object auction problems wheralbrd draw independent and private
values from heterogenous distributions, groups of symmieitiders collude, and the auction-
eer imposes a reserve price for the object. The algorithimeis implemented in a simulation
exercise to investigate revenue (non-) equivalence betwhefirst and second price sealed
bid auctions in this asymmetric environment. We also ingast the stability of collusive be-
havior among bidders. Thus, this study contributes to thread but not unrelated branches
in auction theory. We thus discuss the literature and opreson these areas.

There is a large body of work in auction theory that assumessstry in the beliefs of
bidders regarding the value of the object being sold. The#ygnvironment studied is one in
which buyers have common underlying preferences and drawgtgnals from a symmetric
uniform probability distribution (see Maskin and Riley (¥)8Mathews (1983), Milgrom and
Weber (1982a), and Riley and Samuelson (1981) for key caniwoifs in this line of research).
The structure of the symmetric auction model is attractiveheorists because in most cases,
bid functions and expected revenues can be obtained aralytilt is widely known however
that the assumption of bidder symmetry is restrictive anthany cases unrealistic in most
applications. In practice, there are usually compellirgsoms to think that bidders are ex-
ante asymmetric, in that their beliefs may be drawn fromrogienous distributions of private
values.

Relaxing the assumption of bidder symmetry typically reedke computation of equi-
librium bids analytically intractable. This unfortunatect has inhibited revenue comparison
since expected revenue calculations for the asymmetrie tygscally require knowledge of
the bid functions. However, contributions of Lebrun (198996, 1999) and Maskin and Riley
(2000a,b) relax the assumption of bidder symmetry and ksttadxistence and uniqueness of
the equilibrium at a first price auction when bidders drawepehdent and private valuations
from heterogenous distributions. Capitalizing on this pesg, Maskin and Riley (2000a) pro-
vide some comparison of the seller revenue and biddersrgguitterns under the assumption
of bidder asymmetry. In particular, they assume that theiligion of private values for one
bidder first order stochastically dominates the distrimuidf the other bidder. Under this as-
sumption, they are able to show that the high bid auction dates the open auction in terms
of seller revenue, and that the stronger bidder (the biddter the first order stochastically
dominant distribution of valuations) shades his bid furthelow his valuation than the weak
bidder. Maskin and Riley (2000a) also showed that underréiffiecharacterizations on the
distributions (where one of the bidder’s distribution oivate values has a probability mass
at the lower end point), the revenue to the seller may be highgpen auctions, than in high
bid auctions. An important contribution in this area was mbg Marshall, Meurer, Richard,
and Stromquist (1994) (MMRS hereafter) where they develaedmerical algorithm for
computing the equilibrium bid functions for the asymmetitist price sealed bid auction.

A common feature of these models is that they all assume #tatdgeneity in distri-
butions are restricted to two types (a weak type and a strgog)t Furthermore, specific
calculations rely heavily on the assumption that individiduations are drawn from uniform
distributions. First order stochastic dominance is eitireartifact of the distributions used in



these models (MMRS) or it is explicitly assumed (Maskin an@R{2000a)). The algorithm
developed in this paper allows for richer form of heterogggrtban the two type case. Indeed,
the algorithm allows for there to be as many types as therbidders. Furthermore, the al-
gorithm is not restricted to the assumption of type beingvdricom uniform distributions. In
fact, the algorithm can be implemented under the assumpfidime investigator’s preferred
distribution function for types, as long as the functionasléast numerically) invertible. No
specific ordering of the distributions of private values ée@ssary for implementation of the
algorithm. The ability to relax the assumption of first ordrchastic dominance with this al-
gorithm turns out to be important as we find that results fremenue comparisons under the
assumption of first order stochastic dominance may not sacggarry over to cases where
first order stochastic dominance no longer hold.

The study of MMRS was also important in that it demonstratedaibtential for numer-
ical analysis to contribute significantly to the advancenwdriheoretical auction. Their key
interest was to study the viability of bidding rings in asyetnt first and second price auc-
tions. They found (numerical) evidence to support the atnje that collusive agreements
are easier to reach in second price auctions than in firg prctions. This result holds under
the assumption that all bidders are endowed with the sani@omdistribution for beliefs, and
a subset of these bidders form a coalition and bid againgitttes symmetric individual bid-
ders. The algorithm developed in this paper is flexible ehdogtudy the case where a set of
distributionally homogenous bidders form a coalition aitidgainst potentially heterogenous
individual bidders. The restriction that the coalition @arty be formed by distributionally ho-
mogenous bidders can be relaxed with some work. Howevegaility, the evidence suggests
that this is likely to be the case. For example, in antiquéians, experts are empirically more
likely to collude for reasons of keeping information priat

The algorithm developed in this paper draws on the prinaieleeloped in MMRS. In
particular, we compute approximate solutions to the systeondinary differential equations
(ODE) that characterize the first order conditions for thiestexice of an asymmetric Nash
equilibrium by applying a recursive piecewise low order [dageries expansions technique.
Similar to MMRS, the solution belongs to a class of “two-pdwundary value problems”,
but they suffer from problems caused by a singularity of tstesn at the origin. This singu-
larity eliminates the option of forward extrapolation pedares as the solution will not satisfy
endpoint boundary conditions. It also complicates backvgaiooting procedures because the
recursion becomes unstable in a neighborhood of the origin.

The variety of distributions that the algorithm allows fatroduces two key additional
difficulties. The first is that strong curvature in the distion of private values result in
strong (amplified) curvature in the key auxiliary functiosed in the solution of the system.
This strong curvature makes Taylor series approximatiessprecise, but the major difficulty
is that the system may shoot too fast to the “x-axis”, whichegates a different form of
singularity of the system. The problems could possibly b@ded by implementing smarter
routines that adjust the step size in these regions. Hoyweitbrthe complexity of the solution
method itself, we opt for simpler methods so that attensdncused on the key actual solution
methodology. Also, it is very cheap to refine the grid on whilh routine “steps”, thus
reducing the significance of these pathologies. Secona@lg¢foeithm requires that the density
of distribution of private values be sufficiently boundedagvirom zero on its support. In fact,



this problem did not appear in MMRS since the density of théoumi distribution is trivially
bounded away from zero on its support. Despite these pajiesloin practice the algorithm
turns out to be remarkably stable. Indeed, once the conditiat the density be sufficiently
bounded away from zero is respected by the user, our exgeristhat the algorithm always
produces stable and precise bid functions, even with quiteme curvature of the distribution
of private values.

Marshall and Schulenberg (1998) extended the numericatigigh of MMRS to accom-
modate reserve prices set by the auctioneer. Their nurhanedysis provides evidence that
once optimal reserve price is introduced, second pricaagtominate first price auctions
in terms of expected revenue of the seller. Again, theseriétigas are written for uniform
private value distributions and can only analyze the case@types of bidders, the coalition
on one hand and the fringe of symmetric individual biddergr@nother, or in the case of
coalition versus coalition. In summary, to further enribl scope of investigation of indepen-
dent asymmetric first price auction framework, we proposelatisn algorithm much in the
spirit of MMRS. This algorithm allows for (1) ex-ante heteeogity in the distribution of pri-
vate values for bidders, (2) heterogeneity that result® faolhomogenous) subset of bidders
engaging in collusive activities, (3) non-uniform distrilon of private values, (4) arbitrary
number of types of bidders, and (5) reserve prices to be setebguctioneer.

In Section 2 we present the model. The model is solved in@e8ti Section 4 presents
samples of the numerical results for the case where privatees are of distributed exponen-
tial. Section 5 offers a brief discussion.

2 The Model

We describe the environment of concern in which a singleatiigesold in a first price auction.
Specifically, bidders simultaneously submit sealed bidsfsingle object where the highest
bidder wins and pays his bid price. The group of potentiatierd comprises af risk neutral
individuals. Each of the individuals belong to one aftypes, where each typéi =1,--- r)
draw their valuations independently from a distributft(-) on [v;, vi].

Consider an arbitrary typefrom the set of types. This group of individuals is divided
into k; coalitions of sizeu; each. Thus the number of typendividuals is given byk;u; and
the total number of participants is given by= Si_; kiui. We assume that each coalition acts
as one bidder who draws a valuation from the cumuldve [F*(-)]". Hence we hav& =
yi_1 ki possible bidders. Without loss of generality, we call easssible bidder a coalition.
For example, consider the auction consistinghef 10 individuals grouped im = 3 types.
There are 4 individuals of type 1, 3 of type 2 and 3 of type 3. #hedividuals of type 1
decide to form 2 coalitions of size 2 each. ThHys= 2 andu; = 2. All 3 individuals of
type 2 collude, thus we have = 1 andu, = 3. Finally, the players of type 3 decide to play
individually, thus makinds = 3 anduz = 1. This setup is sufficiently flexible to describe and
study a very large variety of auction environments.

Bid functions are denoted by the Greek letperi = 1,--- ,r. Bidders are assumed to be
risk neutral with utility from winning the auction with a blugiven a typey; defined adJ; (v, —



b) = v; —b. Clearly, utility from winning the auction is increasing inetindividual’s signal.
Under these assumptions, proposition 5 of Maskin and Rile@@B) establishes the existence
of a monotonic pure-strategy equilibrium in the standarst farice auction. Indeed, Lebrun
(1996) has shown that these bid functions are strictly namtand increasing, therefore,
invertible. Inverse bid functions are denoted by the GreddetA;, i = 1,---,r. Uniqueness
of such equilibrium is well established in the case with typets (Lebrun (1996)). However
in the generah player game, equilibrium may not be unique in that we may gmaviih
"non-essential” equilibria (Briesmer et al. (1967)).

In this paper, we assume that the distributions of privateesahave common support,
that isv; = vandv; = v for all i. We also assume thé&t is twice continuously differentiable,
with first derivative (the corresponding pdf) bounded awanT zero onlv,v]. Under these
assumptions, Lebrun (1999) proves in the genelatider case that the equilibrium is unique,
and that the inverse bid functions have a common suppast, wheret, is the bid associated
with the valuationv, andv is the reserve price set by the auctioneer. We show in thierghpt
this equilibrium is amenable to numerical analysis, andgnés itself as a natural extension
to the methods proposed in MMRS. As such the (numerical) ohetetion oft, is a critical
component of the problem to be solved.

3 Model Solution

3.1 The Differential Equations

Lett = @(v) denote the Nash equilibrium bid submitted by coalitievhen its highest valua-
tion isv. Hencet is given by

ue(wv)
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The first-order condition generates the following différahequation:
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wheref;(-) is the density function correspondingkd-). Simplifying gives:
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The initial conditions are

)\i(V):\_/, i:].,"',K, (34)



and the terminal conditions require the existence of a numke|v,Vv] such that
Ai(ty) =V, i=1--- K. (3.5)

3.2 Numerical Solution

Definel;(t) = F(Ai(t)). Differentiating gived!(t) = fi(Ai(t))A{(t). Then equation (3.3) can
be written as:

K i) 1w
1=[F i) —1[$ kL= —12],  i=1-- K. (3.6)
O W T
This transformation of the system of equations reduces ittnertsion of the problem, and
makes it far more tractable than otherwise. The initial archinal conditions for these new
functions are:

li(v) = 0, i=1---,K, (3.7)
i(v) = 1, i=1-- K. (3.8)
Let It0 denote the right derivative ¢fatv,
O _iml/
l; _!ml'(t)' (3.9
It is straightforward to show that:
K
K ki
19— f, (\_/)#. (3.10)
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Successive derivations reveal that all higher order devies ofl; are 0 atv. It follows that
any attempt to evaluate numerically a forward solution effibst order differential equations
(3.6) produces a linear solution. This problem is a maratest of that found by MMRS. We
thus follow their recommendation and solve the system ofggns (3.6) backward starting
from an assumed terminal point using the initial conditi8j as an indicator of whether or
not we have used the correct valug of

The solution technique proceeds by approximatingd siey piecewise (low-order) poly-
nomial expansions. For notational convenience, we switchdtrix representation of the first
order differential equations (3.3). The matrix represgnsalso convenient for implementa-
tion in FORTRAN 90. Define the following vectors:

[ 11(t)
lo(t _
(t) = Zf) = Yio0ajt—to)l,
I (1)
] (3.11)
:i(t)/:l(t)
At t :
I't)/1t) = d ){Z() = Yitoqjt—to)’,
L)/ ()



where

ayj O1j
Q| O2j

aj = : and aj = C]- (3.12)
arj Orj

Giventhat'(t) = 3 o(j +1)aj+1(t —to)!, we can represent the equalityt) = (I'(t) /I (t)) x
[(t) in terms of its power series expansion:

j;(j+1)aj+l(t—to)j = L;Gj(t—to)j] L;aj(t—to)j] (3.13)

= JZ) (Sgaisam_S) (t—to)l.

We can defina recursively as

I ;oo
2 =0 i g

i—1...
J+1 ’

Y Y

a1 = r (3.14)
There are two key recursive formulas that constitute ouremnigal solution. Equation (3.14)
is the first. To derive the second, define

EL1i(t) —t = < Oi(t—t)), =L (3.15)
&

To evaluate (3.15), we implement an efficient recursiverchae for such Taylor series expan-
sions developed in appendix C of MMRS. Specifically, the raitakes as inputs the Taylor
series approximation of(t) and (user supplied) Taylor series expansioﬁiﬁ?(x) and returns
as output the approximation 5{‘1(Ii(t)). One significant advantage of this routine is that for
complicated functions, one can break the function in to Bnahore manageable components
that are easier to approximate by Taylor series expansmhtheen use the routine to compose
these different parts and recover a Taylor series apprdiaomaf the function.

Clearly, the algorithm requires that the inverse funcﬁp‘nl(x) is defined and well be-
haved. If there exists a point)(on the support of the distribution functids such that
fi(v) = 0, then the second term in the Taylor series expansidf o{Fi(v)) will be unde-
fined. Thus the algorithm requires thiatv) > O for all v in the intervallv, V].



The system of first order differential equations (3.6) camb#en as

1= [%plj t—to) [Zlks<zoaslt_t0)>_j;aij(t_to)j] (3.16)
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This system of equations can be used to recursively evallbatealues ofx. To see this, note
that that by evaluating (3.16) implies the following redarsin matrix form:

(ki—1)pro  kepio - kepio 010
klPZO (k2 —1)p20o Kr P20 20 _1 @)
klbrO kepro - (k—1)pro o
forj=0andforj=J>1,,
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Inspection of the first term on the right hand side of equati(317) and (3.18) reveal that
partition inverse techniques in matrix algebra can be add get a closed form inverse of
this matrix. Thus this equation can be efficiently solvedrémursively fora, j > 1. For ease
of notation, write equations (3.17) and (3.18)Axs;. 1 = By, whereB; is 1 forJ =0, and a
function of (0o, ---,0a3) for J > 1. Thenaj,1 can be calculated as

GJ+1:A_1BJ. (3.19)

Equation (3.19) is the second recursive formula that makesun numerical solution to the
system of differential equations defined in equation (3.6).

3.3 The Algorithm

A single run of computation requires initializing certaiarpmeters, evaluating the corre-
sponding numerical solution, and then deciding upon whiethaot another run is needed.
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1. Initialization. The parameters to be initialized are below.

(@) t.: Unlike in MMRS, finding refined interval in whict) belongs is not possible in
our model. It is clear however, thiate (v, V)

(i) N: The number of equal length intervals @ft,) to be considered.
(iif) J: The order of the Taylor series expansions.
(iv) €: A small positive number to be used in evaluation of our cogeace criterion.

2. Numerical Evaluation Approximate values ofi(tj_1) are computed recursively by
means of Taylor series expansions or ord@roundts, for s running backward from
s=N+1tos= 1. At any steps, the process of the Taylor series expansion can be
described as two steps

(i) Setag = ly,. Calculate the Taylor series expansiorFof(l(ts)) and computepo.
With these quantities in hand, the matAxin equation (3.17) can be computed.
From these initializations, we can calculatg from equation (3.19). Giveng
anday, a; is calculated from equation (3.14).

(i) At step j > 1 of the Taylor series expansion, use the expansioa d{l (ts)) as
well asa; to computep;. Then usepo, - - -, pj) and(ao, - - - ,aj) to computeB; in
equation (3.18). With these,j; can be computed from equation (3.19), and then
aj4+1 can be computed from equation (3.14). We then use our vetomedficients
(ap,---,ay) to computd (ts_1), and repeat stef) for s=s— 1.

3. Convergence CriteriaMMRS presents in their Appendix B a robust stopping criteria
for their algorithm. However due to the high level on nonéingy in our model, these
stopping criteria prove to be unsatisfactory. The mainagedsr this is that for some
distributions,li0 will be highly nonlinear, and may shoot rapidly to zero. Wagtadopt
the stopping criteria that is implied by the initial condits (3.7). This criteria provides
the following objective function:

min(t) = _i[ﬂ(\_/;t) —v? (3.20)

By construction, this objective function has a unique minimati;(v;t,) =v. We em-
ploy the simplex search algorithm AMOEBA to find this minimufrhe stopping rule is
to stop if the improvement in the objective function is ldsste. If (3.20) is minimized,
then the corresponding sequencd}d{,)’s constitute our (approximate) numerical so-
lution.

4 Some Examples

The solution methodology and algorithm developed in 2 alfowthe analysis of a large
variety of auction environments. As an illustration, weesehn arbitrary auction environment
and study the corresponding bid functions that result franrcomputations. The bid functions
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are computed for an auction with= 5 initial participants grouped into three types= 3).
The distribution of private values belong to the standaral parameter Weibull family:

ﬁwyzl—am{—(%>w} =1 (4.1)

The Weibull distribution is an appealing choice for privagdues in this example because of
the flexibility of the distribution with respect to its paraters. Specifically, if the shape pa-
rameter is less than or equal to 1, the shape of the corresyppdf is everywhere decreasing.
However, for the values of the shape parameter greater thtae $hape of the corresponding
pdf becomes unimodal. The reservation price is chosen to-bd.0 and the upper trun-
cation point of the distribution is chosen to se= 4.0. The actual distribution used in the
computation is therefore given by:

_[RW-FW]*
F(v) = [ml i=1---.r, (4.2)

where u; is the number of individuals in coalitian Note that individual bidders automatically
have a coalitions parametergf= 1. The truncation here also serves the purpose of ensuring
that the resulting density is bounded away from zero, witheisessary for the algorithm to
work. The first six figures involve the situation presentelbwe

Characteristic Typel Type2 Type3
Shape parametery)( 0.5 1.0 2.5
Mean 25 2.5 2.5
k 1 1 1
u:
Figure 1 3 1 1
Figure 2 1 3 1
Figure 3 1 1 3
Figure 4 2 2 1
Figure 5 2 1 2
Figure 6 1 2 2

Because of the instability of the algorithm at the origin ane possible severe curvature of
the functionl;(t), numerical accuracy is essential. Therefore, key stepsaiem to ensure
high numerical precision. In the solutioN, the number of grid points is chosen to be 10000.
Since the support of beliefs is the interyal 4], this means that the step size is 0.0003. All
the real variables needed to calcul&ig) are declared in double precision, and all Taylor
series expansions are done up to the fifth order. Finallycdingergence criterion is take to be
€ = 10E — 12. Experimentation with the algorithm clearly indicatkattthese criteria can be
significantly relaxed at a low cost of accuracy.

The algorithm converges relatively fast. For a three typetian environment, the al-
gorithm converges in 2 minutes and 5 seconds on a 3GHz Pedtiaptop computer. The
maximum of the objective function in any of the following cpuatations in this and the rest of
the paper is B — 4. Despite the pathologies discussed in section 2, in pettie algorithm

9



turns out to be remarkably stable. Indeed, once the condtiat the density be bounded away
from zero is respected by the user, our experience is thaltfmeithm always produces sta-
ble and precise bid functions, even with quite extreme duresof the distribution of private
values.

The first three figures plot the equilibrium bid functionstthesult from environments
where one coalition of three individuals competes agaimstihdividuals of different types.
Inspection of the bid functions indicate that the coalitimds least aggressively. This is con-
sistent with the findings of Maskin and Riley (2000a) conaggrihe inverse relationship be-
tween the strength of the participant and aggression ofidks However, their results were
derived in the case of two types. The computed bid functiare Btrongly suggest that this
result extends to cases where there are more than two tyjgese§ 4 to 6 explore the situa-
tion where there are two coalitions of two individuals ednbtlding against a single individual.
The gap between the bid functions narrow relative to the timste figures. This narrowing
is due to the fact that in these cases the bidders are mordyemaiched in terms of their
optimism, thus leading to more competition among them.

Figures 7 to 9 represent a different auction environmewugrgin the following table

Characteristic Typel Type2 Type3
Shape parametery)( 0.5 1.0 2.5
Mean @ 25 2.5 2.5
u 1 1 1
k:
Figure 7 3 1 1
Figure 8 1 3 1
Figure 9 1 1 3

In these environments there are no collusive agreements (I, = uz = 1). However, unlike
the models of MMRS and Marshall and Schulenberg (1998), tisestll asymmetry among
the bidders, due to the different values of the parametelexing their distributions of pri-
vate values. The bid functions are close to each other iretbases because of the fact that
the parameters were chosen close to each other. These tapes ghow the power of the
algorithm, in that we can now numerically study asymmettictens without assuming that
asymmetry comes from a subset of symmetric bidders dectdingllude.

Our final example is one of particular interest. Welfare gsialof auction models such
as what is done in Maskin and Riley (2000a) assumes that thegsbuyer’s valuation first
order stochastically dominates that of the weak buyer. €k@énple indicates what happens
when this condition is violated in a specific sense. In thisnegle, there are 12 initial bid-
ders, 6 of type 1, 4 of type 2, and 2 of type 3. The shape parasnetehe private value
distributions for each type argy = 2.0, y» = 1.5, andys = 1.2. The corresponding means
are given by, = 1.063,0 = 1.174,u3 = 1.317. We also have that bidders of the same type
collude. Inspection of figure (6) shows that the cdf of typeoalition starts out below those
of coalitions 2 and 3. But then it increases and eventualbsrabove those of its competitors
until the pointv = 3 where they are all equal to 1. Interestingly, the bid fumtdiexhibit very
similar pattern. Maskin and Riley (2000a) show in the casevoflbidders that the stronger
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bidder shades his bids more than the weaker bidder. Thegerdndder is defined as the
bidder whose valuation first order stochastically domis#te other bidder. Figure (6) shows
that in comparing two bidders, if the fist bidder’s valuatisfirst stochastically dominated by
that of the second bidder, and then eventually dominatesahmtion of the second bidder,
then the fist bidder bids more aggressively in an intervahatidwer end of the support, and
bids less aggressively in an interval at the upper end ofuppat. In short, the graph in (6)
indicates that when the distribution of private values smmsce in the interior of their common
support, the corresponding equilibrium bid functions alsmss (at most) once.

5 Second Price versus First Price Auctions

In this section, we employ the proposed algorithm to proaid@sight into the revenue equiv-
alence between first price and second price auctions wheeisidre ex-ante asymmetric, and
when asymmetric bidders collude. Since the Dutch descgmutice auction is strategically
equivalent to the first price auction, and under the assumjpffi private values, the English as-
cending price auction and the second price auction has the sptimal strategies, the results
of this analysis are also extended to comparison of Dutcteaugdish auctions. First we study
the seller revenue and bidder surplus in a case where symrbatders collude. Then we
perform the analysis for the case where asymmetric biddecsrapete. Finally, we perform
the same analysis for the case where symmetric subsets bidtiers collude. In the cases
of bidder collusion, the auction environment is charazestias follows. The membership of
the coalition is determined ex ante. The size of each coalitas well as the types of each
coalition member is common knowledge within the coalitiowd @0 all other bidders. If the
coalition wins the item, the coalition member with the highealuation is awarded the item.
Coalition members with values that are not the highest withencoalition do not submit a
bid at the main auction. Also, there are no side paymentsmitie coalition. MMRS dis-
cusses the effects of relaxing the assumption that vahm@oe known within the coalition.
Their conclusion is that the first price coalition calcuat are as favorable as possible from
the point of view of the coalitions. Also they argue that tlealition is not disadvantaged at
the first price auctions by not allowing for side payments agnooalition members. Their
arguments and conclusions carry over in this study.

5.1 The Simulation Technique

Now that we have a method of computing equilibrium bid fuoies for general asymmetric
first price auctions models, we can simulate expected sellesnue and bidder surplus for
comparison across first and second price auctions. Theitpehis essentially the following.
First, private values are drawn randomly from the distidmg for each coalition. Then the
corresponding equilibrium bids are computed for each tioali With these in hand, the
winning bid is recorded as well as the identity of the winnkeng with its surplus and the
revenue to the auctioneer. This process is repdagd/itimes. The resulting average revenue
to the seller is the estimated expected revenue. Also, teemge surplus of each coalition
divided by the number of individuals in the coalition is trstimated expected surplus to each
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bidder. There are two important issues that have to be agiettes this Monte Carlo study.

In reality, what the algorithm generates is the equilibrivichfor a grid of private values.
In the simulation, the random draw from the distribution oivate values may not lie on
the pre-specified grid. Therefore, interpolation techaghave to be implemented in order
to attain approximate values of the equilibrium bid at peioff the grid. For this we fit
the data of bids to a high order orthogonal polynomial regj@son private values. The
order of the polynomial used in the reported results is 15s €hsures very high numerical
accuracy. In fact, the square-root mean squared deviatittre @redicted bid from the actual
bids is typically indistinguishable. This high level of acacy is due the smoothness of the
bid functions.

In the simulation of expected revenue to the seller and dgdqurofits to the bidders,
the variance of these random variables are of the magnittiteedandom variables them-
selves. Thus the raw simulation means and standard ereuf ttle use since the resulting
difference in the means are rarely statistically differigatm zero for reasonable simulation
numbers (up to 2 million). Increasing the simulation numselves this problem, but the
resulting computation time makes this solution unappealim this paper, our variance re-
duction strategy is to extensively employ the regressigr@grh to linear control variates.
For completeness, a brief description of this techniqusemted: Consider the problem of
estimating the expectation of a random variaile EY by Monte Carlo simulation, whené
is a random variable that is independently and identicadlyributed (i.i.d.). The natural point
estimate ofa is the averagd,, = n_lzi”:lYi, computed frorn draws from the distribution
of Y. Suppose the investigator has available a random vé&soirld with known meanyc
that is correlated witly. The method consists of usiiig — |\ to control forY, via the linear
transformation:

YaA) =Ya =N (Ci — ) , (5.1)

whereA is ad x 1 vector chosen to minimize Varf,(\)). Clearly theh that achieves this
minimum is the coefficientX) in the linear regression dfYi}! ; on {C{}i! ; and a constant.
The resulting reduction in the variance is given by the ratio

var(Ya(A))
Vart) 1-Roc, (5.2)

whereRZ . is the usual coefficient of determination from the regressity onC.

In the present paper, corresponding draws from the privaligewdistribution for each
type Fjuj j=1,---,r,as well as draws from the private value distribution whem ahdivid-
uals are of typqg, Fj”, j=1,---,r, provide an ‘efficient’ set of control variates. This reasr
that we have analytic or numeric means of these distribstidtowever, the mean of a two
parameter truncated Weibull distribution is easily coregutumerically with very high preci-
sion. In particular, the computation of the means requirseadmensional integration, which
we perform using Gauss-Hermite quadrature with 40 abstissa

For a concise discussion of the various control variatedsnigaes, see Szechtman (2003).
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In computing expected revenue in the asymmetric first andrekprice auctions, the
reduction in variance from the control variates technigustiiking. In all results presented,
we achieve reductions in variance from as low as 62% to as &$981%. The reduction
in variance achieved in the calculation of expected biddeplss is more modest, but still
quite significant. We achieve reduction in variance fronoasds 19% to as high as 69%. The
variance reduction technique here, along with clever @ofcontrol variates results in all the
revenue comparisons and all the bidder surplus comparikahfollow be highly statistically
significant.

5.2 Symmetric Bidders Colluding

Consider the auction environment where thereNire 5 potential bidders, each drawing val-
uations from the same truncated two parameter Weibullibigton. The shape parameter is
given byy = 1.0 (thus an exponential distribution), and the mean of thigidigion is 2.0. The
distribution is truncated between 0.5 (the reserve prind)3a0.

TABLE 3
Auctioneer’s Expected Revenue and Bidders’ Expected Sufptrscapita) at a First and a
Second Price Auction (N=%,= 1, u= 2, Lower end point=0.5, Upper end point=3.0

First Price Second Price
ki ko u; ux Auct. kq ko Auct. k1 ko
1 1 4 1 1.4758 0.1572 0.2205 1.3941 0.2161 0.1022

(0.0001) (0.0004) (0.0012) (0.0002) (0.0003) (0.0013)
1 2 3 1 17078 0.1204 0.1394 1.6878 0.1561 0.1023
(0.0001) (0.0008) (0.0010) (0.0002) (0.0007) (0.0011)
1 3 2 1 18099 0.1064 0.1119 1.8069 0.1234 0.1023
(0.0002) (0.0011) (0.0009) (0.0002) (0.0011) (0.0009)
1 1 3 2 16545 0.1353 0.1483 1.6460 0.1560 0.1231
(0.0001) (0.0007) (0.0010) (0.0002) (0.0007) (0.0010)
2 1 2 1 17668 0.1171 0.1236 1.7654 0.1232 0.1024
(0.0002) (0.0007) (0.0016) (0.0002) (0.0007) (0.0017)
5 0 1 0 1.8498 0.1022 0.1022 1.8496 0.1022 0.1022
(0.0002) (0.0006) (0.0006) (0.0002) (0.0006) (0.0006)

Note.Computed by Monte Carlo using 1,000,000 drawings.

Table 3 reports the expected revenues and surpluses faaritissecond price auctions. Note
that the bid functions in this analysis satisfy the (wealstfarder stochastic dominance con-
dition assumed by Maskin and Riley (2000a). Conditional onsize of the coalition, the
auctioneer’s expected revenue at the first price auctiolwiaya greater than or equal to the
expected revenue at the second price auction. Similartseateé found in MMRS where
their analysis is based on private values being drawn franstAndard uniform distribution.
MMRS argue that this is evidence that first the price auctidess susceptible to collusion
than the second price auction.

Maskin and Riley (2000a) also finds that the high bid (or firstgyrauction generate
higher expected revenue than the open (or second pricepauctder shifts and stretches the
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private value distribution. These transformations of tigrihutions result in a violation of
the assumption made in our analysis that all private valsiildutions have common support.
The evidence here suggests that the results found in MMRS askiMand Riley (2000a)
are not artifacts of the assumption that beliefs are drawm funiform distribution. How-
ever, Maskin and Riley (2000a) find that the open auction i€sapto the high bid auction
when probability mass is shifted to the lower end point foe type. This transformation of
the private value distribution violates the assumptionhis paper that the distributions are
twice-continuously differentiable everywhere on the iiiieof their common support. It also
violates their assumption that distributions are ordengthe first order stochastic dominance
sense. We thus take this as evidence supporting the corgebtat the first price auction is
superior to the second price auction whenever the disioibsitof private values satisfy the
first order stochastic dominance property and are twiceéknoously differentiable on the in-
terior of their supports. Table 3 also suggests that straaglos prefer the second price (open)
auction and weak bidders prefer the first price (high bid}ianc This result is also consistent
with Maskin and Riley (2000a).

We now compare the expected buyer surplus to gain some tnisigtthe relative prof-
itability and susceptibility of collusion in first and seabprice auctions. The simulation
results in Table 3 seem to support the conjecture that awadiare more profitable in second
price auctions that they are in first price auctions. To s&avile compare the first three rows
of Table 3 where we find that conditional on the size of theitioal the expected surplus to
the coalitionk; is always greater in the second price auction that it is irfitkeprice auction.
Again, a similar conclusion is draw in MMRS.

The simulation results also shed light on another intargselated question. In the case
where all the bidders form separate coalitions, are thevididals in the larger coalition better
off than those in smaller coalitions? The results in Tableggest that this is indeed the case
in first price auctions, but not so for second price auctitwagking at column 4 of Table 3, we
see that the per-capita surplus in the coalition of 3 biddenggher than the per-capita surplus
in the coalition of 2 bidders in the second price auction,lbwer in the first price auction.

We now turn to the question of whether coalitions are suatdein first and second
price auctions. Our strategy is to check if it is individyalational for an existing coalition
to accept an outsider, and if it is individually rational fitve outsider to join the coalition.
Comparing rows one to three of Table 3 (in reverse order) welsgen both the first and
second price auctions, increasing the number of partitggarthe coalition increases the per-
capita expected surplus. For example, moving from row 3 wwe2see that in the first price
auction, increasing the number of participants from 2 toc3aases the per-capita expected
surplus from 0.1064 to 0.1204. Thus it seems individualtorel for existing coalitions to
accept an outsider. But is it the case that individual biddeitsvant to join the coalition?

Comparing the first 3 rows of Table 3 from bottom up, we see tbatHe first price
auction, the per-capita expected surplus is always hightside the coalition than inside it.
Furthermore, as the size of the coalition increases, thaireng individual bidders do better
in terms of expected surplus, and the difference grows asitteeof the coalition grows.
However, the individual bidders outside the coalition ie gecond price auction do just as
well regardless of the size of the coalition, and always dosedhan individuals inside the
coalition. Thus the evidence suggests that as the size afahlgion grows, the remaining
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individual bidders are more likely to join the coalition. i§lsuggests then that the second
price auction is susceptible to collusion and the first pagetion is not. Similar results are
found in MMRS.

5.3 Asymmetric Bidders Colluding

The conclusion drawn above that the first price auction i€gapto the second price auction
whenever the distributions of private values satisfy th& frder stochastic dominance prop-
erty and are twice-continuously differentiable on the ilmieof their supports leads us to our
next issue. Is the first price auction still superior to theosel price auction when we relax the
assumption of first order stochastic dominance? To shed 8ghten this question, we sim-
ulate an asymmetric auction environment where therdare5 potential bidders partitioned
into 2 types characterized by different distributions avate values. The first three bidders
draw valuations from a truncated two parameter Weibullritistion with shape parameter
given byy = 1.5, and the mean of the distribution is 1.0, where the trunoas between 0.5
and 3.0. The last two bidders draw valuations from the a atetttwo parameter Weibull
distribution with shape parameter is givenyoy: 1.5, and the mean of the distribution is 3.0,
again where the truncation is between 0.5 and 3.0.

TABLE 4
Auctioneer’s Expected Revenue and Bidders’ Expected Su(p&rscapita) at a First and a
Second Price AuctiolN =5,y= 1.5, 1 = 1.0, g2 = 3.0, Lower end point=0.5, Upper end

point=3.0)
First Price Second Price
ki ko u uw Auct. ki ko Auct. Ky ko
3 2 1 1 1.7627 0.0449 0.1994  1.7552 0.0389 0.2140
(0.0002) (0.0009) (0.0010) (0.0002) (0.0010) (0.0010)
1 2 3 1 1.7219 0.0481 0.2165 1.7241 0.0491 0.2145
(0.0002) (0.0009) (0.0009) (0.0002) (0.0009) (0.0010)

1,1 2 2,1 1 17510 0.0458,0.0464  0.2044 1.7462  0.0433,0.0380.2144
(0.0002) (0.0012),(0.0017) (0.0010) (0.0002) (0.00T20Q17) (0.0010)

3 1 1 2 16393 0.0614 0.2231  1.5869 0.0388
(0.0002) (0.0008) (0.0008) (0.0041) (0.0004)

0.2983
(0.0007)

Note.Computed by Monte Carlo using 1,000,000 drawings.

Row 2 of Table 4 sheds some light on this question. The bid fonstin this environment

cross one at around 1.5 (Figure 9). What is remarkable is tiatst the only setup in which

the expected revenue to the auctioneer is higher in the dgmice auction. The difference
is also statistically significant. This result does sugdbkat in the case where first order
stochastic dominance no longer holds, the first price anctiay no longer be superior to the
second price auction. In particular, in the case where the'€B#®Bss once, leading to the
resulting bid functions crossing once, it may be the caskthigasecond price (open) auction
is superior to the first price (high bid) auction. This ressiktlose to the result in proposition
4.5 of Maskin and Riley (2000a) where the weak bidder is charaed by some of the mass
of the distribution being shifted to the lower end point. Asa®thed version of their setup
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would lead to the two cdf’s crossing once. Thus, accordinguoresults, the bid functions
cross once. These results then suggest that whenever thenbtibns cross once, the second
price auction may in some cases generate higher revenue &uthioneer than the first price
auction.

It is important to note that we are not claiming that if the hidctions cross then the
second price auction always generates higher expecteduevban the first price auction.
The point of this exercise is to show that dominance of thé fir€e auction may simply
be an artifact of the assumption of first order stochasticidancte. To illustrate the point,
we present a case where the bid functions cross, but thefiicst guction is still superior the
second price auction. In this environment, there are 4 bg&j@of type 1 and 1 of type 2. Type
one bidders draw private values from the truncated two paranWeibull distribution with
mean 1.0 and shape parameter 2.0. Type two bidders dravigouglues from the truncated
two parameter Weibull distribution with mean 3.0 and shag@ameter 1.5. The distributions
are truncated between 0.5 and 3.0. The resulting equitibbid functions along with their
corresponding private value distributions are presemeBigure 12. The key distinctions
between the function in Figure 11 and 12 are that the bid fanstin Figure 12 cross further
to the left of the support and they deviate further apart. Jihaulated expected revenues in
this environment are 1.2999 for the first price auction a2884 for the second price auction.
Again these differences are statistically significant. §thiss is an example where even though
the bid functions cross, the first price auction is still sugreto the second price auction in
terms of expected seller revenue.

6 Conclusion

We propose an algorithm for numerically solving first price@on problems where bidders
draw independent valuations from heterogenous distohatand the auctioneer imposes a
reserve price for the object. The heterogeneity in this rmadses both from the specification
of ex-ante heterogenous, non-uniform distributions o¥gig values for bidders, as well as
the possibility of subsets of these bidders colluding. Weusate the model under various
environments. The simulation results suggest that strobgiglers shade their bids more
in the asymmetric first price auctions. The results alsociaugi that collusive activities are
more profitable and sustainable in asymmetric second puceoms. We find evidence that
under the assumption of first order stochastic dominanaefitkt price auction generates
higher expected revenue to the seller. However, when tharggson of first order stochastic
dominance is relaxed, and the distributions of privatee@sltross once, the evidence suggests
that the second price auction may in some cases generatx kixghected revenue to the seller.

Possible extensions of the algorithm include, allowinglmiders of different types to
collude, extending the algorithm to heterogenous affliatistributions, and allowing for risk
aversion in bidder preferences. The latter extensionghdleoretically important will essen-
tially require an additional Taylor series expansion, talesate the chosen utility function. The
other extensions present a more formidable challenge efexftly computing order statistics
from complex, convoluted joint distribution functions.
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