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Abstract

We develop a powerful and user-friendly program for numerically solving first price
auction problems where an arbitrary number of bidders draw independent valuations from
heterogenous distributions and the auctioneer imposes a reserve price for the object. The
heterogeneity in this model arises both from the specification of ex-ante heterogenous,
non-uniform distributions of private values for bidders, as well as the possibility of subsets
of these bidders colluding. The technique extends the work of Marshall, Meurer, Richard,
and Stromquist (1994), where they applied backward recursive Taylor series expansion
techniques to solve two-player asymmetric first price auctions under uniform distribu-
tions. The algorithm is also used to numerically investigate whether revenue equivalence
between first price and second price auctions in symmetric models extend to theasym-
metric case. In particular, we simulate the model under various environments and find
evidence that under the assumption of first order stochastic dominance, the first price
auction generates higher expected revenue to the seller, while the secondprice auction
is more susceptible to collusive activities. However, when the assumption of first order
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1 Introduction

In this paper, we develop a powerful and computationally tractable algorithm for numerically
solving first price single object auction problems where bidders draw independent and private
values from heterogenous distributions, groups of symmetric bidders collude, and the auction-
eer imposes a reserve price for the object. The algorithm is then implemented in a simulation
exercise to investigate revenue (non-) equivalence between the first and second price sealed
bid auctions in this asymmetric environment. We also investigate the stability of collusive be-
havior among bidders. Thus, this study contributes to threebroad but not unrelated branches
in auction theory. We thus discuss the literature and open issues on these areas.

There is a large body of work in auction theory that assumes symmetry in the beliefs of
bidders regarding the value of the object being sold. The typical environment studied is one in
which buyers have common underlying preferences and draw their signals from a symmetric
uniform probability distribution (see Maskin and Riley (1984), Mathews (1983), Milgrom and
Weber (1982a), and Riley and Samuelson (1981) for key contributions in this line of research).
The structure of the symmetric auction model is attractive to theorists because in most cases,
bid functions and expected revenues can be obtained analytically. It is widely known however
that the assumption of bidder symmetry is restrictive and inmany cases unrealistic in most
applications. In practice, there are usually compelling reasons to think that bidders are ex-
ante asymmetric, in that their beliefs may be drawn from heterogenous distributions of private
values.

Relaxing the assumption of bidder symmetry typically renders the computation of equi-
librium bids analytically intractable. This unfortunate fact has inhibited revenue comparison
since expected revenue calculations for the asymmetric case typically require knowledge of
the bid functions. However, contributions of Lebrun (1991,1996, 1999) and Maskin and Riley
(2000a,b) relax the assumption of bidder symmetry and establish existence and uniqueness of
the equilibrium at a first price auction when bidders draw independent and private valuations
from heterogenous distributions. Capitalizing on this progress, Maskin and Riley (2000a) pro-
vide some comparison of the seller revenue and bidders bidding patterns under the assumption
of bidder asymmetry. In particular, they assume that the distribution of private values for one
bidder first order stochastically dominates the distribution of the other bidder. Under this as-
sumption, they are able to show that the high bid auction dominates the open auction in terms
of seller revenue, and that the stronger bidder (the bidder with the first order stochastically
dominant distribution of valuations) shades his bid further below his valuation than the weak
bidder. Maskin and Riley (2000a) also showed that under different characterizations on the
distributions (where one of the bidder’s distribution of private values has a probability mass
at the lower end point), the revenue to the seller may be higher in open auctions, than in high
bid auctions. An important contribution in this area was made by Marshall, Meurer, Richard,
and Stromquist (1994) (MMRS hereafter) where they developeda numerical algorithm for
computing the equilibrium bid functions for the asymmetricfirst price sealed bid auction.

A common feature of these models is that they all assume that heterogeneity in distri-
butions are restricted to two types (a weak type and a strong type). Furthermore, specific
calculations rely heavily on the assumption that individual valuations are drawn from uniform
distributions. First order stochastic dominance is eitheran artifact of the distributions used in
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these models (MMRS) or it is explicitly assumed (Maskin and Riley (2000a)). The algorithm
developed in this paper allows for richer form of heterogeneity than the two type case. Indeed,
the algorithm allows for there to be as many types as there arebidders. Furthermore, the al-
gorithm is not restricted to the assumption of type being drawn from uniform distributions. In
fact, the algorithm can be implemented under the assumptionof the investigator’s preferred
distribution function for types, as long as the function is (at least numerically) invertible. No
specific ordering of the distributions of private values is necessary for implementation of the
algorithm. The ability to relax the assumption of first orderstochastic dominance with this al-
gorithm turns out to be important as we find that results from revenue comparisons under the
assumption of first order stochastic dominance may not necessary carry over to cases where
first order stochastic dominance no longer hold.

The study of MMRS was also important in that it demonstrated the potential for numer-
ical analysis to contribute significantly to the advancement of theoretical auction. Their key
interest was to study the viability of bidding rings in asymmetric first and second price auc-
tions. They found (numerical) evidence to support the conjecture that collusive agreements
are easier to reach in second price auctions than in first price auctions. This result holds under
the assumption that all bidders are endowed with the same uniform distribution for beliefs, and
a subset of these bidders form a coalition and bid against theother symmetric individual bid-
ders. The algorithm developed in this paper is flexible enough to study the case where a set of
distributionally homogenous bidders form a coalition and bid against potentially heterogenous
individual bidders. The restriction that the coalition canonly be formed by distributionally ho-
mogenous bidders can be relaxed with some work. However, in reality, the evidence suggests
that this is likely to be the case. For example, in antique auctions, experts are empirically more
likely to collude for reasons of keeping information private.

The algorithm developed in this paper draws on the principledeveloped in MMRS. In
particular, we compute approximate solutions to the systemof ordinary differential equations
(ODE) that characterize the first order conditions for the existence of an asymmetric Nash
equilibrium by applying a recursive piecewise low order Taylor series expansions technique.
Similar to MMRS, the solution belongs to a class of “two-pointboundary value problems”,
but they suffer from problems caused by a singularity of the system at the origin. This singu-
larity eliminates the option of forward extrapolation procedures as the solution will not satisfy
endpoint boundary conditions. It also complicates backward shooting procedures because the
recursion becomes unstable in a neighborhood of the origin.

The variety of distributions that the algorithm allows for introduces two key additional
difficulties. The first is that strong curvature in the distribution of private values result in
strong (amplified) curvature in the key auxiliary function used in the solution of the system.
This strong curvature makes Taylor series approximations less precise, but the major difficulty
is that the system may shoot too fast to the “x-axis”, which generates a different form of
singularity of the system. The problems could possibly be avoided by implementing smarter
routines that adjust the step size in these regions. However, with the complexity of the solution
method itself, we opt for simpler methods so that attention is focused on the key actual solution
methodology. Also, it is very cheap to refine the grid on whichthe routine “steps”, thus
reducing the significance of these pathologies. Second, thealgorithm requires that the density
of distribution of private values be sufficiently bounded away from zero on its support. In fact,
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this problem did not appear in MMRS since the density of the uniform distribution is trivially
bounded away from zero on its support. Despite these pathologies, in practice the algorithm
turns out to be remarkably stable. Indeed, once the condition that the density be sufficiently
bounded away from zero is respected by the user, our experience is that the algorithm always
produces stable and precise bid functions, even with quite extreme curvature of the distribution
of private values.

Marshall and Schulenberg (1998) extended the numerical algorithm of MMRS to accom-
modate reserve prices set by the auctioneer. Their numerical analysis provides evidence that
once optimal reserve price is introduced, second price auctions dominate first price auctions
in terms of expected revenue of the seller. Again, these algorithms are written for uniform
private value distributions and can only analyze the case oftwo types of bidders, the coalition
on one hand and the fringe of symmetric individual bidders onthe other, or in the case of
coalition versus coalition. In summary, to further enrich the scope of investigation of indepen-
dent asymmetric first price auction framework, we propose a solution algorithm much in the
spirit of MMRS. This algorithm allows for (1) ex-ante heterogeneity in the distribution of pri-
vate values for bidders, (2) heterogeneity that results from a (homogenous) subset of bidders
engaging in collusive activities, (3) non-uniform distribution of private values, (4) arbitrary
number of types of bidders, and (5) reserve prices to be set bythe auctioneer.

In Section 2 we present the model. The model is solved in section 3. Section 4 presents
samples of the numerical results for the case where private values are of distributed exponen-
tial. Section 5 offers a brief discussion.

2 The Model

We describe the environment of concern in which a single object is sold in a first price auction.
Specifically, bidders simultaneously submit sealed bids for a single object where the highest
bidder wins and pays his bid price. The group of potential bidders comprises ofn risk neutral
individuals. Each of then individuals belong to one ofr types, where each typei (i = 1, · · · , r)
draw their valuations independently from a distributionF⋆

i (·) on [vi , v̄i].

Consider an arbitrary typei from the set ofr types. This group of individuals is divided
into ki coalitions of sizeui each. Thus the number of typei individuals is given bykiui and
the total number of participants is given byn = ∑r

i=1kiui . We assume that each coalition acts
as one bidder who draws a valuation from the cumulativeFi = [F⋆

i (·)]ui . Hence we haveK =

∑r
i=1ki possible bidders. Without loss of generality, we call each possible bidder a coalition.

For example, consider the auction consisting ofn = 10 individuals grouped inr = 3 types.
There are 4 individuals of type 1, 3 of type 2 and 3 of type 3. The4 individuals of type 1
decide to form 2 coalitions of size 2 each. Thusk1 = 2 andu1 = 2. All 3 individuals of
type 2 collude, thus we havek2 = 1 andu2 = 3. Finally, the players of type 3 decide to play
individually, thus makingk3 = 3 andu3 = 1. This setup is sufficiently flexible to describe and
study a very large variety of auction environments.

Bid functions are denoted by the Greek letterφi , i = 1, · · · , r. Bidders are assumed to be
risk neutral with utility from winning the auction with a bidb given a typevi defined asUi(vi −
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b) = vi −b. Clearly, utility from winning the auction is increasing in the individual’s signal.
Under these assumptions, proposition 5 of Maskin and Riley (2000b) establishes the existence
of a monotonic pure-strategy equilibrium in the standard first price auction. Indeed, Lebrun
(1996) has shown that these bid functions are strictly monotone and increasing, therefore,
invertible. Inverse bid functions are denoted by the Greek letterλi, i = 1, · · · , r. Uniqueness
of such equilibrium is well established in the case with two types (Lebrun (1996)). However
in the generaln player game, equilibrium may not be unique in that we may end up with
”non-essential” equilibria (Briesmer et al. (1967)).

In this paper, we assume that the distributions of private values have common support,
that isvi = v andv̄i = v̄ for all i. We also assume thatFi is twice continuously differentiable,
with first derivative (the corresponding pdf) bounded away from zero on[v, v̄]. Under these
assumptions, Lebrun (1999) proves in the generaln bidder case that the equilibrium is unique,
and that the inverse bid functions have a common support[v, t⋆], wheret⋆ is the bid associated
with the valuation ¯v, andv is the reserve price set by the auctioneer. We show in this paper that
this equilibrium is amenable to numerical analysis, and presents itself as a natural extension
to the methods proposed in MMRS. As such the (numerical) determination oft⋆ is a critical
component of the problem to be solved.

3 Model Solution

3.1 The Differential Equations

Let t = φi(v) denote the Nash equilibrium bid submitted by coalitioni when its highest valua-
tion isv. Hencet is given by

t = Arg max
u∈(v,v̄)

(v−u)F−1
i (λi(u))

K

∏
j=1

[Fj(λ j(u))]k j . (3.1)

The first-order condition generates the following differential equation:

K

∏
j=1

[Fj(λ j(t))]
k j = (λi(t)− t)

{ K

∑
j=1

[

k j f j(λ j(t))λ′
j(t)

K

∏
s=1,s6= j

Fs(λs(t))
]

(3.2)

− fi(λi(t))λ′
i(t)

K

∏
s=1,s6=i

Fs(λs(t))
}

, i = 1, · · · ,K,

where fi(·) is the density function corresponding toFi(·). Simplifying gives:

1 = (λi(t)− t)

{

K

∑
j=1

k j f j(λ j(t))λ′
j(t)F

−1
j (λ j(t))− fi(λi(t))λ′

i(t)F
−1
i (λi(t))

}

(3.3)

The initial conditions are

λi(v) = v, i = 1, · · · ,K, (3.4)

4



and the terminal conditions require the existence of a number t⋆ ∈ [v, v̄] such that

λi(t⋆) = v̄, i = 1, · · · ,K. (3.5)

3.2 Numerical Solution

Define l i(t) = Fi(λi(t)). Differentiating givesl ′i (t) = fi(λi(t))λ′
i(t). Then equation (3.3) can

be written as:

1 = [F−1
i (l i(t))− t][

K

∑
j=1

k j
l ′j(t)

l j(t)
−

l ′i (t)
l i(t)

], i = 1, · · · ,K. (3.6)

This transformation of the system of equations reduces the dimension of the problem, and
makes it far more tractable than otherwise. The initial and terminal conditions for these new
functions are:

l i(v) = 0, i = 1, · · · ,K, (3.7)

l i(v̄) = 1, i = 1, · · · ,K. (3.8)

Let l0t denote the right derivative ofl i atv,

l0i = lim
t→v

l ′i (t). (3.9)

It is straightforward to show that:

l0i = fi(v)
∑K

j=1k j

∑K
j=1k j −1

. (3.10)

Successive derivations reveal that all higher order derivatives of l i are 0 atv. It follows that
any attempt to evaluate numerically a forward solution of the first order differential equations
(3.6) produces a linear solution. This problem is a manifestation of that found by MMRS. We
thus follow their recommendation and solve the system of equations (3.6) backward starting
from an assumed terminal point using the initial condition (3.4) as an indicator of whether or
not we have used the correct value oft⋆.

The solution technique proceeds by approximating thel ’s by piecewise (low-order) poly-
nomial expansions. For notational convenience, we switch to matrix representation of the first
order differential equations (3.3). The matrix representation also convenient for implementa-
tion in FORTRAN 90. Define the following vectors:

l(t) =











l1(t)
l2(t)

...
lr(t)











= ∑∞
j=0a j(t − to) j ,

l ′(t)/l(t) =











l ′1(t)/l1(t)
l ′2(t)/l2(t)

...
l ′r(t)/lr(t)











= ∑∞
j=0α j(t − to) j ,

(3.11)
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where

a j =











a1 j

a2 j
...

ar j











and α j =











α1 j

α2 j
...

αr j











. (3.12)

Given thatl ′(t) = ∑∞
j=0( j +1)a j+1(t− to) j , we can represent the equalityl ′(t) = (l ′(t)/l(t))×

l(t) in terms of its power series expansion:

∞

∑
j=0

( j +1)a j+1(t − to)
j =

[

∞

∑
j=0

α j(t − to)
j

][

∞

∑
j=0

a j(t − to)
j

]

(3.13)

=
∞

∑
j=0

(

j

∑
s=0

aisαi, j−s

)

(t − to)
j .

We can definea recursively as

ai,J+1 =
∑J

j=0ai j αi,J− j

J+1
, i = 1, · · · , r (3.14)

There are two key recursive formulas that constitute our numerical solution. Equation (3.14)
is the first. To derive the second, define

F−1
i (l i(t))− t =

∞

∑
j=0

pi j (t − to)
j , i = 1, · · · , r (3.15)

To evaluate (3.15), we implement an efficient recursive chain rule for such Taylor series expan-
sions developed in appendix C of MMRS. Specifically, the routine takes as inputs the Taylor
series approximation ofl i(t) and (user supplied) Taylor series expansion ofF−1

i (x) and returns
as output the approximation ofF−1

i (l i(t)). One significant advantage of this routine is that for
complicated functions, one can break the function in to smaller, more manageable components
that are easier to approximate by Taylor series expansion, and then use the routine to compose
these different parts and recover a Taylor series approximation of the function.

Clearly, the algorithm requires that the inverse functionF−1
i (x) is defined and well be-

haved. If there exists a point (v) on the support of the distribution functionFi such that
fi(v) = 0, then the second term in the Taylor series expansion ofF−1

i (Fi(v)) will be unde-
fined. Thus the algorithm requires thatfi(v) > 0 for all v in the interval[v, v̄].

6



The system of first order differential equations (3.6) can bewritten as

1 =

[

∞

∑
j=0

pi j (t − to)

][

r

∑
s=1

ks

(

∞

∑
j=0

αs j(t − to)
j

)

−
∞

∑
j=0

αi j (t − to)
j

]

(3.16)

= k1

∞

∑
j=0

(

pi0α1 j +
j

∑
s=1

pisα1, j−s

)

(t − to)
j + · · ·

+ (ki −1)
∞

∑
j=0

(

pi0αi j +
j

∑
s=1

pisαi, j−s

)

(t − to)
j + · · ·

+ kr

∞

∑
j=0

(

pi0αr j +
j

∑
s=1

pisαr, j−s

)

(t − to)
j , i = 1, · · · , r

This system of equations can be used to recursively evaluatethe values ofα. To see this, note
that that by evaluating (3.16) implies the following recursion in matrix form:











(k1−1)p10 k2p10 · · · kr p10

k1p20 (k2−1)p20 · · · kr p20
...

. ..
k1pr0 k2pr0 · · · (kr −1)pr0





















α10

α20
...

αr0











= 1, (3.17)

for j = 0 and for j = J ≥ 1,,










(k1−1)p10 k2p10 · · · kr p10

k1p20 (k2−1)p20 · · · kr p20
...

.. .
k1pr0 k2pr0 · · · (kr −1)pr0





















α1J

α2J
...

αrJ











= (3.18)

−











(k1−1)∑J
j=1 p1 jα1,n− j + k2∑J

j=1 p1 jα2,n− j + · · · + kr ∑J
j=1 p1 jαr,n− j

k1∑J
j=1 p2 jα1,n− j + (k2−1)∑J

j=1 p2 jα2,n− j + · · · + kr ∑J
j=1 p2 jαr,n− j

...
k1∑J

j=1 pr j α1,n− j + k2∑J
j=1 pr j α2,n− j + · · · + (kr −1)∑J

j=1 pr j αr,n− j











.

Inspection of the first term on the right hand side of equations (3.17) and (3.18) reveal that
partition inverse techniques in matrix algebra can be applied to get a closed form inverse of
this matrix. Thus this equation can be efficiently solved forrecursively forα j , j ≥ 1. For ease
of notation, write equations (3.17) and (3.18) asAαJ+1 = BJ, whereBJ is 1 for J = 0, and a
function of(α0, · · · ,αJ) for J ≥ 1. ThenαJ+1 can be calculated as

αJ+1 = A−1BJ. (3.19)

Equation (3.19) is the second recursive formula that makes up our numerical solution to the
system of differential equations defined in equation (3.6).

3.3 The Algorithm

A single run of computation requires initializing certain parameters, evaluating the corre-
sponding numerical solution, and then deciding upon whether or not another run is needed.
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1. Initialization. The parameters to be initialized are below.

(i) t⋆: Unlike in MMRS, finding refined interval in whicht⋆ belongs is not possible in
our model. It is clear however, thatt⋆ ∈ (v, v̄)

(ii) N: The number of equal length intervals of(v, t⋆) to be considered.

(iii) J: The order of the Taylor series expansions.

(iv) ε: A small positive number to be used in evaluation of our convergence criterion.

2. Numerical Evaluation. Approximate values ofl i(t j−1) are computed recursively by
means of Taylor series expansions or orderJ aroundts, for s running backward from
s = N + 1 to s = 1. At any steps, the process of the Taylor series expansion can be
described as two steps

(i) Seta0 = lts. Calculate the Taylor series expansion ofF−1(l(ts)) and computep0.
With these quantities in hand, the matrixA in equation (3.17) can be computed.
From these initializations, we can calculateα0 from equation (3.19). Givenα0

anda0, a1 is calculated from equation (3.14).

(ii) At step j ≥ 1 of the Taylor series expansion, use the expansion ofF−1(l(ts)) as
well asa j to computep j . Then use(p0, · · · , p j) and(α0, · · · ,α j) to computeB j in
equation (3.18). With these,α j+1 can be computed from equation (3.19), and then
a j+1 can be computed from equation (3.14). We then use our vector of coefficients
(a0, · · · ,aJ) to computel(ts−1), and repeat step(i) for s= s−1.

3. Convergence Criteria. MMRS presents in their Appendix B a robust stopping criteria
for their algorithm. However due to the high level on nonlinearity in our model, these
stopping criteria prove to be unsatisfactory. The main reason for this is that for some
distributions,l0i will be highly nonlinear, and may shoot rapidly to zero. We thus adopt
the stopping criteria that is implied by the initial conditions (3.7). This criteria provides
the following objective function:

min
t

S(t) =
K

∑
i=1

[l̂ i(v; t)−v]2 (3.20)

By construction, this objective function has a unique minimum at l̂ i(v; t⋆) = v. We em-
ploy the simplex search algorithm AMOEBA to find this minimum. The stopping rule is
to stop if the improvement in the objective function is less thatε. If (3.20) is minimized,
then the corresponding sequence ofl̂ i(to)’s constitute our (approximate) numerical so-
lution.

4 Some Examples

The solution methodology and algorithm developed in 2 allowfor the analysis of a large
variety of auction environments. As an illustration, we select an arbitrary auction environment
and study the corresponding bid functions that result from our computations. The bid functions
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are computed for an auction withn = 5 initial participants grouped into three types (r = 3).
The distribution of private values belong to the standard two parameter Weibull family:

F̃i(v) = 1−exp

{

−

(

v
λi

)γi
}

, i = 1, · · · , r. (4.1)

The Weibull distribution is an appealing choice for privatevalues in this example because of
the flexibility of the distribution with respect to its parameters. Specifically, if the shape pa-
rameter is less than or equal to 1, the shape of the corresponding pdf is everywhere decreasing.
However, for the values of the shape parameter greater than 1, the shape of the corresponding
pdf becomes unimodal. The reservation price is chosen to bev = 1.0 and the upper trun-
cation point of the distribution is chosen to be ¯v = 4.0. The actual distribution used in the
computation is therefore given by:

Fi(v) =

[

F̃i(v)− F̃i(v)

F̃i(v̄)− F̃i(v)

]ui

i = 1, · · · , r, (4.2)

where,ui is the number of individuals in coalitioni. Note that individual bidders automatically
have a coalitions parameter ofui = 1. The truncation here also serves the purpose of ensuring
that the resulting density is bounded away from zero, with isnecessary for the algorithm to
work. The first six figures involve the situation presented below:

Characteristic Type 1 Type 2 Type 3
Shape parameter (γ) 0.5 1.0 2.5
Mean (µ) 2.5 2.5 2.5
k 1 1 1
u:

Figure 1 3 1 1
Figure 2 1 3 1
Figure 3 1 1 3
Figure 4 2 2 1
Figure 5 2 1 2
Figure 6 1 2 2

Because of the instability of the algorithm at the origin and the possible severe curvature of
the functionl i(t), numerical accuracy is essential. Therefore, key steps aretaken to ensure
high numerical precision. In the solution,N, the number of grid points is chosen to be 10000.
Since the support of beliefs is the interval[1, 4], this means that the step size is 0.0003. All
the real variables needed to calculatelt(t) are declared in double precision, and all Taylor
series expansions are done up to the fifth order. Finally, theconvergence criterion is take to be
ε = 10E−12. Experimentation with the algorithm clearly indicates that these criteria can be
significantly relaxed at a low cost of accuracy.

The algorithm converges relatively fast. For a three type auction environment, the al-
gorithm converges in 2 minutes and 5 seconds on a 3GHz Pentium4 laptop computer. The
maximum of the objective function in any of the following computations in this and the rest of
the paper is 4E−4. Despite the pathologies discussed in section 2, in practice the algorithm
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turns out to be remarkably stable. Indeed, once the condition that the density be bounded away
from zero is respected by the user, our experience is that thealgorithm always produces sta-
ble and precise bid functions, even with quite extreme curvature of the distribution of private
values.

The first three figures plot the equilibrium bid functions that result from environments
where one coalition of three individuals competes against two individuals of different types.
Inspection of the bid functions indicate that the coalitionbids least aggressively. This is con-
sistent with the findings of Maskin and Riley (2000a) concerning the inverse relationship be-
tween the strength of the participant and aggression of its bid. However, their results were
derived in the case of two types. The computed bid functions here strongly suggest that this
result extends to cases where there are more than two types. Figures 4 to 6 explore the situa-
tion where there are two coalitions of two individuals each,bidding against a single individual.
The gap between the bid functions narrow relative to the firstthree figures. This narrowing
is due to the fact that in these cases the bidders are more equally matched in terms of their
optimism, thus leading to more competition among them.

Figures 7 to 9 represent a different auction environment, given in the following table

Characteristic Type 1 Type 2 Type 3
Shape parameter (γ) 0.5 1.0 2.5
Mean (µ) 2.5 2.5 2.5
u 1 1 1
k:

Figure 7 3 1 1
Figure 8 1 3 1
Figure 9 1 1 3

In these environments there are no collusive agreements (u1 = u2 = u3 = 1). However, unlike
the models of MMRS and Marshall and Schulenberg (1998), thereis still asymmetry among
the bidders, due to the different values of the parameters indexing their distributions of pri-
vate values. The bid functions are close to each other in these cases because of the fact that
the parameters were chosen close to each other. These three graphs show the power of the
algorithm, in that we can now numerically study asymmetric auctions without assuming that
asymmetry comes from a subset of symmetric bidders decidingto collude.

Our final example is one of particular interest. Welfare analysis of auction models such
as what is done in Maskin and Riley (2000a) assumes that the strong buyer’s valuation first
order stochastically dominates that of the weak buyer. Thisexample indicates what happens
when this condition is violated in a specific sense. In this example, there are 12 initial bid-
ders, 6 of type 1 , 4 of type 2, and 2 of type 3. The shape parameters of the private value
distributions for each type are:γ1 = 2.0, γ2 = 1.5, andγ3 = 1.2. The corresponding means
are given by:µ1 = 1.063,µ2 = 1.174,µ3 = 1.317. We also have that bidders of the same type
collude. Inspection of figure (6) shows that the cdf of type 1 coalition starts out below those
of coalitions 2 and 3. But then it increases and eventually rises above those of its competitors
until the pointv = 3 where they are all equal to 1. Interestingly, the bid functions exhibit very
similar pattern. Maskin and Riley (2000a) show in the case of two bidders that the stronger
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bidder shades his bids more than the weaker bidder. The stronger bidder is defined as the
bidder whose valuation first order stochastically dominates the other bidder. Figure (6) shows
that in comparing two bidders, if the fist bidder’s valuationis first stochastically dominated by
that of the second bidder, and then eventually dominates thevaluation of the second bidder,
then the fist bidder bids more aggressively in an interval at the lower end of the support, and
bids less aggressively in an interval at the upper end of the support. In short, the graph in (6)
indicates that when the distribution of private values cross once in the interior of their common
support, the corresponding equilibrium bid functions alsocross (at most) once.

5 Second Price versus First Price Auctions

In this section, we employ the proposed algorithm to providean insight into the revenue equiv-
alence between first price and second price auctions when bidders are ex-ante asymmetric, and
when asymmetric bidders collude. Since the Dutch descending price auction is strategically
equivalent to the first price auction, and under the assumption of private values, the English as-
cending price auction and the second price auction has the same optimal strategies, the results
of this analysis are also extended to comparison of Dutch andEnglish auctions. First we study
the seller revenue and bidder surplus in a case where symmetric bidders collude. Then we
perform the analysis for the case where asymmetric bidders all compete. Finally, we perform
the same analysis for the case where symmetric subsets of thebidders collude. In the cases
of bidder collusion, the auction environment is characterized as follows. The membership of
the coalition is determined ex ante. The size of each coalition, as well as the types of each
coalition member is common knowledge within the coalition and to all other bidders. If the
coalition wins the item, the coalition member with the highest valuation is awarded the item.
Coalition members with values that are not the highest withinthe coalition do not submit a
bid at the main auction. Also, there are no side payments within the coalition. MMRS dis-
cusses the effects of relaxing the assumption that valuations are known within the coalition.
Their conclusion is that the first price coalition calculations are as favorable as possible from
the point of view of the coalitions. Also they argue that the coalition is not disadvantaged at
the first price auctions by not allowing for side payments among coalition members. Their
arguments and conclusions carry over in this study.

5.1 The Simulation Technique

Now that we have a method of computing equilibrium bid functions for general asymmetric
first price auctions models, we can simulate expected sellerrevenue and bidder surplus for
comparison across first and second price auctions. The technique is essentially the following.
First, private values are drawn randomly from the distributions for each coalition. Then the
corresponding equilibrium bids are computed for each coalition. With these in hand, the
winning bid is recorded as well as the identity of the winner along with its surplus and the
revenue to the auctioneer. This process is repeatedNSIMtimes. The resulting average revenue
to the seller is the estimated expected revenue. Also, the average surplus of each coalition
divided by the number of individuals in the coalition is the estimated expected surplus to each
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bidder. There are two important issues that have to be addressed in this Monte Carlo study.

In reality, what the algorithm generates is the equilibriumbid for a grid of private values.
In the simulation, the random draw from the distribution of private values may not lie on
the pre-specified grid. Therefore, interpolation techniques have to be implemented in order
to attain approximate values of the equilibrium bid at points off the grid. For this we fit
the data of bids to a high order orthogonal polynomial regression on private values. The
order of the polynomial used in the reported results is 15. This ensures very high numerical
accuracy. In fact, the square-root mean squared deviation of the predicted bid from the actual
bids is typically indistinguishable. This high level of accuracy is due the smoothness of the
bid functions.

In the simulation of expected revenue to the seller and expected profits to the bidders,
the variance of these random variables are of the magnitude of the random variables them-
selves. Thus the raw simulation means and standard errors are of little use since the resulting
difference in the means are rarely statistically differentfrom zero for reasonable simulation
numbers (up to 2 million). Increasing the simulation numbersolves this problem, but the
resulting computation time makes this solution unappealing. In this paper, our variance re-
duction strategy is to extensively employ the regression approach to linear control variates.
For completeness, a brief description of this technique presented.1 Consider the problem of
estimating the expectation of a random variableα = EY by Monte Carlo simulation, whereY
is a random variable that is independently and identically distributed (i.i.d.). The natural point
estimate ofα is the averagēYn = n−1∑n

i=1Yi, computed fromn draws from the distribution
of Y. Suppose the investigator has available a random vectorC ∈ ℜd with known meanµc

that is correlated withY. The method consists of usinḡCi −µc to control forȲn via the linear
transformation:

Ȳn(λ) = Ȳn−λ′
(

C̄i −µc
)

, (5.1)

whereλ is a d× 1 vector chosen to minimize Var(Ȳn(λ)). Clearly theλ that achieves this
minimum is the coefficient (λ̂) in the linear regression of{Yi}

n
i=1 on {C′

i}
n
i=1 and a constant.

The resulting reduction in the variance is given by the ratio:

Var(Ȳn(λ̂))

Var(Ȳn)
= 1−R2

YC, (5.2)

whereR2
YC is the usual coefficient of determination from the regression of Y onC.

In the present paper, corresponding draws from the private value distribution for each
typeF

u j
j j = 1, · · · , r, as well as draws from the private value distribution when all n individ-

uals are of typej, Fn
j , j = 1, · · · , r, provide an ‘efficient’ set of control variates. This requires

that we have analytic or numeric means of these distributions. However, the mean of a two
parameter truncated Weibull distribution is easily computed numerically with very high preci-
sion. In particular, the computation of the means require a one dimensional integration, which
we perform using Gauss-Hermite quadrature with 40 abscissas.

1For a concise discussion of the various control variates techniques, see Szechtman (2003).
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In computing expected revenue in the asymmetric first and second price auctions, the
reduction in variance from the control variates technique is striking. In all results presented,
we achieve reductions in variance from as low as 62% to as highas 91%. The reduction
in variance achieved in the calculation of expected bidder surplus is more modest, but still
quite significant. We achieve reduction in variance from as low as 19% to as high as 69%. The
variance reduction technique here, along with clever choice of control variates results in all the
revenue comparisons and all the bidder surplus comparisonsthat follow be highly statistically
significant.

5.2 Symmetric Bidders Colluding

Consider the auction environment where there areN = 5 potential bidders, each drawing val-
uations from the same truncated two parameter Weibull distribution. The shape parameter is
given byγ = 1.0 (thus an exponential distribution), and the mean of the distribution is 2.0. The
distribution is truncated between 0.5 (the reserve price) and 3.0.

TABLE 3
Auctioneer’s Expected Revenue and Bidders’ Expected Surplus(per capita) at a First and a

Second Price Auction (N=5,γ = 1, µ= 2, Lower end point=0.5, Upper end point=3.0
First Price Second Price

k1 k2 u1 u2 Auct. k1 k2 Auct. k1 k2

1 1 4 1 1.4758 0.1572 0.2205 1.3941 0.2161 0.1022
(0.0001) (0.0004) (0.0012) (0.0002) (0.0003) (0.0013)

1 2 3 1 1.7078 0.1204 0.1394 1.6878 0.1561 0.1023
(0.0001) (0.0008) (0.0010) (0.0002) (0.0007) (0.0011)

1 3 2 1 1.8099 0.1064 0.1119 1.8069 0.1234 0.1023
(0.0002) (0.0011) (0.0009) (0.0002) (0.0011) (0.0009)

1 1 3 2 1.6545 0.1353 0.1483 1.6460 0.1560 0.1231
(0.0001) (0.0007) (0.0010) (0.0002) (0.0007) (0.0010)

2 1 2 1 1.7668 0.1171 0.1236 1.7654 0.1232 0.1024
(0.0002) (0.0007) (0.0016) (0.0002) (0.0007) (0.0017)

5 0 1 0 1.8498 0.1022 0.1022 1.8496 0.1022 0.1022
(0.0002) (0.0006) (0.0006) (0.0002) (0.0006) (0.0006)

Note.Computed by Monte Carlo using 1,000,000 drawings.

Table 3 reports the expected revenues and surpluses for firstand second price auctions. Note
that the bid functions in this analysis satisfy the (weak) first order stochastic dominance con-
dition assumed by Maskin and Riley (2000a). Conditional on thesize of the coalition, the
auctioneer’s expected revenue at the first price auction is always greater than or equal to the
expected revenue at the second price auction. Similar results are found in MMRS where
their analysis is based on private values being drawn from the standard uniform distribution.
MMRS argue that this is evidence that first the price auction isless susceptible to collusion
than the second price auction.

Maskin and Riley (2000a) also finds that the high bid (or first price) auction generate
higher expected revenue than the open (or second price) auction under shifts and stretches the
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private value distribution. These transformations of the distributions result in a violation of
the assumption made in our analysis that all private value distributions have common support.
The evidence here suggests that the results found in MMRS and Maskin and Riley (2000a)
are not artifacts of the assumption that beliefs are drawn from uniform distribution. How-
ever, Maskin and Riley (2000a) find that the open auction is superior to the high bid auction
when probability mass is shifted to the lower end point for one type. This transformation of
the private value distribution violates the assumption in this paper that the distributions are
twice-continuously differentiable everywhere on the interior of their common support. It also
violates their assumption that distributions are ordered in the first order stochastic dominance
sense. We thus take this as evidence supporting the conjecture that the first price auction is
superior to the second price auction whenever the distributions of private values satisfy the
first order stochastic dominance property and are twice-continuously differentiable on the in-
terior of their supports. Table 3 also suggests that strong bidders prefer the second price (open)
auction and weak bidders prefer the first price (high bid) auction. This result is also consistent
with Maskin and Riley (2000a).

We now compare the expected buyer surplus to gain some insight into the relative prof-
itability and susceptibility of collusion in first and second price auctions. The simulation
results in Table 3 seem to support the conjecture that coalitions are more profitable in second
price auctions that they are in first price auctions. To see this we compare the first three rows
of Table 3 where we find that conditional on the size of the coalition, the expected surplus to
the coalitionk1 is always greater in the second price auction that it is in thefirst price auction.
Again, a similar conclusion is draw in MMRS.

The simulation results also shed light on another interesting related question. In the case
where all the bidders form separate coalitions, are the individuals in the larger coalition better
off than those in smaller coalitions? The results in Table 3 suggest that this is indeed the case
in first price auctions, but not so for second price auctions.Looking at column 4 of Table 3, we
see that the per-capita surplus in the coalition of 3 biddersis higher than the per-capita surplus
in the coalition of 2 bidders in the second price auction, butlower in the first price auction.

We now turn to the question of whether coalitions are sustainable in first and second
price auctions. Our strategy is to check if it is individually rational for an existing coalition
to accept an outsider, and if it is individually rational forthe outsider to join the coalition.
Comparing rows one to three of Table 3 (in reverse order) we seethat in both the first and
second price auctions, increasing the number of participants in the coalition increases the per-
capita expected surplus. For example, moving from row 3 to 2,we see that in the first price
auction, increasing the number of participants from 2 to 3 increases the per-capita expected
surplus from 0.1064 to 0.1204. Thus it seems individually rational for existing coalitions to
accept an outsider. But is it the case that individual bidderswill want to join the coalition?

Comparing the first 3 rows of Table 3 from bottom up, we see that for the first price
auction, the per-capita expected surplus is always higher outside the coalition than inside it.
Furthermore, as the size of the coalition increases, the remaining individual bidders do better
in terms of expected surplus, and the difference grows as thesize of the coalition grows.
However, the individual bidders outside the coalition in the second price auction do just as
well regardless of the size of the coalition, and always do worse than individuals inside the
coalition. Thus the evidence suggests that as the size of thecoalition grows, the remaining
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individual bidders are more likely to join the coalition. This suggests then that the second
price auction is susceptible to collusion and the first priceauction is not. Similar results are
found in MMRS.

5.3 Asymmetric Bidders Colluding

The conclusion drawn above that the first price auction is superior to the second price auction
whenever the distributions of private values satisfy the first order stochastic dominance prop-
erty and are twice-continuously differentiable on the interior of their supports leads us to our
next issue. Is the first price auction still superior to the second price auction when we relax the
assumption of first order stochastic dominance? To shed somelight on this question, we sim-
ulate an asymmetric auction environment where there areN = 5 potential bidders partitioned
into 2 types characterized by different distributions of private values. The first three bidders
draw valuations from a truncated two parameter Weibull distribution with shape parameter
given byγ = 1.5, and the mean of the distribution is 1.0, where the truncation is between 0.5
and 3.0. The last two bidders draw valuations from the a truncated two parameter Weibull
distribution with shape parameter is given byγ = 1.5, and the mean of the distribution is 3.0,
again where the truncation is between 0.5 and 3.0.

TABLE 4
Auctioneer’s Expected Revenue and Bidders’ Expected Surplus(per capita) at a First and a
Second Price Auction (N = 5, γ = 1.5, µ1 = 1.0, µ2 = 3.0, Lower end point=0.5, Upper end

point=3.0)
First Price Second Price

k1 k2 u1 u2 Auct. k1 k2 Auct. k1 k2

3 2 1 1 1.7627 0.0449 0.1994 1.7552 0.0389 0.2140
(0.0002) (0.0009) (0.0010) (0.0002) (0.0010) (0.0010)

1 2 3 1 1.7219 0.0481 0.2165 1.7241 0.0491 0.2145
(0.0002) (0.0009) (0.0009) (0.0002) (0.0009) (0.0010)

1,1 2 2,1 1 1.7510 0.0458,0.0464 0.2044 1.7462 0.0433,0.0389 0.2144
(0.0002) (0.0012),(0.0017) (0.0010) (0.0002) (0.0012),(0.0017) (0.0010)

3 1 1 2 1.6393 0.0614 0.2231 1.5869 0.0388 0.2983
(0.0002) (0.0008) (0.0008) (0.0041) (0.0004) (0.0007)

Note.Computed by Monte Carlo using 1,000,000 drawings.

Row 2 of Table 4 sheds some light on this question. The bid functions in this environment
cross one at around 1.5 (Figure 9). What is remarkable is that this is the only setup in which
the expected revenue to the auctioneer is higher in the second price auction. The difference
is also statistically significant. This result does suggestthat in the case where first order
stochastic dominance no longer holds, the first price auction may no longer be superior to the
second price auction. In particular, in the case where the CDF’s cross once, leading to the
resulting bid functions crossing once, it may be the case that the second price (open) auction
is superior to the first price (high bid) auction. This resultis close to the result in proposition
4.5 of Maskin and Riley (2000a) where the weak bidder is characterized by some of the mass
of the distribution being shifted to the lower end point. As smoothed version of their setup
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would lead to the two cdf’s crossing once. Thus, according toour results, the bid functions
cross once. These results then suggest that whenever the bidfunctions cross once, the second
price auction may in some cases generate higher revenue to the auctioneer than the first price
auction.

It is important to note that we are not claiming that if the bidfunctions cross then the
second price auction always generates higher expected revenue than the first price auction.
The point of this exercise is to show that dominance of the first price auction may simply
be an artifact of the assumption of first order stochastic dominance. To illustrate the point,
we present a case where the bid functions cross, but the first price auction is still superior the
second price auction. In this environment, there are 4 bidders, 3 of type 1 and 1 of type 2. Type
one bidders draw private values from the truncated two parameter Weibull distribution with
mean 1.0 and shape parameter 2.0. Type two bidders draw private values from the truncated
two parameter Weibull distribution with mean 3.0 and shape parameter 1.5. The distributions
are truncated between 0.5 and 3.0. The resulting equilibrium bid functions along with their
corresponding private value distributions are presented in Figure 12. The key distinctions
between the function in Figure 11 and 12 are that the bid functions in Figure 12 cross further
to the left of the support and they deviate further apart. Thesimulated expected revenues in
this environment are 1.2999 for the first price auction and 1.2984 for the second price auction.
Again these differences are statistically significant. Thus this is an example where even though
the bid functions cross, the first price auction is still superior to the second price auction in
terms of expected seller revenue.

6 Conclusion

We propose an algorithm for numerically solving first price auction problems where bidders
draw independent valuations from heterogenous distributions and the auctioneer imposes a
reserve price for the object. The heterogeneity in this model arises both from the specification
of ex-ante heterogenous, non-uniform distributions of private values for bidders, as well as
the possibility of subsets of these bidders colluding. We simulate the model under various
environments. The simulation results suggest that stronger bidders shade their bids more
in the asymmetric first price auctions. The results also indicate that collusive activities are
more profitable and sustainable in asymmetric second price auctions. We find evidence that
under the assumption of first order stochastic dominance, the first price auction generates
higher expected revenue to the seller. However, when the assumption of first order stochastic
dominance is relaxed, and the distributions of private values cross once, the evidence suggests
that the second price auction may in some cases generate higher expected revenue to the seller.

Possible extensions of the algorithm include, allowing forbidders of different types to
collude, extending the algorithm to heterogenous affiliated distributions, and allowing for risk
aversion in bidder preferences. The latter extension, though theoretically important will essen-
tially require an additional Taylor series expansion, to evaluate the chosen utility function. The
other extensions present a more formidable challenge of efficiently computing order statistics
from complex, convoluted joint distribution functions.
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Figure 1:k1 = k2 = k3 = 1, u1 = 3, u2 = 1, u3 = 1
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Figure 2:k1 = k2 = k3 = 1, u1 = 1, u2 = 3, u3 = 1
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Figure 3:k1 = k2 = k3 = 1, u1 = 1, u2 = 1, u3 = 3
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Figure 4:k1 = k2 = k3 = 1, u1 = 2, u2 = 2, u3 = 1
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Figure 5:k1 = k2 = k3 = 1, u1 = 2, u2 = 1, u3 = 2
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Figure 6:k1 = k2 = k3 = 1, u1 = 1, u2 = 2, u3 = 2
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Figure 7:u1 = u2 = u3 = 1, k1 = 3, k2 = 1, k3 = 1
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Figure 8:u1 = u2 = u3 = 1, k1 = 1, k2 = 3, k3 = 1
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Figure 9:u1 = u2 = u3 = 1, k1 = 1, k2 = 1, k3 = 3
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Figure 10:k1 = k2 = k3 = 1, u1 = 6, u2 = 4, u3 = 2
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Figure 11:u1 = 3,u2 = 1, k1 = 1, k2 = 2
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Figure 12:k1 = k2 = 1, u1 = 3, u2 = 1
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