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Abstract

In this paper we examine the usefulness of multivariate semi-parametric GARCH
models for portfolio selection under a Value-at-Risk (VaR) constraint. First, we
specify and estimate several alternative multivariate GARCH models for daily re-
turns on the S&P 500 and Nasdaq indexes. Examining the within sample VaRs of
a set of given portfolios shows that the semi-parametric model performs uniformly
well, while parametric models in several cases have unacceptable failure rates. In-
terestingly, distributional assumptions appear to have a much larger impact on the
performance of the VaR estimates than the particular parametric specification chosen
for the GARCH equations. Finally, we examine the economic value of the multivari-
ate GARCH models by determining optimal portfolios based on maximizing expected
returns subject to a VaR constraint, over a period of 500 consecutive days. Again,
the superiority and robustness of the semi-parametric model is confirmed.
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1 Introduction

Models that forecast returns and volatility play an important role in financial decision-

making. Recently, several studies investigate the significance of forecasting volatility for

economic agents. For example, Fleming, Kirby, and Ostdiek (2001) examine the economic

value of volatility timing, using a class of rolling estimators for the covariance matrix

of returns. They forecast the covariance matrix one-day ahead and construct optimal

portfolio weights, based on a mean-variance approach. Marquering and Verbeek (2004),

using simple recursive linear models, analyze the economic value of volatility timing, jointly

with return timing, at a monthly frequency. De Goeij and Marquering (2004) examine the

economic value of forecasts from a multivariate asymmetric (parametric) GARCH model.

These studies limit themselves to the mean-variance framework, where optimal portfolios

are determined based on a trade off between the expected return on a portfolio and its

variance.

The focus on variance as the relevant risk measure is appropriate if returns are (condi-

tionally) normally distributed or if it can be assumed that investors only care about the first

two moments of the distribution of their portfolio return. This assumption is restrictive,

because it states that investors do not attach particular weight to skewness and kurtosis or

to specific quantiles of the distribution. This is stressed by several recent papers. Harvey

and Siddique (2000), for example, argue that conditional skewness is an important factor

explaining the cross-section of expected returns, while Barone Adesi, Gagliardini, and Urga

(2004) investigate the role of co-skewness for testing asset pricing models. In this paper

we analyze optimal portfolio choice focussing explicitly on downside risk. In particular, we

investigate the economic value of multivariate volatility models when optimal portfolios are

constructed under a Value-at-Risk (VaR) constraint. Value-at-Risk defines the maximum

expected loss on an investment over a specified horizon at a given confidence level, and is

used by many banks and financial institutions as a key measure for market risk (see Jorion

(2000) for an extensive introduction to VaR methodology).

Several recent papers analyze the risk-return trade off from a VaR perspective, for ex-
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ample Duffie and Pan (1997), Lucas and Klaassen (1998), Gourieroux, Laurent, and Scail-

let (2000), Campbell, Huisman, and Koedijk (2001) and Alexander and Baptista (2002).

These studies require an appropriate model for the tail behavior of the return distributions

and their interdependence. Typically, the simultaneous distribution of the innovations in

these models is assumed to be multivariate normal or Student t. This is restrictive, for

example in the presence of nonzero third moments or in cases where the tail behavior is

different across the portfolio components.

In this paper we investigate the implications on conditional Value-at-Risk (VaR) cal-

culations for a portfolio when returns are described by a multivariate GARCH model,

with an unrestricted distribution for the innovations. We specify and estimate several

semi-parametric multivariate GARCH models for the returns on the S&P 500 and Nasdaq

indexes, and compare their implied Value-at-Risk of several portfolios with those obtained

from some parametric counterparts. Further, over a period of 500 days we determine the

optimal dynamic trading rule that maximizes the expected return over the next trading

day, subject to the constraint that the expected loss, with probability 1% or 5%, does not

exceed a given VaR level. This allows us to compare dynamic portfolios based on differ-

ent model specifications, for example by determining how frequently the VaR boundary

is violated within the 500 day period. Because Value-at-Risk depends upon the joint tail

behavior of the conditional distribution of asset returns, we expect that the parametric

specifications only perform well in particular cases and settings, while the semi-parametric

approach is expected to be robust against distributional misspecifications. Given the empir-

ical evidence of asymmetries and – most importantly – excess kurtosis in the (conditional)

distribution of stock returns, this is a potentially important advantage.

In the empirical section, we estimate a semi-parametric multivariate GARCH model

for the returns on two broad stock market indexes (S&P 500 and Nasdaq). The GARCH

parameters are estimated without making restrictive assumptions about the distributions

of the innovations, while the latter are estimated non-parametrically using a technique pro-

posed by Hafner and Rombouts (2004). This way we obtain a model where we specify the

first two conditional moments of the returns jointly in a parametric way while the rest of
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the return distribution is determined non-parametrically. The advantage of the multivari-

ate approach is that the Value-at-Risk of any portfolio of assets can be determined from

the GARCH estimates and the corresponding non-parametric estimate of the multivariate

distribution of the innovations. Most importantly, this allows us to employ the framework

of Campbell, Huisman, and Koedijk (2001) to determine optimal portfolio weights taking

into account a Value-at-Risk constraint. In contrast, many existing approaches, including

the regime-switching model of Billio and Pelizzon (2000) and the semi-parametric approach

of Fan and Gu (2003), only allow one to determine the Value-at-Risk of a given asset or

portfolio of assets.

The rest of this paper is organized as follows. Section 2 describes a number of alternative

multivariate GARCH (MGARCH) specifications, and explains how the VaR of a portfolio

can be calculated on the basis of these models. Section 3 describes the data and reports

the estimation results for the MGARCH models for the S&P 500 and Nasdaq indexes

over the period January 1988 – August 2001. Section 4 focuses on the VaR calculations

and summarizes the results, by means of failure rates, for the different MGARCH models.

Section 5 describes how optimal portfolio weights can be determined and analyzes the

performance of the different models for VaR calculations. Finally, Section 6 concludes.

2 Multivariate GARCH models

In this section, we describe several alternative semi-parametric multivariate GARCH mod-

els and link them to the conditional Value-at-Risk of a portfolio constructed from the

different asset categories. The GARCH model describes the conditional distribution of

a vector of returns, from which quantiles of the distribution of portfolio returns can be

derived. Let rt denote the N -dimensional vector of stationary returns. The model can be

written as follows

rt = µt(θ) + H
1/2
t (θ)ξt t = 1, . . . T, (1)
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where µt(θ) is an N -dimensional vector of conditional mean returns, ξt is an i.i.d. vector

white noise process with identity covariance matrix and density g(·), and the symmetric

N×N matrix Ht(θ) denotes the conditional covariance matrix of rt. Unknown parameters

are collected in the vector θ. Both the mean and covariance matrix are conditional upon

the information set It−1, containing at least the entire history of rt until t− 1. Returns are

thus assumed to be generated by a parameterized time varying location scale model. The

conditional density of rt is given by

frt|It−1(r) =| Ht(θ) |−1/2 g
(
H
−1/2
t (θ) (r − µt(θ))

)
. (2)

The expression in (2) shows how the conditional distribution of the returns varies over time

and allows one to estimate the time-varying quantiles of the return vector by replacing the

parameter vector θ and the unknown density g(·) by their estimates, θ̂ and ĝ(·), respectively.

We consider three multivariate GARCH models, that specify different functional forms

for the conditional covariance matrix Ht(θ) and how it depends upon the information set

It−1. Further, we combine these specifications with alternative assumptions about the

density g(·) of ξt. The MGARCH models we consider are the diagonal VEC (DVEC)

model and the dynamic conditional correlation (DCC) models of Tse and Tsui (2002) and

Engle (2002). The specific assumptions of these three models are given in Definitions 1 to

3 below. We consider these alternative MGARCH models to make sure that our results are

not specific to one particular, perhaps inappropriate, specification. Moreover, it allows us

to analyze how sensitive the VaR estimates are with respect to the choice of the multivariate

GARCH model.

Definition 1 The DVEC(1, 1) model is defined as:

ht = c + A ηt−1 + G ht−1, (3)

where

ht = vech(Ht) (4)
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ηt = vech(εtε
′
t), (5)

and vech(.) denotes the operator that stacks the lower triangular portion of a N×N matrix

as a N(N +1)/2×1 vector. A and G are diagonal parameter matrices of order (N +1)N/2

and c is a (N + 1)N/2× 1 parameter vector.

Definition 2 The DCC model of Tse and Tsui (2002) or DCCT (M) is defined as:

Ht = DtRtDt, (6)

where Dt = diag(h
1/2
11t . . . h

1/2
NNt) , hiit can be defined as any univariate GARCH model, and

Rt = (1− θ1 − θ2)R + θ1Ψt−1 + θ2Rt−1. (7)

In (7), θ1 and θ2 are non-negative parameters satisfying θ1 + θ2 < 1, R is a symmetric

N ×N positive definite correlation matrix with diagonal elements ρii = 1, and Ψt−1 is the

N × N sample correlation matrix of ετ for τ = t − M, t − M + 1, . . . , t − 1. Its i, j-th

element is given by:

ψij,t−1 =

∑M
m=1 ui,t−muj,t−m√

(
∑M

m=1 u2
i,t−m)(

∑M
h=1 u2

j,t−h)
, (8)

where uit = εit/
√

hiit. The matrix Ψt−1 can be expressed as:

Ψt−1 = B−1
t−1Lt−1L

′
t−1B

−1
t−1, (9)

with Bt−1 a N ×N diagonal matrix with i-th diagonal element being (
∑M

h=1 u2
i,t−h)

1/2 and

Lt−1 = (ut−1, . . . , ut−M), an N ×M matrix.

Definition 3 The DCC model of Engle (2002) or DCCE(S, L) is defined as:

Ht = DtRtDt (10)
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where Dt = diag(h
1/2
11t . . . h

1/2
NNt), hiit can be defined as any univariate GARCH model, and

Rt = (diag Qt)
−1/2Qt(diag Qt)

−1/2. (11)

where the N ×N symmetric positive definite matrix Qt is given by:

Qt = (1− α− β)Q + αut−1u
′
t−1 + βQt−1, (12)

where uit = εit/
√

hiit, Q is the N × N unconditional variance matrix of ut, and α (≥ 0)

and β (≥ 0) are scalar parameters satisfying α + β < 1.

From the joint return distribution we can calculate the quantiles of the marginal dis-

tributions rit | It−1, i = 1, . . . , N . These marginal densities are given by

frit|It−1(ri) =

∫

RN−1

frt|It−1(ri, r̄−i)dr̄−i, (13)

where r̄−i indicates everything in r except ri. The main interest, however, lies in the

distribution of a linear combination of the vector of returns, w′
trt or a portfolio, which

depends upon the salient dependencies between the different returns. Because g(·) is

left unspecified the distribution of a linear combination of rt can be calculated by the

following well known result. Consider a random vector (X,Y ) ∼ fX,Y and (U, V ) =

(R(X,Y ), S(X,Y )) a new random vector as a function of the previous vector. Suppose

that R and S are functions such that we can calculate (X,Y ) = (L(U, V ), T (U, V )). Then

we have

fU,V (u, v) =| det J | ·fX,Y (L(u, v), T (u, v)) (14)

where

J =




∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V


 . (15)

We are interested in a single linear combination, corresponding to an asset portfolio, so we

can take Y = V = T (U, V ) and integrate this part out of the multivariate density. In the
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bivariate case, for example, the density at time t of the return on a portfolio with weights

w1t 6= 0 and w2t = 1− w1t is

fw1tr1t+w2tr2t|It−1(rp) =
1

w1t

|Ht(θ)|−1/2

∫
g


H

−1/2
t (θ)







rp−w2tv

w1t

v


− µt(θ)





 dv. (16)

Because in our framework g(·) is unknown, numerical integration techniques will be used

to obtain the distribution of the portfolio return. See for example Bauwens, Lubrano, and

Richard (1999) for details on numerical integration. At a given confidence level 1− α, the

Value-at-Risk (VaR) of a portfolio with weights wt is defined as follows.

Definition 4 The VaR at level α is the solution to

P (w′
trt < V aRα) = α (17)

or

α =

∫ V aRα

−∞
fw′trt|It−1

(rp)drp. (18)

The VaR is a measure of the market risk of the portfolio and measures the loss that

it could generate (over a given time horizon) with a given degree of confidence. Above,

we have expressed the VaR in relative terms as the quantile at level α of the distribution

of portfolio returns. With probability 1 − α, the losses on the portfolio will be smaller

than V aRα. The VaR is widely adopted by banks and financial institutions to measure

and manage market risk, as it reflects downside risk of a given portfolio or investment.

In general, the VaR is a function of the confidence level α, the density g(·), the portfolio

weights wt, the functional form of the mean vector µt and of the covariance matrix Ht,

where the latter three are time dependent. In the case where g(·) is the multivariate

normal density the definition of the VaR reduces to the well known formula V aRα =

w′
tµt + (w′

tHtwt)
1/2zα where zα is the α-th quantile of the univariate standard normal

distribution.
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The parameter vector θ is estimated by quasi maximum likelihood (QML) which im-

plies that during estimation we suppose that g(x) ∝ exp(−x′x
2

). The relevant part of the

loglikelihood function for a sample t = 1, ..., T then becomes

−
T∑

t=1

(
ln |Ht(θ)|+ (yt − µt(θ))

′ H−1
t (θ) (yt − µt(θ))

)
, (19)

conditional on some starting value for µ0 and H0. Equation (19) can be maximized with

respect to θ using a numerical algorithm, which results in a consistent and asymptoti-

cally normally distributed estimator, provided that µt(·) and Ht(·) are correctly specified

(Bollerslev and Wooldridge (1992)). Alternatively, it is possible to make other parametric

assumptions about the distribution g(.), for instance the multivariate t-distribution with

arbitrary degrees of freedom ν. For more information on the estimation of MGARCH

models we refer to Bauwens, Laurent, and Rombouts (2004).

The density g(·) in (2) is estimated by a kernel density estimator. A general multivariate

kernel density estimator with bandwidth matrix H and multivariate kernelK can be written

as

ĝH(x) =
1

T |H|
T∑

t=1

K(H−1(ξt − x)).

Since the variance of the innovations should be the same in all directions, it is reasonable

to use a scalar bandwidth, H = hIN , with h > 0. It is well known that by requiring

ThN →∞ and h → 0 as T →∞, the multivariate kernel density estimates are consistent

and asymptotically normally distributed. The MSE-optimal rate for the bandwidth is

T−1/(4+N) which is a rule of thumb bandwidth proposed by Silverman (1986). Furthermore,

we use a product kernel K(x) =
∏N

i=1 K(xi) and some univariate kernel function K such

as Gaussian, quartic or Epanechnikov. Our density estimate becomes

ĝh(x) =
1

ThN

T∑
t=1

N∏
i=1

K(
ξi,t − xi

h
).

More details on multivariate kernel density estimation can be found in Scott (1992). In

our application we will use a Gaussian kernel.
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3 Data and estimation of the MGARCH models

We consider daily returns on two stock market indexes, namely the Standard & Poor’s 500

(S&P 500) index and the Nasdaq index. We have data from 04/01/1988 to 31/08/2001,

which results in 3567 daily observations. Both daily log-prices and returns are plotted in

Figure 1 and descriptive statistics are given in Table 1. There is a clear presence of fat

tails in the return distributions. The kurtosis of the S&P 500 index and the Nasdaq index

are 8.45 and 11.7, respectively. Even after estimation of a multivariate GARCH model to

these data, we may expect that the nonparametrically estimated innovation density still

features quite some pronounced departures from normality. The estimated unconditional

correlation coefficient is 0.779.

Table 1: Summary statistics

04/01/1988−31/08/2001

T = 3567

Nasdaq S&P 500

Mean (%) 0.0462 0.0416

Standard Deviation (%) 1.4194 0.9560

Maximum 13.255 4.9887

Minimum −10.168 −7.1127

Skewness −0.1021 −0.4006

Kurtosis 11.698 8.4475

Daily Nasdaq and S&P 500 index returns descriptive

statistics. The estimated correlation coefficient is 0.779.

We estimate the DVEC, DCC Tse and DCC Engle models, described in Section 2,

over the whole sample period by QML. The parameter estimates and corresponding robust

standard errors and t-statistics for the DVEC model are given in Table 2. Note that we are

close to the unit root case because the maximum eigenvalue is equal to 0.997. Generally
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Figure 1: Sample period: 04/01/1988−31/08/2001 or 3567 observations. The returns are

measured by their log-differences.
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speaking, the QML standard errors are small. There is also quite some persistence in the

conditional correlation process.

The DCC models are estimated in one step. We first estimate the DCC model of

Tse, where we choose GARCH(1,1) models for the conditional variances of both series and

and we set M = 2 in the correlation specification (8). The estimation results are given

in Table 3. As already mentioned for the DVEC model, there is a high persistence in

the conditional variance series. The same still holds for the conditional correlation series.

We remark that the parameter estimates related to the conditional variances change only

marginally between the DVEC and the DCC model. This is not surprising given the

identical functional forms for the variances in both models.

The third model is the DCC model of Engle. The elements of Q in (12) are set to their

empirical counterparts to render the estimation simpler because there are less parameters

to estimate. The estimation results are given in Table 4. Comparing the estimates with

the corresponding estimates of the DVEC and the DCC Tse model, we only observe small

differences. The correlation model parameter estimates of the DCC models are slightly dif-

ferent. The next two sections investigate whether these small differences have consequences

for VaR computations. The estimated conditional correlation series is plotted in Figure 3.

While the estimated unconditional correlation coefficient equals 0.779, there is substantial

time variation in the conditional correlations. A test for constant conditional correlations,

that is θ1 = θ2 = 0, would easily be rejected. Because the three MGARCH specifications

are non-nested, a direct comparison based on statistical tests is complicated and we shall

evaluate them on the basis of their performance regarding the implied Value-at-Risk.

Finally, we estimate the bivariate density g(·) of the innovations ξt, for each of the three

MGARCH specifications, on the basis of the estimated standardized residuals. These may

be computed from (1) as Ĥ
−1/2
t (rt− µ̂t) where the hats indicate that the unknown param-

eters in θ are replaced by their estimates. As mentioned in Section 2 we use a Gaussian

product kernel for the nonparametric estimation of the innovation density. The bandwidth

is obtained by the conventional rule of thumb and in our application equals 0.26332. The

estimated innovation density for the DCC model of Engle is displayed in Figure 2. We do
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not show the estimated densities for the DVEC and the DCC Tse model because there are

no marked differences. Figure 2 exhibits clear departures from normality. The skewness

for the S&P 500 and Nasdaq residuals are −0.55279 and −0.42581, respectively, while the

kurtosis are 5.4258 and 8.5048, respectively. These deviations from normality may have an

important impact upon the Value-at-Risk that is implied by the distribution of portfolio

returns, and suggest that the normal distribution may provide inaccurate VaR estimates.

Below we shall determine and evaluate the VaRs on the basis of the semi-parametric dis-

tribution, as well as the bivariate normal and t-distributions.

Table 2: Parameter estimates for the DVEC model

Coefficient Std error t-statistic

ω11 0.005134 (0.00185) 2.779

ω21 0.004144 (0.00141) 2.934

ω22 0.005112 (0.00172) 2.979

α11 0.049925 (0.00846) 5.904

α22 0.044300 (0.00754) 5.873

α33 0.042482 (0.00752) 5.652

β11 0.946960 (0.00869) 108.9

β22 0.951263 (0.00812) 117.2

β33 0.952473 (0.00822) 115.8

QML estimates for the DVEC model.

QML standard errors in the Std error

column. Sample of 3567 observations

(04/01/1988−31/08/2001).
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Table 3: Parameter estimates for the DCC Tse model

Coefficient Std error t-statistic

ω11 0.004801 (0.00192) 2.502

ω22 0.003553 (0.00154) 2.309

α11 0.049029 (0.00979) 5.009

α22 0.034355 (0.00825) 4.163

β11 0.944110 (0.01082) 87.24

β22 0.959410 (0.00985) 97.41

ρ 0.156868 (0.07895) 1.987

θ1 0.023196 (0.00414) 5.601

θ2 0.979040 (0.00400) 244.6

QML estimates for the DCC Tse model.

QML standard errors in the Std error

column. Sample of 3567 observations

(04/01/1988−31/08/2001).
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Table 4: Parameter estimates for the DCC Engle model

Coefficient Std error t-statistic

ω11 0.005651 (0.00204) 2.775

ω21 0.005045 (0.00185) 2.724

α11 0.052459 (0.00906) 5.790

α22 0.041059 (0.00807) 5.085

β11 0.943694 (0.00946) 99.75

β22 0.953667 (0.00908) 105.1

θ1 0.034216 (0.00700) 4.888

θ2 0.953263 (0.01034) 92.17

QML estimates for the DCC Engle model.

QML standard errors in the Std error

column. Sample of 3567 observations

(04/01/1988−31/08/2001).
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Figure 2: Plot of ĝ(·), the estimated innovation density of ξt implied

by the DCC model of Engle. The skewness for the first and second

component are −0.55 and −0.43 respectively and the kurtosis is 5.43

and 8.51 respectively.
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Figure 3: Plot of conditional correlations implied by the DCC model of

Engle.

4 Value-at-Risk with fixed portfolio weights

This section explores the Value-at-Risk measures corresponding to the models estimated

above. We investigate the Value-at-Risk at the 1% and 5% levels, denoted VaR0.01 and

VaR0.05, respectively, for the last 2000 trading days of the sample. We consider the three

different MGARCH models defined in Section 2 and estimated by QML, and three time

invariant portfolios with weights w1 = (0.25, 0.75)′, w2 = (0.5, 0.5)′ and w3 = (0.75, 0.25)′.

Furthermore, we distinguish between different innovation densities: the Gaussian, the stu-

dent t and the nonparametric density. The degrees of freedom of the bivariate student t

distribution are estimated by maximum likelihood as 6.61.

To compare the VaR levels we calculate failure rates for the different specifications. The

failure rate (FR) is defined as the proportion of rt’s smaller than the VaR. For a correctly

specified model, the empirical failure rate should be close to the specified VaR level α. We

compare the empirical failure rate to its theoretical value by means of the Kupiec likelihood

ratio test, see Kupiec (1995). The failures rates and the p-values for the Kupiec test are
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displayed in Tables 5 and 6 for the five and one percent VaR level respectively.

From the failure rates and the p-values in Table 5, we observe that the normal distri-

bution performs reasonably well for the 5 percent VaR level. The failure rates that are

calculated on the basis of the student distribution are too low, while the semi-parametric

procedure works reasonably well. Notice that the results for the DVEC and the DCC Engle

model are very similar, while the DCC Tse model produces slightly different results. Table

6 displays the results for the 1 percent VaR level. In this case, the normal distribution

has a difficult job in providing failure rates close to the VaR level. Overall, the empirical

failure rates are too high, which means that we overestimate the first percentile of the dis-

tribution of the portfolio return. The Kupiec likelihood ratio test consistently rejects the

normal distribution. The student distribution generates failure rates that are consistently

too low, although reasonably close to the theoretical values. Contrary to the five percent

VaR level case, this suggests that the degrees of freedom are correctly estimated. Again,

the semi-parametric procedure works well.

The above results show that the semi-parametric procedure proposed in this paper is a

promising tool for risk management analysis. Firstly, the procedure is based on a natural

idea. We do not impose a specific functional form on the innovation distribution when we

calculate the VaR. Secondly, we do not have to worry which innovation distribution to use

for which specific VaR level. The fact that semi-parametric estimation of the VaR domi-

nates parametric approaches is also demonstrated by Fan and Gu (2003) in the univariate

case. Obviously, one can always impose other parametric distributional assumptions for

the innovations that are more flexible than the normal and student t distributions. For

example, Mittnik and Paolella (2000) and Giot and Laurent (2003) work with a skewed t

distribution, but there are always chances of severe misspecifications.
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Table 5: VaR0.05 results

w1 w2 w3

FR p-value FR p-value FR p-value

DVEC Normal 0.0585 (0.089) 0.0550 (0.312) 0.0595 (0.058)

tν̂ 0.0375 (0.007) 0.0365 (0.004) 0.0385 (0.014)

semi-parametric 0.0555 (0.267) 0.0515 (0.760) 0.0565 (0.191)

DCCT Normal 0.0640 (0.006) 0.0600 (0.046) 0.0680 (0.000)

tν̂ 0.0455 (0.349) 0.0400 (0.034) 0.0445 (0.250)

semi-parametric 0.0595 (0.058) 0.0585 (0.089) 0.0610 (0.029)

DCCE Normal 0.0585 (0.089) 0.0545 (0.362) 0.0595 (0.058)

tν̂ 0.0380 (0.010) 0.0365 (0.004) 0.0390 (0.019)

semi-parametric 0.0555 (0.267) 0.0515 (0.760) 0.0565 (0.191)

This table presents failure rates (FR) and p-values for the Kupiec LR test. We

report this for the DVEC, the DCC Tse (DCCT) and the DCC Engle (DCCE)

model. We distinguish between the normal, the student and the nonparametric

innovation density, for three portfolio weights.
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Table 6: VaR0.01 results

w1 w2 w3

FR p-value FR p-value FR p-value

DVEC Normal 0.0175 (0.002) 0.0195 (0.000) 0.0170 (0.004)

tν̂ 0.0080 (0.352) 0.0065 (0.093) 0.0075 (0.240)

semi-parametric 0.0115 (0.510) 0.0095 (0.821) 0.0125 (0.279)

DCCT Normal 0.0210 (0.000) 0.0240 (0.000) 0.0215 (0.000)

tν̂ 0.0095 (0.821) 0.0085 (0.489) 0.0090 (0.648)

semi-parametric 0.0125 (0.279) 0.0125 (0.279) 0.0130 (0.197)

DCCE Normal 0.0175 (0.002) 0.0195 (0.000) 0.0175 (0.002)

tν̂ 0.0075 (0.240) 0.0070 (0.154) 0.0075 (0.240)

semi-parametric 0.0115 (0.510) 0.0095 (0.821) 0.0125 (0.280)

This table presents failure rates (FR) and p-values for the Kupiec LR test. We

report this for the DVEC, the DCC Tse (DCCT) and the DCC Engle (DCCE)

model. We distinguish between the normal, the student and the nonparametric

innovation density, for three portfolio weights.
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5 Optimal portfolio selection

To determine the optimal portfolio that takes into account downside risk by means of

a VaR constraint, we combine the approach of Campbell, Huisman, and Koedijk (2001)

with the multivariate GARCH models. The portfolio model allocates financial wealth by

maximizing the expected return subject to a risk constraint, measured by the Value-at-Risk

(VaR). The optimal portfolio is such that the maximum expected loss would not exceed

the VaR for a chosen investment horizon at a given confidence level 1 − α. We consider

the possibility of borrowing and lending according to the investor’s preferences given her

utility function and given the (riskless) interest rate prevailing in the market.

Let Wt denote the investor’s wealth at time t, and bt the amount of money that is

borrowed (bt > 0) or lent (bt < 0) at the risk free rate rf . In general, we consider N financial

assets with prices at time t given by pi,t, i = 1, . . . , N . Define Xt ≡ [xt ∈ RN :
∑N

i=1 xi,t = 1]

as the set of portfolio weights at time t, with well-defined expected rates of return, where

wi,t = xi,t(Wt + bt)/pi,t is the number of shares of asset i at time t. The budget constraint

of the investor is given by

Wt + bt =
N∑

i=1

wi,tpi,t = w′
tpt. (20)

The value of her portfolio at t + 1 is

Wt+1(wt) = (Wt + bt)(1 + rt+1(wt))− bt(1 + rf ), (21)

where rt+1(wt) is the portfolio return between time t and t+1 (period t+1). The VaR of the

portfolio is defined as the maximum expected loss over a given investment horizon and for

a given confidence level 1− α. Denote the desired Value-at-Risk of the investor at a given

confidence level by V aR∗. This specifies the (negative) dollar amount corresponding to the

α-th percentile of the distribution of future wealth Wt+1. For a given α, the Value-at-Risk

constraint specifies that the portfolio weights should be chosen such that

Pt[Wt+1(wt) ≤ Wt − V aR∗] ≤ 1− α, (22)
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where Pt is the probability conditional on the available information at time t. Equation

(22) represents the second constraint that the investor has to take into account. The

portfolio optimization problem then corresponds to maximizing the expected value of (21),

subject to (22). This optimization problem may be rewritten in an unconstrained way. To

do so, we substitute (20) in (21) and take expectations, which yields

EtWt+1(wt) = w′
tpt(Etrt+1(wt)− rf ) + Wt(1 + rf ). (23)

Equation (23) shows that a risk-averse investor wants to invest a fraction of her wealth in

risky assets if the expected return of the portfolio exceeds the risk free rate. Substituting

(23) in (22) gives:

Pt[w
′
tpt(rt+1(wt)− rf ) + Wt(1 + rf ) ≤ Wt − V aR∗] ≤ 1− α, (24)

so that,

Pt

[
rt+1(wt) ≤ rf − V aR∗ + Wtrf

w′
tpt

]
≤ 1− α. (25)

This defines the quantiles q(wt, α) of the distribution of the return of the portfolio at a

given confidence level α. The portfolio can then be expressed as:

w′
tpt =

V aR∗ + Wtrf

rf − q(wt, α)
. (26)

Finally, substituting (26) in (23) we obtain:

Et(Wt+1(wt)) =
V aR∗ + Wtrf

rf − q(wt, α)
(Etrt+1(wt)− rf ) + Wt(1 + rf ), (27)

and therefore

w∗
t ≡ arg max

wt

Etrt+1(wt)− rf

rf − q(wt, α)
. (28)

The two fund separation theorem applies, i.e. the investor’s initial wealth and her desired

VaR (V aR∗) do not affect the maximization problem. Thus, the optimal asset allocation
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of the risky part of the investor’s portfolio does not depend upon her initial wealth or upon

the Value-at-Risk that is imposed. This is similar to the results for the traditional case of

mean-variance optimization. However, in the VaR case, different levels of confidence lead

to different risky asset allocations. At a given α, the desired VaR determines the amount

of borrowing or lending of the investor, which is chosen so as to (theoretically) equal the

portfolio VaR with the desired VaR. The amount of money that the investor wants to

borrow or lend is found by substituting (20) in (26) and is given by

bt =
V aR∗ + Wtq(w

∗
t , α)

rf − q(w∗
t , α)

. (29)

In order to solve the optimization problem (28) we need the expected returns for each of

the N assets and the predicted covariance matrix from the multivariate GARCH model.

From this we can compute the predicted portfolio returns and the quantiles q(wt, α) for each

vector of weights wt given a specified α. Note that the use of a multivariate GARCH model

in a portfolio optimization framework like this has an important benefit over univariate

approaches where for every portfolio weight the asset return series are combined into a new

univariate series that is used to fit a GARCH type model from which the portfolio VaR

may be computed, see Rengifo and Rombouts (2004) for such an example. This becomes

computationally cumbersome when the portfolio optimization is repeated several times.

For our application we obtain optimal portfolio weights by applying (28) to each of the

last 500 trading days of the sample. Since we consider only two assets, the optimization

problem in (28) becomes one dimensional. The expected return is estimated by the em-

pirical mean of the sample and the wealth at day 0 is normalized at 1000. To compute

the amount of borrowing bt, the desired Value-at-Risk level (V aR∗) over a one-day horizon

is fixed at 1% of current wealth. The annual risk-free interest rate is set to 0.04. The

portfolio VaR is calculated under the assumption of the normal, the t and the nonpara-

metric innovation density. The underlying multivariate GARCH model is the DCC model

of Engle, noting that in the previous section the alternative parameterizations produced

very similar results. The estimated innovation density we used to compute the VaRs is
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the same as in Section 4. Note that this density estimate is kept fixed for the 500 trading

days. The failure rates and the final wealth are reported in Table 7 for both the 1% and

5% VaR level.

Table 7: Optimal portfolio results

0.05 VaR level 0.01 VaR level

FR p-value Final wealth FR p-value Final wealth

Normal 0.044 (0.530) 1281 0.026 (0.003) 1220

tν̂ 0.032 (0.048) 1251 0.006 (0.331) 1186

semi-parametric 0.044 (0.530) 1254 0.012 (0.663) 1186

This table presents failure rates (FR), the p-values for the Kupiec LR test and the

final wealth over 500 trading days for application 1 using the DCC model of Engle.

We distinguish between the normal, the student and the nonparametric innovation

density. The portfolio weights are obtained by maximizing (28) for each trading day.

The failure rates for this application indicate that the multivariate GARCH model based

on the normal distribution produces too risky asset allocations at the 99% confidence level,

with the 1% target VaR being exceeded during 13 out of 500 trading days. On the other

hand, the model based on the t distribution produces too conservative allocations at both

levels of confidence. The semi-parametric specification leads to acceptable failure rates at

both the 1% and the 5% level. Apparently, the conclusions of Section 4, where the VaR

is calculated using fixed portfolio weights, carry over to the case where the portfolios are

constructed using time varying weights obtained by maximing the expected returns subject

to a VaR constraint. That is, the semi-parametric approach works well for all VaR levels.

Figure 4 displays the evolution of the weight of the Nasdaq index in the risky portfolio,

obtained for the 0.05 VaR level and using the semi-parametric procedure. We observe

substantial time-variation in the composition of the risky assets portfolio during the 500

trading days. Note that the weights obtained using different distributional assumptions
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Figure 4: Plot of Nasdaq weights for the 0.05 VaR level (semi-parametric

procedure).

are very similar, which explains why the resulting final wealth in Table 7 is close similar

over the different rows.

Figure 5 presents the implied Value-at-Risk (at the 95% confidence level) of the risky

portfolio (excluding riskless borrowing or lending). Because the composition of the risky

portfolio varies from one day to the next, and because the conditional distribution of

returns is time-varying, the VaR varies over time. At each trading day, the amount of

borrowing or lending, bt, should be such that the VaR of the entire investor’s portfolio

corresponds to her desired level V aR∗.

We also did the same portfolio optimization exercise using another data set that con-

sisted of a stock and a bond index. The estimated innovation density showed less departures

from normality but the results were basically the same as those illustrated above for the

S&P 500 and the Nasdaq data. That is, based on inspection of the failure rates, the

semi-parametric procedure dominates the parametric procedures.
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Figure 5: Plot of portfolio VaR’s at the 0.05 level (semi-parametric pro-

cedure, risky portfolio only).

6 Conclusion

Analyzing the Value-at-Risk of a portfolio of assets with arbitrary holdings requires in-

formation about the (conditional) joint distribution of returns. In this paper we explored

the usefulness of semi-parametric multivariate GARCH models for asset returns for eval-

uating the Value-at-Risk of a portfolio. We also illustrated how such models can be used

to determine an optimal portfolio that is based on maximizing expected returns subject

to a downside risk constraint, measured by Value-at-Risk. While parametric multivariate

GARCH models impose strong distributional assumptions about the joint distribution of

the innovations, the semi-parametric approach allows us to estimate the joint distribution

without making restrictive assumptions. While this is theoretically superior, its perfor-

mance in finite samples, and taking into account realistic conditions, is not necessarily

optimal.

We examined the usefulness by considering the joint distribution of the returns on the

S&P 500 and Nasdaq indexes. Our analyses of the 1% and 5% Value-at-Risk for a set
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of three different portfolio holdings show that the semi-parametric multivariate GARCH

models perform well and consistently over the different models and significance levels. This

is a promising result. Interestingly, the sensitivity of the failure rates with respect to the

distributional assumptions is larger than that with respect to the parametric specification

that was chosen for the conditional covariance matrix (diagonal VEC model and two vari-

ants of dynamic conditional correlations models). When we determine an optimal portfolio

where expected returns are maximized subject to a Value-at-Risk constraint, the results

also show that the semi-parametric procedure works well, irrespective of the chosen confi-

dence levels. While the normal distribution and the t distribution are rejected in specified

cases, the semi-parametric approach passes the Kupiec likelihood ratio test in all situations.
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