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Abstract:  

Johansen and Sornette proposes that the crash has fundamentally an endogenous origin 
and exogenous shocks only serve as triggering factors. This endogenous force is shown in 
price as power law log-periodicity (PLLP) signature prior to a crash. We estimate the 
highly nonlinear model developed by them using a hybrid approach which combines 
scatter search, genetic adaptor and tabu search. The model is applied to two property 
data sets (Hong Kong Office Price Index and Seoul Hosing Price Index) and one 
property related stock price (Korea General Construction Stock Price Index). The fitting 
of the original model to these data sets was unsuccessful, due to the lack of the power 
law. We hence fit the data using a modified model, and the results are encouraging when 
crash-date prediction is the aim. 
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1. Introduction 

 

The burst of fully-fledged bubbles is often cited as an important cause of large market 

crashes. A market crash is defined as a significant sudden decline in price over a short 

time span, which the world has seen a number of times in the past two decades in all 

major asset markets, such as stock, property and commodity markets.  

 

A market crash is often epidemic and destructive to the economy at large. If market 

crashes are indeed, in many cases, caused by the bursts of speculative bubbles, 

understanding the behavior of the speculative bubbles and the relationship between 

bubbles and market crashes will help the policy makers to minimize the damage of 

speculative bubbles to economy at large. 

 

In recent years, Johansen, Sornette and their co-authors (J&S et al) developed an 

interesting analytical framework for market crash. Their theory has a close connection 

with a class of bubble postulated by Blanchard and Watson (1982) which collapses 

periodically, specifically, with their idea that the probability that the bubble ends may 

depend on how long the bubble has lasted, or by how far the price is from market 

fundamentals. 

 

The J&S et al framework has its deep roots in the recent findings of the behavior 

economics and the concept of criticality evolved in statistical physics. They propose that 
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market crashes are large draw-downs which occur because the market has entered an 

unstable phase and any small disturbance or process may have triggered the instability. 

The collapse is fundamental due to the unstable position. The instantaneous cause of the 

collapse is secondary. In another word, the crash has fundamentally an endogenous 

origin, and exogenous shocks only serve as triggering factors. The origin of crashes is 

constructed progressively by the market as a whole, as a self-organizing process. In this 

sense, the true cause of a crash could be termed a systemic instability. 

 

Using the model developed, J&S et al identified a precursory pattern, namely, the power 

law log periodic signature (PLLP), of asset prices prior to major crashes. In their papers, 

they verified the presence of PLLP for different asset markets in many developed 

countries and some emerging economies. J&S et al argue that this precursory pattern 

originates from some very fundamental and robust properties of asset markets: the 

herding behavior among the traders and the self-organizing markets, which lead to 

accelerating speculative bubbles that often end in crashes.  

 

At the back of “Why Stock Markets Crash” (D. Sornette, 2003), Robert Shiller writes “a 

professor of geophysics gives a very different perspective, informed by his scientific 

training, on the stock market. I am sure that his view will be highly controversial, but the 

book is fascinating, and mind-expanding, reading.” 

 

In this paper, we apply the methodologies of J&S et al to Seoul Housing Price (SHP) and 

Hong Kong Office Price (HKOP). As SHP show slow decaying throughout the 1990s 
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rather than large crashes of the kind experienced by HKOP (Figure 5.1), we also include 

a third time series, namely Korea General Construction Stock Price (KGCSP) in this 

paper (Figure 7.1). 

 

The remaining of this paper includes five parts. In part 2 we layout the economic rational 

behind the J&S et al model, which is followed by a summary of the model in part 3. The 

details of estimation and optimization strategies are described in part 4. Our empirical 

findings, the main contributions of this paper, are presented in part 5. This is followed by 

concluding remarks in part 6. 

 

2. The Economic Rational 

 

2.1. Self-organization, Market Efficiency and Speculative bubble 

  

Macroscopic systemic self-f-organization can emerge from some simple rules of repeated 

actions at the microscopic level. This idea follows Adam Smith’s notion that selfish, 

greedy individuals, if allowed to pursue their interests largely unchecked, would interact 

to produce a wealthier society as if guided by an “invisible hand.” Smith himself never 

worked out a proof that this invisible hand existed. The mathematical proving of the 

existence of invisible hand was carried out by Arrow and Debreu (1954) under a set of 

very restricted assumptions.  
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The main tool in the analysis of Arrow and Debreu is constrained optimization. However, 

this is not an entirely satisfactory representation of reality, as most people are not versed 

in economic optimization reasoning.  

 

But this does not mean we shall fail to function effectively in social and economic 

exchanges in life. The remarkable insight of Adam Smith is that people have natural 

intuitive mechanisms enabling them to “read” situations and the intentions and the likely 

reactions of others without deep, tutored cognitive analysis.  

 

This fact has been established by experimental economists. Their experiments show that 

economic agents can achieve efficient outcomes that are not part of their intentions---a 

key principle formulated by Adam Smith. Experiments on markets with both insiders and 

uninformed traders show that equilibrium prices do reveal insider information after 

several trials of the experiments, suggesting that the markets disseminate information 

efficiently.  

 

However, these results are not always present if the following conditions are not fulfilled: 

identical preferences, common knowledge of the dividend structure, and complete 

contingent claims (i.e. existence of a full spectrum of derivative instruments allowing one 

to probe the expectation of future risks).  Under these situations, information aggregation 

is a more complicated process, and market efficiency, defined as full information 

aggregation, depends on the complexity of the market.  
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Thus the “emergence of self-organization” does not imply that the market will always be 

equivalent to an efficient and global optimization machine. Empirical economics shows 

that market forces may lead to plenty of imperfections, problems and paradoxes. In fact, 

rational behavior could lead to less-than-optimal market outcomes, such that the creation 

of rational speculative bubbles that give false signals on the fundamental values of assets. 

 

2.2. The Power Law 

 

The power law refers to the power law acceleration of market price prior to a crash.  

 

Consider a purely speculative asset which pays no dividends. The no-arbitrage condition 

plus rational expectation would imply that the price of this asset should be zero at all 

time. Any deviation of the price from the zero value signals the presence of speculative 

bubble. 

 

A speculative bubble emerges from “self-reinforcing imitation” among traders in a self-

organizing process. However, fundamental forces would make bubbles transient 

phenomena. The fighting between a bubble and the fundamental forces leads to repeated 

price fluctuations around its fundamental values.  

 

The self-reinforcing imitation process leads to the blossoming of a bubble which often 

(but not necessarily) ends in a market crash.  
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A crash is not certain but can be characterized by its hazard rate: the probability per unit 

time that the crash will happen in the next instant provided it has not happened yet. The 

crash hazard rate quantifies the probability that a large group of traders place sell orders 

simultaneously and creates enough imbalances in the order book of market makers to be 

unable to absorb the other side without lowering prices substantially. It is computed as 

the ratio of scenarios that give crash to all possible scenarios. 

 

Since crash is not a certain deterministic outcome of the bubble---there is a finite 

probability of “landing softly”---it remains rational for the traders to stay invested 

provided they are compensated by higher rate of growth of the bubble for taking the risk 

of a crash. 

 

This means that the critical time, which is defined as the time when a bubble ends, is not 

the time of the crash, but the most probable time for the crash to occur. 

 

Assuming the movement of a price is driven by risks. In particular, for each period (e.g. a 

day), there are two components and only two compete to determine the price increment 

from one day to the next: A daily market return and the possibility that a crash will occur. 

 

With the no-arbitrage condition and rational expectation, the daily return should 

compensate exactly the average loss due to the possibility of a crash. It implies that the 

total average return at any time is exactly zero. It also implies that market return is 
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proportional to the crash hazard rate: the higher the risk of a crash, the higher the price 

return. 

 

Most traders in the world are organized into a network and they influence each other 

locally through this network. Imitation among traders (herding behavior) creates a 

speculative bubble. The same imitation force also brings the end to the bubble. 

 

On approaching the critical time, the time when the bubble ends, imitation among traders 

strengthens in an accelerating manner (fueled by expected large capital gains, perhaps). 

The market becomes more and more sensitive to news or rumors. These lead to the 

fueling up of the crash hazard rate, which in turn leads to the power law acceleration of 

price upon the approaching of the critical time. 

 

The above paragraphs lay out the “risk-driven model” in the terminology of J&S et al. 

We may, however, assume price driving risks rather that the other way round. They we 

would have a “price-driven model” according to J&S et al. 

 

In the price-driven model, the price drives the crash hazard rate. The price itself is driven 

up by the imitation and herding behavior of the “noisy” investors. The occurrence of a 

crash is again characterized by its hazard rate. 

 

Let the price variation in an elementary time period to be the sum of two components: a 

certain instantaneous return and a random return. The first embodies the remuneration 
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due to estimated risks as well as the effect of imitation and herding. The second embodies 

the noise component of the price dynamics with volatility. The volatility can also have a 

systematic component controlled by imitation as well as many other factors.  

 

Noisy investors (as opposed to investors who base their investment strategy on 

fundamentals) look at the market price going up, they speak to each other, develop 

herding, buy more and more of the stock, thus pushing prices further up. As the price 

variation speeds up, the no-arbitrage condition together with rational expectations implies 

that there must be an underlying risk, not yet revealed in the price dynamics, which 

justifies this apparent free ride and free lunch.  

 

To capture the phenomenon of speculative bubbles, we focus on the class of models with 

positive feedbacks. In the present context, this means that the instantaneous return as well 

as the volatility becomes larger and larger when past prices and/or past returns and/or 

past volatilities become large. Such positive feed backs with increasing growth rate may 

lead to singularities in a finite timei. Here it means that, unchecked, the price would blow 

up without bounds. However, two effects compete to tamper with this divergence. First, 

the stochastic component impacting the price variations makes the price much more 

erratic, and the convergence to the critical time becomes a random, uncertain event. The 

second effect that tampers with the possible divergence of the bubble price is the impact 

of the price on the crash hazard rate: as the price blows up due to imitation, herding, 

speculation and randomness, the crash hazard rate increases even faster, so that a crash 
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will occur and drive the price back closer to its fundamental value. Hence this model 

proposes two scenarios for the end of a bubble: either a spontaneous deflation or a crash.  

 

The risk-driven model and the price-driven model describe a system of two populations 

of traders, the ‘rational’ and the ‘noisy’ traders. Occasional imitative and herding 

behaviors of the noisy traders may cause global cooperation among traders, causing a 

crash.  

 

In the risk-driven model, the crash hazard rate determined from herding drives the bubble 

price.  

 

In the price-driven model, imitation and herding induce positive feedbacks on the price, 

which itself create an increasing risk for a looming yet unrealized financial crash. 

 

Both models capture a part of reality. Studying them independently is the standard 

strategy of dividing-to-conquer the complexity of the world. Both models embody the 

notion that the market anticipates the crash in subtle, self-organized and cooperative 

fashion, hence releasing precursory power law ‘fingerprints’ observable in stock market 

prices.  

 

2.3. The Log-Periodicity 
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In the previous section we learnt a critical point in the time domain underlies stock 

market crashes. A crash is not the critical point itself, but its triggering rate is strongly 

influenced by the proximity to the critical point: the closer to the critical time, the more 

probable is the crash.  

 

The hallmark of critical behavior is a power law acceleration of the price, its volatility, 

and the crash hazard rate, upon approaching the critical time. However in practice, due to 

the presence of the noise and the irregularities of the trajectories of stock market prices, 

power law acceleration is often difficult to detect. 

 

Luckily, the looming of a crash has a second fingerprint: log-periodicity, which is more 

robust in the presence of noise. That is, in the presence of noise, the price is not 

monotonously accelerating, but rather the pattern of accelerating is decorated by 

oscillations whose frequency itself accelerates on approaching the critical time. This 

oscillation is called “log-periodic oscillation” as it is seen as accelerating periodic 

oscillation in a logarithmic representation (Sornette, 2003, page 179, Figure 6.4).  

 

This means crash hazard rate and price increases dramatically when the interaction 

between investors becomes strong enough, but this acceleration is interrupted by and 

mixed with an accelerating sequence of quiescent phases in which the risk and price 

decreases.  
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The power law and log-periodicity signature may be explained by the interaction between 

trend-following traders and fundamentalists. The trend-following traders exerts positive 

feed back on prices and enhances the previous price trend, leading to exponential growth 

of the price and resulting in price to exhibit finite time singularity. The fundamentalists 

exert fundamental value restoring force which generates oscillations around the 

fundamental value which are approximately log-periodic. 

 

3. The Model 

 

In this section, we summarize the derivation of the model developed by J&S et al. 

 

3.1. The Price Dynamics 

  

Consider a purely speculative asset with no dividends payment. Ignore the interest rate, 

risk aversion, information asymmetry and market-clear condition. Assume markets are 

efficient in the sense that all available information is reflected in current market prices. 

Then rational expectation implies that the price follows a martingale process: 

 ( )[ ] ( )tptpE ='   tt >∀ '     Equation 7.1 

Where ( )tp  is the price of the asset at time t  and [ ]⋅tE  the expectation operator 

conditional on information revealed up to time t . In a market without noise, 

 ( ) ( ) 00 == tptp   t∀    Equation 7.2 

0t is some initial time. A positive value of ( )tp would constitute a speculative bubbleii.  
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Crash is likely to occur if bubble blows up the price too high. The probability of crash is 

characterized by the crash hazard rate, ( )th , defined as the probability per unit time that 

the crash will happen in the next instant if it has not yet happened, and 

( ) ( ) ( )( )tQtqth −= 1/ , where ( )tQ is the cumulative probability density of the crash. The 

probability density is ( )
dt
dQtq = . The crash is an exogenous event. Similarly, the crash 

hazard rate is an exogenous variable. 

 

Define a jump process, denoted by j , with 0=j before the crash, and 1=j after the crash. 

Assume when crash occurs, price ( )tp drop by a fixed fraction κ , with )1,0(∈κ . Then 

the dynamics of asset price before the crash are governed by  

 ( ) ( ) ( )djtpdttptdp κµ −=       Equation 7.3 

where ( )tµ is a time dependent drift satisfying the martingale condition 

 [ ] ( ) ( ) ( ) ( ) 0=−= dtthtpdttptdpEt κµ      Equation 7.4 

which implies ( ) ( )th
dt
djEt t κκµ =⎥⎦
⎤

⎢⎣
⎡= . Plugging it into equation 7.3 yield  

 ( ) ( ) ( ) ( )djtpdttpthtdp κκ −=       Equation 7.5 

Since 0=j  before the crash, we have ( ) ( ) ( )dttpthtdp κ= before the crash. Hence before 

the crash 

 
( )
( ) ( ) ''ln

00

dtth
tp
tp t

t∫=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κ       Equation 7.6 
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The larger the value of ( )th , the higher the probability of crash, the faster the price must 

increase---investors must be compensated by the chance of a higher return in order to be 

induced to hold an asset that might crash. 

 

3.2. The Crash 

 

Equation 7.6 states that the evolution of price is pending on that of the crash hazard rate. 

The macro-level probability of crash, in turn, results from micro-level agents interactions, 

in particular, the interplay of imitation and anti-imitations among agents. 

 

Traders in reality are organized into a network of family, friends, colleagues, etc. They 

influence each other locally through this network. Consider a network of investors: each 

one can be named by an integer i=1,2,…,I. A typical trader i  has )(iN neighbors. His 

opinion is influenced by the opinions of these neighbors as well as an idiosyncratic signal 

that this trader alone receives. The first force will tend to create order while the latter 

create disorder. A crash happens when order wins. Thus, the macro-level coordinated 

sells, which causes crash, is a result of micro-level imitation among agents.  

 

Then what determines whether order or disorder wins? 

 

Assume that agent i  can be in only one of two possible states: 1+=s  if he buys and 

1−=s  if he sells. Based on the information of the actions ,...2,1),1( =− jts j , performed 

at time 1−t  by her )(iN  “neighbors,” Anne set )1( −tsi  to maximizes her return. 
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Assume each agent can either buy or sell only one unit of the asset. The selection of one 

of the two states (buy or sell) is determined from small and subtle initial biases as well as 

from the fluctuations during the evolutionary dynamics.  

 

The asset price variation is thus proportional to the aggregate sum ∑
=−

−
I

i
i ts

1
)1( of all 

traders’ actions, e.g. the sum is zero if there are as many buyers as there are sellers and 

the price does not change. Other influences impacting the price are accounted for by 

adding a stochastic component.  

 

AT time 1−t , when the price )1( −tp  has been announced, trader i  defines her strategy 

)1( −tsi based on information available to maximizes her expected profit 

)1()( −−= tptEpPE . Since the price moves with the general opinion, the best strategy is 

to buy if ∑
=

−
I

i
i ts

1
)1(  is positive and sell if it is negative. However, ∑

=

−
I

i
i ts

1
)1( is unknown 

to a given trader. The best the trader can do is to poll the opinions of his immediate )(iN  

neighbor. Suppose the a priori probability +Pr  and −Pr  for each trader to buy or sell is 

known to all. From all these information the trader can construct his prediction of the 

price drift. The best guess of trader i  is that the future price change will be proportional 

to the sum of the actions of her neighbors who she has been able to poll. Thus the 

strategy that maximizes his expected profit is:  

 GtsKsignts
iNj

iji ++−=− ∑
∈ )(

))1(()1( σε     Equation 7.7 
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where iε  is the noise, with ( )1,0... Ndiid
i ⎯→⎯ε ,  and )(iN  is the number of neighbors 

with whom trader i  interacts significantly. K  is a positive constant measuring the 

strength of imitationiii. It is inversely proportional to the “market depth”: the larger the 

market, the smaller the relative impact of a given unbalance between buy and sell orders, 

hence the smaller is the price change. The tendency towards idiosyncratic behavior is 

governed byσ . Thus the relative value of K  to σ determines the outcome of the battle 

between order and disorder, and eventually the probability of a crash. G captures the 

global influence which tend to favor sate )1(1 −+  if ( )00 <> GG .  

 

Equation 7.7 only describes the state of an agent at a given time. In the next instant, new 

iε ’s are realized, new influences propagate themselves to neighbors, and agents can 

change their decision. The system is thus constantly changing and reorganizing.   

 

In a practical implementation of a trading strategy, it is not sufficient to know or guess 

the overall direction of the market. A trader may want to be slightly ahead of the herd to 

buy at a better price, before the price is pushed up for the bullish consensus. 

Symmetrically, she will want to exit the market a bit before the crowd.  

 

Real markets result from agents’ behaviors, which are neither fully imitative nor fully 

anti-imitative. A better representation of real markets requires a combination of the two. 

Indeed, one should distinguish the “buy” and “sell” actions from the “holding” period. In 

general, a typical trader would ideally like to be in the minority when entering the 
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market, in the majority while holding her position, and again in the minority when 

closing her position.  

 

Traders will try to out guess each other on when to enter the market. If all traders use the 

same set of decision rules, they will end up doing the same thing at the same time and 

cannot therefore be in the minority. To be in the minority implies striving to be different. 

By adaptation, traders will learn and be forced to differentiate their entry and exit 

strategies based on past successes and failures. 

 

The interaction between the forces of imitation and the forces of anti-imitation is the key 

to understanding market crashes.  

 

The chance that a large group of agents find themselves in agreement is called the 

susceptibility of the system. Define the average state of the system as ∑
=

=
I

i
is

I
M

1

1 . In the 

absence of the global influence, [ ] 0=ME : agents are evenly split between the two states. 

In the presence of a positive (negative) global influence, agents in the positive (negative) 

state will outnumber the others: [ ] 0>×GME  [ ]( )0<×GME . Hence the system 

susceptibility is defined formally as 

 
[ ]( )

0=

=
GdG

MEdχ        Equation 7.8 

That is the susceptibility measures the sensitivity of the average state of the system to a 

tiny global influence, hence the degree of coordination of the overall system. The 

susceptibility can also be interpreted as the variance of the average state M around its 



  18 

zero mean caused by the random idiosyncratic shocks followed by imitation. It is 

precisely the emergence of this global synchronization from local imitation that can 

cause a crash.  

 

The susceptibility depends on the structure of the network and the strength of imitation.  

 

Let ct  denote the first time the imitation strength reached its critical value. That is for the 

first time cKK = . Notice ct  is not the time of the crash but the time the crash is most 

likely. When K < cK , disorder reigns: the sensitivity of the system to a small global 

influence is small, the clusters of agents who are in agreement remain of small size, and 

imitation only propagates between close neighbors. In this case, the susceptibility χ  of 

the system to external news is small, as many clusters of different opinions react 

incoherently, thus more or less canceling out their responses. 

 

When the imitation strength K increases and approaches cK , order starts to appear: the 

system becomes extremely sensitive to a small global perturbation, agents who agree 

with each other form large clusters, and imitation propagates over long distances. These 

are the characteristics of so-called critical phenomena in natural sciencesiv. In this case, 

the susceptibility χ  of the system goes to infinity.  

 

The large susceptibility means that the system is unstable: a small external perturbation 

may lead to a large collective reaction of the traders who may drastically revise their 
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decision, which may abruptly produce a sudden unbalance between supply and demand, 

thus triggering a crash or a rally.  

 

For even stronger imitation strength K > cK , the imitation is so strong that the 

idiosyncratic signals become negligible and the traders self-organize into strong imitative 

behavior.  

 

Thought the susceptibility depends on the structure of the system, notwithstanding the 

large variety of topological structures of social networks (e.g. horizontal or hierarchical), 

the qualitative conclusion of the existence of a critical transition between a mostly 

disordered state and an ordered one, separated by a critical point, survives by-and-large 

for most possible choices of the network of interacting investors. 

 

A solution to the Equation 7.8 is 

γχ −−≈ )( KKA c        Equation 7.9 

where A is a positive constant and 0>γ  is called the critical exponent of the 

susceptibility, which can be a real or complex number, depending on the structure of the 

network. A more general version of Equation 7.9 is 

 ( ) ( )[ ]...Re 10 +−+−≈ +−− ωγγχ i
cc KKAKKA     Equation 7.10 

     ( ) ( ) ( )[ ] ...logcos'' 10 ++−−+−≈ −− ψωγγ KKKKAKKA ccc   Equation 7.11 

Where ψω,,',' 10 AA  are real numbers, and [].Re denotes the real part of a complex 

number. In this expression, the power law in Equation 7.9 is corrected by oscillations 
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whose frequency explodes as we reach the critical time. These accelerating oscillations 

are “log-periodic”, which have the “log-frequency”
π
ω
2

. 

  

Assume the hazard rate of crash behaves in the same way as the susceptibility in the 

neighborhood of the critical point. Thus 

 ( ) ( ) ( ) ( )[ ] ...'logcos10 ++−−+−≈ −− ψωαα ttttBttBth ccc  

where 10 << α , otherwise the implied price would go to infinity when approaching the 

critical time. Plugging it into Equation 7.6  gives  

 
( )[ ] [ ] ( ) ( ) ( )[ ]{ }

( ) ( ) ( )[ ]φω

φω
β
κ

ββ

ββ

+−−+−+≡

+−−+−+≈

ttttCttBA

ttttBttBptp

ccc

cccc

logcos

logcoslnln 10
 Equation 7.12 

where αβ −=1 . The key feature is that oscillations appear in the price of the asset just 

before the critical date, with frequency  

 π
ω

λ 2e=         Equation 7.13 

 
(Sornetter, 2003), (Johansen, Ledoit, and Sornette, 2000a, page 229-33.) 
 
 

3.3. Empirical Findings of J&S et al 

 

In Johansen, Ledoit and Sornette (JLS, 2000a), Equation 7.12 is fitted by minimizing the 

mean squared errors, using a combination of taboo-search and downhill simplex methods. 

As the function is highly nonlinear, many local minima exist and the minimization 

algorithm can get trapped at any of these local minima. In their estimation, when more 
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than one minimum is produced, they select the best one according to a set of criteria in 

addition to the variance (JLS, 2000a, page 239). Two data sets were used in this paper: 

S&P 500 (July 1985 to end of 1987 with 557 trading days,) and Hang Seng Index 

(approximately two and half years daily data points prior to the October 1997 crash). 

Both power law and log-periodicity are present in the two samples and the in-sample 

performances of Equation 7.12 are remarkably well.  

 

But how long prior to the crash can one identify the log-periodic signature using Equation 

7.12 or its variants? To investigate this, JLS (2000a) truncated S&P 500 down to an end-

date of approximately equals to 1985. Then approximately 0.16 years was added 

consecutively and the fitting was re-launched until the full time interval was recovered. 

These experiments show that a year or more before the crash, the data is not sufficient to 

give any conclusive results at all. Approximately a year before the crash, the fit begins to 

lock-in the date of the crash with increasing precision. However, if one wants to actually 

predict the time of the crash, a major obstacle is that the fitting procedure produces 

several possible dates (multiple minima) for the date of the crash even for the last data 

set. They apply the same procedure to Dow Jones Index prior to the crash of 1929. For 

this data set, the fit locks in on the date of the crash approximately four months before the 

crash.  

 

Sornette and Johansen (1997) argued that, based on the renormalization group theory 

(also refer to Sornette 2003), validate their proposed model requires that one obtain a 

good fit in several data sets with approximately the same parameter values. In the past 
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few years, J&S et al produced a series of papers examining various kinds of markets. 

Their investigation show that, for all the bubbles in the most liquid markets, for example, 

USA, Hong Kong and the foreign exchange market, the log-frequency π
ω

2  have 

consistently been close to 1. In the framework of power laws with complex exponents or 

equivalently, discrete scale invariance (Sornette, 2003, Chapter 6)v, this corresponds to a 

preferred scaling ratio 7.22 ≈≈= ee π
ω

λ : the local period of the log-periodic oscillations 

decreases according to a geometrical series with the ratio λ . For the emergent market, 

the value of λ  shows more fluctuations, but the statistics resulting from over twenty 

bubbles were quite consistent with that of the large market (Johansen and Sornette, 

2000b) (Table 7.1 of this thesis). However, the “universality” of the value of the real part 

of the exponent β  quantifying the acceleration in the price has not been established. 

Johansen and Sornette (J&S, 2000c) explains that the technical reason for this is that the 

determination of β  is sensitive to finite-size-effects as well as to errors in the value of ct , 

the critical point. In all cases, the model show reasonable accuracy in identifying the 

crash date.  

 

In J&S (2000c), the authors mentioned two false signal issued by the model. On 

September 17th, 1997, the signal was issued to predict a crash of the stock market at the 

end of October 1997. It turned out that the market dropped by 7% but quickly recovered. 

On October 1999, the model again issued a false alarm. The authors argue that these two 

examples of bubbles landing more or less smoothly by be explained by the finite 

probability )(1 ctQ−  that no crash occurs over the whole time including the critical time 
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of the end of the bubble, even through price show characteristic of looming crash. This 

finite probability obviously reduces the accuracy of the crash prediction. 

 

4. Optimization and Estimation 

 

4.1.  The Optimization Problem 

 

Consider the global optimization problem: let RDf →: , where D is a convex set in nR . 

Find a point Dx ∈*  such that ( ) ( ) Dxxfxf ∈∀≤ ,* . When f is highly nonlinear with 

many local optima, finding the global optima can be very tough. 

 

Two types of methods have been developed and implemented in practice to solve this 

global optimization problem: deterministic and stochastic methods. Deterministic 

methods attempt to generate trajectories that eventually converge to points which satisfy 

the criterion of local optimality. They are beneficial only when the starting point belongs 

to the region of attraction of the global optimum. So any deterministic method could be 

attracted by the local optimum instead. The stochastic methods, on the contrary, attempt 

to reasonably cover the whole search space and to identify all local and global optimum. 

In stochastic methods, points that do not strictly improve the objective function can also 

be created and take part in the search process. Hence stochastic methods have better 

chance of reaching the global optimum.  
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A number of stochastic methods have been proposed and used in different types of 

optimization problems. Al-Harkan and Trafalis (2002) suggest a hybrid approach, which 

incorporates scatter search, genetic adopter and tabu search, for solving the unconstrained 

continuous nonlinear global optimization problem. They named this approach “hybrid 

scatter genetic tabu”(HSGT).  

 

The scatter search (SS) approach was introduced by Glover (1977) as a heuristic to obtain 

a near optimal solution to an integer programming problem. Recently the SS approach 

was refined and used for both discrete and continuous optimization problems (Glover 

1994a, 1994b, 1995, and Fleurent et al). The SS approach generates sequences of 

coordinated initializations which are performed to ensure the exploration of the various 

parts of the solution space. The exploration of the solution space was based on a kindred 

strategy which was suggested in Glover (1977). Based on the kindred strategy, the SS 

approach directs its explorations systematically relative to a collection of points called the 

reference points. Hence, the SS approach begins its procedure with a set of reference 

points which can be obtained by applying either heuristic procedures or random methods. 

Then, a weighted center of gravity of the reference points is determined using a linear 

combination of the reference point solutions and their weights. The linear combination 

allows the use of negative weights which are used to allow the weighted center of gravity 

to go outside the area spanned by the reference points. This process is known as the 

diversification process which allows a variety of new solutions. Next, subsets of initial 

reference points and the weighted centers of gravity are used to define new sub-regions as 

a foundation for generating subsequent points. Then, these points are evaluated and are 
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used as the new set of reference points. At this stage, a complete iteration of the SS 

approach is performed. The procedure can be repeated until some preset stopping criteria 

are satisfied.  

 

The genetic adopter (GA) approach was developed by Holland in 1975 (Holland, 1992). 

Since GAs are adaptive and flexible, they have attracted attentions from researchers from 

different fields, such as computer science, operation research, business and social 

science, etc. The theory and application of GAs have been reported be several researches 

(Davis 1991, Goldberg 1989, Holland 1992, Michalewicz 1994, and Srinivas and Patnaik 

1994). In these reports, the GAs were shown to be successfully applied to several 

optimization problems. The GAs are stochastic search techniques whose search 

algorithms simulate biological evolution---the strong tend to adapt and survive while the 

weak tend to die. At the beginning, a population of binary or non-binary chromosomes is 

initialized randomly. Then, each chromosome is evaluated using the fitness function. A 

set of better chromosomes is selected to reproduce new chromosomes. The production 

process is accomplished by applying the genetic operators (crossover and mutation) on 

the chromosomes selected. Then, each new chromosome is evaluated. At this stage, a full 

iteration is performed. Repeat the procedure until some preset termination criteria are 

satisfied. 

 

The tabu search (TS) approach is a heuristic to solve combinatorial optimization 

problems. Recently, it has been applied to solve continuous global optimization problem 

(Cvijovi and Klinowski 1995, Fleurent et al. 1995, Glover 1994b). In a tabu search, 
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restrictions (tabu) are imposed to guide the search process to investigate difficult regions. 

It starts with an initial solution for the problem under consideration which can be 

constructed by using either heuristics or a random solution. Then TS constructs a 

neighborhood from the current solution to identify adjacent solutions, and the objective 

function associated with each adjacent solution is evaluated. Before determining the best 

move, the TS approach selects the set of admissible moves which are not tabu. For 

instance, recent moves will be classified as tabu to prevent the search from going back to 

its previous position. A recent move will be tabu for the duration of a certain number of 

iterations which depend on the size of the tabu list or tabu tenure. The aspiration criterion 

can be activated if a move that was tabu results in a solution better than any visited 

solution so far. In this case, the move’s tabu status is broken and it becomes the best 

move. Otherwise the best move is selected from the set of admissible moves. By then, a 

complete iteration of the TS approach was performed. Repeat the procedure until the 

stopping criteria are met. 

 

Harkan and Trafalis (2002) tested their proposed approach against a simulated annealing 

algorithm and a modified version of a hybrid scatter genetic search approach by 

optimizing twenty-one well know test functions. They show that HSGT approach is quite 

effective in identifying the global optimum. 

 

4.2. Estimation Strategy 
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We fit Equation 7.12 by minimizing one half of the sum of squared residuals. 

 ( ) ( )( )
2
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2
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T
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θ
    Equation 7.14 

 

Where ( )tx  is the first difference of the log price, ( )tx̂  given by Equation 7.12, and 

( )φωβθ ,,,,,, ctCBA=  . As argued in Greene (3rd. ed., Chapter 10), the values of the 

parameters that minimize one half of the sum of the squared residuals will be the 

maximum likelihood estimators, as well as the nonlinear least squares estimators. The 

first-order conditions for minimization of 2e will be a set of nonlinear equations that do 

not have an explicit solution. This will typically require an iterative procedure for 

solution. In particular, the HSGT described above will be used. 

 

To reduce the number of free parameters to be estimated, following Johansen and 

Sornette (2000a), the three linear parameters CBA ,,  are enslaved as functions of the 

nonlinear parameters φωβ ,,,ct . This is done by requiring the objective function to have 

zero derivatives with respect to CBA ,, at the minimum. Optimizing Equation 7.14 with 
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where ( ) ( ) ( ) ( ) ( )[ ]φωββ +−−=−= tttttgtttf ccc logcos, . Equation 7.15  will be solved via 

by LU decomposition, as it is an efficient algorithm for matrix inversion (Press et al., 

1992), (Lee, http://prosys.korea.ac.kr/~tclee/lecture/numerical/node14.html ). 

 

The nonlinear parameters are estimated using the HSGT approach proposed by Al-

Harkan and Trafalis (2002). Their method is summarized below: 

 Step 1, generate a random starting point { }φωβ ,,,ck tX =  from a uniform 

distribution between the upper and lower bounds of each variablevi; 

 Step 2.1, generate a set of m  random directions from a standard normal 

distribution, with 32×= nm  where n the number of parameters to be estimated. In our 

case, 3224 3 =×=m . 

 Step 2.2, recalculate the m directions so that all of the m vectors of dimension 

1×n have unit Euclidean normvii;  

 Step 3, generate a set of m reference points by moving from the starting point in 

the m directions calculated previously; 

 Step 4, assign weight to each of the m points according to the values of the 

objective function at these points. The largest weight is given to the point with the 

smallest value; 

 Step 5, generate the centre of gravity { }φωβ ,,,ck tX =  by taking the weighted 

average of the m reference points obtained in Step 4. This will be the new starting point 
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for the next round of iteration if it passes the tabu testviii. Otherwise, retain the old value 

of kX ; 

 Step 6, generate new search directions using genetic operator, either whole 

arithmetical crossover approach or general mutation approach (Al-Harkan and Trafalis, 

2002, page 9-10). Normalize the m directions the same way as in step 2.2; repeat step 3 

to 5 until the pre-specified stopping rule is satisfied. 

 
4.3. Properties of Nonlinear Least Square Estimators 

 

Consider the nonlinear regression model 

 ( ) εθ += ,xhy ,  ε ~ ( )2,0 σN    Equation 7.16 

The parameters θ  can be estimated by minimize one half of the sum of squared residuals 
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The asymptotic properties of the nonlinear least squares estimator of θ  is derived in 

Greene (3rd ed., CH. 10), and summarized below. 

 

If the pseudoregressors defined in Equation 7.17 are well behaved, then 
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With 0θ a particular value of θ . The sample estimate of the asymptotic covariance matrix 

is  

 [ ] ( ) 1
0

'
0

2ˆ.. −
= XXVarAsyEst σθ )

      Equation 7.20 

where  

 ( )[ ]
2

1

2 ,1ˆ ∑
=

−=
T

t
tt xhy

T
θσ       Equation 7.21 

Under normality, this is the ML estimator of 2σ . 

 

5. Our Empirical Application 

 

5.1. The Data 

 

As mentioned at the start, the prime purpose of this paper is to examine the applicability 

of the model developed by J&S et al to Asian property markets. In particular, we apply 

the model to Hong Kong office price index (HKOP) and Seoul housing price index 

(SHP). As SHP shows slow decays throughout the 1990s, rather than large crashes of the 

kind seen in HKOP, we also include, in this paper, a third series: Korea general 

construction stock price index (KGCSP, Jan. 1980 to Nov. 2003), a stock price index 

which has property as its fundamental. The rational is that, due to strict capital constraints 

until recent and tight government control of land supply in Korea (Kim, 1999, 2000), 

speculation in property may be more likely to show up in stock written on property rather 

than property itself in this country. The plots of these price indices are displayed in 

Figure 5.1 and 7.1. Table 7.2 lists accounts of the price crashes of these series.  
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5.2. Fitting the Model 

 

In our application, we include the after-crash points up to the end of each sample, instead 

of only pre-crash observations, as is generally the case in the papers of J&S et al, to see if 

the model will be able to identify the critical time. Notice that the monthly observations 

on price rally before a crash in our data sets are less than 50 before each crash in each 

series, rather than the 100 strong observations obtained in the data sets of Zhou and 

Sornette (2003). For each data set, we found values fitted using Equation 7.12 shoot too 

far from the actual data. To examine the problem, we took the first difference of the log 

price. The plots show that the differenced sets fluctuate around a zero mean, implying 

that the dominant force is a linear trend rather than power law acceleration. This is 

confirmed later by the estimates ofβ , which turns out to be close to one (Comments of 

Sornette, December 6th, 2004).  

 

Nevertheless the pattern of log-periodicity is very obvious in HKOP: the frequency of 

cycle obviously increases around the crash time. This pattern is less obvious to the naked 

eyes in KGCSP yet discernable (Figure 7.2).  

 

Inspired by these observations, we fit instead the following model using HGST algorithm 

described before 

 ( )[ ] ( ) ( )[ ]φωβ +−−≈ ttttCtpd cc logcosln    Equation 7.22 
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where ( )( )tpd ln  is the first difference of the log price. Equation 7.22 is the essentially 

the same as Equation 7.12 except for the intercept and exponential trend terms. The 

standard errors of parameter estimates are given by 
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5.3. Estimation Results 

 

We initiated randomly the nonlinear parameters φωβ ,,,ct  on a uniform distribution, with 

,98.0,3.0 ⎥
⎦

⎤
⎢
⎣

⎡
∈β ,10,1 ⎥

⎦

⎤
⎢
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⎡
∈ω ⎥

⎦

⎤
⎢
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⎡
∈ 20,0φ .These values are set with reference to the 

empirical results found by J&S et al. The critical time ct  is set to be ⎥
⎦

⎤
⎢
⎣

⎡
∈ Ttcltc , , where 

T  is the size of the sample, tcl  an random date before a naked-eye-identified crash date. 
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The estimates of φωβ ,,  are very consistent for all three data sets, which are {0.98, 10, 

20}, or {0.9516, 4.5984, 5.1880}, or {0.9509, 4.5981, 5.1881} (Table 7.3-7.5). This fact 

is consistent with the renormalization theory which requires consistent parameter 

estimates from different data sets for the validation of the suggested model. 

 

These estimates suggest that there exist two log-periodic harmonics ω , one is 10 the 

other near 10/2, suggesting the theoretical formula ideally should have two cosine terms 

with two harmonics (courtesy of Sornette). A careful examination of Figure 7.2 reveals 

that these plots indeed resemble that of some theoretical function which has two log-

periodic oscillations of different frequencies, with one superimposed on the other (Figure 

7.4). But there are cons as well as pros of fitting this second term. The obvious one is the 

loss of degree of freedom. 

 

In viewing the records of the experiments, whenever we obtain the second set of 

estimates, the search process is trapped at the starting point. Whenever the move becomes 

possible, we would obtain the last set of estimates. The first set of estimates is the pre-set 

boundaries. Henceforth, we will refer to the set of estimates neither hit the boundary nor 

is trapped at the starting values as “preferred estimates”.  

 

The estimates of the critical time however depend on the lower boundary we imposed on 

the starting value of ct (Table 7.3-7.5). In the estimation process, we move the lower 

boundary up by 0.083 decimal year (one monthly observation) at a time until the last 

sample observation. As a result, we obtain 18 dates for HKOP, 11 for SHP. However, the 
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fit for KGCSP is remarkably well: only four dates are obtained---the best of which is 

within one month of the actual crash. 

 
We tried to alter the boundaries for the nonlinear parameters. Different estimates for 

φωβ ,,  are obtained as a result. However, we always get consistent estimates for the 

three data sets for each pair of boundaries set for a parameter. As for ct , when the lower 

boundaries (not only for the starting value but also for the entire estimation process) are 

brought backwards (observation further before the crash are admitted), we obtain more 

boundary estimates for the four nonlinear parameters, suggesting information is not clear 

for obtaining accurate estimates at such early dates. But raising the lower boundaries has 

no impact on the results displayed in the above tables. 

 

Table 7.6 summarizes the best fitting for the three data sets, alongside with their standard 

errors. The best estimate for HKOP is within 3 months of the true crash date; That for 

KGCST within one month of the true date, but β  is insignificant. Viewing the data 

shows that the price drop in December 1994 was slow and with lots of reversals until 

May 1996, when the price crashes all the way down.  We missed the true date by near 

four years in SHP, however. The reason is perhaps that the decay in SHP since its peak in 

1991 was very slow in pace. 

 

5.4. Forecast 

 

To investigate the predictive power of the model, we truncate the data sets such that they 

end at March 1991 (38 months ahead of the crash), September 1992 (27 months ahead) 
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and May 1989 (23 months ahead)1 for HKOP, KGCSP and SHP respectively. Table 7.7 

reports the preferred estimates, which neither hit the boundaries nor are trapped at the 

starting point. The best fits are also shown is Figure 7.3. 

 

The best forecast for HKOP is 1993.9997, which misses the true crash date (May 1994) 

by four months. Increasing the size of sample such that the last observation is November 

1991, we obtain one more predicted critical date, 1994.9997, which overshoots the actual 

date by eight months. When the last observation is Jan. 1993 (16 months ahead of the 

crash), we obtain only one preferred estimate, 1993.9997.  

 

KGCSP obtains three preferred estimates, the best of which is 1994.9997 (the actual 

crash date is 1994.92 decimal year.β  is insignificant however.) These results are robust 

with respect to changes of the tcl . Something peculiar is that increasing the sample size in 

this case actually worsens the results. For instance, when the last observation is January 

1994, no preferred estimate is obtained.  

 

Both HKOP and KGCSP miss the crashes which closely follow their predecessors, 

namely, October 1997 crash of HKOP and May 1996 crash of KSCSP. 

 

The unique forecast obtained for SHP (1989.9997) undershoots the true date by some 15 

months. Again, increasing the sample size actually worsens the result of forecast. 

 

                                                 
1 The points of truncation are chosen at where certain pattern has developed. 
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6. Conclusive Remarks 

 

Our experiments show that the original model of J&S in the form of Equation 7.12 does 

not comply completely with the three data sets under our consideration. The power low 

behavior is missing from these data sets and replaced in stead by a linear trend. We thus 

estimate Equation 7.22 instead. The results show that this model is far more successful 

for KGCSP than for the other two data sets, where too many prediction of the critical 

time are obtained making it difficult to tell which one of these is the true alarm. With 

KGCSP we obtain only two preferred estimates, defined as estimates neither hit the 

preset boundary values nor are trapped at the starting point of the iteration, both are 

within reasonable range of the crash dates( refer to Table 7.6. One possible explanation is 

that the price swings in KGCSP are far spectacular than in the two other data sets. 

Excluding the set of estimates with insignificantβ , we however captures only one out of 

the three crashes identified a prior. 

 

The forecast using HKOP gives the best prediction capturing one of the two crashes after 

the data truncation point, with reasonable accuracy. Forecasting using both KGCSP and 

SHP missed out the crash dates completely when estimates with insignificant β  are 

excluded. 

 

The estimates of the nonlinear parameters φωβ ,,  are nearly identical in all three 

samples, which is consistent with renormalization theory.  
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The model we estimated, however, fails to capture the fact that variances tend to increase 

around the crash points. We have tried a few ways to remedy it but the improvement is 

insignificant in terms of increasing the accuracy of predicted critical time. One of these 

remedies is to allow β  to exceed one, which is nevertheless ruled out theoretically at the 

start. 

 

In conclusion, we consider the PLLP theory reasonably successful in our data sets. 

Though the prediction of the critical time is not as neat as we would prefer, the model 

nevertheless provides a very useful signature of price behavior: a power-law accelerating 

of prices, and/or an accelerating price oscillation is a highly reliable signal of looming 

market crash. Furthermore, the model relates the price trajectory to the crash hazard rate, 

and provides another useful model for extrapolating the price variations. 

 

We also obtained some observations on the HSGT approach to global optimization. The 

algorithm reaches convergence, in general, in less than three runs, when applied to 

Equation 7.22. However, when applied to Equation 7.12, it takes too much CPU time and 

is difficult to implement given the typical state of computer a researcher has at handix. 

This is due to the fact that the LU decomposition module needs to be called 322 ×+ n  

times, where n  the number of nonlinear parameters to be estimated, in each iteration of 

the grid search. Thus, some simpler method, such as downhill simplex, may be more 

practical. 
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CPI Deflated Price Index 
 
Figure 7.1 Korea General Construction Price Index (CPI deflated) 
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Differenced Log Series 

Figure 7.2 Differenced Log Price and fitted value 
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Out-Of-Sample Forecast 

Figure 7.3 Forecast 
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Plot of Theoretical Model with Two Cosine Terms 
 
Figure 7.4 Function Plot 
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Table 7.1 Empirics from Johansen and Sornette (2000c) 

Crash data (time series) 
ct  maxt  mint  %drop β  ω  λ  

1929 (DJ) 30.22 29.65 29.87 47% 0.45 7.9 2.2 
1985(DM) 85.20 85.15 85.30 14% 0.28 6.0 2.8 
1985(CHF) 85.19 85.18 85.30 15% 0.36 5.2 3.4 
1987(S&P) 87.74 87.65 87.80 30% 0.33 7.4 2.3 
1987(HK) 87.84 87.75 87.85 50% 0.29 5.6 3.1 
1994(HK) 94.02 94.01 94.04 17% 0.12 6.3 2.7 
1997(HK) 97.74 97.60 97.82 42% 0.34 7.5 2.3 
1998(S&P) 98.72 98.55 98.67 19.4% 0.60 6.4 2.7 
1999(IBM) 99.56 99.53 99.81 34% 0.24 5.2 3.4 
2000(P&G) 00.04 00.04 00.19 54% 0.35 6.6 2.6 
2000(Nasdaq) 00.34 00.22 00.29 37% 0.27 7.0 2.4 
Note: This table is reproduced from J&S 2000c. ct is the critical time predicted from equation 14. The fit is 

performed up to the time maxt at which the market index achieved its highest maximum before the crash. 

mint is the time of the lowest point of the market after the maximum. The percentage loss is calculated from 

the total loss from maxt to mint . 
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Table 7.2 Facts on Crashes 

 Pre-identified crash dates Percentage change and time taken 

Mar. 89  ↓31.697% in 23 months 

May 94 

 

↓41.427% in 17 months 

HKOP 

Oct. 97 ↓51.867% in 11 months 

SHP Apr. 91 ↓20.075% in 15 months 

Jan. 90 ↓36.097% in 8 months 

Dec. 94  ↓28.308% in 4 month 

KGCSP 

May 96 ↓89.494% in 25 months 
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Table 7.3 HKOP Parameter Estimates 

tc l_012 
ct  

(s.e.) 

β  

(s.e) 

ω  

(s.e.) 

φ  

(s.e) 

C Variance 

Apr. 83  1982.923 

(0.2388) 

0.98#4 

(4.5570) 

10 

(4.2163) 

20 

(2.0603) 

0.0027 0.0023 

May 83-Jul. 84 1987 

(0.4102) 

0.9516 

(0.3080) 

4.5984 

(0.4391) 

5.1880 

 (0.6200) 

-0.0042 0.0019 

Aug. 84-Nov. 86 1988 

(0.1576) 

0.9516 

 (0.1232) 

4.5984 

 (0.1025) 

5.1880 

 (0.1742) 

-0.0082 0.0014 

Dec. 86 1988.99975 

(0.2090) 

0.9509 

(0.1638) 

4.5981 

(0.1071) 

5.1881 

(0.1971) 

-0.0062 0.0017 

Jan. 87-Mar. 88 1990 

(2.5067) 

0.9516# 

(1.3844) 

4.5984 

 (1.1869) 

5.1880 

 (2.2544) 

0.0005 0.0018 

Apr. 88-Jun. 89 1991 

(0.4817) 

0.9516 

 (0.1835) 

4.5984 

 (0.2272) 

5.1880 

 (0.4335) 

0.0024 0.0016 

Jul. 89-Aug. 90 1992 

(0.2847) 

0.9516 

 (0.0846) 

4.5984 

 (0.1269) 

5.1880 

 (0.2471) 

0.0037 0.0013 

Sep. 90-Nov. 91 1992.9997 

(0.2236) 

0.9509 

 (0.0593) 

4.5981 

(0.0813) 

5.1881 

(0.1701) 

0.0042 0.0011 

Dec. 91-Feb. 93 1993.9997 

(0.2990) 

0.9509 

 (0.0791) 

4.5981 

(0.0848) 

5.1881 

(0.1916) 

0.0032 0.0012 

Mar. 93-May 94 1994.9997 

(0.7083) 

0.9509 

(0.1985) 

4.5981 

(0.1654) 

5.1881 

(0.3939) 

0.0014 0.0015 

                                                 
2 tcl_01: the lower boundary set for the initial value of tc. 
3 In decimal years. For non-leap year,  
 12 months =1.00 year; 1 month=0.083 years; e.g. December 1998=1998.92. 
4 #: estimates insignificant at conventional levels. 
5 Rows in bold show best fits. 
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Jun. 94-Jul. 95 1996 

(2.2859) 

0.9516# 

(0.6682) 

4.5984 

 (0.4681) 

5.1880 

 (1.1541) 

-0.0004 0.0017 

Aug. 95-Oct. 96 1997 

(0.5540) 

0.9516 

 (0.1546) 

4.5984 

 (0.1046) 

5.1880 

 (0.2638) 

-0.0017 0.0017 

Nov. 96-Jan. 98 1998 

(0.4944) 

0.9516 

(0.1197) 

4.5984 

 (0.0892) 

5.1880 

 (0.2282) 

-0.0019 0.0019 

Feb. 98-Mar. 99 1999 

(0.4759) 

0.9516 

 (0.0956) 

4.5984 

 (0.0842) 

5.1880 

 (0.2171) 

-0.0021 0.0021 

Apr. 99-Jun. 00 1999.9997 

(0.4972) 

0.9509 

(0.0831) 

4.5981 

(0.0878) 

5.1881 

(0.2268) 

-0.0019 0.0020 

Jul. 00-Sep. 01 2000.9997 

(0.6461) 

 

0.9509 

(0.0919) 

4.5981 

(0.1142) 

5.1881 

(0.2951) 

-0.0015 0.0020 

Oct. 01-Dec. 02 2001.9997 

(0.7511) 

0.9509 

(0.0937) 

4.5981 

(0.1309) 

5.1881 

(0.3396) 

-0.0013 0.0020 

Jan. 03-May 03. 2002.9997 

(0.9003) 

0.9509 

(0.1019) 

 

4.5981 

(0.1496) 

5.1881 

(0.3936) 

-0.0010 0.00187 

Note: the linear parameter C is enslaved as function of the nonlinear parameters, hence only the standard 

errors of nonlinear parameters are provided. 
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Table 7.4 KGCSP Parameter Estimates 

tcl_01  
ct  

(s.e) 

β  

(s.e) 

ω  

(s.e) 

φ  

(s.e) 

C Variance 

May 88-Dec 92 1988.33 

(1.3244) 

0.98# 

(1.4441) 

10 

(1.6693) 

20 

(2.9468) 

-0.00093 0.0071667 

Jan. 93-Feb. 94 1994.9997 (3.4343) 0.9509# 

(1.0032) 

4.5981 

(0.7099) 

5.1881 

(1.7461) 

0.0006 0.0071 

Mar. 94-May. 95  1996 

(1.0980) 

0.9516 

(0.3088) 

4.5984 

(0.2084) 

5.1880 

 (0.5247) 

-0.0017 0.0069 

Jun.95-Aug. 96 1996.9997 

(0.7960 

0.9509 

(0.1956) 

4.5981 

(0.1440) 

5.1881 

(0.3681) 

-0.0023 0.0069 

Sep 96-Nov. 03 1988.33 

(1.3244) 

0.98# 

(1.4441) 

10 

(1.6693) 

20 

(2.9468) 

-0.0009 0.0072 
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Table 7.5 SHP Parameter Estimates 

tcl_01 
ct  

(s.e) 

β  

(s.e) 

ω  

(s.e) 

φ  

(s.e) 

C Variance 

May 89-Nov. 91 1989.33 

(1.7243) 

0.98# 

(8.9809) 

10# 

(11.3343) 

20 

(9.7965) 

-0.0002 0.0002 

Dec. 91-Feb 93 1994 

(0.2854) 

0.9516 

 (0.2270) 

4.5984 

 (0.1479) 

5.1880 

 (0.2711) 

0.0015 0.0002 

Mar. 93-Apr. 94 1994.9997 

(0.2302) 

0.9509 

(0.1317) 

4.5981 

(0.1093) 

5.1881 

(0.2074) 

0.0016 0.0002 

May 94-Jul. 95 1995.9997 

(0.7059) 

0.9509 

(0.2764) 

4.5981 

(0.3331) 

5.1881 

(0.6354) 

0.0005 0.0002 

Aug. 95- Oct. 96 1997 

(2.3786) 

0.9516# 

(0.7175) 

4.5984 

 (1.0718) 

5.1880 

 (2.0780) 

-0.0002 0.0002 

Nov. 96-Dec. 97 1998 

(0.7814) 

0.9516 

 (0.2081) 

4.5984 

 (0.2897) 

5.1880 

 (0.6022) 

-0.0004 0.0001 

Jan. 98-Mar. 99 1999 

(0.7156) 

0.9516 

(0.1887) 

4.5984 

(0.2066) 

5.1880 

 (0.4645) 

-0.0005 0.0002 

Apr. 99-Jun. 00 1999.9997 

(0.8442) 

0.9509 

(0.2354) 

4.5981 

(0.1998) 

5.1881 

(0.47429) 

-0.0004 0.0002 

Jul. 00-Sep. 01 2000.9997 

(6.3115) 

0.9509# 

(1.8436) 

4.5981251 

(1.3046) 

5.1881# 

(3.2089) 

-0.0001 0.0002 

Oct. 01-Nov. 02 2002 

(12.371) 

0.9516# 

(3.4797) 

4.5984 

# 

(2.3477) 

5.1880# 

(5.9117) 

0.0000 0.0002 

Dec. 02-Jun. 03 2003 0.9516# 4.5984 5.1880 0.0001 0.0002 
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(2.0486) (0.5031)  (0.3706) (0.9471) 
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Table7. 6 The Best Fits 

 True crash date 
ct  β  ω  φ  

1989.17 1988.9997 

(0.2090) 

0.9509 

(0.1638) 

4.5981 

(0.1071) 

5.1881 

(0.1971) 

1994.33 1993.9997 

(0.2990) 

0.9509 

(0.0791) 

4.5981 

(0.0848) 

5.1881 

(0.1916) 

HKOP 

1997.75 missed 

 

   

1990.00 missed    

1994.92 1994.9997 

(3.4343) 

0.9509# 

(1.0032) 

4.5981 

(0.7099) 

5.1880982 

(1.7461) 

KGCSP 

 1996.33 1996.9997 

(0.7960) 

0.9509 

(0.1956) 

4.5981 

(0.1440502) 

5.1880982 

(0.3681423) 

SHP 1991.25 1994.9997 

(0.2302) 

0.9509 

(0.1317) 

4.5981 

(0.1093) 

5.1881 

(0.2074) 
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Table 7.7 Forecast Summery 

 tcl_01 True crash 
date ct  

(s.e.) 
 

β  
(s.e.) 

ω  
(s.e.) 

φ  
(s.e.) 

C Variance 

Nov. 91-

Dec. 92 

1989.17 1992.9997 

(0.2365) 

 

0.9509 

(0.0627) 

4.5981 

(0.0860) 

5.1881 

(0.1799) 

0.0041 0.0012 

Jan. 93 –

Mar. 94  

1994.33 1993.99976 

(0.3023) 

0.9509 

(0.0800) 

4.5981 

(0.0857) 

5.1881 

(0.1937) 

0.0033 0.0013 

HKOP 

 1997.75 missed      

Sep. 92-
May 93 

1990.00 1992.9997 
 
(0.7327) 

0.9509 

(0.1933) 

4.5981 

(0.2118) 

5.1881 

(0.4759) 

0.0032 0.0071 

Jun. 93 –
Aug. 94 

False 

alarm 

1993.9997 
 
(0.8231) 

0.9509 

(0.2295) 

4.5981 

(0.1948) 

5.1881 

(0.4624) 

0.0027 
 

0.0072 

Sep. 94 –
Nov. 95 

1994.92 1994.9997 
 
(2.8551) 

0.9509# 

(0.8340) 

4.5981 

(0.5901) 

5.1881 

(1.4516) 

0.0007 0.0074 

KGCSP 

  1996.33 missed      

SHP Sep. 89 -
Oct. 90 

1991.25 1989.9997 

(1.0090) 

0.9509# 

(2.7059) 

4.5981 

(1.6484) 

5.1881 

(1.9031) 

0.0006 0.0002 

 

                                                 
6 Highlights are best fits. 
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i Finite-time singularity refers to the appearance of an infinite slope or infinite value in a finite time. 
 
ii More generally, the price ( )tp can be interpreted as the price in excess of the fundamental value of the 
asset. 
 
iii More generally, K could be heterogeneous across pairs of neighbors. Some of the ijK ’s could even be 

negative, as long as the average of all ijK ’s was strictly positive.  
 
iv In physics, critical points are widely considered to be one of the most interesting properties of complex 
systems. A system goes critical when local influences propagate over long distances and the average state 
of they system becomes exquisitely sensitive to a small perturbation. That is different parts of the system 
become highly correlated. A critical system is self-similar across scales. Critical self-similarity is why local 
imitation cascades through the scales into global coordination. 
 
v Scale invariance means reproducing oneself on different time or space scales. The hall mark of it is power 
law.  Scale invariance holds exactly at the critical point. When not exactly at the critical point, only a 
weaker kind of scale invariance, discrete scale invariance, holds. With discrete scale invariance, the system 
obeys scale invariance only for specific choices of scaling ratio λ . “The signature of discrete scale 
invariance is the presence of a power law with complex exponent, which manifests itself in data by log-
periodic oscillations providing corrections to the simple power law scaling.” (Sornette, 2003, page 207). 
 
vi The upper and lower bound of parameters are set initially in reference to the empirical results in the series 
of papers written by Johansen and Sornette. 
 
vii The Euclidean norm is the square root of the sum of the absolute squares of the vector elements. 
 
viii A move is tabu, if it is both closely located to the previous point and the change in its objective function 
is very small. The tabu status of a move can be overridden if the aspiration criterion is met.  
 
ix In fact, the RAM of my computer had to be upgraded  from 512MB to 1GB in order to run the complete 
program.  


