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Persistent trends in R&D intensity and educational attainment, in conjunction 

with the absence of any trend in per capita income growth, are inconsistent with 

the predictions of most growth models. Jones (American Economic Review, 

92(1):220-39, 2002), has shown that the data are consistent with out-of-steady 

state predictions of his semi-endogenous growth model. This paper presents an 

alternative explanation: R&D intensity and educational attainment are rising be-

cause passive learning has become more difficult in the face of increasing techno-

logical complexity. We construct a model in which R&D and learning are substi-

tutes and education facilitates on-the-job learning. The model presents an endoge-

nous explanation for the observed increases in the inputs into knowledge creation, 

along with a rise in the skill premium. In contrast to Jones, our model does not 

predict that a dramatic decline in the growth rate of per capita income must fol-

low the transition period.(JEL O40, E10) 
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Figure 1 contains some US aggregate time-series that are now very familiar. 

Panel (a) shows a dramatic rise since 1950 in the intensity of R&D, whether 

measured as a proportion of the labor force or as a proportion of aggregate ex-

penditure. Panel (b) shows a more modest, but nonetheless marked, increase in 

educational attainment. One may quibble about the significance of these data. 

R&D has no doubt become more formal and, consequently, more broadly defined 

in the official statistics, and much of the increase in educational attainment may 

be a consumption good that contributes little to measured productivity growth 

(Klenow and Rodriguez-Clare, 1997; Dinopoulos and Thompson, 1999). Nonethe-

less, given the strength of the observed trends, the underlying real changes in 

R&D and educational attainment must be considerable. However, panels (c) and 

(d) show that, despite these dramatic changes in the key inputs of the knowledge 

production function, there has been no corresponding rise in either per capita in-

come growth or labor productivity growth.  

 The evidence in Figure 1 is inconsistent with many endogenous growth mod-

els. However, Jones (2002) has made a strong case that it is broadly consistent 

with out-of-steady state predictions of his semi-endogenous growth model (Jones, 

1995). In his model, per capita income growth is proportional to population 

growth in the steady state, but can be sustained at a constant, higher, rate when 

input intensity is rising. Applying traditional growth accounting techniques, 

Jones concludes that rising input intensity accounts for 80 percent of post-war 

growth. Jones’ analysis contains some unpleasant arithmetic. Eventually, the 

secular increases in R&D intensity and educational attainment must end. When 

they do, income growth can be expected to decline dramatically, perhaps to no 

more than one-fifth of its post-war trend.  

 In this paper we suggest an alternative explanation for the evidence in Fig-

ure 1 that predicts no such collapse. We assume that increases in productivity 

can result from formal R&D effort and from learning by doing. However, during 

the latter half of the 20th century, increased technological complexity has made 

passive learning more difficult. We argue that firms have consequently 
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substituted R&D for learning and, because skilled workers can overcome the chal-

lenges of learning in a more complex environment more readily than can unskilled 

workers, the relative demand for skill has also risen. The consequent increase in 

the returns to skill in turn has induced an increase in educational attainment. 

Our theory explains how increases in R&D intensity and educational attainment 

can be equilibrium responses to changing conditions that make growth more diffi-

cult. Despite greater complexity, R&D and educational attainment must, as in 

Jones (2002), eventually cease to grow. But, in stark contrast to Jones, our the-

ory does not imply that income and productivity growth will collapse once the 

new steady state is reached.  
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FIGURE. 1. R&D, education and economic performance in the US. For 

sources, see Appendix B. 
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 In Section 3, we formalize these ideas with a general equilibrium model of 

R&D and learning in the spirit of earlier work by Young (1991, 1993), Lucas 

(1993), and Parente (1994). For simplicity we assume that R&D is not necessary 

to develop new product generations, which arrive at an exogenous rate. Instead, 

R&D is assumed to influence the productivity of a new product at the time it is 

launched, and the more R&D that is conducted, the less there is left to learn. 

Skilled labor is a necessary input into R&D, and it also enhances a firm’s ability 

to learn in production. As a consequence, the immediate effect is to increase the 

price of skill. The initial increase in wages of skilled workers is offset over time by 

an induced rise in the supply of skills. Of course, in order to sustain an increased 

supply of skills in the long run wage inequality must remain higher than before 

the increase in the difficulty of learning, These dynamic responses are obtained in 

a setting in which the aggregate rate of growth is constant. Thus, a reversal in 

the difficulty of learning would induce a decline in R&D and in the returns to 

skill, but no decline in economic growth. 

 Our theory rests on some precise assumptions, and it is worth fixing ideas on 

these immediately: technology has become more complex over time; learning by 

doing is more difficult in complex environments; skill is more valuable in complex 

learning environments; and research is a substitute for learning by doing. None of 

these assumptions seems particularly contentious, but it turns out to be quite 

difficult to produce direct evidence for them. We do not have any easy way to 

measure complexity, and attempts to measure rates of passive learning have 

proved to be rather unreliable (Mishina, 1999; Lazonick and Brush, 1985; Sin-

clair, Klepper, and Cohen, 2000; Thompson, 2001). Nonetheless, there is a body 

of indirect evidence consistent with our assumptions, which is briefly reviewed 

here. 

A. Learning and complexity 

Jovanovic and Nyarko’s (1995) Bayesian model of learning is perhaps the best-

known study of the interaction between complexity and learning. They define 
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complexity in terms of the number of independent tasks that must be undertaken 

in the production process. Their model predicts that in more complex technolo-

gies there will be more to learn, but the rate of learning is slower. Parameter es-

timates obtained from fitting their model to a dozen data sets are consistent with 

these predictions. In a series of papers (Argote, Beckman and Epple, 1990; Darr, 

Argote and Epple, 1995; Epple, Argote and Devadas, 1991), Argote, Epple and 

colleagues obtained similar results from estimating learning curves from three dis-

tinct activities – the operation of pizza franchises, an automotive assembly plant, 

and wartime shipbuilding. Figure 2 plots the learning curves implied by their pa-

rameter estimates. 1 If we are willing to entertain the notion that shipbuilding is a 

more complex task than automotive assembly, and automotive assembly is more 

complex than operating a pizza franchise, the learning curves yield half-lives of 

learning consistent with the predictions of Jovanovic and Nyarko.  

 Our ranking of Argote and Epple’s three technologies is inevitably subjec-

tive. Unfortunately, Jovanovic and Nyarko’s inferences about the relative com-

plexity of different activities are even more problematic for our purposes, as they 

are obtained from the learning curves themselves. Galbraith (1990) took perhaps 

a more objective approach by allowing senior project engineers learning to work 

with new technologies to evaluate their complexity. He studied 32 instances in 

which high-technology companies transferred core manufacturing technology to 

plants located at least 100 miles from where the technology was originally in use. 

The senior project engineer at each recipient location was asked to rate on a five-

point scale the complexity of the transferred technology relative to the recipient’s 

                                         

1 Epple and Argote assume that knowledge rises log-linearly with cumulative output and 

declines as a function of time. They interpret their results as evidence of organizational 

forgetting. Thompson (2004) has argued that forgetting may be a spurious result of as-

suming a learning curve in which, absent forgetting, productivity must rise without 

bound. In Figure 2 we simply plot the predicted productivity levels implied by the regres-

sion estimates. 
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existing technologies. Galbraith shows that the time it took the recipient site to 

reach the level of productivity at the donor site increased significantly with the 

complexity of the technology, even controlling for an initial loss in productivity 

that was higher in the more complex transfers. An increase of one on the five-

point scale led to an increase in the initial productivity loss of about 16.7% and 

an increase in the recovery time of the lost productivity of about 15 percent.  

B. Skill and Learning 

An extensive literature on wage inequality and technology is consistent with our 

assumption that skilled labor has an advantage in learning more complex tech-

nologies and that, as technology became more complex in recent decades, the re-

turns to education and unobservable skills have increased.  

0

50

100

0
Cumulative Output

P
er

ce
nt

ag
e 

of
 T

er
m

in
al

 P
ro

du
ct

iv
ity

Shipbuilding

Automotive assembly

Pizza franchise

FIGURE 2. Learning curves from three industries. Curves plot the function 
qt/q*, where qt=Kt

γ, Kt=λKt−1+1. and q*=(1−λ)γ. Parameter estimates are: 
γ=0.71, λ=0.93 for shipbuilding (from Argote, Beckman and Epple, 1990, ta-
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chises (from Darr, Argote and Epple, 1995, table 1, column 4). 
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 The sharp rise in the return to schooling since the early 1980s (Blackburn, 

Bloom and Freeman, 1990; Katz and Murphy, 1992), in the premium for unob-

served ability (Juhn, Murphy and Pierce, 1993; DiNardo and Pischke, 1997), and 

in the premium for observable indicators of cognitive ability (Murnane, Willet 

and Levy, 1995) are all consistent with our assertion that education and ability 

have become more valuable as complexity has increased. Evidence that earnings 

profiles are steeper for educated workers (Psacahropoulos and Layard, 1979; 

Knight and Sabot, 1981; Altonji and Dunn, 1995; Altonji and Pierret, 1997; 

Brunello and Comi, 2004; Low et al., 2004) is consistent with our assertion that 

educated workers are more able to learn. 

 If newer technologies are more complex than older technologies, our assump-

tions imply a positive correlation between wages and use of new technology, and 

this is again consistent with empirical evidence. Autor, Katz, and Krueger (1998) 

document an increased demand for skilled labor during the last five decades, and 

especially since 1970. They argue that the diffusion of computers and related 

technologies contributed significantly to this phenomenon and show that skill up-

grading occurred more rapidly in industries that are computer intensive. Berman, 

Bound and Griliches (1994) and Berman, Bound and Machin (1998) find large 

within–industry increases in the share of non-production workers in manufactur-

ing, both in the US and in a sample of OECD countries, despite the rise in their 

relative wages during the 1980s and 1990s. They also show that the increase in 

the share of non-production workers is associated with R&D and computer in-

vestment. Allen (2001), focusing on the timeframe 1979-1989, shows that wage 

gaps by schooling increased the most in industries with rising R&D intensity and 

accelerating growth in the capital-labor ratio.2 

                                         

2 Further evidence relating the wage structure to technology use can be found in Krueger 

(1993), Dunne and Schmitz (1995), Doms, Dunne and Troske (1997), and Thompson 

(2003). 
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 Despite the wealth of wage data consistent with our assertions, we must ac-

knowledge that the evidence is only circumstantial. Rising wage inequality is also 

predicted by models in which skilled individuals have an advantage simply in 

adopting or working with new technologies (Caselli, 1999; Galor and Moav; 2000, 

Lloyd-Ellis, 2002). Chari and Hopenhayn (1993) predict that workers employed 

on newer technologies will exhibit steeper earnings profiles, even though all work-

ers learn at the same rate. R&D intensive industries, and industries and plants 

using newer technologies are likely to be more capital intensive, and capital-skill 

complementarity may be sufficient to explain their higher wages. 

C. Learning and R&D 

Our assumption that R&D may substitute for time spent learning is supported 

by the pioneering work of Cohen and Levinthal (1989), who provide evidence 

that R&D effort is a significant determinant of a firm’s “absorptive capacity”,  

by which they mean a firm’s ability to appropriate knowledge from other firms 

and industries, and from basic science. Cohen and Levinthal conjectured that 

R&D is most important when assimilation is made more difficult by the complex-

ity or quality of outside knowledge. Using independent, survey-based measures of 

complexity, they found support for their conjecture. 

 Subsequent researchers have provided further evidence that R&D is a major 

factor influencing absorptive capacity. Using industry-level data, Griffith, Red-

ding and Van Reenen (2003, 2004) find that it matters for cross-border assimila-

tion of knowledge among 12 OECD countries; Cockburn and Henderson (1998) 

find that R&D is closely associated with pharmaceutical companies’ “connected-

ness” with basic research; and Szulanski (1996) concludes that the ability to 

transfer best practices even within firms depends on recipient absorptive capac-

ity.  

 Finally, our model predicts a positive correlation between R&D intensity and 

the skill-content of non-R&D workers. We would therefore expect, taking our ba-

sic assumptions together, that R&D intensive industries will have higher wages 
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even among non-R&D workers. This is consistent with the evidence (Hodson and 

England, 1986; Dickens and Katz, 1987; Loh, 1992). 

The Model 

Models that combine R&D, new products and bounded learning have tended to 

be rather complicated. As a result, they have also tended to be rather stylized. 

We do not depart from that “tradition” here. We construct a stylized model in 

which there are two types of skill – one is a necessary input into R&D, the other 

enhances learning by doing. In Section A, we assume that both skills are in fixed 

supply and show that, if learning becomes harder, the wages of both skills must 

rise. In Section B we endogenize the supply of skill in an overlapping generations 

setting. When the returns to skill rise, agents are naturally induced to accumu-

late more. The increased supply facilitates an increase in R&D intensity, as well 

as an increase in the employment of skilled labor outside of R&D. Section C de-

scribes the transitional response to a change in the difficulty of learning. 

 A representative agent’s intertemporal utility is given by 

 
0

ln ( )tU e D t dtρ
∞

−= ∫ , (1) 

where 

 
/( 1)1

1/ ( 1)/

0

( ) ( , ) ( , )D t q i t x i t di
θ θ

θ θ θ

−

−
 
 =    
∫ , (2) 

is a quality-adjusted Dixit-Stiglitz consumption index defined over a continuum 

of goods of unit mass. The parameter q(i,t) is an index of the quality of good i, 

while x(i,t) denotes its quantity.  

 The familiar Euler equation, 

 ( ) ( )
( )

E t r t
E t

ρ= − , (3) 
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where E(t) is the agent’s nominal expenditure on consumption goods, solves the 

consumer’s intertemporal optimization problem. Nominal expenditure is the nu-

meraire, so that r(t)=ρ, and instantaneous consumer demands satisfy 

 1
1

0

( , ) ( , )( , )
( , ) ( , )

q i t p i tx i t
q i t p i t di

θ

θ

−

−
=
∫

. (4) 

 Production is carried out by unskilled labor, one unit of which produces one 

unit of output. Let w(t) be the wage of the unskilled. Each good is produced by a 

monopolistic firm i which chooses a constant markup over marginal cost, setting 

a price p(i,t)=w(t)θ/(θ−1), and consequently facing demand 

 ( 1) ( , )( , )
( )

i tx i t
w t

θ α
θ
−= , (5) 

where 
1

0
( , ) ( , )/ ( , ) ( , )/ ( , )i t q i t q i t di q i t Q i tα = =∫  is the relative quality of firm i’s 

product. Let L(t) denote the supply of unskilled workers, and G(α,t) the distribu-

tion of relative quality. Full employment of unskilled workers requires that  

 
1

0

( 1)
( ) ( , )

( )
L t dG t

w t
θ α α
θ
−= ∫  

       ( 1)
( )w t

θ
θ
−= , (6) 

which identifies the wage, w(t)=(θ−1)/(θL(t)), demands, x(i,t)=α(i,t)L(t), and 

profits from manufacturing, π(i,t)= α(i,t)/θ. 

 New generations of the product arrive to each firm randomly according to an 

exogenous Poisson process with mean intensity µ. Let ( , )i tα  denote the initial 

relative quality of the current generation of i’s product line, and let T(i)<t de-

note the date it was introduced. If the firm’s next generation, arrives at time t , 

it yields an improvement in relative quality of magnitude λ . It turns out to be 

useful to choose the normalization 
1 ( ( ))

0
( , ) g t T ii t e diλ λ α − −= ∫ . The integral will 

prove to be constant in the steady state, and the normalization will yield a 

steady-state growth rate of ( )/ ( )g Q t Q t λµ= = .  
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 Upon arrival of a new generation, the firm may further enhance its initial 

quality through R&D. The firm must maintain a permanent R&D laboratory 

with constant employment to secure any given increase in product quality. After 

the product is launched, further improvements are obtained through learning by 

doing. Skilled labor is central to both processes, but it is convenient to assume 

that R&D and learning by doing involve distinct skills. R&D is conducted by en-

gineers, while the speed of learning by doing is enhanced by the employment of 

supervisors.  

 The evolution of firm i’s relative quality for product generation j launched at 

time 0 satisfies 

 ( )( ) ( )( , ) ( ) 1 ( ; , ) ( ; , )gt j j
e s se i t l t l a t lα α φ ψ α ψ= + −Γ + + Γ  (7) 

where φ(le) is the R&D production function and le is employment of engineers; it 

is increasing, concave and satisfies the Inada conditions. The learning function 

Γ(t;ls,ψ) depends on the employment of supervisors and the difficulty, ψ, of learn-

ing. : [0,1]R+Γ →  is increasing in t, with (0; , ) 0sl ψΓ =  and lim ( ; , ) 1t st l ψ→∞ Γ = . 

Relative quality is  a weighted average of the product’s initial quality, ( )j
elα φ+ , 

and its terminal quality, j aα + . To ensure that learning is positive, it is as-

sumed that sup aφ < . To avoid tedious discussion of no growth traps (c.f. 

Jovanovic and Nyarko, 1996), we assume that a<λ. Thus the initial productivity 

of the next generation is always high enough to make switching worthwhile. 

 Let /d dtγ = Γ  denote the rate of learning. We make the following assump-

tions about the learning function: 

 0, 0, 0, 0
s s s sl l l lψ ψγ γ γ γ> < > < , (8) 

where subscripts denote derivatives. The rate of learning is an increasing concave 

function of ls, and is decreasing in the difficulty of learning. The marginal produc-

tivity of supervisors rises as learning becomes more difficult. These key assump-

tions were laid out in the introduction.  

 Given that (0; , ) 0sl ψΓ = , the assumptions in equation (8) apply also to Γ: 
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 0, 0, 0, 0
s s s sl l l lψ ψΓ > Γ < Γ > Γ < . (9) 

Upon arrival of a new generation, the firm must choose its intensity of R&D, as 

well as a time path for ls. Given a hazard rate µ for obsolescence of the current 

generation, an interest rate ρ, and profits π(i,t)= α(i,t)/θ, the dynamic problem is 

( )( ) ( ){ 1 ( )

, ( )
0

max ( ) 1 ( ; ( ), ) ( ; ( ), )
e s

j j g t
e s s

l l t
l t l t a t l t e ρ µθ α φ ψ α ψ

∞

− − + + + −Γ + + Γ  ∫  

                                                      ( ) }( )( ) ( ) ( ) t
s s e el t w t l w t e dtρ µ− +− + . (10) 

Pointwise maximization yields an optimal path for ls(t), 

 ( )
( ) ; ,

( )

gt
s

s
e

w t e
l t t

a l
θη ψ

φ
  =    − 

, (11) 

where η is the inverse of the marginal productivity of ls, a decreasing function of 

its first argument. Given our assumptions about Γ, it is easy to see that η is in-

creasing in ψ, but no predictions can be made about the time path for ls. For 

given R&D intensity, ls(t) is increasing in a, and decreasing in θ, ws(t) and g. An 

autonomous increase in R&D effort reduces ls, because it leaves less to learn. 

 The optimal R&D intensity satisfies 

 
( )

/ 1 0

( )

0

( )
( )

(1 ( ; ( ), ))

t
e

e g t
s

w t e dt
l

t l t e dt

ρ µ

ρ µ

θ
φ

ψ

∞
− +

−
∞

− + +

   =   − Γ  

∫
∫

. (12) 

where / 1( )φ −  is the inverse of the marginal productivity of le, a decreasing func-

tion of its argument. Given our assumptions about Γ, / 1( )φ −  is increasing in ψ,. 

For a constant level of ls(t), le is also decreasing in θ and the time-path of we.  

 For a given set of parameters, (11) and (12) define optimal employment of 

the two types of skilled labor as functions of g and of wages. Note that neither ls 

nor le depend on α(i,t). The arrivals of new generations are Poisson, so the equi-

librium distribution across firms of the ages of current product generations is ex-

ponential with mean µ−1. Hence, the employment constraint for supervisors is  
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1

0

( , ( )) ( )s s sl w t e d L tµτµ τ τ− =∫ , (13) 

where the right hand side is the economy’s endowment of this skill. The left hand 

side is decreasing in ws(t), with unlimited demand at ws(t)=0. Hence, (13) defines 

a unique equilibrium wage for supervisors. The employment constraint for engi-

neers satisfies 

 
1

0

( ( )) ( )e e el w t e d L tµτµ τ τ−− =∫ , (14) 

where ( )ew t τ−  denotes the entire future path of wages beginning at the launch 

of a firm’s current product generation at time t−τ.   

A. Fixed supply of skills 

 If the supplies of skilled labor are constant, then so are their wages. Thus, all 

firms undertake the same intensity of R&D, so (12) and (14) simplify to  

 
( )

/ 1

( )

0

( )
(1 ( ; ( ), ))

e
e e g t

s

wL l
t l t e dtρ µ

θφ
ρ µ ψ

−
∞

− + +

   = =   + −Γ  ∫
, (15) 

while (11) and (13) simplify to 

 

1

0

; ,
( )

g
s

s
e

w eL e d
a L

τ
µτθµ η τ ψ τ

φ
−

  =    − ∫ . (16) 

 The steady state is characterized by a constant growth rate equal to the 

product of the proportional quality improvement brought about by each new 

product generation, λ, and the arrival rate of new generations, µ (claim 1).3 

There is a stable, non-degenerate distribution of firm relative quality and hence 

firm size, with finite variance (claim 2). The wage of unskilled workers is given 

by (6). Equation (16) defines the equilibrium wage for supervisors. A rise in ψ 

                                         

3 The proof of this claim, and of claim 2 below, are given in Appendix A.  
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clearly raises ws. From (15), we see that the denominator on the right hand side 

rises in response to an increase in ψ. This may induce changes in the time path of 

ls for individual firms, but the net effect will be to raise the demand for engineers. 

In consequence, an increase in the difficulty of learning also drives up the wages 

for engineers.   

 An increase in the difficulty of learning has a level effect on income across 

steady states, but not a growth effect. The aggregate growth rate, g=λµ, depends 

only on exogenous parameters, so growth is unaffected by changes in ψ. The age 

distribution of current product generations is also invariant to increases in ψ. 

However, given τ, each firm will have made less progress along the learning 

curve, so that its absolute quality will be lower at any point in time. 

B. Endogenous supply of skills 

We now replace the representative agent with a continuum of agents with a con-

stant death rate δ. When an agent dies, she is immediately replaced by a new 

agent. Upon birth, new agents can choose to pay a cost, c, to obtain education. 

Each agent has ability in two dimensions, engineering ability, ξe∈[0,1], and su-

pervisory ability, ξs∈[0,1], which are draws from the joint distribution F(ξe, ξs). If 

the cost is paid, and the agent chooses to train as an engineer, she becomes 

skilled as an engineer with probability ξe, and remains unskilled otherwise. If she 

chooses to train as a supervisor, she becomes a skilled supervisor with probability 

ξs, and remains unskilled otherwise. 

 Indirect utility is separable in expenditure, so the agent is concerned only to 

make the education choice that maximizes the discounted present value of her 

lifetime earnings. As an unskilled worker, this is ( )

0
( )te w t dtρ δ∞ − +∫ . Restricting at-

tention to the steady state with constant wages, the expected lifetime earnings of 

an unskilled worker is therefore w/(ρ+δ). For a worker with abilities {ξe, ξs} ex-

pected earnings are −c+(1− ξe)w/(ρ+δ)+ ξewe/(ρ+δ) if she chooses to train as an 
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engineer, and −c+(1− ξs)w/(ρ+δ)+ ξsws/(ρ+δ) if she chooses to train as a supervi-

sor.  

 Given wages {w, we, ws}, it is easy to see that the fraction of agents that 

choose not to train is increasing in w and decreasing in we and ws. Thus, the 

steady-state supply of unskilled workers can be written as L(w, we, ws). Similarly, 

the steady-state supply of engineers is increasing in we and decreasing in w and 

ws, while the steady-state supply of supervisors is increasing in ws, and decreasing 

in w and we. With the fixed labor supplies in (6), (14), and (15) replaced by these 

functions, general equilibrium is defined by a system of three labor supply and 

demand curves. 

C. Transitory responses to an increase in the difficulty of learning 

When a technological revolution raises the difficulty, ψ, of learning, there can be 

no immediate response in skill supply. Existing workers have already chosen their 

training, and they are replaced only gradually, at the rate δdt, by new workers 

that have yet to choose whether to undertake training. The immediate response 

to an increase in ψ, then, is an increase in the wages of both types of skilled 

workers. These wage increases induce a greater fraction of new workers to seek 

training. The supply of engineers gradually rises, and this facilitates a steady rise 

in the intensity of R&D. The supply of supervisors gradually rises, and this facili-

tates an increase in the ratio of skilled to unskilled workers employed in produc-

tion. The increased supply will mute the initial increased wage inequality, and 

moderate the demand for education. Thus, the initial response is to overshoot the 

long-run equilibrium change in wage inequality and in the demand for education 

by young workers.  

 It is possible, but by no means necessary, that the average educational at-

tainment of the workforce also overshoots the long-run equilibrium. Whether it 

does depends on assumptions about functional forms and parameter values. How-

ever, if overshooting in average educational attainment occurs, it will be associ-

ated  with cyclical behavior in wage inequality.  
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 What happens to growth along this transition? We have already seen that 

the aggregate growth of the economy in the steady-state is given by λµ, regard-

less of the difficulty of learning. There will be some transitional dynamics occur-

ring for each firm’s quality within product generations, but whether we would 

observe a transitory rise or fall in the growth rate is unclear. First, an increase in 

ψ induces a rise in R&D effort, so that new product generations will be launched 

at a higher initial quality. This will contribute to a transitory rise in the aggre-

gate growth rate which decays with time as the fraction of firms in the economy 

that have introduced their next generation increases. Offsetting this, existing 

product generations will see a slower improvement in quality. The former [latter] 

effect dominates if µ is sufficiently large [small]. 

Conclusions 

In this paper we offer an explanation for the paradox presented by the coexis-

tence of secular increases in R&D expenditure and educational attainment along-

side a constant growth rate. As Jones (2002) pointed out, these observations are 

inconsistent with most endogenous growth models. Jones showed that the data 

are consistent with out-of-steady-state behavior in what has become known as 

the semi-endogenous model of R&D-driven growth. He allows exogenous trend 

growth in R&D and educational attainment and, using traditional growth-

accounting techniques, concludes that the secular trends account for about 80 

percent of post-war growth. As such secular trends must eventually end, Jones 

predicts a startling collapse in future income growth rates. 

 We construct a quality-ladders model developed based on Thompson and 

Waldo’s (1994) characterization of Schumpeterian trustified capitalism. New 

product generations arrive stochastically at an exogenous rate. Formal R&D and 

learning by doing influence the productivity of the new product. Skilled labor is a 

necessary input into R&D, and it enhances the rate of learning. We claim that 

learning became more difficult during the latter half of the 20th century, as a re-

sult of the increased complexity of the technologies that firms have to work with. 
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In this setting, rising R&D expenditure and rising educational attainment are 

shown to be equilibrium responses to greater complexity. In our model, however, 

greater complexity has no consequences for the steady-state growth rate of in-

come.  

 The model is stylized, and we assume that new product generations are 

launched by firms at an exogenous rate. The aggregate steady-state growth rate 

is consequently also exogenous, depending only on the product of two parameters, 

the proportional quality improvement brought about by each new product gen-

eration and the arrival rate of new generations. At the cost of greater complexity, 

it would of course be possible also to construct a model in which product arrivals 

depend on R&D expenditure. Doing so, however, would serve only to strengthen 

our conclusions. The model would then contain two types of R&D, one that af-

fects the arrival rate of new product generations and one that determines each 

generation’s initial productivity. When passive learning becomes more difficult 

and the demand for R&D intended to raise initial quality rises in response, skilled 

labor will be drawn away from R&D aimed at securing new product generations.  

Consequently, a rise in aggregate R&D intensity and educational attainment will 

be associated with a short-run decline in income growth. Eventually, as the sup-

ply of skill increases, at least some of this decline will be reversed. To an even 

greater extent than our stylized model predicts, the secular rise in R&D and edu-

cational attainment do not presage a decline in future income growth. The con-

trast with the pessimistic prediction embodied in Jones’ (2002) analysis could not 

be stronger.  

Appendix A 

Claim 1. The steady state growth rate, g, is equal to λµ. 

Proof. Write equation (7) as 

 ( ( )) ( ( ))( , ) ( , ) ( ( ))g t T i g t T ii t i t e h t T i eα α − − − −= + − , (A.1) 

where 
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 ( )( ( )) ( ) 1 ( ( ), , ) ( ( ), , )e s sh t T i l t T i l a t T i lφ ψ ψ− = −Γ − + Γ − . 

The function ( ( )) [ ( ), ]eh t T i l aφ− ∈  is a continuous, bounded function, monotonically in-

creasing with t. It then follows that 

 
1

( ( )) ( )

0 0

( ( )) ( )g t T i gh t T i e di h e dµ τµ τ τ
∞

− − − +− ≡∫ ∫  (A.2) 

is well-defined and constant for any given g.  

 Integrate (A.1) over all firms, 

 
1 1 1

( ( )) ( ( ))

0 0 0

( , ) ( , ) ( ( ))g t T i g t T ii t di i t e di h t T i e diα α − − − −= + −∫ ∫ ∫  (A.3) 

The L.H.S. of (A.3) is one by definition, while the second term on the R.H.S. is constant 

from (A.2). Hence, the term 
1 ( ( ))

0
( , ) g t T ii t e diα − −∫  is also constant in the steady state. Dif-

ferentiating this term with respect to time therefore yields: 

 
1

( ( ))

0

(1 ) ( , ) 0g t T ig dt dt i t e di dtµ α µλ− −− − + =∫ , (A.4) 

The first term is the change over the interval dt contributed by the fraction (1 )dtµ−  of 

firms that do not launch a new production generation. The second term is the change 

contributed by the firms that do innovate. All these firms see their relative quality rise 

by an amount λ . Dividing (A.4) throughout by dt and letting 0dt →  yields  

 
1

( ( ))

0

( , ) g t T ig i t e diα µλ− − =∫  

                        
1

( ( ))

0

( , ) g t T ii t e diµλ α − −= ∫ , 

and hence g=µλ as claimed. 

Claim 2. There is a stable steady-state distribution of firm size, with finite variance. 

Proof. Assume for the moment that ( ( )) 0h t T i− ≡  i∀ , so we can concentrate on the 

stochastic process ( ( ))( , ) ( , ) g t T ii t i t eα α − −= . α  is a shot-noise process. It experiences Pois-

son jumps of intensity µ and magnitude 
1 ( ( ))

0
( , ) g t T ii t e diλ λ α −= ∫ , and decays at the expo-

nential rate g. When ( ( )) 0h t T i− ≡  i∀ , 
1 1( ( ))

0 0
( , ) ( , )g t T ii t e di i t diλ λ α λ α λ−= = =∫ ∫ . Let 
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τj(i) denote the arrival time of the jth product generation for firm i, and let n(i,t) denote 

the number of product generations that have been launched by firm i by time t. At time 

t, the current contribution to relative quality of a product generation of vintage t−τ is 
( )g te τλ − − . Hence, we can write 

 
( , )

1

( , ) ( , 0) ( , )
n i t

gt
j

j

i t i e x i tα α −

=

= +∑ , 

where ( ( ))( , ) jg t i
jx i t e τλ − −= . The τj(i) are i.i.d. random variables, uniformly distributed on 

[0,t]. Using the method of transformations to obtain the pdf of x, we have 

 
1( ) ,

( , ) 0, otherwise

gtgxt e x
f x t

λ λ− − ≤ ≤= 
. 

The characteristic function for x is 

 ˆ 1( , ) ( )
gt

isx
x

e

s t e gxt dx
λ

λ

φ
−

−= ∫  

          1 1ˆcos( )( ) sin( )( )
gt gte e

sx gxt dx i sx gxt dx
λ λ

λ λ− −

− −= +∫ ∫ , 

where ˆ 1i = − . The second inequality comes from Euler’s formula. Let 

( , ) ( , ) ( , 0) gtz i t i t i eα α −= − . As the τj are i.i.d., the characteristic function for z(i,t) is sim-

ply the expectation of the n(i,t)-fold product of φx(s,t), where n(i,t) is a Poisson r.v. with 

mean µt. 

 
( , )( , ) ( , )n i t

z xs t E s tφ φ =     

          0

( , ) ( )
!

n n t
x

n

s t t e
n

µφ µ −∞

=

=∑
  

          
[ ]( , ) 1xt s teµ φ −= . 

The last line used the series expansion 0 / !y n
ne y n∞
==∑ . The kth moment is found by 

differentiating φz(s,t) k times with respect to s, multiplying by k̂i− , and evaluating the 

resulting expression at s=0: 

 
[ ] ( )1( ) ( , ) 1 gtm z E z i t e

g
λµ= = −
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2 2 2 2 2

2
2 2

( 2 ) ( 2 )
( ) ( , )

2

gt gtg e e g
m z E z i t

g
λ µ µ λ µ λ µ µ− −+ − − − = =  . 

Noting that g=λµ, the mean and variance of ( , )i tα are [ ] [ ]( , ) 1 ( , 0) 1 gtE i t i eα α −= + −  and 

[ ] 2( , ) 1 /2gtv i t eα λ − = −  . In the steady state, t → ∞ , so the steady-state mean and vari-

ance are [ ] 1E α =  and [ ] /2V α λ= . 

 In the presence of learning, α(i,t) differs from ( , )i tα  as a result of the amount of 

quality improvement in i’s product brought about by R&D and learning relative to the 

average amount secured by other firms. We can write this as  

 ( )( ( )) ( )( , ) ( , ) ( ( )) , ( ) ; ( , )g t T i g t Ti t i t h t T i e E h t T e i tα α δ α− − − − = + − −   , 

where ( )( ) ( )( ) , ( ) 0g t T g t TE h t T e E h t T eδ − − − −   − − =       . Moreover, as we have shown that 

( ) 1E α = , and ( ) 1E α =  by assumption, it must be the case that [ ] 0E δ = . Finally, δ is a 

continuous function, h(t−T(i)) is a bounded continuous function, and t−T(i) is exponen-

tially distributed with parameter µ. Thus, δ has a well-defined stationary distribution 

with finite variance, v(δ), and [ ] [ ] [ ] [ ]( , ) ( , ) 2 cov ( , ),v i t v i t v i tα α δ α δ= + +  is finite. From 

the relations between α(i,t), profits, and demands given in the main text, we conclude 

that the distributions of relative quality, profits, and firm size are stationary, with finite 

variance.  

Appendix B 

Sources of data for Figure 1. The number of scientists and engineers engaged in R&D for 

the period 1950-1980 are taken from Jones (2002), and for the rest of the series (1981-

1999) from the National Patterns of R&D Resources: 2002 provided by the National Sci-

ence Foundation at http://www.nsf.gov/sbe/srs/nsf03313/tables/tab8.xls. Missing data 

are derived from averages of adjacent years. Labor force data are from the Bureau of La-

bor Statistics. Expenditure on non-defense R&D as a percentage of GDP is from Jones for 

the period 1953-1980, and for the rest of the series from the National Patterns of R&D 

Resources: 2002, provided by the National Science Foundation at http://www.nsf.gov/sbe 

/srs/nsf03313/tables/tab10.xls. 

 Average years of educational attainment in the population among persons 25 years 

and older are from Jones for 1950-1980. The remaining years are estimated using Jones’ 

method. The US Census Bureau reports interval data on educational attainment at 
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http://www.census.gov/population/socdemo/education/tabA-1.xls. In computing the av-

erage we assume that every person in a given interval had schooling equal to the interval 

mean. Persons that have four or more years of college are assumed to have 4 years.    

 GDP per worker in 1996 dollars is from the Penn World Data for the period 1950-

2000 and from the Bureau of Economic Analysis (http://www.bea.gov/bea/newsrel/ 

gdpnewsrelease.htm) for 2001-2003. For real GDP per hour, we use real GDP in 2000 

chained dollars (1950-2003) from the BEA, National Income and Products Account Table 

(http://www.bea.gov.doc/bea/dn/nipaweb/SetlectTables.asp?Popular=Y). Employment 

of the civilian population over age 16 is from Jones for 1950-1979 and from Labor Force 

Statistics (Current Population Survey of the BLS) at http://www.bls.gov/cps/cpsatabs 

for the rest of the series. Average weekly hours of production are from the Current Popu-

lation Survey (ftp://ftp.bls.gov/pub/suppl/ empsit.ceseeb2.txt). We assume an average 

work load of 50 weeks a year to estimate real GDP per hour. 
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