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Abstract

We study the phenomenon of spurious regression between two random vari-
ables, when the generating mechanism of individual series is assumed to follow
a stationary process around a trend with (possibly) multiple breaks in the level
and slope of trend. We develop the relevant asymptotic theory and show that
the phenomenon of spurious regression occurs independently of the structure
assumed for the errors. In contrast to previous findings, the presence of a spu-
rious relationship will be less severe when breaks are present in the generating
mechanism of individual series. This is true whether the regression model in-
cludes a linear trend or not. Simulations confirm our asymptotic results, and
reveal that in finite samples, the phenomenon of spurious regression is sensitive
to the presence of a linear trend in the regression model, and to the relative
location of breaks within the sample.
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1 Introduction
The spurious regression phenomenon occurs when there is a statistically signif-
icant relationship between two independent random variables. Since the contri-
bution of Granger and Newbold (1974) on the issue of spurious regressions in
econometrics, several articles have investigated the phenomenon under a vari-
ety of structures for the data generating processes. Phillips (1986) assumes that
the individual series in a spurious regression are driftless random walks, while
Marmol (1995) extends this to the general I(d) case, with d being an integer
number. Marmol (1996) studies the spurious regression problem with differ-
ent orders of integration of the dependent and independent variables. Entorf
(1997) analyzes random walks with drifts, given the relevance of such models,
as argued by Nelson and Plosser (1982). Granger et. al. (1998) extend the
analysis to positively autocorrelated autoregressive series on long moving aver-
ages, and Marmol (1998) and Tsay and Chung (1999) to long memory fractional
integration processes.
More recently, Kim, Lee and Newbold (2004) (KLN henceforth), show that

the phenomenon of spurious regression is still present even when the nonstation-
arity in individual series is of a deterministic nature. In particular, under the
assumption of stationarity around a linear trend for the individual series, they
show that the ordinary least squares estimator bδ1 converges to the ratio of the
trend coefficients, and tδ1 (the t-statistic for the null hypothesis H0 : δ1 = 0)
diverges at rate T 3/2 in the following (spurious) regression:

yt = bα1 + bδ1xt + but (1)

where the DGP for each series is:

yt = µy + βyt+ uyt; xt = µx + βxt+ uxt; (2)

uyt = φyuyt−1 + εyt,
¯̄
φy
¯̄
< 1; uxt = φxuxt−1 + εxt, |φx| < 1

and where εzt are iid(0, σ2z) for z = y, x, and independent of each other. In this
setting, KLN show that bδ1 is a consistent estimator of βy

βx .
In this paper, we consider a more general setting by allowing for structural

breaks in both level and slope of trend in the Data Generating Process (DGP).
The relevance of this analysis stems from the ample evidence of infrequent breaks
in economic time series and the development of methods for estimating models
with (single and multiple) structural breaks.2 In a recent paper, Hansen (2001)
argues that "The econometrics of structural change, ..., has dramatically altered
the face of applied time series econometrics. (p.118)." Furthermore, recent the-
oretical research on economic growth has introduced mechanisms that induce

2See Perron (1989, 1992, 1997), Duck (1992), Raj (1992), Zivot and Andrews (1992), Stock
(1994), Zelhorst and Haan (1995), Ben-David and Papell (1995, 1998), Lumsdaine and Papell
(1997), Bai (1997a, b), Bai and Perron (1998a, b), Clemente, et.al. (1998), Noriega and de
Alba (2001), and Perron and Zhu (2002).
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multiple growth states, the theoretical counterpart of the broken trend mod-
els presented below (see Durlauf (1993), Cooper (1994), Acemoglu and Scott
(1997), Lau (1997), Startz (1998), and Kejak (2003)).
In section 2 we derive the asymptotic behavior of statistics in regressions

where the DGP consists of two independent processes with (possibly) multiple
breaks, and show that the phenomenon of spurious regression is present in this
setting, regardless of the errors’ structure. Section 3 concludes.

2 Asymptotics for spurious regressions

2.1 The case of a single break

When allowing for a break in the individual series, the DGP in (2) can be
extended to:

yt = µy + θyDUyt + βyt+ γyDTyt + uyt

xt = µx + θxDUxt + βxt+ γxDTxt + uxt (3)

uyt = φyuyt−1 + εyt,
¯̄
φy
¯̄
< 1;uxt = φxuxt−1 + εxt, |φx| < 1

where DUzt and DTzt, (z = y, x) are dummy variables allowing changes in the
trend’s level and slope respectively, that is, DUzt = 1(t > Tbz) and DTzt =
(t−Tbz)1(t > Tbz), where 1(·) is the indicator function, and Tbz is the unknown
date of the break in z. We maintain the same structure for the innovations uyt
and uxt as in KLN, although it can also be assumed that innovations obey the
(general-level) conditions stated in Phillips (1986, p. 313).
We start with a lemma which collects useful results for subsequent analysis

(all proofs are provided in the appendix).

Lemma 1. Suppose {yt}∞1 and {xt}∞1 are generated by (3) with λz =
(Tbz/T ) ∈ (0, 1), z = y, x. Then, as T →∞,

T−2
P

zt
p→ 1

2

h
βz + (1− λz)

2 γz

i
≡ dz

T−3
P

ytxt
p→ 1

3βxβy + βxγyλ
+
y + βyγxλ

+
x + γxγyλ ≡ g

T−3
P

z2t
p→ 1

3β
2
z +

1
3(1− λz)

3γ2z + 2βzγzλ
+
z ≡ gz

T−3
PT

t=1 tzt
p→ 1

3βz + γzλ
+
z ≡ ψz

where

λ+z =
1
6 (λz + 2) (λz − 1)

2

λ = 1
3 (1− λu)

3
+ 1

2λd (1− λu)
2

λu = max(λy, λx)
λl = min(λy, λx)
λd = λu − λl
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and p→ signifies convergence in probability.

The following theorem collects the asymptotic behavior of the estimated
parameters and associated t−statistics in model (1). It shows that bδ1 does not
converge to its true value of zero; instead, it converges to a constant, while its
t−statistic diverges to infinity.

Theorem 1. Let yt and xt be generated according to equation (3) and denote
by bα1, and bδ1 the OLS estimates of α1 and δ1 in (1). Then, as T →∞,

a) bδ1 p→ δ1 ≡ (g − dxdy)
¡
gx − d2x

¢−1
b) T−1bα1 p→ α1 ≡ (gxdy − gdx)

¡
gx − d2x

¢−1
c) T−1/2tδ1

p→ δ1

h
σ2u
¡
gx − d2x

¢−1i−1/2
d) T−1/2tα1

p→ α1

h
σ2ugx

¡
gx − d2x

¢−1i−1/2
where, σ2u is defined in the appendix.

In Entorf (1997) and KLN, the limit of bδ1 is βy
βx
. The corresponding expres-

sion in part a) simplifies to this when γy = γx = 0. This can be easily seen by

rewriting the limit of bδ1 in part a) of theorem 1 as:

δ1 =

∙
βy
βx

µ
1 + lx

γx
βx

¶
+

γy
βx

µ
ly + l

γx
βx

¶¸ ∙
1 +

γx
βx

µ
2lx + l1

γx
βx

¶¸−1
where

lz = (2λz + 1) (λz − 1)2

l = 12λ− 3 (λx − 1)2 (λy − 1)2 ,
l1 = (3λx + 1) (1− λx)

3
.

Thus, the limit of bδ1 is a function of several ratios: trend magnitudes (βyβx ),
relative (own) size of the break (γzβz ), and relative (cross) size of the break (

γy
βx
).

According to part b) the constant term does not converge to a constant, instead
it diverges at rate T . Part c) shows that, as in Phillips (1987), Entorf (1997),
and KLN, the t−statistic diverges. The rate of divergence is the same as the
one found by Phillips (1987), and slower than that of Entorf (1997) (T ) and
KLN (T 3/2). Therefore, we should expect less evidence of spurious regression
when the generating process allows for structural breaks. It also should be noted
that, in contrast to KLN, the limit of the normalized t-statistic is asymptotically
invariant to the specification of the errors in the DGP (3). This is because the
trend components in σ2u dominate asymptotically, while in KLN they cancel
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each other out. Thus, in large samples, the phenomenon of spurious regression
will prevail when there are breaks in the individual series, and not necessarily
as a consequence of the errors’ specification, as in KLN.
Simulation experiments revealed that the finite sample rejection rate of the

t-statistic in part c) of the above theorem is roughly the same whether variables
have structural breaks or not. Rejection rates presented by KLN remain true
in the presence of breaks. To illustrate our asymptotic results, we compare the
theoretical t-statistic (computed from the above formula in Theorem 1) with the
t-statistic computed from simulated data, based on the DGP in (3), for different
sample sizes. Results are shown in Figure 1.
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Graphs of t-statistics based on Theorem 1 and simulated data. Left panel:
λy= 0.55, λx= 0.45; middle: λy= 0.75, λx= 0.25; right: λy= 0.95, λx= 0.05; all

panels: βy= βx= 0.2, γy= γx= 0.02.

As can be seen, the proximity between the asymptotic and the simulated statis-
tics varies significantly depending on the values of λy and λx. From these three
particular examples, the difference between the simulated and the theoretical
statistics is greater when the break dates are closer to the sample endpoints
(right panel). Although in can not be inferred from the figure, our numerical
simulations show that, for a sample size as small as 25 observations, the values
of the t-statistic (both theoretical and simulated) are greater than 5.0, for all
three analyzed examples, indicating a spurious relationship between yt and xt.
We now consider the case of a regression which allows for a linear trend. As

discussed in KLN (2003), when the trend components in the individual series
are sufficiently large to be detected, the applied researcher will run the following
regression

yt = bα2 + bβ2t+ bδ2xt + but (4)

where the DGP for each series is again (3). The next theorem presents the
asymptotic behavior of the estimated parameters and associated t−statistics.

Theorem 2. Let yt and xt be generated according to equation (3) and denote
by bα2, bβ2, and bδ2 the OLS estimates of α2, β2 and δ2 in (4). Then, as T →∞,
a) bδ2 p→ δ2 ≡

£
(12ψx −

1
3dx)dy + (

1
2dx − ψx)ψy +

1
12g
¤
d−1
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b) T−1bα2 p→ α2 ≡
£¡
1
3gx − ψ2x

¢
dy +

¡
dxψx − 1

2gx
¢
ψy +

¡
1
2ψx −

1
3dx

¢
g
¤
d−1

c) bβ2 p→ β2 ≡
£¡
dxψx − 1

2gx
¢
dy +

¡
gx − d2x

¢
ψy +

¡
1
2dx − ψx

¢
g
¤
d−1

d) T−1/2tδ2
p→ 1

12δ2
£
η2ud
−1¤−1/2

e) T−1/2tα2
p→ α2

£
η2u
¡
1
3gx − ψ2x

¢
d−1

¤−1/2
f) T−1/2tβ2

p→ β2
£
η2u
¡
gx − d2x

¢
d−1

¤−1/2
where,

d ≡ ψx(dx − ψx) +
1
12gx −

1
3d
2
x, and η2u is defined in the appendix.

As in Theorem 1, bδ2 does not converge to its true value of zero, while the
constant diverges to infinity at rate T. The trend parameter also converges to a
constant. Part d) shows, as before, that the t-statistic diverges, thus indicating
a spurious relationship between y and x.
Figure 2 presents a comparison between the asymptotic t-statistic, based on

part d) of Theorem 2, and a simulated one based on the DGP (3).
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Graphs of t-statistics based on Theorem 2 and simulated data. Left panel:
λy= 0.55, λx= 0.45; middle: λy= 0.75, λx= 0.25; right: λy= 0.95, λx= 0.05; all

panels: βy= βx= 0.2, γy= γx= 0.02.

As opposed to Figure 1, the difference between the simulated and the theoretical
statistics in Figure 2 is greater when the break dates are closer to each other (left
panel). Table 1 presents the behavior of the t−statistic for smaller sample sizes,
and the three representative possibilities regarding the break fractions. It shows
that when the breaks are far from each other, Theorem 2 implies that nearly
1, 000 observations are required in order to reject the null of no relationship
at the 1% level. From the last two columns of the table, it is clear that the
asymptotic value is a poor approximation to the simulated one for samples
below 10, 000 (for which both statistics reject the null). On the other hand,
the closer the break dates are to each other, the more likely the phenomenon of
spurious regression is. For instance, if the breaks occur near the middle of the
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sample, the simulated (and theoretical) value(s) exceeds 2.0 for T just below
300. Therefore, the further away the breaks are from each other, the more
observations are required to generate the phenomenon of spurious regression
(more than 5000 in the right panel of the Table).

λy= 0 .5 5 λx= 0 .4 5 λy= 0 .7 5 λx= 0 .2 5 λy= 0 .9 5 λx= 0 .0 5

T Theoret. Simul. Theoret. Simul. Theoret. Simul.

25 15.80 0.83 2.75 0.83 0.40 0.83
50 22.35 0.79 3.88 0.79 0.56 0.79
100 31.61 0.80 5.49 0.79 0.79 0.79
300 54.74 2.59 9.51 0.93 1.37 0.80
600 77.42 10.79 13.46 2.86 1.94 0.79
1,000 99.95 26.18 17.37 7.29 2.50 0.77
5,000 223.49 186.25 38.84 36.67 5.59 1.52
10,000 316.07 300.13 54.9 54.13 7.91 4.71

Table 1. t-statistics computed from: part d) of Theorem 2, and simulated data. Same
value of parameters as in experiments for Figure 2.

From comparing the results of this simulation with the previous ones, it
emerges that it is more likely in small samples to observe a spurious regression
when not including a linear trend in the regression model.

2.2 The case of multiple breaks

In this section, we consider an even more general setting by allowing for multiple
structural breaks in both level and slope of trend in the DGP. In particular, we
assume that:

yt = µy +

NyX
i=1

θiyDUiyt + βyt+

MyX
i=1

γiyDTiyt + uyt

xt = µx +
NxX
i=1

θixDUixt + βxt+
MxX
i=1

γixDTixt + uxt (5)

uyt = φyuyt−1 + εyt,
¯̄
φy
¯̄
< 1;uxt = φxuxt−1 + εxt, |φx| < 1

where, Nz,Mz, the number of breaks in yt and xt, comprise the set of natural
numbers, for z = x, y.
The following lemma collects useful results for subsequent analysis. All sums

run from t = 1 to T , unless otherwise stated.

Lemma 2. Suppose {yt}∞1 and {xt}∞1 are generated by (5) with λiz =
(Tbiz/T ) ∈ (0, 1), z = y, x, i = 1, 2...,Mz. Then, as T →∞,

T−2
P

zt
p→ 1

2

∙
βz +

MxP
i=1
(1− λiz)

2
γiz

¸
≡ ∆z
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T−3
P

ytxt
p→ 1

3βxβy + βx
MyP
i=1

γiyλ
+
iy + βy

MxP
i=1

γixλ
+
ix +

MyP
i=1

MxP
j=1

γiyγjxωij ≡ Γ

T−3
P

z2t
p→ 1

3β
2
x + 2βx

MxP
i=1

γixλ
+
ix +

MxP
i=1

MxP
j=1

γixγjxυij ≡ Γz

T−3
PT

t=1 tzt
p→ 1

3βz +
MzP
i=1

γizλ
+
iz ≡ Ψz

where

λ+iz =
1
2λiz(1− λiz)

2 + 1
3 (1− λiz)

3 = 1
6 (λiz + 2) (λiz − 1)

2

ωij =
1
3 (1− λu1,ij)

3
+ 1

2λd1,ij (1− λu1,ij)
2

λu1,ij = max(λyi, λxj)
λl1,ij = min(λyi, λxj)
λd1,ij = λu1,ij − λl1,ij

υij =
1
3 (1− λu2,ij)

3
+ 1

2λd2,ij (1− λu2,ij)
2

λu2,ij = max(λxi, λxj)
λl2,ij = min(λxi, λxj)
λd2,ij = λu2,ij − λl2,ij

The following theorem collects the asymptotic behavior of the estimated
parameters and associated t−statistics in regression model (1).

Theorem 3. Let yt and xt be generated according to equation (5) and denote
by bα1, and bδ1 the OLS estimates of α1 and δ1 in (1). Then, as T →∞,

a) bδ1 p→ δ1 ≡ (Γ−∆x∆y)
¡
Γx −∆2x

¢−1
b) T−1bα1 p→ α1 ≡ (Γx∆y − Γ∆x)

¡
Γx −∆2x

¢−1
c) T−1/2tδ1

p→ δ1

h
σ2u
¡
Γx −∆2x

¢−1i−1/2
d) T−1/2tα1

p→ α1

h
σ2u∆

2
x

¡
Γx −∆2x

¢−1i−1/2
where, σ2u is defined in the appendix.

The theorem shows that the estimated parameters and t-statistics have simi-
lar asymptotic behavior as in the case of a single break. Hence, the phenomenon
of spurious regression is present in large samples under multiple breaks.
We consider again the case of a regression which allows for a linear trend,

as in the previous section. The next theorem presents the asymptotic behavior
of the estimated parameters and associated t−statistics.

Theorem 4. Let yt and xt be generated according to equation (5) and denote
by bα2, bβ2, and bδ2 the OLS estimates of α2, β2 and δ2 in (4). Then, as T →∞,
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a) bδ2 p→ δ2 ≡
£
(12Ψx −

1
3∆x)∆y + (

1
2∆x −Ψx)Ψy + 1

12Γ
¤
D−1

b) T−1bα2 p→ α2 ≡
£¡
1
3Γx −Ψ2x

¢
∆y +

¡
∆xΨx − 1

2Γx
¢
Ψy +

¡
1
2Ψx −

1
3∆x

¢
Γ
¤
D−1

c) bβ2 p→ β2 ≡
£¡
∆xΨx − 1

2Γx
¢
∆y +

¡
Γx −∆2x

¢
Ψy +

¡
1
2∆x −Ψx

¢
Γ
¤
D−1

d) T−1/2tδ2
p→ 1

12δ2
£
η2uD

−1¤−1/2
e) T−1/2tα2

p→ α2
£
η2u
¡
1
3Γx − ψ2x

¢
D−1

¤−1/2
f) T−1/2tβ2

p→ β2
£
η2u
¡
Γx −∆2x

¢
D−1

¤−1/2
where,

D ≡ Ψx(∆x −Ψx) + 1
12Γx −

1
3∆

2
x, and η2u is defined in the appendix.

Results are in line with those of Theorem 2. To asses the validity of our
theoretical findings, the left panel in Figure 3 shows a comparison between the
asymptotic t-statistic, based on part c) of Theorem 3, and a simulated one
based on the DGP (5), while the right panel shows a comparison between the
asymptotic t-statistic, based on part d) of Theorem 4, and the same DGP used
for the left panel.
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Graphs of t-statistics based on Theorems 3 and 4 and simulated data. Left panel
based on regression model (1), while right panel based on model (4). Both panels:

My= 1,Mx= 3;λy,1= 0.5,
λ1x= 0.2, λ2x= 0.4, λ3x= 0.6;βy= βx= 0.2, γiy= γix= 0.02.

As can be seen, convergence between the theoretical and simulated statistics is
achieved at around 10, 000 observations in both cases. However, the values of
the t-statistics when a regression without trend is used are roughly 10 times
larger than those for a spurious regression with a linear trend. According to our
simulation experiments, this occurs for a variety of experimental designs (chang-
ing the number, location and size of breaks in both variables). Therefore, it is
much more likely to find a spurious relationship when the regression equation
does not contain a linear trend. This is also the case when analyzing smaller
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samples (not shown): while the spurious regression phenomenon is present with
samples as low as 25 for a regression model without a linear trend, when a trend
is included the rejections start to occur with 200 observations, similar to the
case of a single break.

3 Conclusions
This paper has investigated the spurious regression phenomenon when the proces-
ses generating the individual series are stationary around a linear trend subject
to (possibly) multiple structural breaks. Our results indicate that, whether there
is a single break in each series or multiple breaks in both, the phenomenon of
spurious regression will occur asymptotically, independently of the errors’ struc-
ture in the data generating process, contrary to results of Kim, Lee and Newbold
(2004). However, the rate of divergence of the t-statistic was found to be lower
(T 1/2) than in the case of stationary processes around linear trends without
breaks (T 3/2), implying that the presence of a spurious relationship will be less
severe when breaks are present in the generating mechanism of individual series.
This is true whether the regression model includes a linear trend or not.
Simulations confirm our asymptotic results: it takes several thousand ob-

servations for the theoretical t-statistic to converge to the simulated one, under
a variety of locations of breaks. They also reveal that in finite samples, the
phenomenon of spurious regression is sensitive to the presence of a linear trend
in the regression model, and to the relative location of breaks in the generating
mechanism. In particular, a spurious rejection necessitates hundreds of observa-
tions when the regression includes a linear trend, while it occurs with very small
samples when the trend is not present. In other words, it is more likely to find
a statistical significant relationship between two independent stationary series
subject to breaks when the regression model does not include a linear trend in
its deterministic specification.
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4 Appendix
Proof of Lemma 1

From the DGP (3) we haveP
zt = Tµz + θz

P
DUzt + βz

P
t+ γz

P
DTzt +

P
uzt

whereP
DUzt = (1 − λz)T ,

P
t = 1

2(T
2 + T ), and

P
DTzt =

P(1−λz)T
1 t = 1

2(1 −
λz)

£
(1− λz)T

2 + T
¤
.

Hence,P
zt =

1
2

h
βz + (1− λz)

2 γz

i
T 2 +Op(T ),

and
T−2

P
zt =

1
2

h
βz + (1− λz)

2 γz

i
+Op(T

−1).

To prove the second part we write, from equations (3)P
ytxt = βxβy

P
t2 + βxγy

P
DTytt+ βyγx

P
DTxtt+ γxγy

P
DTytDTxt

+Op(T
2),

whereP
t2 = 1

3T
3 +O(T 2),P

DTztt =
(1−λz)TP

1
t(λzT + t) = λ+z T

3 +O(T 2),

P
DTytDTxt =

(1−λu)TP
1

t[t+λdT )] =
h
1
3 (1− λu)

3 + 1
2 (1− λu)

2 λd

i
T 3+O(T 2).

Therefore,

T−3
P

ytxt

= 1
3βxβy+βxγyλ

+
y +βyγxλ

+
x +γxγy

h
1
3 (1− λu)

3
+ 1

2 (1− λu)
2
λd

i
+Op(T

−1).

To prove the third part, we writeP
z2t = β2z

P
t2 + γ2z

P
DT 2zt + 2βzγz

P
DTztt+Op(T

2),

whereP
DT 2zt =

P(1−λz)T
1 t2 = 1

3(1− λz)
3T 3 +O(T 2).

Therefore,
T−3

P
z2t =

1
3β

2
z +

1
3(1− λz)

3γ2z + 2λ
+
z βzγz +Op(T

−1).
The last part can be proven as followsPT

t=1 tzt =
PT

t=1 t(µz + θzDUzt + βzt+ γzDTzt + uzt)

=
£
1
3βz +

1
3(1− λz)

3γz +
1
2γzλz(1− λz)

2
¤
T 3 +Op(T

2).
Therefore,
T−3

PT
t=1 tzt =

1
3βz + γzλ

+
z +Op(T

−1).

Proof of Theorem 1

Write the regression model yt = α1 + δ1xt + ut in matrix form:
y = Xβ + u

11



The vector of OLS estimators is defined as:bβ = (X 0X)−1X 0y =
h
T
P

x2t − (
P

xt)
2
i−1½Px2t

P
yt −

P
xt
P

xtyt
T
P

xtyt −
P

xt
P

yt

¾
Using results from lemma 1,½

T−1bα1bδ1
¾

p→
£¡
gx − d2x

¢¤−1½(gxdy − gdx)
(g − dxdy)

¾
≡
½
α1
δ1

¾
,

proving parts a) and b).
To prove c) and d) write the t-statistics as:

tα = bα1 hbσ2u(X 0X)−111

i−1/2
,

tδ =
bδ1 hbσ2u(X 0X)−122

i−1/2
,

and (X 0X)−1ii , the i
th diagonal element of (X 0X)−1, as

(X 0X)−111 =
T−3

P
x2t+op(1)

T−4
P

x2t−
P

zt
2
+op(1)

,

(X 0X)−122 =
T

T−4
P

x2t−
P

zt
2
+op(1)

.

Note also thatbσ2u = T−1
Pbu2t = T−1

P³
yt − bα1 − bδ1xt´2

= T−1
³P

y2t + bα21T + bδ21Px2t − 2bα1P yt − 2bδ1Pxtyt + 2bα1bδ1Pxt

´
.

Using lemma 1,
T−2bσ2u p→

¡
gy + δ21gx − 2δ1g

¢
+ 2(δ1dx − dy)α1 + α21 ≡ σ2u.

Thus,

T−1bα1 hT−2bσ2uT (X 0X)−111

i−1/2
= T−1/2bα1 hbσ2u(X 0X)−111

i−1/2
= Op(1),

andbδ1 hT−2bσ2uT 3(X 0X)−122

i−1/2
= T−1/2bδ1 hbσ2u(X 0X)−122

i−1/2
= Op(1).

The limits of these two expressions yield the formulae in c) and d).

Proof of Theorem 2

Write the regression model yt = α2 + β2t+ δ2xt + ut in matrix form:
y = Xβ + u

The vector of OLS estimators is bβ = (X 0X)−1X 0y, and we define

X 0X =

⎧⎨⎩a b c
b d m
c m n

⎫⎬⎭ ,

where
a = T , b =

PT
t=1 t =

1
2T

2 +O(T ), c =
PT

t=1 xt = dxT
2 +O(T ),

d =
PT

t=1 t
2 = 1

3T
3 + O(T 2), m =

PT
t=1 txt = ψxT

3 + O(T 2), n =
PT

t=1 x
2
t =

gxT
3 +O(T 2).

and

12



bβ = [det(X 0X)]−1

⎧⎨⎩dn−m2 cm− bn bm− cd
cm− bn an− c2 bc− am
bm− cd bc− am ad− b2

⎫⎬⎭
⎧⎪⎨⎪⎩
PT

t=1 ytPT
t=1 tytPT
t=1 xtyt

⎫⎪⎬⎪⎭
with
det(X 0X) = 2bcm+ adn− c2d− am2 − b2n

= 2
PT

t=1 t
PT

t=1 xt
PT

t=1 txt+T
PT

t=1 t
2
PT

t=1 x
2
t−
³PT

t=1 xt

´2PT
t=1 t

2

−T
³PT

t=1 txt

´2
−
³PT

t=1 t
´2PT

t=1 x
2
t ≡ detx = O(T 7)

Using results from lemma 1,

T−7 det(X 0X)
p→ ψx(dx − ψx) +

1
12gx −

1
3d
2
x

To prove parts a)-c) we derive expression for the numerators of bδ2, bα2, and bβ2
as follows:

numbδ2 = (bm− cd)PT
t=1 yt+(bc−am)

PT
t=1 tyt+(ad− b2)

PT
t=1 xtyt = O(T 7)

numbα2 = (dn−m2)
PT

t=1 yt+(cm−bn)
PT

t=1 tyt+(bm−cd)
PT

t=1 xtyt = O(T 8)

numbβ2 = (cm−bn)PT
t=1 yt+(an−c2)

PT
t=1 tyt+(bc−am)

PT
t=1 xtyt = O(T 7)

Using lemma 1 and the above definitions it is easy to show that

T−7numbδ2 p→ ( 12ψx −
1
3dx)dy + (

1
2dx − ψx)ψy +

1
12g

T−8numbα2 p→
¡
1
3gx − ψ2x

¢
dy +

¡
dxψx − 1

2gx
¢
ψy +

¡
1
2ψx −

1
3dx

¢
g

T−7numbβ2 p→
¡
dxψx − 1

2gx
¢
dy +

¡
gx − d2x

¢
ψy +

¡
1
2dx − ψx

¢
g

Combining these expression with that for det(X 0X) gives the results in a)-c).

To prove d)-f) write the t-statistics as:

tδ2 =
bδ2 hbη2u(X 0X)−133

i−1/2
,

tα2 = bα2 hbη2u(X 0X)−111

i−1/2
,

tβ2
= bβ2 hbη2u(X 0X)−122

i−1/2
,

and (X 0X)−1ii , the i
th diagonal element of (X 0X)−1, as

(X 0X)−133 =
T−4( 1

12T
4)+op(1)

T−7 detx+op(1)
,

(X 0X)−111 =
T−6 1

3

P
x2t−( T

t=1 txt)
2
+op(1)

T−7 detx+op(1)
,

(X 0X)−122 =
T−4

P
x2t−( T

t=1 xt)
2
+op(1)

T−7 detx+op(1)
.

Note also that

bη2u = T−1
Pbu2t = T−1

P³
yt − bα2 − bβ2t− bδ2xt´2

Using lemma 1,

13



T−2bη2u p→
¡
gy +

1
3β

2
2 + δ22gx − 2β2ψy − 2δ2g + 2β2δ2ψx

¢
+(β2+2δ2dx−2dy)α2+

α22 ≡ η2u.

Thus,

bδ2 hT−2bη2uT 3(X 0X)−133

i−1/2
= T−1/2bδ2 hbη2u(X 0X)−133

i−1/2
= Op(1),

T−1bα2 hT−2bη2uT (X 0X)−111

i−1/2
= T−1/2bα2 hbη2u(X 0X)−111

i−1/2
= Op(1),

bβ2 hT−2bη2uT 3(X 0X)−122

i−1/2
= T−1/2bβ2 hbη2u(X 0X)−122

i−1/2
= Op(1).

The limits of these expressions yield the formulae in d)-f).

Proof of Lemma 2

From the DGP (5) we haveP
zt = Tµz + θ1,z

P
DU1,zt+ ...+ θNz,z

P
DUNz,zt+ βz

P
t+ γ1,z

P
DT1,zt+

...+ γMz,z

P
DTMz,zt +

P
uzt

whereP
DUi,zt = (1−λi,z)T , and

P
DTi,zt =

P(1−λi,z)T
1 t = 1

2(1−λi,z)
£
(1− λi,z)T

2 + T
¤
.

Hence,P
zt =

1
2

h
βz +

PMz
i=1 (1− λi,z)

2
γi,z

i
T 2 +Op(T ),

and
T−2

P
zt =

1
2

h
βz +

PMz
i=1 (1− λi,z)

2
γi,z

i
+Op(T

−1).

To prove the second part we write, from the DGP (5)P
ytxt = βxβy

P
t2 + βx

P³PMy
i=1 γi,yDTi,ytt

´
+ βy

P³PMx
i=1 γi,xDTi,xtt

´
+P³PMy

i=1 γi,yDTi,yt
PMx

j=1 γj,xDTj,xt

´
+Op(T

2),
whereP

DTi,ztt =
(1−λi,z)TP

1
t(λi,zT + t) = λ+i,zT

3 +O(T 2),

P
DTi,ytDTi,xt =

(1−λu1,ij)TP
1

t[t+λd1,ijT )] =
h
1
3 (1− λu1,ij)

3
+ 1

2 (1− λu1,ij)
2
λd1,ij

i
T 3+

O(T 2).
Therefore,

T−3
P

ytxt
= 1

3βxβy+βx
PMy

i=1 γi,yλ
+
i,y+βy

PMx
i=1 γi,xλ

+
i,x+

PMy
i=1 γi,y

PMx
j=1 γj,xωij+Op(T

−1).

In order to obtain
P

x2t , we can simply replace yt by xt in
P

ytxt:
T−3

P
x2t =

1
3β

2
x + 2βx

PMx
i=1 γi,xλ

+
i,x +

PMx
i=1

PMx
j=1 γi,xγj,xυij +Op(T

−1).

14



Proof of Theorem 3

Write the regression model yt = α1 + δ1xt + ut in matrix form:
y = Xβ + u

The vector of OLS estimators is defined as:bβ = (X 0X)−1X 0y =
h
T
P

x2t − (
P

xt)
2
i−1½Px2t

P
yt −

P
xt
P

xtyt
T
P

xtyt −
P

xt
P

yt

¾
Using results from lemma 2,½

T−1bα1bδ1
¾

p→
h
∆2x − (∆x)

2
i−1½∆2x∆y −∆∆x

∆−∆x∆y

¾
≡
½
α1
δ1

¾
,

proving parts a) and b).
To prove c) and d) write the t-statistics as:

tα1 = bα1 hbσ2u(X 0X)−111

i−1/2
,

tδ1 =
bδ1 hbσ2u(X 0X)−122

i−1/2
,

and (X 0X)−1ii , the i
th diagonal element of (X 0X)−1, as

(X 0X)−111 =
T−3

P
x2t+op(1)

T−4
P

x2t−
P

xt
2
+op(1)

,

(X 0X)−122 =
T

T−4
P

x2t−
P

xt
2
+op(1)

.

Note also thatbσ2u = T−1
Pbu2t = T−1

P³
yt − bα1 − bδ1xt´2

= T−1
³P

y2t + bα21T + bδ21Px2t − 2bα1P yt − 2bδ1Pxtyt + 2bα1bδ1Pxt

´
.

Using lemma 2,
T−2bσ2u p→

¡
∆2y + δ21∆

2
x − 2δ1∆

¢
+ 2(δ1∆x −∆y)α1 + α21 ≡ σ2u,

And thus,

T−1bα1 hT−2bσ2uT (X 0X)−111

i−1/2
= T−1/2bα1 hbσ2u(X 0X)−111

i−1/2
= Op(1),bδ1 hT−2bσ2uT 3(X 0X)−122

i−1/2
= T−1/2bδ1 hbσ2u(X 0X)−122

i−1/2
= Op(1).

The limits of these expressions yield the formulae in c)-d).

Proof of Theorem 4

Write the regression model yt = α2 + β2t+ δ2xt + ut in matrix form:
y = Xβ + u

The vector of OLS estimators is bβ = (X 0X)−1X 0y, and we define

X 0X =

⎧⎨⎩a b c
b d m
c m n

⎫⎬⎭ ,

where
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a = T , b =
PT

t=1 t =
1
2T

2 +O(T ), c =
PT

t=1 xt = ∆xT
2 +O(T ),

d =
PT

t=1 t
2 = 1

3T
3 +O(T 2), m =

PT
t=1 txt = ΨxT

3 + O(T 2), n =
PT

t=1 x
2
t =

ΓxT
3 +O(T 2).

and

bβ = [det(X 0X)]−1

⎧⎨⎩dn−m2 cm− bn bm− cd
cm− bn an− c2 bc− am
bm− cd bc− am ad− b2

⎫⎬⎭
⎧⎪⎨⎪⎩
PT

t=1 ytPT
t=1 tytPT
t=1 xtyt

⎫⎪⎬⎪⎭
with
det(X 0X) = 2bcm+ adn− c2d− am2 − b2n

= 2
PT

t=1 t
PT

t=1 xt
PT

t=1 txt+T
PT

t=1 t
2
PT

t=1 x
2
t−
³PT

t=1 xt

´2PT
t=1 t

2

−T
³PT

t=1 txt

´2
−
³PT

t=1 t
´2PT

t=1 x
2
t ≡ detx = O(T 7)

Using results from lemma 2,
T−7 det(X 0X)

p→ Ψx(∆x −Ψx) + 1
12Γx −

1
3∆

2
x

To prove parts a)-c) we derive expression for the numerators of bδ2, bα2, and bβ2
as follows:
numbδ2 = (bm− cd)PT

t=1 yt+(bc−am)
PT

t=1 tyt+(ad− b2)
PT

t=1 xtyt = O(T 7)

numbα2 = (dn−m2)
PT

t=1 yt+(cm−bn)
PT

t=1 tyt+(bm−cd)
PT

t=1 xtyt = O(T 8)

numbβ2 = (cm−bn)PT
t=1 yt+(an−c2)

PT
t=1 tyt+(bc−am)

PT
t=1 xtyt = O(T 7)

Using lemma 2 and the above definitions it is easy to show that

T−7numbδ2 p→ ( 12Ψx −
1
3∆x)∆y + (

1
2∆x −Ψx)Ψy + 1

12Γ

T−8numbα2 p→
¡
1
3Γx −Ψ2x

¢
∆y +

¡
dxΨx − 1

2∆x

¢
Ψy +

¡
1
2Ψx −

1
3∆x

¢
Γ

T−7numbβ2 p→
¡
∆xΨx − 1

2Γx
¢
∆y +

¡
Γx −∆2x

¢
Ψy +

¡
1
2∆x −Ψx

¢
Γ

Combining these expression with that for det(X 0X) gives the results in a)-c).

To prove d)-f) write the t-statistics as:

tδ2 =
bδ2 hbη2u(X 0X)−133

i−1/2
,

tα2 = bα2 hbη2u(X 0X)−111

i−1/2
,

tβ2
= bβ2 hbη2u(X 0X)−122

i−1/2
,

and (X 0X)−1ii , the i
th diagonal element of (X 0X)−1, as

(X 0X)−133 =
T−4( 1

12T
4)+op(1)

T−7 detx+op(1)
,

(X 0X)−111 =
T−6 1

3

P
x2t−( T

t=1 txt)
2
+op(1)

T−7 detx+op(1)
,

(X 0X)−122 =
T−4

P
x2t−( T

t=1 xt)
2
+op(1)

T−7 detx+op(1)
.

Note also that

bη2u = T−1
Pbu2t = T−1

P³
yt − bα2 − bβ2t− bδ2xt´2
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Using lemma 2,

T−2bη2u p→
¡
Γy +

1
3β

2
2 + δ22Γx − 2β2Ψy − 2δ2Γ+ 2β2δ2Ψx

¢
+(β2+2δ2∆x−2∆y)α2+

α22 ≡ η2u.

Thus,

bδ2 hT−2bη2uT 3(X 0X)−133

i−1/2
= T−1/2bδ2 hbη2u(X 0X)−133

i−1/2
= Op(1),

T−1bα2 hT−2bη2uT (X 0X)−111

i−1/2
= T−1/2bα2 hbη2u(X 0X)−111

i−1/2
= Op(1),

bβ2 hT−2bη2uT 3(X 0X)−122

i−1/2
= T−1/2bβ2 hbη2u(X 0X)−122

i−1/2
= Op(1).

The limits of these expressions yield the formulae in d)-f).
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