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Abstract

Theoretical research on option valuation tends to focus on pricing the plain-vanilla European-style derivatives.
Du¢ e, Pan, and Singleton (2000) have recently developed a general transform method to determine the
value of European options for a broad class of the underlying price dynamics. Contrastingly, no universal
and analytically attractive approach to pricing of American-style derivatives is yet available. When the
underlying price follows simple dynamics, literature suggests using �nite di¤erence methods. Simulation
methods are often applied in more complicated cases. This paper addresses the valuation of American-style
derivatives when the price of an underlying asset follows the Heston model dynamics. The model belongs to
the class of stochastic volatility models, which have been proposed in the hope of remedying the strike-price
biases of the Black�Scholes formula. Option values are obtained by a variant of the Geske�Johnson scheme
(1984), which has been devised in the context of the Black�Scholes model. The scheme exploits the fact that
an American option is the limit of a sequence of �Bermudan� derivatives. The latter ones can be priced
recursively according to a simple formula, and iterations start from valuing a corresponding European-style
security. To implement the recursion, one needs to obtain the expected value of �Bermudan� prices in
the joint measure of the state variables of the model. Since the joint density must be, in turn, recovered by
inverting the joint characteristic function, an unmodi�ed Geske�Johnson algorithm implies a computationally
unfeasible multiple integration. To drastically reduce the cost of numerical integration, I suggest applying a
kernel-smoothed bivariate fast Fourier transformation to obtain the density function. Numerical accuracy of
the method is assessed by predicting option prices of the S&P 100 index options.

Keywords: American-style option, stochastic volatility model, Geske�Johnson scheme, characteristic
function inversion, fast Fourier transform
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1. Introduction

Theoretical research on option valuation tends to focus on pricing the plain-vanilla European-style derivatives.

Du¢ e, Pan, and Singleton (2000) showed that such options can be priced by transform methods whenever

the state vector (which includes functions of asset prices, unobserved volatilities, etc.) follows a multivariate

Gaussian-Poisson a¢ ne jump-di¤usion. As a result, for a wide class of pricing problems a general solution

method has been found.

Contrastingly, no universal and analytically attractive approach is yet available for the American-style

derivatives. Still, most traded equity and FX-rate derivatives are the American-style ones. Accurate and

e¢ cient pricing of such options is of a signi�cant practical value.

Stochastic volatility models have been proposed in the hope of remedying the strike-price biases in option

valuation by the Black�Scholes formula. A model due to Heston (1993) has received considerable attention

in the literature. Heston�s original method has been modi�ed and simpli�ed by other scholars to deliver a

very e¢ cient formula for the European-style puts. To price the American-style derivatives in the two-state-

variable setting of the model, authoritative sources (for instance, Wilmott, 2000) strongly suggest using the

�nite di¤erence (FD) schemes. FD methods, in which the partial di¤erential equation (p.d.e.) in the value

function of a derivative security is approximated and solved for the initial option price numerically, are very

popular among practitioners and in academia. Applications of FD schemes for the Heston dynamics are

available (e.g., Winkler, 2001).

A number of e¢ cient non-FD methods to price the American-style options have been proposed in the

context of the Black�Scholes model. A technique due to Broadie and Detemple (1996) is a smoothed binomial

scheme. The MacMillan�Barone-Adesi�Whaley approach relies on decomposing the value of an American-

style derivative into the value of a corresponding European-style option and early exercise premium. The

premium follows the fundamental p.d.e., which can be approximated by the 2nd -order ordinary di¤erential

equation that is solved analytically. The Geske�Johnson scheme (1984) exploits the fact that an American-

style option is the limit of a sequence of �Bermudan�derivatives. The latter ones can be priced recursively

according to a simple formula.

In this paper, I adapt the Geske�Johnson method to the dynamics of the Heston model. As an empirical

test of the numerical accuracy of this approach, I consider pricing of the American-style S&P 100 index

options (OEX).

The rest of the paper is organized as follows. In Section 2, I state the assumption of the model, which are

used in Section 3, to derive the p.d.e. in the value function of a derivative security. Section 4 proceeds at a slow

pace from an analytical solution for the joint characteristic function (ch.f.) of log-price and squared volatility
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to the speci�cs of a method of recovering their joint probability density function (p.d.f.): a kernel-smoothed

bivariate fast Fourier transformation (FFT). Relevant properties of the proposed kernel are analyzed in

the Appendix. Section 5 presents the �Bermudan� recursion formula and outlines the linear Richardson

extrapolation scheme. In Section 6, I describe the data, calibrate the parameters, provide illustrations for

two selected ch.f.�s and corresponding p.d.f.�s, and, lastly, present the results of option pricing. In Section 7,

I conclude.

2. Assumptions

I assume that the following conditions are true. The interest rate is constant and known. The direct costs-

of-carry and transaction costs are negligibly small.

The �nancial market is assumed to admit no arbitrage. At least one asset is traded at a strictly positive

price in all states of the world. Then, by the �rst fundamental theorem of asset pricing, there exists a measure

equivalent to the �natural�measure, under which the properly discounted asset prices are martingales. The

�nancial market need not be complete.

I will take for granted that under the equivalent martingale measure, P̂, the evolution of the underlying�s

price is described by the s.d.e.s:

dSt = (r � �)Stdt+
p
vtStdW1t; (1)

dvt = (�� �vt) dt+ 

p
vtdW2t: (2)

In equations (1) and (2) ; symbols have the following meaning. St stands for the underlying�s price at

time t. r � 0 and � � 0 represent the constant interest rate and (continuous) dividend rate, respectively.

vt is the unobserved state variable and
p
vt is referred to as �volatility�. Parameters �; �; 
 are non-

negative. fW1t;W2tgt�0 are standard Brownian motions on the probability space with �ltration mechanism�

;F ; fFtgt�0 ; P̂

�
. The Brownian motion processes are such that d hW1;W2it = �dt, where j�j < 1. In other

words, the evolution of the price is governed by two imperfectly correlated sources of risk.

As noted by Chernov and Ghysels (2000), a restriction 
2 � 2� must be imposed on the parameters in

s.d.e. (2). The restriction guarantees that vt stays in the open interval (0;1) almost surely.1

For simplicity, I assume that there exists a money-market fund with a (traded) share worth Mt =M0e
rt,

where M0 > 0. Mt may serve are the �numeraire� asset and P̂ may be referenced as the �risk-neutral

probability measure�.

1Chernov and Ghysels restate a result from Cox, Ingersoll, and Ross (1985, p. 391). The latter paper, in turn, refers to Feller
(1951).
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3. P.D.E.

There are three2 state variables in the model: observed St; unobserved vt, and observed t. Throughout, t

will stand for the current time, T will represent the time of expiration, and � = T � t will be referred to as

the �time to expiration�.

It will be more convenient to operate with a di¤erent set of state variables: observed st = lnSt, unobserved

vt, and observed � . Clearly, for �xed T there is a one-to-one correspondence between the two sets of state

variables.

Given equations (1) and (2), by Ito�s lemma:

dst =
�
r � � � vt

2

�
dt+

p
vtdW1t; (3)

dvt = (�� �vt) dt+ 

p
vtdW2t: (4)

It is reasonable to model the value function of a derivative security, D, as a function of the state vari-

ables, D = D (St; vt; t) = D (e
st ; vt; T � (T � t)) = D (st; vt; �). D is hypothesized to be twice continuously

di¤erentiable in (st; vt) and once continuously di¤erentiable in � .

Let u 2 (t; T ]. By the fundamental theorem, Ê
h
D(su;vu;T�u)

Mu
jFt
i
= D(st;vt;�)

Mt
: Taking u arbitrarily close

to t, Ê
h
dD(st;vt;�)Mt

jFt
i
= 0:

It follows that:

0 = Ê

�
d
D (st; vt; �)

Mt
jFt
�
= Ê

�
dD (st; vt; �)

Mt
� D (st; vt; �)

M2
t

dMtjFt
�
=

= M�1
t Ê [dD (st; vt; �)�D (st; vt; �) rdtjFt] : (5)

Expressing dD (st; vt; �) by Ito�s formula as:

dD =

= �D�dt+Dsdst +Dvdvt +
1

2
Dssd hsit +

1

2
Dvvd hvit +Dsvd hs; vit =

= �D�dt+Ds
h�
r � � � vt

2

�
dt+

p
vtdW1t

i
+Dv [(�� �vt) dt+ 


p
vtdW2t] +

+
1

2
Dssvtdt+

1

2
Dvv


2vtdt+Dsv�
vtdt:

2For methodological reasons, I prefer to treat time as a separate state variable. Clearly, it has a deterministic and trivial law
of motion.
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Taking expectation and simplifying equation (5) :

0 = �D� +Ds
�
r � � � vt

2

�
+Dv (�� �vt) + (6)

+Dss
vt
2
+Dvv


2 vt
2
+Dsv�
vt �Dr:

Provided that the assumption of continuous di¤erentiability holds and the initial (terminal) conditions

are well speci�ed, the value function of a derivative asset can be determined by solving p.d.e. (6). Epps

(2004b) shows how to obtain the solution for a special case of a European-style D : D (sT ; vT ; 0) = e
�sT . No

closed-form solution is available for an American-style derivative security.

4. Joint Density of (sT ; vT ) under P̂

4.1. Joint Ch.F.

Consider time u 2 (t; T ]. Let the conditional joint ch.f. of (sT ; vT ) be:

	(u) � Ê
h
ei(�1sT+�2vT )jFu

i
= 	(�1; �2; su; vu; T � u) :

Above, conditioning on just the three state variables su; vu; T � u vs. the whole information set Fu is

motivated by the Markovian property of Brownian motions.

By the tower property:

	(t) = Ê
h
ei(�1sT+�2vT )jFt

i
= Ê

h
Ê
h
ei(�1sT+�2vT )jFu

i
jFt
i
= Ê [	 (u) jFt] :

Therefore, taking u arbitrarily close to t, it follows that Ê [d	(t) jFt] = 0:

By Ito�s lemma:

d	(�1; �2; st; vt; �) = �	�dt+	sdst +	vdvt +
1

2
	ssd hsit +

1

2
	vvd hvit +	svd hs; vit :

Using equations (3) and (4), taking expectation, factoring out dt and simplifying, the conditional joint

ch.f. 	(�1; �2; st; vt; �) solves p.d.e.:

0 = �	� +	s
�
r � � � vt

2

�
+	v (�� �vt) + 	ss

vt
2
+ 	vv


2 vt
2
+ 	sv�
vt: (7)
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Let the trial solution be:

	(t) = 	 (�1; �2; st; vt; �) = exp [p (� ; �1; �2) + q (� ; �1; �2) vt + i�1st] ;

where p (� ; �1; �2) and q (� ; �1; �2) are complex-valued functions.

Obviously:

	�=	 = p� + q�vt; 	s=	 = i�1; 	v=	 = q;

	ss=	 = (i�1)
2
; 	vv=	 = q

2; 	sv=	 = i�1q:

Plugging these into (7), factoring out 	; and simplifying:

0 = [�p� + i�1 (r � �) + �q] + vt
�
�q� �

1

2
i�1 � �q +

1

2
(i�1)

2
+
1

2

2q2 + i�1�
q

�
:

Since p.d.e. (7) holds for all values of vt, it must be the case that functions p and q are the solution to

the system of ordinary di¤erential equations:

q� =
1

2

h
(i�1)

2 � i�1
i
+ [i�1�
 � �] q +

1

2

2q2;

p� = i�1 (r � �) + �q:

These equations are similar to the ones in Epps (2004b). However, the initial conditions are determined

by:

	(�1; �2; sT ; vT ; 0) = exp [i�2vT + i�1sT ] :

Therefore, q (0; �1; �2) = i�2 and p (0; �1; �2) = 0:

Solutions were obtained with Maple.3

Case 1. 
 6= 0:

Let:

A � A (�1) = 

2
�
1� �2

�
�21 +

�

2 � 2�
�

�
i�1 + �

2;

B � B (�1; �2) = �
�
i�1 � � �

p
A (�1) + 


2i�2

�
i�1 � � +
p
A (�1) + 


2i�2
:

3 In the most interesting case, 
 6= 0, Maple gives solution either in terms of trigonometric and inverse trigonometric functions
or in terms of hyperbolic functions with a non-closed-form expression for p (� ; �). The �trigonometric� solution is perfectly
acceptable, but is not convenient to program. I started with the �hyperbolic� solution and derived a closed-form expression for
p (� ; �).
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Then:

q (� ; �1; �2) =
1


2

"
� � �
i�1 �

p
A
Be�

p
A � 1

Be�
p
A + 1

#
:

p (� ; �1; �2) = �

�
r � � � ��




�
i�1 +

�


2

�
�� + �

p
A+ 2 ln

B + 1

Be�
p
A + 1

�
:

Caveat. This solution is valid for (�1; �2)
0 6= (0; 0)

0. Given the trial solution for 	 and the de�nition

of a ch.f., it must be the case that q (� ; 0; 0) = p (� ; 0; 0) = 0, 8� . I check that the above expressions

for q (� ; �1; �2) and p (� ; �1; �2) do not contradict the uniform continuity property of 	, that is, whether

lim(�1;�2)0!(0;0)0 q (� ; �1; �2) = lim(�1;�2)0!(0;0)0 p (� ; �1; �2) = 0 :

lim
(�1;�2)

0!(0;0)0
q (� ; �1; �2) =

1


2

"
� �

q
�2
e�
p
�2 � lim 1=B (�1; �2)

e�
p
�2 + lim1=B (�1; �2)

#
=

=
1


2
[� � �] = 0;

lim
(�1;�2)

0!(0;0)0
p (� ; �1; �2) =

�


2

"
�� + �

q
�2 + 2 ln

1 + lim 1=B (�1; �2)

e�
p
�2 + lim1=B (�1; �2)

#
=

=
�


2
�
�� + �� � 2 ln e��

�
= 0;

because lim(�1;�2)0!(0;0)0 B (�1; �2) = �
���

p
�2

��+
p
�2
= 1, if � > 0 (it is straightforward to extend the proof

to the subcase � = 0).

Case 2. 
 = 0; � > 0.

q (� ; �1; �2) =
1

2�

�
e���

�
�21 + i�1 + 2�i�2

�
� �21 � i�1

�
;

p (� ; �1; �2) = � (r � �) i�1 �
�

2�

�
2
�
e��� � 1

�
i�2 + �i�1 + ��

2
1

�
�

�
�
�
e��� � 1

�
2�2

�
�21 + i�1

�
:

Case 3. 
 = � = 0:

q (� ; �1; �2) = ��
2

�
�21 + i�1

�
+ i�2;

p (� ; �1; �2) = � [r � �] i�1 �
��

4

�
�
�
�21 + i�1

�
� 4i�2

�
:

Black�Scholes obtains with 
 = � = � = 0 and p (� ; �1; �2) = � [r � �] i�1.
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4.2. Mathematical Issues

4.2.1. Multivariate Ch.F. and Inversion Theorem

Let X = (X1; :::; Xp)
0 be a p � 1 random vector with c.d.f. FX and consider arbitrary � 2 <p. The ch.f. of

X is the Fourier transform of FX:

	X (�) =

Z
� � �
Z
<p
ei�

0XdFX:

Now, suppose that X has a density function fX. If 	X is Lebesgue integrable (	X 2 L1 (<p)), then, by

the inversion theorem:

fX (x) =
1

(2�)
p

Z
� � �
Z
<p
e�i�

0x	X (�) d�:

Further extensions are considered in Shephard (1991a) and Shephard (1991b).

4.2.2. Riemann�Lebesgue Lemma

Suppose that X has a density function fX. Since the density function is nonnegative, then, fX = jfXj, and

since it integrates to 1 on <p, fX 2 L1 (<p). Then, by the multivariate extension of the Riemann�Lebesgue

lemma in Rudin (1991, theorem 7.5), its Fourier transform, 	X, belongs to C0 (<p) ; where C0 (<p) is the

supremum-normed Banach space of all complex continuous functions on <p that vanish at in�nity.

A precise statement of this important fact is that for any � > 0 there exists a compact subset K� in the

domain # such that j	X (�)j < � for any � 2 # nK�. In particular, 	X 2 C0 (<p) implies:

lim
any �!1

	X (�) = 0 + i � 0; (8)

as a sequence of vectors with at least one exploding component cannot be contained in any compact set.

Moreover, k	Xk1 � kfXk1, where kgkr =
n
(2�)

� p
2
R
���
R
<p jgj

r
dx
o 1

r

, 1 � r < 1 (and for r = 1 it is

the essential supremum of jgj � (2�)
� p

2 ).4 kfXk1 is a �nite number, (2�)
� p

2 . Then, 	X 2 L1 (<p), which,

unfortunately, does not imply that 	X 2 L1 (<p).5

4.3. Joint P.D.F.

It is beyond the scope of this paper to establish restrictions on the underlying parameter vector,

c = (r; �; st; vt; � ; �; �; 
; �)
0, that guarantee absolute continuity of the random vector (sT ; vT ), that is, exis-

tence of the density per se. My best guess is that a rigorous proof would appeal to conditions under which

Ito processes are continuous semimartingales and, certainly, to the condition under which fvlgt�l�T � 0,

4Rudin integrates with respect to the normalized Lebesgue measure, mp, to preserve the symmetry of the Fourier forward
and inverse transformations.

5Relationship Lr (<p) � Ls (<p) when 0 < s � r � 1 does not hold for mp; since mp (<p) = +1:
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2 � 2�. Likewise, I do not undertake a research into the issue of which c makes 	X 2 L1 (<p). To proceed,

I make an assumption that the density exists and the ch.f. is Lebesgue integrable.

As noted above, given the closed-form expressions for p (� ; �1; �2) and q (� ; �1; �2), the analytical solution

for the conditional joint ch.f. is 	(�1; �2; st; vt; �) = exp [p (� ; �1; �2) + q (� ; �1; �2) vt + i�1st].

Fourier transforming 	, the joint density of (sT ; vT ) is:

f (sT ; vT ; st; vt; �) =
1

(2�)
2

1Z
�1

1Z
�1

e�i(�1sT+�2vT )	(�1; �2; st; vt; �) d�1d�2: (9)

For the sake of completeness, note that the argument vector of the joint ch.f. is � = (�1; �2)
0 and the

argument vector of the joint p.d.f. is x = (sT ; vT ). Both functions have the same parameter vector c (de�ned

above).

4.4. Numerical Integration

In what follows, the p.d.f. and ch.f. are denoted as f (sT ; vT ) and 	(�1; �2). e
�i(�1sT+�2vT ) � 	(�1; �2) will

be referred to as �the integrand function�.

The primary interest in implementing inversion (9) is whether there exists a compact subset such that��Re �e�i(�1sT+�2vT )	(�1; �2)��� is negligible on its complement. By specifying a rectangle that would encom-
pass this compact subset, (9) can be approximated by a de�nite Riemann integral.

Establishing that Re
�
e�i(�1sT+�2vT )	(�1; �2)

�
vanishes at in�nity is fairly easy, provided that f (sT ; vT )

exists. Apparently:

���Re he�i(�1sT+�2vT )	(�1; �2)i��� �qRe �e�i(�1sT+�2vT )	(�1; �2)�2 (10)

�
q
Re
�
e�i(�1sT+�2vT )	(�1; �2)

�2
+ Im

�
e�i(�1sT+�2vT )	(�1; �2)

�2 �
�
���e�i(�1sT+�2vT )	(�1; �2)��� = ���e�i(�1sT+�2vT )��� � j	(�1; �2)j = j	(�1; �2)j :

Since 	(�1; �2) vanishes by the Riemann�Lebesgue lemma, Re [�] vanishes as well.

Therefore, if a1; b1; a2; b2 are �large� in absolute value: a1 < 0; b1 > 0; a2 < 0; b2 > 0, then, a valid

approximation is:

f (sT ; vT ) �=
1

(2�)
2

b2Z
a2

b1Z
a1

Re
h
e�i(�1sT+�2vT )	(�1; �2)

i
d�1d�2.

The integrand function may approach zero at di¤erent rates in each direction. Given the expressions

for A, B, p, and q, it is very likely that the integrand goes to zero faster in �1 direction. This has direct

implications for numerical integration: the cuto¤ points may be chosen such that: ja1j < ja2j and jb1j < jb2j.
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A choice of some particular cuto¤ points is case dependent.

The integrand function may exhibit periodicity, as it can always be rewritten in terms of sines and cosines.

Implications of this fact are explored in detail later.

4.5. FFT

Numerical integration of complicated bivariate functions is computationally demanding. Fortunately, (9) is

a Fourier integral. It may be possible to apply very e¢ cient FFT algorithms.

A symmetric Fourier transform pair of bivariate functions is:

f (x; y) =

1Z
�1

1Z
�1

F (kx; ky) e
�i�2�(xkx+yky)dkxdky;

F (kx; ky) =

1Z
�1

1Z
�1

f (x; y) ei�2�(kxx+kyy)dxdy:

FFT algorithms are applied to a discrete version of the above relationship.

Returning to equation (9), the goal is to approximate (2�)2 f (sT ; vT ) as
b2R
a2

b1R
a1

e�i(�1sT+�2vT )	(�1; �2) d�1d�2;

where the cuto¤ points are su¢ ciently large in absolute value. De�ne:

�1 =
b1 � a1
N1

; �2 =
b2 � a2
N2

;

�j1 = a1 + j1�1; �j2 = a2 + j2�2; 	j1;j2 = 	
�
�j1 ; �j2

�
; j1 = 0; :::; N1; j2 = 0; :::; N2:

Then:
b2Z
a2

b1Z
a1

e�i(�1sT+�2vT )	(�1; �2) d�1d�2
�= �1�2

N2�1X
j2=0

N1�1X
j1=0

e�i(sT �j1+vT �j2)	j1;j2 :

Now, de�ne:

sT;k1 =
2�k1
N1�1

=
2�k1
b1 � a1

, vT;k2 =
2�k2
N2�2

=
2�k2
b2 � a2

;

where k1 and k2 are on the same grid as j1 and j2, respectively.

Then:

(2�)
2
f (sT;k1 ; vT;k2)

�= �1�2
N2�1X
j2=0

N1�1X
j1=0

e�i(sT;k1�j1+vT;k2�j2)	j1;j2 =

= �1�2e
�i(sT;k1a1+vT;k2a2)

N2�1X
j2=0

N1�1X
j1=0

e
�i�2�

�
k1

j1
N1
+k2

j2
N2

�
	j1;j2 :

The double summation term is by de�nition a discrete Fourier transform, for which FFT algorithms are
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available.

As noted by Press et al. (1992, p. 578), this approximation is apt to be imprecise. The sources of the

innacuracy are the possible error of truncation (if the function is not negligibly small at the cuto¤ boundary),

and the periodicity of the integrand function.

The �rst criticism does not apply as the property of vanishing at in�nity has been established for the

integrand function. The second criticism does apply, however. Numerical integration of oscillatory functions

is a painstaking and often unsuccessful endeavor.

One possible way to mitigate the problem is to do kernel smoothing. I extend Press et al. solution to the

bivariate case. Interpolate 	(�1; �2) as follows:

	(�1; �2)
�=

N2X
j2=0

N1X
j1=0

	j1;j2K

�
�1 � �j1
�1

;
�2 � �j2
�2

�
+ (11)

X
j1;j22fendpointsg

	j1;j2Kj1;j2

�
�1 � �j1
�1

;
�2 � �j2
�2

�
;

where K
�
�1��j1
�1

;
�2��j2
�2

�
is the kernel function and Kj1;j2

�
�1��j1
�1

;
�2��j2
�2

�
is the di¤erence between the

true kernel function at endpoints and K (�; �).

Since the cuto¤ points are su¢ ciently large in absolute value, 	j1;j2 for j1; j2 2 fendpointsg is negligibly

small. So, the second summation in (11) may be ignored.

Now, apply
b2R
a2

b1R
a1

e�i(�1sT+�2vT )d�1d�2 to both sides of (11):

b2Z
a2

b1Z
a1

e�i(�1sT+�2vT )	(�1; �2) d�1d�2
�=

b2Z
a2

b1Z
a1

e�i(�1sT+�2vT )
N2X
j2=0

N1X
j1=0

	j1;j2K

�
�1 � �j1
�1

;
�2 � �j2
�2

�
d�1d�2 =

=

N2X
j2=0

N1X
j1=0

24 b2Z
a2

b1Z
a1

e�i(�1sT+�2vT )K

�
�1 � �j1
�1

;
�2 � �j2
�2

�
d�1d�2

35	j1;j2 :
Change variables as

�1��j1
�1

= x,
�2��j2
�2

= y :

(2�)
2
f (sT ; vT ) �= �1�2W (�sT ; �vT )

N2X
j2=0

N1X
j1=0

e�i(sT �j1+vT �j2)	j1;j2 ;

where W (�sT ; �vT ) =

"
b2R
a2

b1R
a1

e�i(�sT x+�vT y)K (x; y) dxdy

#
, �sT = �1sT , �vT = �2vT . An important fact

10



to notice is that the weighting function W (�sT ; �vT ) must be real and nonnegative.

Then, at sT;k1 =
2�k1
N1�1

, vT;k2 =
2�k2
N2�2

:

(2�)
2
f (sT;k1 ; vT;k2)

�= �1�2W
�
�sT;k1 ; �vT;k2

� N2X
j2=0

N1X
j1=0

e�i(sT;k1�j1+vT;k2�j2)	j1;j2
�=

�=W
�
�sT;k1 ; �vT;k2

�
�1�2

N2�1X
j2=0

N1�1X
j1=0

e�i(sT;k1�j1+vT;k2�j2)	j1;j2 =

=W
�
�sT;k1 ; �vT;k2

�
�1�2e

�i(sT;k1a1+vT;k2a2)
N2�1X
j2=0

N1�1X
j1=0

e
�i�2�

�
k1

j1
N1
+k2

j2
N2

�
	j1;j2 :

It remains to propose a kernel function and derive W (�sT ; �vT ).

My suggestion is to use a simple kernel function of the form:

K (x; y) =

8><>:
(1�jxj)2(1�jyj)2

x2y2+x2(1�jyj)2+(1�jxj)2y2+(1�jxj)2(1�jyj)2 ; if both jxj � 1 and jyj � 1 :

0; elsewhere.

Properties of K (x; y) are discussed in the Appendix. It turns out that the weighting function does not

have a closed-form expression. However, W (�sT ; �vT ) can be approximated with arbitrary precision.

5. Geske�Johnson Scheme with Richardson Extrapolation

Consider a sequence of �Bermudan�-style derivative securities,

fDn (st; vt; T � t)g1n=1, where each Dn can be exercised just at times tj = t + j(T�t)
n ; j = 1; :::; n, prior

to expiration at T . An American-style option is the limit of the sequence. D1 is the value of a corresponding

European-style derivative.

If EX (st0 ; vt0 ; T � t0) is the exercise value of the security at t0, then, Dn�s obey the following recursion:

Dn (st; vt; T � t) = (12)

= e�r(t1�t)Ê [max fEX (st1 ; vt1 ; T � t1) ; Dn�1 (st1 ; vt1 ; T � t1)g] :

For a put, EX (st0 ; vt0 ; T � t0) = (X � est0 )+ and for a call, EX (st0 ; vt0 ; T � t0) = (est0 �X)+. X denotes

the strike price. Equation (12) is similar to (7:7) in Epps (2004a).

Next, de�ne:

hn =
T � t
n

, n = 1; 2; :::

11



Derivative security Dn can be represented as a polynomial of in�nite order in hn :

Dn = a0 + a1hn + a2h
2
n + � � � :

Clearly, D1 = a0 and its linear approximation is:

D1 �= a0 + a1h1

D2 �= a0 + a1h2

=) D1 �=
h2D1 � h1D2
h2 � h1

= 2D2 �D1: (13)

As noted, D1 can be obtained as the value of the corresponding European-style option. D2 can be calcu-

lated from recursion (12). This task is su¢ ciently di¢ cult per se, so, quadratic or higher order approximations

for D1 are not feasible.

6. Empirical Application

6.1. Data

The tools developed in the preceding sections are used to predict prices of S&P 100 index options.

The S&P U.S. 100, a subset of the S&P 500, is comprised of 100 leading U.S. stocks, which together

represent almost 45 percent of the market capitalization of the U.S. equity market. As of June 2004, the

5 largest companies included were: General Electric, Exxon Mobil Corp., Microsoft Corp., P�zer Inc., and

Citigroup Inc. The S&P 100 index was originally developed by the CBOE and later transfered to Standard

& Poor�s for management.

The CBOE o¤ers three distinct options on S&P 100. Two of these have relevance to this paper. The

most popular one is the American-style S&P 100 index option, commonly known by its ticker OEX. As a

rule, on each trading day, OEX puts and calls have high trading volumes and open interest for a wide range

of strikes.

Less popular, but still actively traded at CBOE is the European-style S&P 100 index option, ticker

XEO. Both OEX and XEO are cash-settled, and apart from the di¤erence in the exercise style, share same

characteristics (exercise dates, minimal strike intervals, minimum ticks, etc.).

I collected closing CBOE prices of both OEX and XEO on 7 consecutive trading days: June 30th �July

2nd , July 6th �July 9th . Only options with positive trading volume and open interest are used in estimations.

July 9th data is set aside for out-of-the-sample predictions.

As a proxy for the risk-free interest rate I use the T-bill rate. Rates for di¤erent times to maturity are

obtained by interpolation: linear OLS �t to the whole set of T-bill quotes reported in the Wall Street Journal

12



(R2 is above 90 percent). These interpolated rates range from 1 percent to 1.5 percent (annual).

Unlike S&P 500, S&P 100 index futures are not traded at organized exchanges. Therefore, an independent

source of data on the dividend rate is not available. Standard & Poor�s routinely collects data related to the

performance of its indices and publishes dividend rates once a month. However, these rates are the ex-post

ones, which are apt to diverge from the daily market�s assessment of the future dividend streams. Therefore,

I employ the data on the European-style S&P 100 index options to infer dividend rates from the European

put-call parity relationship, Ct�Pt = Ste��(T�t)�e�r(T�t)X. To obtain �, I always take XEO calls and puts

with high trading volume and open interest at a strike price closest to the underlying�s price. Interpolated

dividend rates range from 1 percent to 4 percent (annual).

Since XEO options are used to calibrate the parameters only, I converted XEO calls into puts according

to the parity relationship. A summary of the option data is presented in Tables 1 and 2.6

6.2. Parameter Calibration

In principle, there are several ways to obtain the parameters of the model. A direct and analytically appealing

approach is to use the underlying�s price data only (together with �known� r and �) and estimate the

parameters by maximum likelihood.

However, for several reasons, I do not dare to use MLE. First, even if vt were observable for every t

corresponding to the sample time-series data points, sample likelihood may be computationally prohibitive

to evaluate just for one trial set of parameters. In present context, the sample likelihood function is the

joint density of a series of random vectors (st; vt)
0. A well-known technique from the time-series analysis is

to represent this density as a product of conditional densities. Each of these would have the form speci�ed

by equation (9), as it is su¢ cient to condition on the most recent previous values of the state variables.

Therefore, in analytical terms, sample likelihood presents no di¢ culty. Nevertheless, numerical integration

in (9) is computationally demanding and must be performed as many times as there are data points in the

sample. Further parameter search would require this whole task to be repeated iteratively, until the maximum

of the sample likelihood is achieved.

Second, in reality the state variable vt is not observed. Still, it is a necessary component in the option

pricing formula. The combined task of simultaneously estimating vt series and maximizing the sample

likelihood is, indeed, daunting.

An approach to recovering vt series has been suggested by Chernov and Ghysels (2000). Their �lter-

ing method is based on the reprojection procedure introduced by Gallant and Tauchen (1998).7 Chernov

6S&P U.S. 100 index closing prices were: 553.87 (June 30), 549.01, 547.17, 543.33, 544.25, 540.21, and 542.63 (July 9).
7�Reprojecting partially observable systems with application to interest rate di¤usions,� Journal of American Statistical

Association 93, 10�24.
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and Ghysels claim that other existing �ltration schemes (extensions of Kalman �lter) cannot accommodate

derivative security market information.

Unmodi�ed MLE is, clearly, not feasible. To my best knowledge, attempts are being undertaken elsewhere

to reduce the computational burden of the Fourier inversion (e.g., by approximating the integrand function

with an easy-to-integrate function, by using quasi-Monte-Carlo integration schemes, etc.).

I take a di¤erent route by literally calibrating, rather than estimating, the parameters. This is done by

minimizing the sum of squared di¤erences of actual XEO put prices and their corresponding predicted values

on June 30th through July 8th data (134 options). As the parameters are speci�c to the price evolution of

the underlying asset, there is no need to use OEX data at this stage.

Since volatility is changing from day to day, the objective function, SSQR, is treated as dependent on ten

parameters: vt;01; vt;02; vt;03; vt;04; vt;05; vt;06; �; �; 
; �. Parameters �; �; 
; � are common across all options.

Parameters vt;## are �day-speci�c�, that is, vt;01 is vt at market�s closingon June 30th ,..., vt;06 is vt at

market�s closing on July 8th .

Previous research has shown that the objective function is di¢ cult to minimize as local extrema abound.

Therefore, I use a relatively powerful, but resource consuming simulated annealing algorithm. The objective

function is set to a �penalty�value once the trial parameter set violates 
2 � 2�. The algorithm allows to

customize the lower and upper bounds for all parameters. For �, the bounds are set to theoretical �1 and 1.

For the remaining nine parameters, the bounds are practically unrestricted.

Optimal parameter values are presented in Table 3. A few facts are worth noting. First, in the optimum,

the restriction 
2 � 2� is non-binding. This important result guarantees that vt 2 (0;1) almost surely.

Second, estimated vt;##�s are of the same order of magnitude as the long-run value of v, �� . Third, calibrated

� < 0. Loosely speaking, this conforms to the empirical observation that the variance of log-returns is

inversely related to the initial price level. So, I conclude that the calibrated parameters make sense.

To make out-of-the-sample predictions, vt;07 (at market�s closing time on July 9th) is set to: vt;07 =

vt;06 + (�� �vt ;06)�t �= 0:015848, where �t = 1
366 .

6.3. Ch.F.

The shape of the integrand function, e�i(�1sT+�2vT ) � 	(�1; �2), has important implications for FFT. As a

rough illustration, consider Figures 1 and 2. In these Figures, I plot the real part of the integrand function

with parameters as of June 30. In view of result (10), for simplicity, I look at a special case of sT = vT = 0,

that is, when the integrand is identically the ch.f. Also, I restrict attention to just 2 values of � : a �small�

one, which corresponds to 1
2 of the time span (in years) between June 30 and 3

rd Friday of July, and a �large�

one, which stands for 1
2 of the time till 3

rd Friday of December.
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Re [	] is an even function with damped oscillations. Interestingly, for small � ; oscillations appear to be

more persistent and the function is still non-negligibly small at �1 = �300 and �2 2 (�300; 300) : For large

� , the integrand has a pronounced peak at (0; 0) and oscillations quickly fade out. The function approaches

zero at di¤erent rates in each direction. As predicted, the rate of convergence is slower in �2 direction.

Therefore, in FFT, the cuto¤ points may be chosen (and in Fortran programs are chosen) such that:

ja1j < ja2j and jb1j < jb2j. Moreover, for smaller � it is desirable to have relatively large cuto¤s (in absolute

value). For larger � , ja1j ; ja2j, jb1j ; jb2j may be much smaller, but �1 and �2 must be as tiny as possible to

�capture�the peak.

It should be evident that numerical integration of the integrand function is unlikely to succeed. My

experiments with di¤erent numerical integration routines reveal the following. Fast 5-degree polynomial

methods produce very innacurate results and large negative values for many choices of sT and vT . Quadrature

methods (Gauss-Kronrod with adaptive integration) usually fail to reach desired precision when the cuto¤

points are large in absolute value, even if the number of abscissae is high.8 Romberg integration routines are

reasonably accurate, but accuracy comes at a cost of very long time spans to compute integrals with desired

precision.

6.4. P.D.F.

Numerical integration of e�i(�1sT+�2vT ) � 	(�1; �2) to recover the p.d.f. of (sT ; vT )
0 under P̂ is impractical.

Accurate evaluation of the integral for just one point (sT ; vT )
0 takes a long time, and such evaluations must

be done (iteratively) for all points of a reasonably �ne grid of (sT ; vT )
0 to implement recursion (12).

Contrastingly, FFT allows to recover f (sT ; vT ) on the whole grid quickly in one step. While being

economical in terms of computational time, FFT places high demand on computer memory.

It is desirable to have relatively large (in absolute value) cuto¤ points and small step sizes, �1 and �2;

in (�1; �2)
0 grid. Since �1 = b1�a1

N1
; �2 =

b2�a2
N2

; the dimensions of the Fourier coe¢ cient matrix, 2N1 and

N2, are necessarily large.9 Worse, FFT algorithms require N1 and N2 to be powers of 2. This leaves little

leeway in choosing the step sizes �1 and �2; once the cuto¤s are set to values beyond which the integrand is

negligibly small. Note that the step sizes in (sT ; vT )
0 grid are 2�

b1�a1 and
2�

b2�a2 ; respectively; bounds of this

grid are: sminT = vminT = 0, and smaxT = 2�(N1�1)
b1�a1 ; vmaxT = 2�(N2�1)

b2�a2 .

Picking a �ner grid of (�1; �2)
0 implies at least doubling the size of the Fourier coe¢ cient matrix. Modern

32-bit computers theoretically cannot address arrays with more than 232 � 1 elements. In practice, Fortran
8A standard recommendation for oscillatory functions is to set this number to the maximum allowed by the algorithm.
9The Fourier coe¢ cients, 	j1;j2 , are complex numbers. The bivariate discrete complex FFT routine I use to program the

transformation stores an N1�N2 array of complex numbers as a 2N1�N2 array of real numbers: real parts are in odd-numbered
rows, imaginary parts are in even-numbered rows.
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compilers presently fail to allocate arrays that require memory in excess of 2GB. It can be shown that with

double precision number storage, the largest Fourier coe¢ cient matrix one can use is of size 2N1 � N2 :

N1 �N2 = 226.

FFT routines were compiled and run on the Birch Linux cluster at UVA. Each node of the cluster is a

double-Pentium IV 2.4GHz system with 2GB RAM. FFT program requires memory storage of slightly above

1GB, therefore, there is no need to use virtual memory and the transformation itself takes approximately 1

minute. Extra 2 minutes are needed to form a 226-element Fourier coe¢ cient matrix and to write out the

results: one round of FFT takes slightly more than 3 minutes in total. For comparison, one round of FFT

takes 6�8 minutes on the Aspen Linux cluster and over 25 minutes on the Unixlab cluster.

Each (2k1 + 1; k2 + 1)-indexed element of the inverse Fourier coe¢ cient matrix10 (normalized and smoothed

by (2�)�2�1�2W
�
�sT;k1 ; �vT;k2

�
) is f (sT;k1 ; vT;k2), the value of the p.d.f. corresponding to one particular

point in (sT ; vT )
0 grid.

There is no need to save and use the whole 226-element inverse coe¢ cient matrix. The p.d.f. converges

to 0 long before sT and vT attain their maximum grid values and long before sT goes all the way down to

the minimum grid value. For practical purposes of option pricing, it is more than su¢ cient to extract the

part of the matrix that covers: 5-times up and down movement of the underlying�s price ST = esT from

St and 4-times up and down movement of
p
vT from

p
vt. Resulting grids of (sT ; vT )

0 on average contain

800 � 120 elements. This extracted matrix needs to be processed to zero out very small negative values at

some levels of sT far from st; which infrequently occur because (�1; �2)
0 grid is bounded and imperfectly

�ne. Such negative values are always small in absolute value (on average, < �10�6) and negligibly small if

compared to the values of the p.d.f. around the peak (on order of +102): I also veri�ed that the imaginary

parts of the inverse Fourier coe¢ cients were close to zero (the imaginary part of the integrand function must

integrate out to zero by the inversion theorem).

As an illustration, consider Figures 3 and 4. In these Figures, I plot f (sT ; vT ) with parameters as of

June 30 for two di¤erent ��s: a �small� one, which corresponds to 1
2 of the time span (in years) between

June 30 and 3rd Friday of July, and a �large�one, which stands for 12 of the time till 3
rd Friday of December.

These p.d.f.�s are, in fact, used in pricing �Bermudan�options expiring in July and December that o¤er an

opportunity of an early exercise half-way to expiration. The p.d.f. is a unimodal function with a peak at

(sT ; vT ) = (st; vt). It has a long �tail� in vT direction. It is also evident that for smaller � , the function is

�concentrated�around the peak; for larger � , it is more �di¤use�. This result has an intuitive explanation:

one should be more uncertain about relatively distant future.

10Note that k1 = 0; :::; N1 � 1, k2 = 0; :::; N2 � 1 and recall that real parts of the coe¢ cients are stored in odd-numbered rows
and imaginary parts are in even-numbered rows.
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6.5. Pricing OEX Options

Once the joint p.d.f.�s are obtained, it is straightforward to program pricing of OEX options by Richardson

extrapolation (13). The two corresponding options are: D1, the value of a European-style derivative security,

and D2, the value of a �Bermudan�security with one intermittent exercise date at t1 (half-way to expiration).

In turn, D2 is calculated according to (12), where the integral, Ê [max f�g] ; is approximated in the simplest

non-adaptive way on the equispaced and �xed grid of (s; v).

On a Birch Linux cluster node, pricing of one option takes approximately 1 12 minutes (including the time

spent on reading-in a p.d.f. matrix from a corresponding saved �le).

Consider Table 4, where I report signed pricing errors of all traded OEX options that expire in September.

Pricing error is the di¤erence between the actual CBOE last sale value and its corresponding predicted value.

Clearly, a perfect �t can never be attained. Still, it is remarkable that with several layers of approximation,

pricing errors look more or less reasonable. For September-expiring options, instances when the absolute

pricing error is in excess of 2:00 are rare and most predicted option values do not deviate from CBOE last

sale values by more than 1:00. The method seems to underprice far out-of-the-money puts and deep-in-the-

money calls. Apart from that, it is hard to �nd a consistent trend in pricing errors across strikes. Out-of-

the-sample pricing errors (July 9th) are not particularly di¤erent from their in-the-sample counterparts (June

30th through July 8th).

To assess how pricing accuracy varies with the time to expiration, examine Table 5, where I report root

MSE�s for almost all traded OEX options that mature in 2004, by trading day and expiration month. There

is no clear indication that pricing errors decrease on average for options with longer maturities. On the

contrary, with two exceptions (July 7th and July 8th), predictions for December-expiring derivatives are

relatively coarse. Probably, one should expect the precision of the linear Richarson extrapolation to degrade

as the time to maturity of an American-style security increases. Overall,
p
MSE�s are of sensible magnitudes.

7. Conclusion

In this paper, I consider valuation of the American-style derivative securities when the price of an underlying

asset follows the dynamics of the Heston model. As a feasible alternative to popular FD techniques, I employ

a version of the Geske�Johnson scheme with linear Richardson extrapolation. The method requires knowledge

of the joint p.d.f. of the future log-price, s, and squared volatility, v, to price the �Bermudan�option with

one intermittent early exercise date half-way to expiration.

The joint p.d.f. can be recovered by inverting the corresponding joint ch.f. Unfortunately, the pro-

nouncedly oscillatory nature of the integrand function makes accurate bivariate numerical integration pro-
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hibitively costly in terms of computational time. Instead, I suggest that the joint ch.f. be inverted using

the FFT algorithm, and a kernel-smoothing scheme be used to mitigate the problem of precision loss. A

several orders of magnitude reduction in the time of the inversion, however, comes at a cost of dramatically

increasing demand for computer memory. A fast FT algorithm that would produce satisfactory results will

not be �fast�on an average modern PC. It is more e¢ cient to obtain p.d.f.�s separately on a server with large

RAM and use the results to price options on a, possibly, less powerful machine.

To assess the numerical accuracy of the method, I apply it to price all S&P U.S. 100 index options (�OEX�)

that expire in 2004 and are quoted at market�s closing on 7 consecutive trading days, starting with June 30th .

Parameters are calibrated on �XEO�options and July 9th data is set aside for out-of-the-sample predictions.

Pricing errors overall look reasonable and out-of-the-sample errors are not fundamentally di¤erent from the

in-sample ones. Still, the method tends to underprice out-of-the-money puts and predictions are relatively

coarse for options with �long�( 12 of the year) time to expiration. The latter result is, most likely, an artifact

of the degrading accuracy of the linear Richardson extrapolation.
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8. Appendix

8.A. Kernel Function

Let the kernel function be:

K (x; y) =

8><>:
(1�jxj)2(1�jyj)2

x2y2+x2(1�jyj)2+(1�jxj)2y2+(1�jxj)2(1�jyj)2 ; if both jxj � 1 and jyj � 1 :

0; elsewhere.

K (x; y) has the following desirable properties. First, it is symmetric and nonnegative.

Second, it reaches a max of 1 if both x = 0 and y = 0. Since x =
�1��j1
�1

, y =
�2��j2
�2

this implies a weight

of 1 in case (�1; �2) coincides with one interpolation point.

Third, since the grid of (�1; �2) is equispaced,K (x; y) will assign positive weights to at most 4 interpolation

points closest to (�1; �2).

Fourth, it can be veri�ed that:

1Z
�1

1Z
�1

K (x; y) dxdy =

1Z
�1

1Z
�1

K (x; y) dxdy = 1,

which establishes that K (x; y) is a valid kernel function. See Figure 5 for a graphical representation.

8.B. Weighting Function

By construction, W (�sT ; �vT ) =
b2R
a2

b1R
a1

e�i(�sT x+�vT y)K (x; y) dxdy: With the discussed choice of the kernel

function, this specializes as:

W (�sT ; �vT ) =

1Z
�1

1Z
�1

e�i(�sT x+�vT y)K (x; y) dxdy =

=

1Z
�1

1Z
�1

cos(�sT x+ �vT y)K (x; y) dxdy � i
1Z

�1

1Z
�1

sin(�sT x+ �vT y)K (x; y) dxdy =

=

1Z
�1

1Z
�1

cos(�sT x+ �vT y)K (x; y) dxdy:

W (�sT ; �vT ) may be evaluated in a number of ways. A direct approach is to approximate it by numerical

integration.

A better way is to exploit the properties of the cosine function. Taylor expanding cos(�sT x+ �vT y) and
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interchanging summation and integration:

W (�sT ; �vT ) =
1X
n=0

1Z
�1

1Z
�1

(�1)n [�sT x+ �vT y]
2n

(2n)!
K (x; y) dxdy:

Next, in the grid, �sT;k1 = �1sT;k1 =
2�k1
N1
; �vT;k2 = �2vT;k2 =

2�k2
N2
, then, on the rectangle of integration:

���sT;k1x+ �vT;k2 y�� � �sT;k1 jxj+ �vT;k2 jyj � �sT;k1 + �vT;k2 < 4�:
So,

����� 1R�1
1R
�1
[�sT x+ �vT y]

2n
K (x; y) dxdy

����� � 1R
�1

1R
�1
j�sT x+ �vT yj

2n
K (x; y) dxdy < (4�)

2n. (2n)! swamps

(4�)
2n at a fast rate: Of course, there will be additional attenuation due to the kernel function itself.

Therefore:

W (�sT ; �vT )
�= 1 +

NX
n=1

(�1)n

(2n)!

1Z
�1

1Z
�1

[�sT x+ �vT y]
2n
K (x; y) dxdy;

even for a moderate choice of N . Still, truncation at a very low N , may result in a negative value of W .

Closed-form expressions for the integrals are straightforward to derive and are not presented here to save

space. Some experimentation reveals that very accurate results for W are obtained for N = 8. This choice

also guarantees strict positivity of W for all �sT ; �vT 2 [0; 2�].
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Table 1: OEX Option Data: Summary
June 30 July 1 July 2 July 6 July 7 July 8 July 9

included puts, # 57 56 48 56 51 55 56
included calls, # 38 41 39 32 34 35 36
put (July expiring)
strike range

440-
570

450-
580

440-
570

450-
600

480-
600

480-
600

460-
565

call (July expiring)
strike range

500-
590

500-
595

510-
590

520-
580

520-
580

525-
580

525-
590

Table 2: XEO Option Data: Summary
June 30 July 1 July 2 July 6 July 7 July 8 July 9

included options, # 21 12 27 31 23 20 23
inferred by parity, # 10 2 9 12 10 8 9
option (July expiring)

strike range
510-
580

520-
575

520-
570

510-
585

525-
565

520-
555

520-
565
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Table 3: Calibrated Parameters
Parameter Value Parameter Value
vt;01 0.011392 � 0.353948
vt;02 0.010889 � 9.561292
vt;03 0.008932 
 0.763721
vt;04 0.016582 � -0.692404
vt;05 0.012725
vt;06 0.015280

Table 4: Pricing Errors: September Expiring OEX Options
June 30 July 1 July 2 July 6 July 7 July 8 July 9

St 553:87 549:01 547:17 543:33 544:25 540:21 542:63

X, type

400, put ::: ::: ::: ::: 0:116577 ::: 0:170837
420, put ::: ::: 0:467125 ::: ::: ::: :::
440, put 0:272164 0:365445 0:337645 ::: ::: ::: :::
450, put ::: ::: 0:578615 ::: 0:476928 0:448424 :::
460, put 0:477434 0:636137 ::: 0:555188 0:561046 0:419271 :::
480, put 0:233909 0:738647 ::: ::: 0:561046 ::: 0:926725
490, put ::: ::: 0:795218 ::: ::: ::: :::
500, put ::: 0:852520 0:544044 0:434873 0:339729 0:603371 0:735753
510, put 0:694260 0:274149 ::: ::: 0:101801 0:229474 0:419345
520, put -0:503378 -0:343453 0:302446 -0:048642 -0:521728 -0:126598 -0:174747
530, put -0:591617 ::: ::: 0:175511 -0:740207 -0:090279 0:525561
540, put -2:429237 -0:154515 -1:027132 -1:014578 -1:725362 ::: -0:131715
550, put -2:538264 0:520023 -0:366053 -0:103850 -0:295665 -1:805092 :::
560, put -1:522215 ::: ::: -1:752594 ::: 0:002115 -1:306124
580, put ::: -1:011618 ::: 0:074978 ::: ::: :::

500, call ::: 2:438584 ::: ::: ::: ::: :::
520, call ::: ::: ::: ::: ::: 3:296368 :::
530, call ::: ::: ::: 1:810402 3:058499 ::: :::
540, call 1:619276 ::: 1:490850 1:081886 2:824853 0:942793 1:105416
550, call 1:902790 1:470218 0:824900 ::: ::: 0:172171 0:736377
560, call 0:590900 -0:086137 0:518619 0:387300 1:983925 -0:040926 0:415623
570, call 0:673686 -0:082919 -0:062988 0:107370 0:934013 0:116647 0:351140
580, call 0:035720 -0:205257 0:191112 ::: 0:720421 0:001702 0:070248
590, call 0:028256 -0:161321 -0:078389 ::: ::: 0:109251 0:073845
600, call -0:202037 -0:190903 ::: ::: ::: ::: -0:075595

Table 5: RMSE�s: OEX Options, by Expiration Month and Trading Day
June 30 July 1 July 2 July 6 July 7 July 8 July 9

July 0:563594 0:729401 0:555327 0:640847 0:529694 1:097807 0:271871
August 1:316759 0:408102 0:490070 0:367468 0:686766 0:419591 0:311062

September 1:203947 0:849578 0:659790 0:878324 1:394570 1:029171 0:617068
October 0:442581 1:059348 0:551232 0:387529 1:425867 0:633056 0:563490
December 2:024635 2:129737 1:723453 1:578420 1:229747 0:984973 1:707936
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Figure 5: Kernel Function
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