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ABSTRACT. Long-range dependence in volatility is one of the most pnemt examples of ap-

plications in financial market research involving univérsawer laws. Its characterization has
recently spurred attempts to provide theoretical explanatof the underlying mechanism. This
paper contributes to this recent development by analyzsighple market fraction asset pricing
model with two types of traders—fundamentalists who tradehenprice deviation from esti-

mated fundamental value and trend followers who follow adrahich is updated through a
geometric learning process. Our analysis shows that trerdggneity, trend chasing through
learning, and the interplay of noisy processes and a statéegrdinistic equilibrium can be the

source of power-law distributed fluctuations. A statidtmaalysis based on Monte Carlo simu-
lations is conducted to characterize the long memory. Riaéstimates of the power-law decay

indices and the (FI)GARCH parameters are presented.
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1. INTRODUCTION

It is well known that (high-frequency) financial time sergfgre some common features, the
so called stylized factsjncluding excess volatility (relative to the dividends amuderlying
cash flows), volatility clustering (high/low fluctuationsedollowed by high/low fluctuations),
skewness, and excess kurtosis. Traditional economic asddatheory involving a representa-
tive agent and rational expectations has encountered gjféatilties in explaining these facts.
This has led to a rapidly increasing number of models inc@fing heterogeneous agents and
bounded rationality. These models characterize the dyssaiifinancial asset prices resulting
from the interaction of heterogeneous agents having éiffieaittitudes to risk and having differ-
ent expectations about the future evolution of pricésparticular, Brock and Hommes (1997,
1998) proposed aAdaptive Belief Systenmodel of economic and financial markets. A key
aspect of these models is that they exhibit feedback of theaations—the agents’ decisions
are based upon predictions of future values of endogenagiables whose actual values are de-
termined by equilibrium equations. The agents adapt thediets over time by choosing from
different predictors or expectations functions, basedupeir past performance. The resulting
nonlinear dynamical system is, as Brock and Hommes (1998MHanumnes (2002) show, capa-
ble of generating the entireooof complex behaviour from local stability to high order aysl
and chaos. They are also capable of explaining some of theestyfacts of financial markets.
It is very interesting to find that adaption, evolution, etgeneity, and even learning, can be
incorporated into the Brock and Hommes type of frameworksTi@mework can also give rise
to many rich and complicated dynamics and might lead to ataegtion and understanding of
market behaviout.

Among the stylized facts, volatility clustering and the derange dependence (i.e., hyper-
bolic decline of its autocorrelation function) has beereastvely studied since Ding, Engle

and Granger’s seminal paper in 1993. Recently, a number wérsal power lawshave been

1See, e.g., Pagan (1996) for a comprehensive discussioyliaéstfacts characterizing financial time series.
%See, e.g., Arthuet al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaro8g),Bullard and Duffy
(1999), Chen and Yeh (1997, 2002), Chiarella (1992), Daguaiet al. (1995), Day and Huang (1990), De Lorg
al. (1990), Farmer and Joshi (2002), Frankel and Froot (198¥i)(2002), LeBaron (2000, 2001, 2002), LeBaron
et al (1999), Lux (1995, 1997, 1998) and Lux and Marchesi )09

3See, e.g., Chiarella (1992), Chiare#iaal. (2002), Chiarella and He (2001, 2002, 2003), Gaunersd¢@f&00),
Hommes (2001, 2002) and De Grauwe and Grimaldi (2003) andenesf (2003).

*They include cubic power distribution of large returns, égmlic decline of return autocorrelation function,
temporal scaling of trading volume and multi-scaling offegmoments of returns.
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found to apply in financial markets. This has spurred attsrapt theoretical explanation and
the search for an understanding of the underlying mechanisisponsible for its presente.
This paper contributes to the development of this liteeatur

Various models have been developed to explain the power énaour. Among standard
textbooks on theoretical and empirical finance, GARCH prazesdroduced in Engle (1982)
model returns as a random process with a time-varying vegiavhich shows autoregressive
dependence. These models produce fat tails of the uncondlitdistribution and capture the
short-run dynamics of volatility autocorrelations. Howewvthe implied decay of the volatility
autocorrelation is exponential rather than hyperboliaddition, the models do not provide an
avenue towards an explanation of the empirical regularitie

As a consequence of rational bubble models, multiplicateehastic processes (with multi-
plicative and additive stochastic components) have beed tsexplain the power law behav-
iour (see Kesten (1973) and Lux (2004)). The power-law egpboan be determined from the
distribution of the multiplicative component, not the addi noise components. Unfortunately,
as shown by Lux and Sornette (2002), the range of the expoeeguired for the rational bubble
models is very different from the empirical findings. In aduh, the rational bubble models
share the conceptual problems of economic models fwity rational agents.

Herding models of financial markets have been developecctwrporate herding and conta-
gion phenomen&With a stripped down version of an extremely parsimoniousling model
with fundamentalists (who trade on observed mispricing) aaise traders (who follow the
mood of the market), Alfarano and Lux (2003) show that pricarnges are generated by either
exogenous inflow of new information about fundamentals alogenous changes in demand
and supply via the herding mechanism. The model is able tdyme relatively realistic time
series for returns whose distributional and temporal attarstics are astonishingly close to
the empirical findings. This is partly due to a bi-modal liimgt distribution for the fraction of
noise traders in the optimistic and pessimistic groups dividuals. It is also in part due to
the stochastic nature of the process leading to recurrattisyg from one majority to another

and the increase in volatility that will last until lock-ieaccurs. It is very interesting to know

SWe refer to Lux (2004) for a recent survey on empirical evisermodels and mechanisms of various financial
power laws.

6See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Mesc (1999), Cheret al. (2001), Aoki and
Yoshikawa (2002), and Alfarano and Lux (2003).
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that the corresponding dynamics of the underlying detestinmodel displays back and forth
movement through a Hopf bifurcation scenario (see Lux (JP95his is related to the so-called
on-off intermittency in physics. However, with the increas the population size, the law of
large numbers comes into effect and the intermittency ameeptaw statistics disappear.

As discussed earlier, the Brock and Hommes'’s framework anwhiious extensions are ca-
pable of explaining various market behaviours and impaorstylized facts. For example, a
mechanism of switching between predictors and co-existitrgctors is used in Gaunersdorfer
and Hommes (2000) to characterize the volatility clusggrifhe highly nonlinear determin-
istic system may exhibit co-existence of different typesatifactors and adding noise to the
deterministic system may then trigger switches between &l high-volatility phases. Their
numerical simulation shows quite satisfactory statidbesveen the simulated and actual data.
Compared to the herding mechanism, Brock and Hommes’s frarkeallows an infinite pop-
ulation of speculators. However, like most of the analytiveterogeneous agent literature,
the comparison with empirical records is mainly based ugenal inspection, or upon a few
realizations of the model. A formal investigation of thefeliEnces between the time series
properties of the heterogeneous agent models and the rel, waluding the estimation of
power law indices, is still lacking.

Overall both the herding and switching models discussedehave shown their potential
to explain the power-law behavior. To generate realistieetseries, some kind of intermittent
dynamics and self-amplification of fluctuations via herdargechnical trading are necessary.
As pointed out by Lux (2004)pne of the more important problems of these models is the
relationship between system size, deterministic forcesstochastic elementderding (and
simulation) models suffer from a critical dependence ofrtinéceresults on the size of agent
population, while switching models suffer from a criticapkndence on the size of the noise.
In this paper, we study the market fraction (MF) model esshleld in He and Li (2004). By ex-
amining the relationship between system size, deternarigices, and stochastic elements, we
find that the MF model provides a mechanism to address therdawebehavior and the results

do not disappear by a law of large numbers. This is the maitribotion of the paper. This

For the switching model of Gaunersdorfer and Hommes (2@B8)stochastic movement between the co-existing
(locally stable) steady state and limit cycle of the deteistic system is indeed the mechanism in generating
realistic time series. However, the noise level has to besagll in a way to counterbalance the deterministic core
of their market dynamics. Very often, finding co-existenqailtbria and the right noise level can be difficult.



LONG MEMORY, HETEROGENEITY, AND TREND CHASING 5
mechanism shares the same spirit of the herding and switchechanisms but in a different
and much simpler way.

The MF model is a simple stochastic asset pricing model, g two types of traders
(fundamentalists and trend followers) under a market msgenario. He and Li (2004) aims to
explain various aspects of financial market behaviour atabsh connections between the sto-
chastic model and its underlying deterministic systemhdivgs that the long-run behaviour of
asset prices, wealth accumulations of heterogeneoustyathategies, and the autocorrelation
structure of the stochastic system can be characterizetelyynamics of the underlying deter-
ministic system, the parameters driving traders’ behavaod the market fraction. In particular,
a statistical analysis shows that convergence of markee po fundamental value, long- and
short-run profitability of the two trading strategies, suability of chartists and various under-
and over-reaction autocorrelation patterns can be exgidny the stability and bifurcations of
the underlying deterministic system.

This paper builds on He and Li (2004) and reveals the poteoftine MF model to explain
some of the stylized facts of financial markets. Focusinghenléng memory characteristics,
essentially, we show that heterogeneity, trend chasirgugir learning, and the interplay of a
stable deterministic equilibrium and stochastic noisycpsses can be the source of power-law
distributed fluctuations. This is further verified via a Mer€arlo simulation and a statisti-
cal analysis on the decay patterns of autocorrelation fomgtof returns, squared returns and
absolute returns, and the estimates of (F)\GARCH ) parameters.

The remainder of the paper is organized as follows. Secti@vidws the MF model estab-
lished in He and Li (2004). Section 3 is devoted to a discumssio the potential generating
mechanism of the power-law behavior. In Section 4 we esértta autocorrelation of returns,
squared returns and absolute returns and (FI)GARCH(1, 1hyeeas for the Standard & Poor
500 (hereafter S&P 500) stock market daily closing priceeiydvhich we use to represent the
real world. The long memory properties of the market fractiwodel and comparison with the

real world is analyzed in Section 5. Section 6 concludes.

2. THE MARKET FRACTION MODEL

The market fraction (MF) model is a standard discountedevalsset pricing model with

heterogeneous agents. It is closely related to the franlewbBrock and Hommes (1997,
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1998) and Chiarella and He (2002). We outline the model aret the readers to He and Li
(2004) for details.

Consider an economy with one risky asset and one risk fre¢ dsseassumed that the risk
free asset is perfectly elastically supplied at gross netdir? = 1 + /K, wherer stands for
a constant risk-free rate per annual dxdtands for the trading frequency measured in a Year.
Let P, be the price (ex dividend) per share of the risky asset attiamel{ D, } be the stochastic

dividend process of the risky asset. Then the wealth of &&ymvestork att + 1 is given by
Whit1 = RWhy + [Pis1 + Dipr — RP 2y, (2.1)

whereW),, and z,, are the wealth and the number of shares of the risky assehgsed of
investor# at ¢, respectively. LetE,, and 'V}, be the “beliefs” of typeh traders about the
conditional expectation and variance of quantitiestat based on their information set. Denote

by R, the excess capital gain on the risky assét-atl, that is
Rt+1 - Pt+1 + Dt+1 - RB (22)

Assume that traders have a constant absolute risk avefSA&iRA) utility function with the risk
aversion coefficient,, for type h traders (that i€/, (W) = — exp(—a;,W)) and their optimal
demand on the risky asset, are determined by maximizing their expected utility of weal
Then

Ep(Rit1)

= 2.3
CLth,t(RtH) ( )

Given the heterogeneity and the nature of asymmetric irdéion among traders, we con-

Zh,t

sider two popular trading strategies corresponding to fyes of boundedly rational traders—
fundamentalists and trend followers. Assume the marketitna of the fundamentalists and
trend followers is2; andn,, respectively. Letn = n, — ny € [—1,1].° Assume zero supply of
outside shares. Then, using (2.3), the aggregate excessdgrar investot, ; is given by

14+m El,t[Rt—i-l] 1—m E27t [Rt-l-l]

. 2.4
2 a1 Vig[Res] 2 agVou[Riy] (2:4)

Zetg =MN121t T NoZot =

8Typically, K = 1,12,52 and 250 for trading period of year, month, week and day, respegtivéb calibrate
the stylized facts observed from daily price movement inrfaial market, we seledk’ = 250 in our following
discussion.

9Obviously, m = 1,—1 corresponds to the case when all the traders are fundanseniahd trend followers,
respectively.
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To complete the model, we assume that the market is clearadriarket maker. The role of
the market maker is to take a long (when < 0) or short (wher, ; > 0) position so as to clear
the market. At the end of periad after the market maker has carried out all transactioner he
she adjusts the price for the next period in the directiorhefdbserved excess demand. Let
be the speed of price adjustment of the market maker (thiglsarbe interpreted as the market
aggregate risk tolerance). To capture unexpected market aespeculators’ excess demand,
we introduce a noisy demand tednwhich is an i.i.d. normally distributed random variable

with &; ~ N (0, 03). Based on those assumptions and (2.4), the market pricesisnlaed by

H by t[Rt+ﬂ Ey t[Rt—H] R
Po=P+2|(1+m—— (1 —m)— 2| 44, 2.5
=B )alvl,t[RtH] ( aVaiRina]] (25)
Now we turn to discuss the beliefs of fundamentalists anttfellowers.
Fundamentalists—Denote byF, = {P,, P,_1,--- ; Dy, D;_4, - - - } the common information

set formed at timeé. We assume that, apart from the common information setuth@aimental-
ists havesuperiorinformation on the fundamental valug,’, of the risky asset which is intro-
duced as an exogenous news arrival process. The fundamentddo realize the existence of
non-fundamental traders, such as trend followers intredu the following discussion. They
believe that the stock price may be driven away from the furetgal value in the short-run, but
it will eventually converge to the fundamental value in tbed-run. More precisely, we assume
that the relative returnf’,, /P; — 1) of the fundamental value follows a normal distribution,

and hence
P} = P14 o0&, & ~ N(0,1), . >0, Pr=P>0, (2.6)

whereé, is independent of the noisy demand proc&ssThis specification ensures that nei-
ther fat tails nor volatility clustering are brought aboytthe exogenous news arrival process.
Hence, emergence of any autocorrelation pattern of therretiithe risky asset in our later

discussion would be driven by the trading process itsetherathan news. We assume the

conditional mean and variance of the fundamental traddisifo

Eri(Po1) =P+ a(Pr, —P),  ViyfPy) =0 (2.7)
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whereo? stands for a constant variance on the price. Here parametel, 1] is the speed of
price adjustment of the fundamentalist toward the funddaiemalue. It measures how fast the
fundamentalists think the price converges to the fundaahematue, and their confidence level
in the fundamental value. In particular, far= 1, the fundamental traders are fully confident
about the fundamental value and adjust their expected ptioext period instantaneously to
the fundamental value. Far = 0, the fundamentalists become naive traders.

Trend follower s—Unlike the fundamental traders, trend followers are tézddriraders who
believe the future price change can be predicted from vanatterns or trends generated from
the historical price. The trend followers are assumed toapxlate the latest observed price
change over a long-run sample mean price and to adjust thgance estimate accordingly.

More precisely, their conditional mean and variance ararassl to satisfy
Ey4(Pig1) = P+ (P — ), Voi(Pig1) = o3 + bauy, (2.8)

wherey, by > 0 are constants, angd andv, are sample mean and variance, respectively, which
may follow some learning processes. The parameteeasures the extrapolation rate and high
(low) values ofy correspond to strong (weak) extrapolation from the treridvi@rs. The co-
efficientb, measures the influence of the sample variance on the camalitrariance estimated
by the trend followers who believe in more volatile price raments. Various learning schemes

can be used to estimate the sample mgaand variance;. Here we assume that

Uy = 5Ut_1 + (1 - 5)Pt, (29)

vy = vy +6(1 = 0)(F — ut—l)Qv (2.10)

whered € [0, 1] is a constant. This process on the sample mean and variaacknigting
process of geometric decay processen the memory lag length tends to infinity. Basically,
a geometric decay probability proceds— §){1,4, 42, --- } is associated to the history prices
{P,, P,_1, P,_s,--- }. The parametes measures the geometric decay rdtd.he selection of
this process is two fold. First, traders tend to put a higlgiveio the most recent prices and less
weight to the more remote prices when they estimate the sam@an and variance. Secondly,

we believe that this geometric decay process may contributertain autocorrelation patterns,

O0r§ = 0, the sample meam; = P;, which is the latest observed price, while= 0.1, 0.5, 0.95 and0.999 gives
a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, resedet
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in particular the long memory feature observed in real firmoarkets. In addition, it has the
mathematical advantage of tractability.

To simplify our calculation, we assume that the dividenctpssD; follows D, ~ N (D, 0%),
the expected long-run fundamental valBe= (R — 1)D, and the unconditional variances of

the price and dividend over the trading period are related?py- go?.'! Based on (2.7),
B y(Ri1) = a(PYy — B) — (R—1)(P, — P), Vii(Rip) = (1+q)oi

and hence the optimal demand for the fundamentalist is diyen

1 * o o . _,
m[a(ﬂﬂ P) — (R—1)(P, - P)). (2.11)

214 =

In particular, whenP = P,

(a+R-1)(P—P)

= 2.12
1 ai(1+ q)o? ( )
Similarly, from (2.8),
Ey4(Rey1) = Po+ (P —w)+D—RP, =~(P,—w) - (R—1)(P, — P),
Vou(Rig1) = 07 (14 q + buwy),
whereb = b,/o?. Hence the optimal demand of the trend followers is given by
2y = (B Zu) (R DIA-P) (2.13)

a02(1 4+ q + bvy)

11| this paper, we choose? = (P¢)?/K andq = r2. This can be justified as follows. LetP be the
annual volatility of P, and D, = rP; be the annual dividend. Then the annual variance of the eldd? =
r?(Po)?. Thereforeo?, = 52 /K = r?(Po)?/K = r?0%. For all numerical simulations in this paper, we choose
P = $100,7 = 5% p.a. 0 = 20% p.a., K = 250. CorrespondinglyR = 1+ 0.05/250 = 1.0002,0% =
(100 x 0.2)2/250 = 8/5 ando?, = 1/250.
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Subsisting (2.11) and (2.13) into (2.5), the price dynaraider a market maker is determined

by the following 4-dimensional stochastic difference syst

p

Par = Pt § | s 0(Py = P) = (R=1)(P = P)
+(1_m)7(Pt—Ut)—(R—l)(Pt—P) v,

a02(1+q + bvy)

2.14
Ut:(sut_1+(1—5)Pt’ ( )

V¢ = 5Ut_1 + 5(1 - (S)(IDt — Ut_l)z,

| i = B/[1 +océ].

The price dynamics and statistical properties of the ststahanodel (2.14) have been studied

in He and Li (2004) by using Monte Carlo simulation and stetgdtanalysis. It is found that

the long-run behaviour and convergence of the market prioag (short)-run profitability of

the fundamental (trend following) trading strategy, suability of chartists, and various under

and over-reaction autocorrelation patterns of returnsbheanharacterized by the stability and

bifurcations of the underlying deterministic system. Thelgsis provides some insights into

the generating mechanism on various market behaviourh ésiander/over-reactions), market

dominance and stylized facts in high frequency financialkeizt In the following discussion,

we investigate the potential of the model to explain the lorgmory behavior by examining

the autocorrelation pattern under different noise stmestand by estimating the decay indices

and (FI)GARCH parameters.

3. A MECHANISM ANALYSIS ON VOLATILITY CLUSTERING AND LONG MEMORY

We now proceed with an analysis on the mechanism of volatliinamics of the MF model.

The analysis is conducted to explore possible sources afilityl fluctuations. In doing so, we

provide some insights into the interplay between systes) diegterministic forces and stochastic

elements, in particular, the potential mechanism in gaimgraealistic time series properties.

Aside from the parameters stated before, the parametedsfassimulations are given by

Table 3.1 withm = 0, n; = ny, = 0.5. The volatility o. of the fundamental price corresponds

TABLE 3.1. Parameter settings and initial values

a v a ay p om & b Oc os P Fy

01 03 08 08 2 0 085 1 0.01265 1 100 100
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to an annual volatility of 20% (henee = (20/v'K)% with K = 250) and the volatility of the
noisy demand; = 1, which is about 1% of the average fundamental price I&ve! $100.
Following from the stability and bifurcation analysis in Fied Li (2004), the constant steady
state fundamental pric of the corresponding deterministic system is asymptdyicthble.
To see how the price dynamics, in particular, the autocaticai patterns of returns, are affected

under different noisy processes, we consider four cagesllis Tabel 3.2. Case-00 corresponds
TABLE 3.2. Four Cases of the noisy effect

Cases | Case-00 Case-01 | Case-10 Case-11
(os, 0¢) || (0,0) |(0,0.01265) | (1,0) | (1,0.01265)

to the deterministic case. Case-01 (Case-10) correspontie tase with noisy fundamental

price (noisy excess demand) only and both noisy procesgemam Case-11.

100.05! 300

Case-01

Case-00 250
200

150

100

50

I} n L n L n L n L n L n L n

0 200 400 600 800 1000 O 900 1800 2700 3600 4500 5400
110 300+
[ Case-10 r
Case-11

I L
‘ 200

1000

0 900 1800 2700 3600 4500 5400 0 900 1800 2700 3600 4500 5400

FIGURE 3.1. Time series of prices for four cases.

Fig.3.1 illustrates the price time series for the four cas€ke corresponding time series
and density distributions of the returns are given in F&)f8r the three noisy cases. Fig.3.3
shows the ACs of returns, the absolute and squared returnscoRgparison, a same set of
noisy demand and fundamental processes is used for Casedi siulation runs 6,000 time
periods and the first 1,000 is dropped to wash out the iniffatefor the estimates of density

and ACs of returns to make the estimates robtist.

12Robust here means that the estimates of the density distriistand ACs are independent from the initial con-
ditions. In fact, numerical simulations show that, for ea€lthe three noisy cases, prices converge to an invariant
distribution which characterizes the so-called stableloam fixed point of the stochastic system in the random
dynamics literature. Further discussion on the statistinalysis and test on the convergence of the market price
to the fundamental value is given in He and Li (2004).
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Case—-01
0.01

[ [— Svarz—— N(s=0.003%8

o.oo ‘\‘n”\i M‘l ’“H'M'J‘ 'I‘I'IIL it ull‘l“ hml’“ m 1“\,4.\\ ol

0 1050 2100 3150 4200 5250
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40
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0.00 20 ‘
-0.05 10 }
! 1 I I I I REASANERENEN I
0 1050 2100 3150 4200 5250 -0.075 O 050 -0.025 0.000 0.025 0.050 0.075

FIGURE 3.2. Time series and density distributions of the return€ades-01,
10 and 11.

Case-01

Case-10

M 0_00 H ‘ ”“““‘\H‘\“‘ “\ H H‘ \‘ “\H

0.05

0.00

Case-11

50 100 0 50 100 0 50 5 100
AC(ry) AC(Ir,l) AC(r,?)

FIGURE 3.3. The ACs of returns (left column), the absolute returnsidie
column), and the squared returns (right column) of Cased®and 11.

Both Figs.3.2 and 3.3 show significantly different impactdifferent noisy processes on the
market return volatility. (i) For Case-01, the stochastiecdamental price process is the only
noisy process$® In this case, the market price displaystaong under-reactiofh AC pattern
on returns, which is characterized by the significantly fpesidecaying ACs shown in the top
left panel in Fig.3.3. This significant AC pattern is so sgg@and even carried forward to the
Womparison, we include the fundamental price procesd far our simulation in Fig.A.1 in Appendix A,

which gives time series of price and return, return distidoudensity (compared with the normal distribution),
and the ACs of returns, the absolute and squared returns.

14see He and Li (2004) for more detailed analysis on the gdangratechanism for various under- and over-
reaction AC patterns.
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AC patterns for the absolute and squared returns. (ii) Foe@8sthe noisy excess demand is
the only noisy process. In this case, the market price dispta volatility clustering, which is
characterized by insignificant AC patterns for return, thecdute and squared returns shown
in the middle row in Fig.3.3. (iii) For Case-11, both the nog{cess demand and fundamental
price processes appear. In this case, we observe the edlatigh kurtosis in Fig.3.2 and
insignificant ACs for returns, but significant ACs for both dib$® and squared returns shown
in the bottom panel in Fig.3.3.

The simple MF model appears to do the job of generating apiategower laws for returns
and volatility when both noisy processes are present. Whheiseason for this outcome? Let
us start our analysis with the dynamics of the underlyingiaieinistic system. He and Li (2004)
show that, for the deterministic system, a stable steadg,sténich is the constant fundamental
value, can become unstable through either a flip or a Hopfdafion. Furthermore, the flip
bifurcation is mainly due to the strong price adjustmenthed fundamentalists towards the
fundamental value, while the Hopf bifurcation is mainly dioethe strong extrapolation of
the trend followers towards the trend which itself followgeometric decay learning process.
For the chosen set of parameters, the Hopf bifurcation yatluéerms of the extrapolation
parametery of the trend followers, is given by ~ 0.32684. In other words, the linearized
deterministic system has a pair of complex eigenvaluesatisfying|\.| < 1 for v < 4 and
|A+]| = 1 fory = 7. In our casey = 0.3, the solution is oscillating initially but converging
to the steady state eventually, which is clearly demoresiray the price series for Case-00 in
Fig.3.1. Intuitively, the nature of the oscillating congence to the steady state is due to the
extrapolation and learning of the trend followers. The drémey are trying to learn follows
a geometric probability process (with decay paramétemd this learning process is updated
every time based upon historical price. As a result, theniegrprocess smooths the price and
leads to a lagged reaction to the market price. It is thigyed learningon the fundamental
value) that plays an important role for the dependent Jdiati

We now turn to Case-01. When the fundamental price fluctuatehastically, it leads to
recurrent shifts of the fundamental values to differenelev When the shifting is so often to
leave the trend followers not enough time to learn the troelfumental value, the lagged learn-

ing from the trend followers leads to a highly dependent tdla(measured by the absolute
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and squared returns) over the short-run and this is clearyothstrated by the strong under-
reaction AC pattern on returns in the top row in Fig.3.3. Hesvethe lagged learning does not
prevent trend followers from learning the constant fundatalevalues when the market price is
perturbed by a small noisy excess demand with mean value wéioh is the Case-10. Con-
sequently, the return distribution in the middle row in Big.is close to normal and there is no
significant AC patterns for return, the absolute return aquthsed return shown in the middle
row in Fig.3.3.

When both the fundamental price and excess demand noisygsexare present, which is
Case-11, the stochastic nature from the noisy excess demdrtti@weak extrapolation from
the trend followers prevents the market price from formimg aignificant trend, leading to
no significant AC pattern for returns. However, the volgtifluctuations due to the lagged
learning from the trend followers are maintained. Becausb@stochastic nature of the noisy
excess demand, the strong AC patterns of the absolute aatestpeturns shown in Case-01 are
washed out, but remain highly significant, which is demaistt in the bottom row in Fig.3.3.
Comparing the AC patterns from real financial data, such as&i 500 which we present
in the following section, the volatility fluctuations chatarized by our simulated data is very
close to what we have observed in the actual data. It is wonphasizing that neither one of
the two noisy processes alone is responsible for this teafesature.

Overall, we see that the interaction of speculators, trérasiog through learning, and the
interplay of noise and a stable deterministic equilibriuam e a source of long-memory be-
haviour. Our analysis allows us to gain some insights ingodhgin of this realistic dynamic
behavior. Basically, the system is characterized by a coatmof equilibria with a market
price which fluctuates around and (on an average) equalautidaimental value (due to the
fundamentalists), lagged learning and trend chasing (@tieet trend followers), and balanced
noise level (from the excess demand). Because neither gmsiprhadvantage in a situation
where no arbitrage opportunities exigt & P*) and no deviations from the equilibrium price
are expected (when there is no excess noisy demand), trersysbves in an erratic manner
along its continuum of equilibria. This mechanism sharesséime spirt of Lux and Marchesi’s
(1999) herding model.

In principle, different types of dynamics could be the seuof power-law distributed fluc-

tuations as we have discussed in our introduction. Based paralysis, it appears that the



LONG MEMORY, HETEROGENEITY, AND TREND CHASING 15
dynamics near the Hopf bifurcation boundary (or surfacayplan important role in this as-
pect. Of course, such Hopf behaviour can be generated by maalganisms including herding
(e.g. Lux (1995)) and adaptive switching (e.g. Brock and Ha®i{1997)). Also the interplay
of noise and dynamics of the deterministic system plays ei@rwole. In particular, the size
of the noisy process is a very subtle issue. For the herdinchamsm in Lux and Marchesi
(2001), a balanced disposition among noise traders is saged-or the switching mechanism
in Gaunersdorfer and Hommes (2000), the noisy componergcattdthe excess demand is
responsible for the switching between locally co-existatigactors, and hence the noisy level
has to be large to obtain their realistic results. In our mhdtle distributed fluctuations due to
the lagged learning and weak extrapolation from the tretidviers needs to be balanced to
the noisy level of the excess demand. At this stage, a theak@inalysis on the interplay of
deterministic dynamics and noise seems difficult.

In the following discussion, we adopt statistical methodsdal on Monte Carlo simulation
to estimate various models related to the long memory ctexiaation. The estimates are for
both the MF model and the S&P 500. We use the estimates for R&Rdrepresent the real

world and then compare to those from the MF model.

4. EMPIRICAL EVIDENCE AND LONG MEMORY BEHAVIOUR OF S&P 500

As an empirical evidence and a benchmark for our comparidug, section provides a
brief statistical analysis of the S&P 500 price infex There are altogether 5306 observa-
tions from Oct 20, 1982 to Oct 27, 2003. Dengteas the price index for S&P 500 at tinie

(t =0,...,5305) and log returng; are defined ag, = Inp; — Inp;_1.

4.1. Statistics and Autocorrelations of Returns. Table 4.1 gives the summary statistics for
r;. We can see from Table 4.1 that the kurtosisiftgr44.76, is much higher than that of a
normal distribution which is 3. The kurtosis and studerti@nge statistics (which is the range
divided by the standard deviation) show the charactesigtittailed behavior compared with
a normal distribution. The Jarque-Bera normality test stiatis far beyond the critical value
which suggests thag is far from a normal distribution.
Figure 4.1 gives the plots ¢f, r,. We can see that there is a clear trendgdout r, is rather

stable. The large absolute returns are more likely thanlsabablute returns to be followed

5Ne get the data from http://finance.yahoo.com.
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TABLE 4.1. Summary statistics of.

data sample size mean std skewness kurtosis  min max  studertimgsl r Jarque-Bera
Tt 5305 0.00037 0.0108  -1.933 4476  -0.229 0.087 29.16 388510

by a large absolute return. The market volatility is chaggiwer time which suggests that a
suitable model for the data should have a time varying Jdlastructure as suggested by the

ARCH model.
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FIGURE 4.1. Time series on prices (a) and log returns (b) of S&P 506t fr
Oct 20, 1982 to Oct 27, 2003.

A well known stylized fact of the stock return is that the regithemselves contain little serial
correlation, but the squared returfisand absolute returfr;| do have significantly positive
serial correlation over long lags. For example, Ding, Geangnd Engle (1993) investigate
autocorrelations of returns (and their transformatiorfsphe daily S&P 500 index over the
period 1928 to 1991 and find that the absolute returns andegjoeturns tend to have very slow
decaying autocorrelations, and further, the sample auteledions for the absolute returns are
greater than the sample autocorrelations for squaredhseturevery lag up to at least 100 lags.
Table B.1 in Appendix B reports the autocorrelation coeffitsdor the returns, squared returns,
and absolute returns and their corresponding confideneevais, which are constructed by
using the Newey-West corrected standard error. The autdations are plotted in Figure 4.2,
where the lines from the bottom to the top are the autocdiel@oefficients for the returns,
squared returns, and absolute returns respectively. Teesés coincide with the findings in

Ding, Granger and Engle (1993).

4.2. Estimates of Power-Law Decay Index via ARFIMA. Besides the visual inspection of
autocorrelations of,, r? and|r| for the S&P 500, one can also construct models to estimate

the decay rate of the autocorrelationsrgfr? and|r;|. For instance, we consider the simple
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FIGURE 4.2. The autocorrelations of, r? and|r;| for S&P 500.

ARFIMA (0, d, 0) process (for example, see the review paper by Baillie(1996))
(1— L)%, =&, & ~ NID(0,0%), (4.1)

where L is the lag operator, and is the order of integration. Faf = 0, x; is simply white
noise and its autocorrelation function exhibits an exptinedecay, whereas fat = 1, z; is a
random walk and hence has an autocorrelation function #m&ins at unity. For non-integer
values ofd, the autocorrelation function af declines hyperbolically to zero. To be precise, the
autocorrelations are given by

Pk = Ck2d_17

whereC' is a constant, so the hyperbolic decay ingex 2d — 1 depends upod. For the daily
return, absolute return, and squared return of the S&P 5@80stimate the ARFIMA), d,0)
model; the estimates of parametlegire summarized in Table 4.2.

TABLE 4.2. Estimates of for S&P 500

d Std. P-value 95% CI
r -0.0192 0.0112 0.086 [-0.0410,0.0027]
r? 0.1233 0.0102 0.000 [0.1033,0.1433]
lr|] 0.1762 0.0085 0.000 [0.1594,0.1931]

We see that the results do provide evidence of long persstEn squared returns and ab-
solute returns. It seems that the estimatasl not significant for the daily returns: We cannot

reject the null hypothesis thdtis zero. But it is significant for the absolute returns and segia
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returns, and the persistence in absolute returns is muchggr than that in squared returns.

These results coincide with the well-established findimgé empirical finance literature.

4.3. Volatility Clustering, Long Memory and (FI)GARCH Estimates. Another striking fea-
ture of the return series observed from Figure 4.taktility clustering A lot of econometric
models of changing conditional variance have been devdlopéest and measure the volatil-
ity clustering. The most widely used one is the family of ARCHi{@regressive Conditionally
Heteroskedastic) models introduced by Engle (1982) amgkitgralization, the GARCH model,
introduced by Bollerslev (1986). Following their specifioat for instance, if we model the re-
turns as an AR(1) process, then a GAR@H/) model is defined by:

Ty =a + bri_q + &4, €1 = 012,

(4.2)

of =ay +a(L)ef + B(L)o7, =~ N(0,1),

whereL is the lag operatory(L) = > 7 o; L and3(L) = >°%_, 3;I/. Definingv; = &7 — o7,

the process can be rewritten as an ARMA p) process
[1—a(L) — B(L)]ef = ao + [1 = B(L)]v, (4.3)

with m = max{p, ¢}. Table 4.3 reports the estimates of the GARCH1) model, where the

mean process follows an AR(1) structure. Based on the essmate can see that a small

TABLE 4.3. GARCH(1, 1) Parameter Estimates for S&P 500

a x 103 b ap x 10° ay B

0.608 0.0359 0.113 0.0783 0.9145
(0.125) (0.014) (0.059) (0.0304) (0.0305)
Note: The numbers in parentheses are standard errors.

influence of the most recent innovation;( < 0.1) is accompanied by a strong persistence
of the variance coefficients{ > 0.9). It is also interesting to observe that the sum of the
coefficientsy; + 3, is close to one, i.e., the process is close to an integratd@GA(IGARCH)
process. A related literature (e.g. Pagan (1996)) showstith parameter estimates are rather
common when considering returns from high frequency daigricial data of both share and
foreign exchange markets. However, GARCH implies that shazkie conditional variance
decay exponentially, and IGARCH implies that the shocks tocthralitional variance persist

indefinitely.
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In response to the finding that most of the financial time segi®@ long memory volatility

process, Balillie, Bollerslev, and Mikkelson (1996) consither Fractional Integrated GARCH

(FIGARCH) process, where a shock to the conditional varianes out at a slow hyperbolic

rate of decay. Later on, Chung(1999) suggests a slightlgraifft parameterization of the model:
S(L)(1 — L)' (e} — %) = ag + [1 — B(L)]vy, (4.4)

wherep(L) = 1->"7 | &, L%, ag = ¢(L)(1— L)%0?, ando? is the unconditional variance of the
corresponding GARCH model. Table 4.4 reports the estimatiedfl GARCH(1, d, 1) model,
where the mean process follows an AR(1) model. The estimatiddédfractional differencing
parameter] is statistically very different from both zero and one. Tisiconsistent with the
well known findings that the shocks to the conditional vazedies out at a slow hyperbolic

rate.

TABLE 4.4. FIGARCH(1,d, 1) Parameter Estimates for S&P 500

a b g X 104 d ¢1 5
-0.0258 0.0166 0.000017 0.3933 0.1012 0.7968

(0.00039) (0.0083) (0.1930) (0.0091) (0.0116) (0.0035)
Note: The numbers in parentheses are standard errors.

5. ECONOMETRIC CHARACTERIZATION OF THE LONG MEMORY PROPERTIES OFTHE

MF MODEL

This section is devoted to an econometric analysis on theptaw behaviour and the volatil-
ity persistence of the MF model. Targeted for the resultsweaobtained in Section 4 for the
S&P 500, various models are estimated using the MF modedrgéed data outlined in Section
3, and subsequently, these estimates are compared with¢htdse S&P 500 to see how close
we are to the real world. The analysis and estimates are lmasétbnte Carlo simulations.
For a chosen set of parameter and two noisy processes sgegifézase-11 in Section 3, we
ran 1,000 independent simulations over 6,306 time periadsdéscard the first 1,000 time pe-
riods to wash out the possible initial noise effect. For eaghof the model we have 5,306

observations, which matches the sample size of S&P 500 thatsed in previous section.

5.1. Autocorrelations of Returns. First, we look at the autocorrelation coefficients of refjrn

squared returns and absolute returns. It is interestingeaonhether our simulation model can
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replicate the well known findings as described in Figure 8%.running 1,000 independent
simulations, we estimate the autocorrelation coefficiants calculate Newey-West corrected
standard errors of returns, squared returns and absoturasdor each run of the model, and
then we take the average. The results for returns, squatechseand absolute returns are
reported in Table B.2, B.3 and B.4 in Appendix B, respectively.afge plot the autocorrelation

coefficients and their corresponding confidence interv&igure 5.1.
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FIGURES5.1. The autocorrelations of, r? and|r;| for the MF model.

From Figure 5.1, we see that for the market fraction modelpnty the sample correlations
of r? and|r,| are all outside th65% confidence interval of, but they also are all positive over
long lags. Further, the sample autocorrelations for albsakturns are greater than the sample
autocorrelations for squared returns at every lag up toast [€00 lags. Comparing to Figure
4.2 for the S&P 500, we see that the patterns of decay of tleeanrelation functions of return,

squared return and absolute return are quite similar.

5.2. Estimates of Power-Law Decay Index via ARFIMA. We also look at the decay rate of
the autocorrelations of returns, squared returns, andwbseturns that are estimated from the
ARFIMA (0, d,0) model. The resulting estimates are reported in Table 5.&revthe second

last column indicates the numbers that the corresponditigp&es are significant at the 5%
level over 1,000 independent simulations. Comparing withehktimated results of the S&P

500 in Table 4.2, we find that in both cases the estimaté fafr returns is not significant.
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There is a clear evidence of long memory for squared returdgbsolute returns, and also the
patterns of the estimates @for the returns, squared returns, and absolute returnbaaine.

TABLE 5.1. Estimates of for the MF model

d Std. P-value 95% ClI No. Sig
r 0.0341 0.0113 0.1684 [0.0334,0.0348] 382
r? 0.1381 0.0083 0.000 [0.1375,0.1386] 1000
|r| 0.1454 0.0081 0.000 [0.1449,0.1459] 1000

5.3. Volatility Clustering, Long Memory and (FI)GARCH Estimates. We now check the
ARCH/GARCH effects. We want to see whether the MF model is capafbtapturing the
feature of volatility clustering. We implement the test gasted by Engle (1982). The null hy-
pothesis is that the residuals of a regression model ateamnd the alternative hypothesis is that
the errors are ARCHJ. Suppose the stock returns follow an AR(1) process withvations

;. If the returns are homoskedastic, then the variance carmptedicted and the variations
in 2 will be purely random. However, if ARCH effects are presengéavalues of? will be
predicted by large values of the past squared residuals.idéa leads to & R? test statistic. In
order to compute the test statistic, we first fit the returmgesevith an AR1) model, and then
regress the squared residugion a constant andf ,, ...} ,. R is then computed from this
regression. Under the null hypothesis that there is no ARCéitebt statistic is asymptotically
distributed as a chi-square distribution witldegrees of freedom. We implement the test for
both the S&P 500 and the simulation model. The results arerteg in Table 5.2. In both
cases, the null hypothesis is strongly rejected. In terntSngfie’s test, both the data from the
S&P 500 and the MF model do have clear ARCH effects. So, we tulwoloat the GARCH
estimates, and the FIGARCH estimates which describe thellitglpersistence.

TABLE 5.2. Engle’s test statistics for the presence of ARCH/GARCHcdfe

Lag1l Lag 2 Lag 5 Lag 100
S&P 72.88 174.26 270.62 342.00
MF 140.79 (987) 228.20(993) 372.65(998) 821.32(999)

Note: The numbers in parentheses are the numbers that the test statistigaificant att% level over
1000 independent simulations.

We report the estimates of the GARCH and FIGARCH model in TableaB®BTable 5.4,
respectively. The specifications of the models are the santlead we estimated for the S&P

500. Again, all these estimates are obtained from the eBtiméor each run of the simulation
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model and then averaged over independent simulations. echdts from the GARCH model
are astonishingly similar to what one usually extracts freal life data: a small influence of
the most recent innovatiom{ < 0.1) is accompanied by strong persistence of the variance
coefficient (3; > 0.9) and the sum of the coefficients + 5, = 0.9928 is close to one. For
the estimates of FIGARCH, d, 1), we see that the estimate &fs significantly different from
zero and one.

TABLE 5.3. GARCH(1, 1) Parameter Estimates of the MF Model

a b ag x 10% aq 16}
0.000074 0.0725 0.0078 0.0260 0.9738
(0.00023) (0.0139) (0.0035) (0.0032) (0.0033)

47 771 177 1000 1000

Note: The numbers in parentheses are the standard errors, and thermuthie last row are the
numbers that the test statistics are significaiatevel over 1000 independent simulations.

TABLE 5.4. FIGARCH(1,d, 1) Parameter Estimates of the MF Model

a b CY0><104 d ¢1 ﬁ
0.0137 0.0769 0.3620 0.3797 0.3439 0.7933
(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)

412 726 356 876 831 985

Note: The numbers in parentheses are the standard errors, and thermuthie last row are the
numbers that the test statistics are significasatevel over 1000 independent simulations.

Overall, we find that the MF model do provide a mechanism ferlting-range dependence
in volatility. Now we turn to assess the differences betwdenMF model and the real world

quantitatively.

5.4. Comparing the MF model with the Real World. We use the S&P 500 to represent the
real world. Then, we compare the MF model with the real warlterms of the autocorrelation
of returns, squared returns and absolute returns, poweddaay index, and (FI)GARCH(1,1)
parameters, respectively.

In Figure 4.2 and 5.1, we plot the autocorrelation coeffitser returns, squared returns and
absolute returns for the S&P 500 and the MF model respegtifer the purpose of comparison,
we combine them together and plot the autocorrelation @oexffis and their corresponding
confidence interval in Figure 5.2.

For returns, we see from Figure 5.2 (b) that the confidenegvals of the simulation model

lies inside the confidence intervals of the S&P 500. Howevigure 5.2 (¢) and (d) indicate that



LONG MEMORY, HETEROGENEITY, AND TREND CHASING 23

0.3 T T T T T T T T T 0.1

—0.05 H

L L L L L L L L L
o] 10 20 30 40 50 60 70 80 90 100

(b)

(© (d)

FIGURE 5.2. Autocorrelations of returns, squared returns andlatesceturns
of the S&P 500 and the MF model (with confidence intervals) (Autocor-
relations and their confidence intervals of returns (b)ased returns (c), and
absolute returns (d).

the speed of decay of the squared return and absolute retumtfie MF model are different
from what we see from the S&P 500, especially for large lags.

For the decay indeX for returns, squared returns or the absolute returns, we todmow
whether the parametédrof the S&P 500 is the same as that of the MF model, in other words
we want to test, : dggp = dyrr. If we think thatds&p (cZMF) is a good approximation of the
true one, then we can check whethigrr (dsg ) lies in the confidence interval @k p (darr)
or not. Because both of thg;, p andd,,r are estimated, the null hypothesis can be tested by
the Wald test by assuming that both the number of simulagmasthe number of time periods

for each simulation go to infinity. In the construction of \Waést
W = (dsep — dur)E " (dser — dur),

3 is simply the sum of sample variance @, » andd,;r, because the outcomes of the MF

model is statistically independent of the real world. Wealstice that the sample variance of
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dyr is much smaller than that dg&p, this is becauseé,, - is estimated from the simulated data
by running the MF independently many times. For a more gédeseussion on comparing the
simulation models and comparing a simulation model withrde world, see Let al. (2004).
The resulting test statistics for the returns, the squaetgrms and the absolute returns are
22.624, 2.1040, and 13.1181 respectively. Noting that thiea value of the Wald test at 5%
significant level is 3.84, we find that the null hypothesis ffieturns and absolute returns are
rejected, but it is not rejected in case of the squared ret8m the differences between the
estimated/ of the S&P 500 and the MF model for returns and absolute retara statistically
significant, but the difference is not significant for the @d returns.

For (FI)\GARCH parameters, first, we want to detect the diffeesnbetween the GARCH
estimates in Table 4.3 and 5.3 for the S&P 500 and the MF masgectively. Formally,
for the parametef = (a,b, ag, aq, 3), this is to testH, : Osep = Opr. This hypothesis
can be tested again by the Wald test, which can be constranteldrly to that for parameter
d. The resulting Wald statistic is 33.8971, which suggesas tine null hypothesis is strongly
rejected and hence the GARCH1) estimates of the MF model and that of the S&P 500
are significantly different. Similarly, for the FIGARGH, 1) estimates, we can also detect the
difference between the estimatesiof (a, b, o, d, ay, ) of the MF model and that of the S&P
500. The null hypothesis becomég : Ysep = Jyr. The resulting Wald statistics is 1914,
which is far beyond the critical value at any conventionghgficant level. So the estimates of
FIGARCH(1, d, 1) model of MF model are significantly different from that of t8&P 500.

The above analysis indicates that the simple market fractiodel is able to replicate the
long memory properties of the actual stock market qualeati However, the formal statisti-
cal tests find that the decay rate and (FI)GARCH estimates frenM= model are difficult to
match that of the S&P 500 exactly. This is probably due to thepkcity of the MF model.
The long memory mechanism of the MF model is different frothesi herding (for instance,
the mechanism developed in Lux and Marchesi (1999)) or &migcmechanisms (for instance,
the adaptive switching mechanism in Brock and Hommes (19898)) in terms of modeling,
but it shares the same spirit in a much simpler way. We shootidenthat it is this simplicity
that makes it possible to identify potential sources andhaeisms to generate certain charac-

teristics and this is one of the contributions of this paper.
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6. CONCLUSION

Motivated by recent interest in the power law behaviour ghhfrequency financial market
time series and the explanatory power of heterogeneous-agset-pricing models, this paper
investigates the long memory properties of a simple marketibn model involving two types
of traders (fundamentalists and trend followers). Extegdiarlier work on long-run asset price
behaviour, profitability, survivability, various undemd over-reaction AC patterns, and their
connections to the underlying deterministic dynamics, weeigterested in the characterization
of the power law volatility behaviour of the MF model and itsngparison with the real world.
We found that the heterogeneity, trend chasing throughilegy and interplay of noise and
stable deterministic equilibria can explain power-lawtritsited fluctuations.

It is interesting and important to see how the determingjicamics and noise interact with
each other, and further, to understand the connectionseleatthe nonlinear dynamics of the
underlying deterministic system and certain time seriep@rties of the corresponding sto-
chastic system. The theoretical analysis is important kfficat given the current state of
knowledge. The statistical analysis with powerful econtiim¢ools seems necessary. Based
upon Monte Carlo simulations, statistical analysis, incigdestimates of (FI)\GARCH parame-
ters and related tests, shows that the MF model is able t@iexpbme of the characteristics
that are well established in the empirical finance litemtuFhere is a clear evidence of long
memory and GARCH effects. However, the exact decay rates otautlation functions of
returns, squared returns and absolute returns, and (FI)GARCHparameters are difficult to
match with those of the S&P 500. It is worth emphasizing thiathese interesting qualita-
tive and quantitative features arise from a simple modeh Wited market fractions. Further
investigation and extension of the simple model seem napgss

It may be interesting to extend the model to a changing waathodel, in which part of the
market fractions are governed by herding and another pHoin® some adaptive switching
process. One way to start might be to estimate the model dinst,then implement misspec-
ification tests. Econometric methods, such as efficient atsttof moments could be used.
Allowing for herding and switching mechanisms and thesaenwetric estimation approaches,

we may gain a better characterization and understandingaridial markets.
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APPENDIXA. TIME SERIESPROPERTIES OF THEFUNDAMENTAL PRICE PROCESS
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FIGURE A.1. Time series of the fundamental price and return, thermedis-
tribution density and the corresponding ACs of returns, tieohute returns, and

the squared returns.
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APPENDIXB. TABLE OF AUTOCORRELATIONS

TABLE B.1. Autocorrelations of,, r? and|r;| for S&P 500.

Lag Tt r? |7¢]
1 00140 (0.0199) 0.1108 (0.0297) 0.1952 (0.0421)
[-0.0250,0.0530] [0.0526,0.1689] [0.1127,0.2777]
2 -0.0395 (0.0312) 0.1525 (0.0080) 0.2187 (0.0392)
[-0.1007,0.0217] [0.1369,0.1682] [0.1418,0.2957]
3 -0.0382(0.0243) 0.0824 (0.0324) 0.2171 (0.0302)
[-0.0858,0.0094] [0.0190,0.1459] [0.1580,0.2762]
4 -0.0133(0.0190) 0.0257 (0.0177) 0.1776 (0.0248)
[-0.0505,0.0239] [-0.0090,0.0604] [0.1290,0.2262]
5 0.0008 (0.0363) 0.1406 (0.0047) 0.2268 (0.0245)
[-0.0703,0.0719] [0.1313,0.1499] [0.1787,0.2749]
6 -0.0096 (0.0198) 0.0330 (0.0142) 0.1764 (0.0177)
[-0.0484,0.0292] [0.0051,0.0609] [0.1417,0.2110]
7 -0.0298 (0.0192) 0.0182(0.0149) 0.1554 (0.0257)
[-0.0674,0.0078] [-0.0110,0.0474] [0.1051,0.2058]
8 -0.0014 (0.0199) 0.0523 (0.0090) 0.1788 (0.0161)
[-0.0404,0.0376] [0.0346,0.0699] [0.1472,0.2104]
9  -0.0073(0.0234) 0.0346 (0.0200) 0.1645 (0.0208)
[-0.0532,0.0386] [-0.0046,0.0738] [0.1238,0.2052]
10 0.0015(0.0193) 0.0162 (0.0119) 0.1568 (0.0232)
[-0.0363,0.0393] [-0.0070,0.0395] [0.1113,0.2024]
20 -0.0114 (0.0174) 0.0100 (0.0104) 0.1273 (0.0251)
[-0.0455,0.0227] [-0.0103,0.0304] [0.0780,0.1766]
30 -0.0066 (0.0168) 0.0123(0.0097) 0.1161(0.0182)
[-0.0395,0.0263] [-0.0067,0.0312] [0.0804,0.1519]
40 -0.0324 (0.0154) 0.0056 (0.0060) 0.0958 (0.0190)
[-0.0626,-0.0022] [-0.0062,0.0174] [0.0584,0.1331]
50 -0.0159 (0.0152) 0.0111(0.0079) 0.1098 (0.0187)
[-0.0457,0.0139] [-0.0045,0.0266] [0.0732,0.1464]
60 0.0009 (0.0136) 0.0006 (0.0034) 0.0675 (0.0206)
[-0.0258,0.0276] [-0.0060,0.0073] [0.0271,0.1079]
70 -0.0069 (0.0141) 0.0035 (0.0026) 0.0791 (0.0151)
[-0.0345,0.0207] [-0.0016,0.0086] [0.0494,0.1088]
80 0.0040 (0.0139) 0.0008 (0.0031) 0.0572 (0.0166)
[-0.0232,0.0312] [-0.0053,0.0068] [0.0248,0.0897]
90 -0.0062 (0.0132) -0.0004 (0.0026) 0.0652 (0.0180)
[-0.0321,0.0197] [-0.0055,0.0047] [0.0299,0.1005]
100 -0.0030 (0.0140) 0.0009 (0.0032) 0.0729 (0.0192)

[-0.0304,0.0244]

[-0.0052,0.0071]

[0.0352,0.1105]

Note: The numbers in parentheses are Newey-West correetedist errors, an@% confidence intervals indicate by square brackets.
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TABLE B.2. Autocorrelations of, for the MF model.

Lag 15} Min. Max. 95% Cls
1 0.0504 (0.0186) -0.2987 0.5411 [0.0492,0.0515]
2 0.0393(0.0182) -0.1556 0.5060 [0.0382,0.0404]
3 0.0279(0.0182) -0.1412 0.4546 [0.0267,0.0290]
4  0.0200(0.0178) -0.1303 0.4197 [0.0189,0.0211]
5 0.0141(0.0178) -0.1008 0.3721 [0.0130,0.0152]
6 0.0087 (0.0178) -0.1125 0.3619 [0.0076,0.0098]
7 0.0055(0.0177) -0.1002 0.3325 [0.0054,0.0076]
8 0.0034(0.0176) -0.0799 0.2934 [0.0023,0.0044]
9 0.0011(0.0175) -0.1191 0.2668 [0.0000,0.0022]
10 0.0004 (0.0174) -0.0900 0.2435 [-0.0007,0.0015]
20 -0.0053(0.0172) -0.2243 0.0937 [-0.0063,-0.0042]
30 -0.0024 (0.0171) -0.0592 0.0566 [-0.0034,-0.0013]
40 -0.0007 (0.0170) -0.0652 0.0572 [-0.0018,0.0004]
50 0.0009 (0.0170) -0.0580 0.0793 [-0.0002,0.0019]
60 -0.0002 (0.0170) -0.0646 0.0887 [-0.0013,0.0009]
70 -0.0004 (0.0170) -0.0615 0.0689 [-0.0015,0.0006]
80 0.0006 (0.0171) -0.0627 0.0802 [-0.0004,0.0017]
90 -0.0007 (0.0171) -0.0761 0.0795 [-0.0017,0.0004]
100 0.0002 (0.0170) -0.0763 0.0723 [-0.0008,0.0013]

TABLE B.3. Autocorrelations of? for the MF model.

Lag

g

Min

Max

95% Cls

0.1443 (0.0256)

0.0135

0.4917

[0.1427,0.1459]

0.1397 (0.0256)

0.0049

0.5457

[0.1381,0.1413]

0.1362 (0.0254)

-0.0059

0.4338

[0.1346,0.1378]

0.1325 (0.0247)

0.0076

0.4431

[0.1309,0.1340]

0.1301 (0.0246)

-0.0051

0.3251

[0.1286,0.1316]

0.1304 (0.0249)

-0.0084

0.4107

[0.1289,0.1320]

0.1280 (0.0243)

-0.0002

0.4056

[0.1265,0.1295]

| N| O O | W N -

0.1270 (0.0240)

-0.0026

0.3644

[0.1255,0.1284]

0.1259 (0.0240)

-0.0035

0.3683

[0.1245,0.1274]

0.1242 (0.0234)

-0.0066

0.3219

[0.1227,0.1256]

0.1195 (0.0226)

0.0009

0.5453

[0.1181,0.1209

0.1153 (0.0226)

-0.0056

0.4194

[0.1139,0.1167

0.1143 (0.0222)

-0.0040

0.3041

[0.1129,0.1156

0.1138 (0.0226)

-0.0039

1.2611

[0.1124,0.1152

0.1119 (0.0221)

-0.0063

0.4257

[0.1105,0.1133

0.1122 (0.0228)

-0.0144

0.7911

[0.1108,0.1136

0.1103 (0.0222)

-0.0078

0.5088

[0.1089,0.1117

0.1082 (0.0220)

-0.0038

0.3497

[0.1068,0.1095

e e bt b b b bed bed

100

0.1101 (0.0224)

-0.0093

0.4121

[0.1087,0.1115]
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TABLE B.4. Autocorrelations ofr;| for the MF model.

—
Q
«Q

g

Min

Max

95% Cls

0.1710 (0.0185)

0.0111

0.5923

[0.1699,0.1722]

0.1676 (0.0186)

0.0074

0.5018

[0.1664,0.1688]

0.1649 (0.0186)

-0.0030

0.4928

[0.1637,0.1660]

0.1624 (0.0183)

0.0026

0.5154

[0.1613,0.1636]

0.1607 (0.0181)

-0.0029

0.4567

[0.1596,0.1618]

0.1600 (0.0181)

-0.0055

0.4892

[0.1589,0.1612]

0.1587 (0.0181)

-0.0035

0.4918

[0.1576,0.1598]

0| N| O O | W|N| -

0.1572 (0.0180)

-0.0004

0.4684

[0.1560,0.1583]

0.1562 (0.0179)

-0.0024

0.4954

[0.1551,0.1573]

0.1548 (0.0177)

-0.0067

0.4642

[0.1537,0.1559]

0.1507 (0.0175)

0.0033

0.5045

[0.1496,0.1518

0.1464 (0.0174)

-0.0018

0.4620

[0.1453,0.1475

0.1461 (0.0174)

-0.0014

0.4826

[0.1451,0.1472

0.1444 (0.0173)

-0.0174

0.4781

[0.1433,0.1455

0.1433 (0.0174)

-0.0069

0.4716

0.1432 (0.0174)

-0.0085

0.4970

[0.1422,0.1443

0.1419 (0.0174)

-0.0113

0.4974

[0.1409,0.1430

90

0.1401 (0.0173)

-0.0043

0.4863

]
]
|
[0.1423,0.1444]
]
]
]

[0.1390,0.1412

100

0.1407 (0.0174)

-0.0069

0.5069

[0.1397,0.1418]




