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ABSTRACT. Long-range dependence in volatility is one of the most prominent examples of ap-

plications in financial market research involving universal power laws. Its characterization has

recently spurred attempts to provide theoretical explanations of the underlying mechanism. This

paper contributes to this recent development by analyzing asimple market fraction asset pricing

model with two types of traders—fundamentalists who trade onthe price deviation from esti-

mated fundamental value and trend followers who follow a trend which is updated through a

geometric learning process. Our analysis shows that the heterogeneity, trend chasing through

learning, and the interplay of noisy processes and a stable deterministic equilibrium can be the

source of power-law distributed fluctuations. A statistical analysis based on Monte Carlo simu-

lations is conducted to characterize the long memory. Realistic estimates of the power-law decay

indices and the (FI)GARCH parameters are presented.
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1. INTRODUCTION

It is well known that (high-frequency) financial time seriesshare some common features, the

so called stylized facts,1 including excess volatility (relative to the dividends andunderlying

cash flows), volatility clustering (high/low fluctuations are followed by high/low fluctuations),

skewness, and excess kurtosis. Traditional economic and finance theory involving a representa-

tive agent and rational expectations has encountered greatdifficulties in explaining these facts.

This has led to a rapidly increasing number of models incorporating heterogeneous agents and

bounded rationality. These models characterize the dynamics of financial asset prices resulting

from the interaction of heterogeneous agents having different attitudes to risk and having differ-

ent expectations about the future evolution of prices.2 In particular, Brock and Hommes (1997,

1998) proposed anAdaptive Belief Systemmodel of economic and financial markets. A key

aspect of these models is that they exhibit feedback of the expectations—the agents’ decisions

are based upon predictions of future values of endogenous variables whose actual values are de-

termined by equilibrium equations. The agents adapt their beliefs over time by choosing from

different predictors or expectations functions, based upon their past performance. The resulting

nonlinear dynamical system is, as Brock and Hommes (1998) andHommes (2002) show, capa-

ble of generating the entirezooof complex behaviour from local stability to high order cycles

and chaos. They are also capable of explaining some of the stylized facts of financial markets.

It is very interesting to find that adaption, evolution, heterogeneity, and even learning, can be

incorporated into the Brock and Hommes type of framework. This framework can also give rise

to many rich and complicated dynamics and might lead to an explanation and understanding of

market behaviour.3

Among the stylized facts, volatility clustering and the long-range dependence (i.e., hyper-

bolic decline of its autocorrelation function) has been extensively studied since Ding, Engle

and Granger’s seminal paper in 1993. Recently, a number of universal power laws4 have been

1See, e.g., Pagan (1996) for a comprehensive discussion of stylized facts characterizing financial time series.
2See, e.g., Arthuret al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaron (1996), Bullard and Duffy
(1999), Chen and Yeh (1997, 2002), Chiarella (1992), Dacorognaet al. (1995), Day and Huang (1990), De Longet
al. (1990), Farmer and Joshi (2002), Frankel and Froot (1987), Iori (2002), LeBaron (2000, 2001, 2002), LeBaron
et al (1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999)).
3See, e.g., Chiarella (1992), Chiarellaet al. (2002), Chiarella and He (2001, 2002, 2003), Gaunersdorfer(2000),
Hommes (2001, 2002) and De Grauwe and Grimaldi (2003) and Westerhoff (2003).
4They include cubic power distribution of large returns, hyperbolic decline of return autocorrelation function,
temporal scaling of trading volume and multi-scaling of higher moments of returns.
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found to apply in financial markets. This has spurred attempts at a theoretical explanation and

the search for an understanding of the underlying mechanisms responsible for its presence.5

This paper contributes to the development of this literature.

Various models have been developed to explain the power law behaviour. Among standard

textbooks on theoretical and empirical finance, GARCH processes introduced in Engle (1982)

model returns as a random process with a time-varying variance which shows autoregressive

dependence. These models produce fat tails of the unconditional distribution and capture the

short-run dynamics of volatility autocorrelations. However, the implied decay of the volatility

autocorrelation is exponential rather than hyperbolic. Inaddition, the models do not provide an

avenue towards an explanation of the empirical regularities.

As a consequence of rational bubble models, multiplicativestochastic processes (with multi-

plicative and additive stochastic components) have been used to explain the power law behav-

iour (see Kesten (1973) and Lux (2004)). The power-law exponent can be determined from the

distribution of the multiplicative component, not the additive noise components. Unfortunately,

as shown by Lux and Sornette (2002), the range of the exponentrequired for the rational bubble

models is very different from the empirical findings. In addition, the rational bubble models

share the conceptual problems of economic models withfully rational agents.

Herding models of financial markets have been developed to incorporate herding and conta-

gion phenomena.6 With a stripped down version of an extremely parsimonious herding model

with fundamentalists (who trade on observed mispricing) and noise traders (who follow the

mood of the market), Alfarano and Lux (2003) show that price changes are generated by either

exogenous inflow of new information about fundamentals or endogenous changes in demand

and supply via the herding mechanism. The model is able to produce relatively realistic time

series for returns whose distributional and temporal characteristics are astonishingly close to

the empirical findings. This is partly due to a bi-modal limiting distribution for the fraction of

noise traders in the optimistic and pessimistic groups of individuals. It is also in part due to

the stochastic nature of the process leading to recurrent switches from one majority to another

and the increase in volatility that will last until lock-in reoccurs. It is very interesting to know

5We refer to Lux (2004) for a recent survey on empirical evidence, models and mechanisms of various financial
power laws.
6See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Marchesi (1999), Chenet al. (2001), Aoki and
Yoshikawa (2002), and Alfarano and Lux (2003).
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that the corresponding dynamics of the underlying deterministic model displays back and forth

movement through a Hopf bifurcation scenario (see Lux (1995)). This is related to the so-called

on-off intermittency in physics. However, with the increase of the population size, the law of

large numbers comes into effect and the intermittency and power-law statistics disappear.

As discussed earlier, the Brock and Hommes’s framework and its various extensions are ca-

pable of explaining various market behaviours and important stylized facts. For example, a

mechanism of switching between predictors and co-existingattractors is used in Gaunersdorfer

and Hommes (2000) to characterize the volatility clustering. The highly nonlinear determin-

istic system may exhibit co-existence of different types ofattractors and adding noise to the

deterministic system may then trigger switches between low- and high-volatility phases. Their

numerical simulation shows quite satisfactory statisticsbetween the simulated and actual data.

Compared to the herding mechanism, Brock and Hommes’s framework allows an infinite pop-

ulation of speculators. However, like most of the analytical heterogeneous agent literature,

the comparison with empirical records is mainly based upon visual inspection, or upon a few

realizations of the model. A formal investigation of the differences between the time series

properties of the heterogeneous agent models and the real world, including the estimation of

power law indices, is still lacking.

Overall both the herding and switching models discussed above have shown their potential

to explain the power-law behavior. To generate realistic time series, some kind of intermittent

dynamics and self-amplification of fluctuations via herdingor technical trading are necessary.

As pointed out by Lux (2004),one of the more important problems of these models is the

relationship between system size, deterministic forces and stochastic elements. Herding (and

simulation) models suffer from a critical dependence of their nice results on the size of agent

population, while switching models suffer from a critical dependence on the size of the noise.7

In this paper, we study the market fraction (MF) model established in He and Li (2004). By ex-

amining the relationship between system size, deterministic forces, and stochastic elements, we

find that the MF model provides a mechanism to address the power-law behavior and the results

do not disappear by a law of large numbers. This is the main contribution of the paper. This

7For the switching model of Gaunersdorfer and Hommes (2000),the stochastic movement between the co-existing
(locally stable) steady state and limit cycle of the deterministic system is indeed the mechanism in generating
realistic time series. However, the noise level has to be adjusted in a way to counterbalance the deterministic core
of their market dynamics. Very often, finding co-existence equilibria and the right noise level can be difficult.
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mechanism shares the same spirit of the herding and switching mechanisms but in a different

and much simpler way.

The MF model is a simple stochastic asset pricing model, involving two types of traders

(fundamentalists and trend followers) under a market makerscenario. He and Li (2004) aims to

explain various aspects of financial market behaviour and establish connections between the sto-

chastic model and its underlying deterministic system. It shows that the long-run behaviour of

asset prices, wealth accumulations of heterogeneous trading strategies, and the autocorrelation

structure of the stochastic system can be characterized by the dynamics of the underlying deter-

ministic system, the parameters driving traders’ behaviour and the market fraction. In particular,

a statistical analysis shows that convergence of market price to fundamental value, long- and

short-run profitability of the two trading strategies, survivability of chartists and various under-

and over-reaction autocorrelation patterns can be explained by the stability and bifurcations of

the underlying deterministic system.

This paper builds on He and Li (2004) and reveals the potential of the MF model to explain

some of the stylized facts of financial markets. Focusing on the long memory characteristics,

essentially, we show that heterogeneity, trend chasing through learning, and the interplay of a

stable deterministic equilibrium and stochastic noisy processes can be the source of power-law

distributed fluctuations. This is further verified via a Monte Carlo simulation and a statisti-

cal analysis on the decay patterns of autocorrelation functions of returns, squared returns and

absolute returns, and the estimates of (FI)GARCH(1, 1) parameters.

The remainder of the paper is organized as follows. Section 2reviews the MF model estab-

lished in He and Li (2004). Section 3 is devoted to a discussion on the potential generating

mechanism of the power-law behavior. In Section 4 we estimate the autocorrelation of returns,

squared returns and absolute returns and (FI)GARCH(1,1) parameters for the Standard & Poor

500 (hereafter S&P 500) stock market daily closing price index, which we use to represent the

real world. The long memory properties of the market fraction model and comparison with the

real world is analyzed in Section 5. Section 6 concludes.

2. THE MARKET FRACTION MODEL

The market fraction (MF) model is a standard discounted value asset pricing model with

heterogeneous agents. It is closely related to the framework of Brock and Hommes (1997,
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1998) and Chiarella and He (2002). We outline the model and refer the readers to He and Li

(2004) for details.

Consider an economy with one risky asset and one risk free asset. It is assumed that the risk

free asset is perfectly elastically supplied at gross return of R = 1 + r/K, wherer stands for

a constant risk-free rate per annual andK stands for the trading frequency measured in a year.8

Let Pt be the price (ex dividend) per share of the risky asset at timet and{Dt} be the stochastic

dividend process of the risky asset. Then the wealth of a typical investor-h at t + 1 is given by

Wh,t+1 = RWh,t + [Pt+1 + Dt+1 − RPt]zh,t, (2.1)

whereWh,t andzh,t are the wealth and the number of shares of the risky asset purchased of

investor-h at t, respectively. LetEh,t and Vh,t be the “beliefs” of typeh traders about the

conditional expectation and variance of quantities att+1 based on their information set. Denote

by Rt+1 the excess capital gain on the risky asset att + 1, that is

Rt+1 = Pt+1 + Dt+1 − R Pt. (2.2)

Assume that traders have a constant absolute risk aversion (CARA) utility function with the risk

aversion coefficientah for typeh traders (that isUh(W ) = − exp(−ahW )) and their optimal

demand on the risky assetzh,t are determined by maximizing their expected utility of wealth.

Then

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.3)

Given the heterogeneity and the nature of asymmetric information among traders, we con-

sider two popular trading strategies corresponding to two types of boundedly rational traders—

fundamentalists and trend followers. Assume the market fraction of the fundamentalists and

trend followers isn1 andn2, respectively. Letm = n1 − n2 ∈ [−1, 1].9 Assume zero supply of

outside shares. Then, using (2.3), the aggregate excess demand per investorze,t is given by

ze,t ≡ n1z1,t + n2z2,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.4)

8Typically, K = 1, 12, 52 and250 for trading period of year, month, week and day, respectively. To calibrate
the stylized facts observed from daily price movement in financial market, we selectK = 250 in our following
discussion.
9Obviously,m = 1,−1 corresponds to the case when all the traders are fundamentalists and trend followers,
respectively.
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To complete the model, we assume that the market is cleared bya market maker. The role of

the market maker is to take a long (whenze,t < 0) or short (whenze,t > 0) position so as to clear

the market. At the end of periodt, after the market maker has carried out all transactions, heor

she adjusts the price for the next period in the direction of the observed excess demand. Letµ

be the speed of price adjustment of the market maker (this canalso be interpreted as the market

aggregate risk tolerance). To capture unexpected market news or speculators’ excess demand,

we introduce a noisy demand term̃δt which is an i.i.d. normally distributed random variable

with δ̃t ∼ N (0, σ2
δ ). Based on those assumptions and (2.4), the market price is determined by

Pt+1 = Pt +
µ

2

[

(1 + m)
E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 − m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]

+ δ̃t. (2.5)

Now we turn to discuss the beliefs of fundamentalists and trend followers.

Fundamentalists—Denote byFt = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the common information

set formed at timet. We assume that, apart from the common information set, the fundamental-

ists havesuperiorinformation on the fundamental value,P ∗

t , of the risky asset which is intro-

duced as an exogenous news arrival process. The fundamentalists also realize the existence of

non-fundamental traders, such as trend followers introduced in the following discussion. They

believe that the stock price may be driven away from the fundamental value in the short-run, but

it will eventually converge to the fundamental value in the long-run. More precisely, we assume

that the relative return (P ∗

t+1/P
∗

t − 1) of the fundamental value follows a normal distribution,

and hence

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1), σǫ ≥ 0, P ∗

o = P̄ > 0, (2.6)

whereǫ̃t is independent of the noisy demand processδ̃t. This specification ensures that nei-

ther fat tails nor volatility clustering are brought about by the exogenous news arrival process.

Hence, emergence of any autocorrelation pattern of the return of the risky asset in our later

discussion would be driven by the trading process itself, rather than news. We assume the

conditional mean and variance of the fundamental traders follow

E1,t(Pt+1) = Pt + α(P ∗

t+1 − Pt), V1,t(Pt+1) = σ2
1, (2.7)
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whereσ2
1 stands for a constant variance on the price. Here parameterα ∈ [0, 1] is the speed of

price adjustment of the fundamentalist toward the fundamental value. It measures how fast the

fundamentalists think the price converges to the fundamental value, and their confidence level

in the fundamental value. In particular, forα = 1, the fundamental traders are fully confident

about the fundamental value and adjust their expected priceat next period instantaneously to

the fundamental value. Forα = 0, the fundamentalists become naive traders.

Trend followers—Unlike the fundamental traders, trend followers are technical traders who

believe the future price change can be predicted from various patterns or trends generated from

the historical price. The trend followers are assumed to extrapolate the latest observed price

change over a long-run sample mean price and to adjust their variance estimate accordingly.

More precisely, their conditional mean and variance are assumed to satisfy

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2
1 + b2vt, (2.8)

whereγ, b2 ≥ 0 are constants, andut andvt are sample mean and variance, respectively, which

may follow some learning processes. The parameterγ measures the extrapolation rate and high

(low) values ofγ correspond to strong (weak) extrapolation from the trend followers. The co-

efficientb2 measures the influence of the sample variance on the conditional variance estimated

by the trend followers who believe in more volatile price movements. Various learning schemes

can be used to estimate the sample meanut and variancevt. Here we assume that

ut = δut−1 + (1 − δ)Pt, (2.9)

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2, (2.10)

whereδ ∈ [0, 1] is a constant. This process on the sample mean and variance isa limiting

process of ageometric decay processwhen the memory lag length tends to infinity. Basically,

a geometric decay probability process(1 − δ){1, δ, δ2, · · · } is associated to the history prices

{Pt, Pt−1, Pt−2, · · · }. The parameterδ measures the geometric decay rate.10 The selection of

this process is two fold. First, traders tend to put a high weight to the most recent prices and less

weight to the more remote prices when they estimate the sample mean and variance. Secondly,

we believe that this geometric decay process may contributeto certain autocorrelation patterns,

10Forδ = 0, the sample meanut = Pt, which is the latest observed price, whileδ = 0.1, 0.5, 0.95 and0.999 gives
a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively.
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in particular the long memory feature observed in real financial markets. In addition, it has the

mathematical advantage of tractability.

To simplify our calculation, we assume that the dividend processDt followsDt ∼ N (D̄, σ2
D),

the expected long-run fundamental valueP̄ = (R − 1)D̄, and the unconditional variances of

the price and dividend over the trading period are related byσ2
D = qσ2

1.11 Based on (2.7),

E1,t(Rt+1) = α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ ), V1,t(Rt+1) = (1 + q)σ2
1

and hence the optimal demand for the fundamentalist is givenby

z1,t =
1

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]. (2.11)

In particular, whenP ∗

t = P̄ ,

z1,t =
(α + R − 1)(P̄ − Pt)

a1(1 + q)σ2
1

. (2.12)

Similarly, from (2.8),

E2,t(Rt+1) = Pt + γ(Pt − ut) + D̄ − R Pt = γ(Pt − ut) − (R − 1)(Pt − P̄ ),

V2,t(Rt+1) = σ2
1(1 + q + b vt),

whereb = b2/σ
2
1. Hence the optimal demand of the trend followers is given by

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

. (2.13)

11 In this paper, we chooseσ2

1
= (P̄ σ)2/K and q = r2. This can be justified as follows. LetσP̄ be the

annual volatility ofPt andD̄t = rPt be the annual dividend. Then the annual variance of the dividend σ̄2

D
=

r2(P̄ σ)2. Thereforeσ2

D
= σ̄2

D
/K = r2(P̄ σ)2/K = r2σ2

1
. For all numerical simulations in this paper, we choose

P̄ = $100, r = 5% p.a. σ = 20% p.a.,K = 250. Correspondingly,R = 1 + 0.05/250 = 1.0002, σ2

1
=

(100 × 0.2)2/250 = 8/5 andσ2

D
= 1/250.
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Subsisting (2.11) and (2.13) into (2.5), the price dynamicsunder a market maker is determined

by the following 4-dimensional stochastic difference system


























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


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















Pt+1 = Pt +
µ

2

[

1 + m

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]

+ (1 − m)
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

+ δ̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t].

(2.14)

The price dynamics and statistical properties of the stochastic model (2.14) have been studied

in He and Li (2004) by using Monte Carlo simulation and statistical analysis. It is found that

the long-run behaviour and convergence of the market prices, long (short)-run profitability of

the fundamental (trend following) trading strategy, survivability of chartists, and various under

and over-reaction autocorrelation patterns of returns canbe characterized by the stability and

bifurcations of the underlying deterministic system. The analysis provides some insights into

the generating mechanism on various market behaviours (such as under/over-reactions), market

dominance and stylized facts in high frequency financial markets. In the following discussion,

we investigate the potential of the model to explain the longmemory behavior by examining

the autocorrelation pattern under different noise structures and by estimating the decay indices

and (FI)GARCH parameters.

3. A MECHANISM ANALYSIS ON VOLATILITY CLUSTERING AND LONG MEMORY

We now proceed with an analysis on the mechanism of volatility dynamics of the MF model.

The analysis is conducted to explore possible sources of volatility fluctuations. In doing so, we

provide some insights into the interplay between system size, deterministic forces and stochastic

elements, in particular, the potential mechanism in generating realistic time series properties.

Aside from the parameters stated before, the parameters used for simulations are given by

Table 3.1 withm = 0, n1 = n2 = 0.5. The volatilityσǫ of the fundamental price corresponds

TABLE 3.1. Parameter settings and initial values

α γ a1 a2 µ m δ b σǫ σδ Pt P ∗
0

0.1 0.3 0.8 0.8 2 0 0.85 1 0.01265 1 100 100
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to an annual volatility of 20% (henceσǫ = (20/
√

K)% with K = 250) and the volatility of the

noisy demandσδ = 1, which is about 1% of the average fundamental price levelP̄ = $100.

Following from the stability and bifurcation analysis in Heand Li (2004), the constant steady

state fundamental pricēP of the corresponding deterministic system is asymptotically stable.

To see how the price dynamics, in particular, the autocorrelation patterns of returns, are affected

under different noisy processes, we consider four cases listed in Tabel 3.2. Case-00 corresponds

TABLE 3.2. Four Cases of the noisy effect

Cases Case-00 Case-01 Case-10 Case-11
(σδ, σǫ) (0, 0) (0, 0.01265) (1, 0) (1, 0.01265)

to the deterministic case. Case-01 (Case-10) corresponds to the case with noisy fundamental

price (noisy excess demand) only and both noisy processes appear in Case-11.

0 200 400 600 800 1000

99.975

100.000

100.025

100.050

Case−00

0 900 1800 2700 3600 4500 5400

50

100

150

200

250

300
Case−01

0 900 1800 2700 3600 4500 5400

95

100

105

110
Case−10

0 900 1800 2700 3600 4500 5400

100

200

300

Case−11

FIGURE 3.1. Time series of prices for four cases.

Fig.3.1 illustrates the price time series for the four cases. The corresponding time series

and density distributions of the returns are given in Fig.3.2 for the three noisy cases. Fig.3.3

shows the ACs of returns, the absolute and squared returns. For comparison, a same set of

noisy demand and fundamental processes is used for Case-11. Each simulation runs 6,000 time

periods and the first 1,000 is dropped to wash out the initial effect for the estimates of density

and ACs of returns to make the estimates robust.12

12Robust here means that the estimates of the density distributions and ACs are independent from the initial con-
ditions. In fact, numerical simulations show that, for eachof the three noisy cases, prices converge to an invariant
distribution which characterizes the so-called stable random fixed point of the stochastic system in the random
dynamics literature. Further discussion on the statistical analysis and test on the convergence of the market price
to the fundamental value is given in He and Li (2004).
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0 1050 2100 3150 4200 5250

0.00

0.01
Case−01

−0.010 −0.005 0.000 0.005 0.010

50

100
Svar2 N(s=0.00326) 
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−0.025
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0.050 Case−10

−0.02 0.00 0.02 0.04

20

40 Svar3 N(s=0.0101) 

0 1050 2100 3150 4200 5250

−0.05

0.00

0.05 Case−11

−0.075 −0.050 −0.025 0.000 0.025 0.050 0.075

10

20

30

40
Svar4 N(s=0.0139) 

FIGURE 3.2. Time series and density distributions of the returns ofCases-01,
10 and 11.
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0.05
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0.25
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0.25

0.50

AC(rt
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FIGURE 3.3. The ACs of returns (left column), the absolute returns (middle
column), and the squared returns (right column) of Cases-01,10 and 11.

Both Figs.3.2 and 3.3 show significantly different impacts ofdifferent noisy processes on the

market return volatility. (i) For Case-01, the stochastic fundamental price process is the only

noisy process.13 In this case, the market price displays astrong under-reaction14 AC pattern

on returns, which is characterized by the significantly positive decaying ACs shown in the top

left panel in Fig.3.3. This significant AC pattern is so strong and even carried forward to the

13For comparison, we include the fundamental price process used for our simulation in Fig.A.1 in Appendix A,
which gives time series of price and return, return distribution density (compared with the normal distribution),
and the ACs of returns, the absolute and squared returns.
14See He and Li (2004) for more detailed analysis on the generating mechanism for various under- and over-
reaction AC patterns.
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AC patterns for the absolute and squared returns. (ii) For Case-10, the noisy excess demand is

the only noisy process. In this case, the market price displays no volatility clustering, which is

characterized by insignificant AC patterns for return, the absolute and squared returns shown

in the middle row in Fig.3.3. (iii) For Case-11, both the noisyexcess demand and fundamental

price processes appear. In this case, we observe the relatively high kurtosis in Fig.3.2 and

insignificant ACs for returns, but significant ACs for both absolute and squared returns shown

in the bottom panel in Fig.3.3.

The simple MF model appears to do the job of generating appropriate power laws for returns

and volatility when both noisy processes are present. What isthe reason for this outcome? Let

us start our analysis with the dynamics of the underlying deterministic system. He and Li (2004)

show that, for the deterministic system, a stable steady state, which is the constant fundamental

value, can become unstable through either a flip or a Hopf bifurcation. Furthermore, the flip

bifurcation is mainly due to the strong price adjustment of the fundamentalists towards the

fundamental value, while the Hopf bifurcation is mainly dueto the strong extrapolation of

the trend followers towards the trend which itself follows ageometric decay learning process.

For the chosen set of parameters, the Hopf bifurcation value, in terms of the extrapolation

parameterγ of the trend followers, is given bȳγ ≈ 0.32684. In other words, the linearized

deterministic system has a pair of complex eigenvaluesλ± satisfying|λ±| < 1 for γ < γ̄ and

|λ±| = 1 for γ = γ̄. In our caseγ = 0.3, the solution is oscillating initially but converging

to the steady state eventually, which is clearly demonstrated by the price series for Case-00 in

Fig.3.1. Intuitively, the nature of the oscillating convergence to the steady state is due to the

extrapolation and learning of the trend followers. The trend they are trying to learn follows

a geometric probability process (with decay parameterδ) and this learning process is updated

every time based upon historical price. As a result, the learning process smooths the price and

leads to a lagged reaction to the market price. It is thislagged learning(on the fundamental

value) that plays an important role for the dependent volatility.

We now turn to Case-01. When the fundamental price fluctuates stochastically, it leads to

recurrent shifts of the fundamental values to different levels. When the shifting is so often to

leave the trend followers not enough time to learn the true fundamental value, the lagged learn-

ing from the trend followers leads to a highly dependent volatility (measured by the absolute
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and squared returns) over the short-run and this is clearly demonstrated by the strong under-

reaction AC pattern on returns in the top row in Fig.3.3. However, the lagged learning does not

prevent trend followers from learning the constant fundamental values when the market price is

perturbed by a small noisy excess demand with mean value zero, which is the Case-10. Con-

sequently, the return distribution in the middle row in Fig.3.2 is close to normal and there is no

significant AC patterns for return, the absolute return and squared return shown in the middle

row in Fig.3.3.

When both the fundamental price and excess demand noisy processes are present, which is

Case-11, the stochastic nature from the noisy excess demand and the weak extrapolation from

the trend followers prevents the market price from forming any significant trend, leading to

no significant AC pattern for returns. However, the volatility fluctuations due to the lagged

learning from the trend followers are maintained. Because ofthe stochastic nature of the noisy

excess demand, the strong AC patterns of the absolute and squared returns shown in Case-01 are

washed out, but remain highly significant, which is demonstrated in the bottom row in Fig.3.3.

Comparing the AC patterns from real financial data, such as theS&P 500 which we present

in the following section, the volatility fluctuations characterized by our simulated data is very

close to what we have observed in the actual data. It is worth emphasizing that neither one of

the two noisy processes alone is responsible for this realistic feature.

Overall, we see that the interaction of speculators, trend chasing through learning, and the

interplay of noise and a stable deterministic equilibrium can be a source of long-memory be-

haviour. Our analysis allows us to gain some insights into the origin of this realistic dynamic

behavior. Basically, the system is characterized by a continuum of equilibria with a market

price which fluctuates around and (on an average) equals the fundamental value (due to the

fundamentalists), lagged learning and trend chasing (due to the trend followers), and balanced

noise level (from the excess demand). Because neither group has an advantage in a situation

where no arbitrage opportunities exist (P = P ∗) and no deviations from the equilibrium price

are expected (when there is no excess noisy demand), the system moves in an erratic manner

along its continuum of equilibria. This mechanism shares the same spirt of Lux and Marchesi’s

(1999) herding model.

In principle, different types of dynamics could be the source of power-law distributed fluc-

tuations as we have discussed in our introduction. Based on our analysis, it appears that the
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dynamics near the Hopf bifurcation boundary (or surface) plays an important role in this as-

pect. Of course, such Hopf behaviour can be generated by manymechanisms including herding

(e.g. Lux (1995)) and adaptive switching (e.g. Brock and Hommes (1997)). Also the interplay

of noise and dynamics of the deterministic system plays a crucial role. In particular, the size

of the noisy process is a very subtle issue. For the herding mechanism in Lux and Marchesi

(2001), a balanced disposition among noise traders is necessary. For the switching mechanism

in Gaunersdorfer and Hommes (2000), the noisy component added to the excess demand is

responsible for the switching between locally co-existingattractors, and hence the noisy level

has to be large to obtain their realistic results. In our model, the distributed fluctuations due to

the lagged learning and weak extrapolation from the trend followers needs to be balanced to

the noisy level of the excess demand. At this stage, a theoretical analysis on the interplay of

deterministic dynamics and noise seems difficult.

In the following discussion, we adopt statistical methods based on Monte Carlo simulation

to estimate various models related to the long memory characterization. The estimates are for

both the MF model and the S&P 500. We use the estimates for S&P 500 to represent the real

world and then compare to those from the MF model.

4. EMPIRICAL EVIDENCE AND LONG MEMORY BEHAVIOUR OF S&P 500

As an empirical evidence and a benchmark for our comparison,this section provides a

brief statistical analysis of the S&P 500 price index15. There are altogether 5306 observa-

tions from Oct 20, 1982 to Oct 27, 2003. Denotept as the price index for S&P 500 at timet

(t = 0, ..., 5305) and log returnsrt are defined asrt = lnpt − lnpt−1.

4.1. Statistics and Autocorrelations of Returns. Table 4.1 gives the summary statistics for

rt. We can see from Table 4.1 that the kurtosis forrt, 44.76, is much higher than that of a

normal distribution which is 3. The kurtosis and studentized range statistics (which is the range

divided by the standard deviation) show the characteristics fat-tailed behavior compared with

a normal distribution. The Jarque-Bera normality test statistic is far beyond the critical value

which suggests thatrt is far from a normal distribution.

Figure 4.1 gives the plots ofpt, rt. We can see that there is a clear trend forpt but rt is rather

stable. The large absolute returns are more likely than small absolute returns to be followed

15We get the data from http://finance.yahoo.com.
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TABLE 4.1. Summary statistics ofrt.

data sample size mean std skewness kurtosis min max studentized range Jarque-Bera
rt 5305 0.00037 0.0108 -1.933 44.76 -0.229 0.087 29.16 388510

by a large absolute return. The market volatility is changing over time which suggests that a

suitable model for the data should have a time varying volatility structure as suggested by the

ARCH model.
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FIGURE 4.1. Time series on prices (a) and log returns (b) of S&P 500 from
Oct 20, 1982 to Oct 27, 2003.

A well known stylized fact of the stock return is that the returns themselves contain little serial

correlation, but the squared returnsr2
t and absolute return|rt| do have significantly positive

serial correlation over long lags. For example, Ding, Granger, and Engle (1993) investigate

autocorrelations of returns (and their transformations) of the daily S&P 500 index over the

period 1928 to 1991 and find that the absolute returns and squared returns tend to have very slow

decaying autocorrelations, and further, the sample autocorrelations for the absolute returns are

greater than the sample autocorrelations for squared returns at every lag up to at least 100 lags.

Table B.1 in Appendix B reports the autocorrelation coefficients for the returns, squared returns,

and absolute returns and their corresponding confidence intervals, which are constructed by

using the Newey-West corrected standard error. The autocorrelations are plotted in Figure 4.2,

where the lines from the bottom to the top are the autocorrelation coefficients for the returns,

squared returns, and absolute returns respectively. Theseresults coincide with the findings in

Ding, Granger and Engle (1993).

4.2. Estimates of Power-Law Decay Index via ARFIMA. Besides the visual inspection of

autocorrelations ofrt, r2
t and|rt| for the S&P 500, one can also construct models to estimate

the decay rate of the autocorrelations ofrt, r2
t and |rt|. For instance, we consider the simple
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FIGURE 4.2. The autocorrelations ofrt, r2
t and|rt| for S&P 500.

ARFIMA(0, d, 0) process (for example, see the review paper by Baillie(1996))

(1 − L)dxt = εt, εt ∼ NID(0, σ2), (4.1)

whereL is the lag operator, andd is the order of integration. Ford = 0, xt is simply white

noise and its autocorrelation function exhibits an exponential decay, whereas ford = 1, xt is a

random walk and hence has an autocorrelation function that remains at unity. For non-integer

values ofd, the autocorrelation function ofxt declines hyperbolically to zero. To be precise, the

autocorrelations are given by

ρk = Ck2d−1,

whereC is a constant, so the hyperbolic decay indexµ ≡ 2d− 1 depends upond. For the daily

return, absolute return, and squared return of the S&P 500, we estimate the ARFIMA(0, d, 0)

model; the estimates of parameterd are summarized in Table 4.2.

TABLE 4.2. Estimates ofd for S&P 500

d Std. P-value 95% CI
r -0.0192 0.0112 0.086 [-0.0410, 0.0027]
r2 0.1233 0.0102 0.000 [0.1033, 0.1433]
|r| 0.1762 0.0085 0.000 [0.1594, 0.1931]

We see that the results do provide evidence of long persistence for squared returns and ab-

solute returns. It seems that the estimatedd is not significant for the daily returns: We cannot

reject the null hypothesis thatd is zero. But it is significant for the absolute returns and squared
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returns, and the persistence in absolute returns is much stronger than that in squared returns.

These results coincide with the well-established findings in the empirical finance literature.

4.3. Volatility Clustering, Long Memory and (FI)GARCH Estimates. Another striking fea-

ture of the return series observed from Figure 4.1 isvolatility clustering. A lot of econometric

models of changing conditional variance have been developed to test and measure the volatil-

ity clustering. The most widely used one is the family of ARCH (Autoregressive Conditionally

Heteroskedastic) models introduced by Engle (1982) and itsgeneralization, the GARCH model,

introduced by Bollerslev (1986). Following their specification, for instance, if we model the re-

turns as an AR(1) process, then a GARCH(p, q) model is defined by:











rt =a + brt−1 + εt, εt = σtzt,

σ2
t =α0 + α(L)ε2

t + β(L)σ2
t , zt ∼ N(0, 1),

(4.2)

whereL is the lag operator,α(L) =
∑q

i=1
αiL

i andβ(L) =
∑p

j=1
βiL

j. Definingvt = ε2
t −σ2

t ,

the process can be rewritten as an ARMA(m, p) process

[1 − α(L) − β(L)]ε2
t = α0 + [1 − β(L)]vt (4.3)

with m = max{p, q}. Table 4.3 reports the estimates of the GARCH(1, 1) model, where the

mean process follows an AR(1) structure. Based on the estimates, one can see that a small

TABLE 4.3. GARCH(1, 1) Parameter Estimates for S&P 500

a × 103 b α0 × 105 α1 β1

0.608 0.0359 0.113 0.0783 0.9145
(0.125 ) (0.014) (0.059) (0.0304) (0.0305)
Note: The numbers in parentheses are standard errors.

influence of the most recent innovation (α1 < 0.1) is accompanied by a strong persistence

of the variance coefficient (β1 > 0.9). It is also interesting to observe that the sum of the

coefficientsα1+β1 is close to one, i.e., the process is close to an integrated GARCH (IGARCH)

process. A related literature (e.g. Pagan (1996)) shows that such parameter estimates are rather

common when considering returns from high frequency daily financial data of both share and

foreign exchange markets. However, GARCH implies that shocksto the conditional variance

decay exponentially, and IGARCH implies that the shocks to theconditional variance persist

indefinitely.
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In response to the finding that most of the financial time series are long memory volatility

process, Baillie, Bollerslev, and Mikkelson (1996) considerthe Fractional Integrated GARCH

(FIGARCH) process, where a shock to the conditional variance dies out at a slow hyperbolic

rate of decay. Later on, Chung(1999) suggests a slightly different parameterization of the model:

φ(L)(1 − L)d(ε2
t − σ2) = α0 + [1 − β(L)]vt, (4.4)

whereφ(L) = 1−∑q

i=1
φiL

i, α0 = φ(L)(1−L)dσ2, andσ2 is the unconditional variance of the

corresponding GARCH model. Table 4.4 reports the estimates ofthe FIGARCH(1, d, 1) model,

where the mean process follows an AR(1) model. The estimate for the fractional differencing

parameter̂d is statistically very different from both zero and one. Thisis consistent with the

well known findings that the shocks to the conditional variance dies out at a slow hyperbolic

rate.

TABLE 4.4. FIGARCH(1, d, 1) Parameter Estimates for S&P 500

a b α0 × 104 d φ1 β
-0.0258 0.0166 0.000017 0.3933 0.1012 0.7968

(0.00039 ) (0.0083) (0.1930) (0.0091) (0.0116) (0.0035)
Note: The numbers in parentheses are standard errors.

5. ECONOMETRICCHARACTERIZATION OF THE LONG MEMORY PROPERTIES OFTHE

MF MODEL

This section is devoted to an econometric analysis on the power-law behaviour and the volatil-

ity persistence of the MF model. Targeted for the results that we obtained in Section 4 for the

S&P 500, various models are estimated using the MF model-generated data outlined in Section

3, and subsequently, these estimates are compared with those of the S&P 500 to see how close

we are to the real world. The analysis and estimates are basedon Monte Carlo simulations.

For a chosen set of parameter and two noisy processes specified in Case-11 in Section 3, we

ran 1,000 independent simulations over 6,306 time periods and discard the first 1,000 time pe-

riods to wash out the possible initial noise effect. For eachrun of the model we have 5,306

observations, which matches the sample size of S&P 500 that we used in previous section.

5.1. Autocorrelations of Returns. First, we look at the autocorrelation coefficients of returns,

squared returns and absolute returns. It is interesting to see whether our simulation model can



20 HE AND LI

replicate the well known findings as described in Figure 4.2.By running 1,000 independent

simulations, we estimate the autocorrelation coefficientsand calculate Newey-West corrected

standard errors of returns, squared returns and absolute returns for each run of the model, and

then we take the average. The results for returns, squared returns and absolute returns are

reported in Table B.2, B.3 and B.4 in Appendix B, respectively. Wealso plot the autocorrelation

coefficients and their corresponding confidence interval inFigure 5.1.
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FIGURE 5.1. The autocorrelations ofrt, r2
t and|rt| for the MF model.

From Figure 5.1, we see that for the market fraction model, not only the sample correlations

of r2
t and|rt| are all outside the95% confidence interval ofrt but they also are all positive over

long lags. Further, the sample autocorrelations for absolute returns are greater than the sample

autocorrelations for squared returns at every lag up to at least 100 lags. Comparing to Figure

4.2 for the S&P 500, we see that the patterns of decay of the autocorrelation functions of return,

squared return and absolute return are quite similar.

5.2. Estimates of Power-Law Decay Index via ARFIMA. We also look at the decay rate of

the autocorrelations of returns, squared returns, and absolute returns that are estimated from the

ARFIMA(0, d, 0) model. The resulting estimates are reported in Table 5.1, where the second

last column indicates the numbers that the corresponding estimates are significant at the 5%

level over 1,000 independent simulations. Comparing with the estimated results of the S&P

500 in Table 4.2, we find that in both cases the estimate ofd for returns is not significant.
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There is a clear evidence of long memory for squared returns and absolute returns, and also the

patterns of the estimates ofd for the returns, squared returns, and absolute returns are the same.

TABLE 5.1. Estimates ofd for the MF model

d Std. P-value 95% CI No. Sig
r 0.0341 0.0113 0.1684 [0.0334, 0.0348] 382
r2 0.1381 0.0083 0.000 [0.1375,0.1386] 1000
|r| 0.1454 0.0081 0.000 [0.1449, 0.1459] 1000

5.3. Volatility Clustering, Long Memory and (FI)GARCH Estimates. We now check the

ARCH/GARCH effects. We want to see whether the MF model is capableof capturing the

feature of volatility clustering. We implement the test suggested by Engle (1982). The null hy-

pothesis is that the residuals of a regression model are i.i.d. and the alternative hypothesis is that

the errors are ARCH(q). Suppose the stock returns follow an AR(1) process with innovations

εt. If the returns are homoskedastic, then the variance cannotbe predicted and the variations

in ε2
t will be purely random. However, if ARCH effects are present, large values ofε2

t will be

predicted by large values of the past squared residuals. This idea leads to aTR2 test statistic. In

order to compute the test statistic, we first fit the returns series with an AR(1) model, and then

regress the squared residualsε2
t on a constant andε2

t−1, ..., ε
2
t−q. R2 is then computed from this

regression. Under the null hypothesis that there is no ARCH, the test statistic is asymptotically

distributed as a chi-square distribution withq degrees of freedom. We implement the test for

both the S&P 500 and the simulation model. The results are reported in Table 5.2. In both

cases, the null hypothesis is strongly rejected. In terms ofEngle’s test, both the data from the

S&P 500 and the MF model do have clear ARCH effects. So, we turn tolook at the GARCH

estimates, and the FIGARCH estimates which describe the volatility persistence.

TABLE 5.2. Engle’s test statistics for the presence of ARCH/GARCH effects

Lag 1 Lag 2 Lag 5 Lag 100
S&P 72.88 174.26 270.62 342.00
MF 140.79 (987) 228.20 (993) 372.65 (998) 821.32 (999)

Note: The numbers in parentheses are the numbers that the test statistics aresignificant at5% level over
1000 independent simulations.

We report the estimates of the GARCH and FIGARCH model in Table 5.3and Table 5.4,

respectively. The specifications of the models are the same as that we estimated for the S&P

500. Again, all these estimates are obtained from the estimation for each run of the simulation
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model and then averaged over independent simulations. The results from the GARCH model

are astonishingly similar to what one usually extracts fromreal life data: a small influence of

the most recent innovation (α1 < 0.1) is accompanied by strong persistence of the variance

coefficient (β1 > 0.9) and the sum of the coefficientsα1 + β1 = 0.9928 is close to one. For

the estimates of FIGARCH(1, d, 1), we see that the estimate ofd is significantly different from

zero and one.

TABLE 5.3. GARCH(1, 1) Parameter Estimates of the MF Model

a b α0 × 104 α1 β
0.000074 0.0725 0.0078 0.0260 0.9738
(0.00023 ) (0.0139) (0.0035) (0.0032) (0.0033)

47 771 177 1000 1000
Note: The numbers in parentheses are the standard errors, and the number in the last row are the
numbers that the test statistics are significant at5% level over 1000 independent simulations.

TABLE 5.4. FIGARCH(1, d, 1) Parameter Estimates of the MF Model

a b α0 × 104 d φ1 β
0.0137 0.0769 0.3620 0.3797 0.3439 0.7933

(0.0010 ) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)
412 726 356 876 831 985

Note: The numbers in parentheses are the standard errors, and the number in the last row are the
numbers that the test statistics are significant at5% level over 1000 independent simulations.

Overall, we find that the MF model do provide a mechanism for the long-range dependence

in volatility. Now we turn to assess the differences betweenthe MF model and the real world

quantitatively.

5.4. Comparing the MF model with the Real World. We use the S&P 500 to represent the

real world. Then, we compare the MF model with the real world in terms of the autocorrelation

of returns, squared returns and absolute returns, power-law decay index, and (FI)GARCH(1,1)

parameters, respectively.

In Figure 4.2 and 5.1, we plot the autocorrelation coefficients of returns, squared returns and

absolute returns for the S&P 500 and the MF model respectively. For the purpose of comparison,

we combine them together and plot the autocorrelation coefficients and their corresponding

confidence interval in Figure 5.2.

For returns, we see from Figure 5.2 (b) that the confidence intervals of the simulation model

lies inside the confidence intervals of the S&P 500. However,Figure 5.2 (c) and (d) indicate that
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FIGURE 5.2. Autocorrelations of returns, squared returns and absolute returns
of the S&P 500 and the MF model (with confidence intervals) (a). Autocor-
relations and their confidence intervals of returns (b), squared returns (c), and
absolute returns (d).

the speed of decay of the squared return and absolute return from the MF model are different

from what we see from the S&P 500, especially for large lags.

For the decay indexd for returns, squared returns or the absolute returns, we want to know

whether the parameterd of the S&P 500 is the same as that of the MF model, in other words,

we want to testH0 : dS&P = dMF . If we think thatd̂S&P (d̂MF ) is a good approximation of the

true one, then we can check whetherd̂MF (d̂S&P ) lies in the confidence interval of̂dS&P (d̂MF )

or not. Because both of thedS&P anddMF are estimated, the null hypothesis can be tested by

the Wald test by assuming that both the number of simulationsand the number of time periods

for each simulation go to infinity. In the construction of Wald test

W = (d̂S&P − d̂MF )Σ̂−1(d̂S&P − d̂MF ),

Σ̂ is simply the sum of sample variance ofd̂S&P and d̂MF , because the outcomes of the MF

model is statistically independent of the real world. We also notice that the sample variance of
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d̂MF is much smaller than that of̂dS&P , this is becausedMF is estimated from the simulated data

by running the MF independently many times. For a more general discussion on comparing the

simulation models and comparing a simulation model with thereal world, see Liet al. (2004).

The resulting test statistics for the returns, the squared returns and the absolute returns are

22.624, 2.1040, and 13.1181 respectively. Noting that the critical value of the Wald test at 5%

significant level is 3.84, we find that the null hypothesis forreturns and absolute returns are

rejected, but it is not rejected in case of the squared return. So, the differences between the

estimatedd of the S&P 500 and the MF model for returns and absolute returns are statistically

significant, but the difference is not significant for the squared returns.

For (FI)GARCH parameters, first, we want to detect the differences between the GARCH

estimates in Table 4.3 and 5.3 for the S&P 500 and the MF model respectively. Formally,

for the parameterθ = (a, b, α0, α1, β), this is to testH0 : θS&P = θMF . This hypothesis

can be tested again by the Wald test, which can be constructedsimilarly to that for parameter

d. The resulting Wald statistic is 33.8971, which suggests that the null hypothesis is strongly

rejected and hence the GARCH(1, 1) estimates of the MF model and that of the S&P 500

are significantly different. Similarly, for the FIGARCH(1, 1) estimates, we can also detect the

difference between the estimates ofϑ = (a, b, α0, d, α1, β) of the MF model and that of the S&P

500. The null hypothesis becomesH0 : ϑS&P = ϑMF . The resulting Wald statistics is 1914,

which is far beyond the critical value at any conventional significant level. So the estimates of

FIGARCH(1, d, 1) model of MF model are significantly different from that of theS&P 500.

The above analysis indicates that the simple market fraction model is able to replicate the

long memory properties of the actual stock market qualitatively. However, the formal statisti-

cal tests find that the decay rate and (FI)GARCH estimates from the MF model are difficult to

match that of the S&P 500 exactly. This is probably due to the simplicity of the MF model.

The long memory mechanism of the MF model is different from either herding (for instance,

the mechanism developed in Lux and Marchesi (1999)) or switching mechanisms (for instance,

the adaptive switching mechanism in Brock and Hommes (1997, 1998)) in terms of modeling,

but it shares the same spirit in a much simpler way. We should notice that it is this simplicity

that makes it possible to identify potential sources and mechanisms to generate certain charac-

teristics and this is one of the contributions of this paper.
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6. CONCLUSION

Motivated by recent interest in the power law behaviour of high frequency financial market

time series and the explanatory power of heterogeneous-agent asset-pricing models, this paper

investigates the long memory properties of a simple market fraction model involving two types

of traders (fundamentalists and trend followers). Extending earlier work on long-run asset price

behaviour, profitability, survivability, various under- and over-reaction AC patterns, and their

connections to the underlying deterministic dynamics, we are interested in the characterization

of the power law volatility behaviour of the MF model and its comparison with the real world.

We found that the heterogeneity, trend chasing through learning, and interplay of noise and

stable deterministic equilibria can explain power-law distributed fluctuations.

It is interesting and important to see how the deterministicdynamics and noise interact with

each other, and further, to understand the connections between the nonlinear dynamics of the

underlying deterministic system and certain time series properties of the corresponding sto-

chastic system. The theoretical analysis is important but difficult given the current state of

knowledge. The statistical analysis with powerful econometric tools seems necessary. Based

upon Monte Carlo simulations, statistical analysis, including estimates of (FI)GARCH parame-

ters and related tests, shows that the MF model is able to explain some of the characteristics

that are well established in the empirical finance literature. There is a clear evidence of long

memory and GARCH effects. However, the exact decay rates of autocorrelation functions of

returns, squared returns and absolute returns, and (FI)GARCH(1, 1) parameters are difficult to

match with those of the S&P 500. It is worth emphasizing that all these interesting qualita-

tive and quantitative features arise from a simple model with fixed market fractions. Further

investigation and extension of the simple model seem necessary.

It may be interesting to extend the model to a changing fraction model, in which part of the

market fractions are governed by herding and another part follows some adaptive switching

process. One way to start might be to estimate the model first,and then implement misspec-

ification tests. Econometric methods, such as efficient methods of moments could be used.

Allowing for herding and switching mechanisms and these econometric estimation approaches,

we may gain a better characterization and understanding of financial markets.
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APPENDIX A. T IME SERIESPROPERTIES OF THEFUNDAMENTAL PRICE PROCESS
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FIGURE A.1. Time series of the fundamental price and return, the return dis-
tribution density and the corresponding ACs of returns, the absolute returns, and
the squared returns.
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APPENDIX B. TABLE OF AUTOCORRELATIONS

TABLE B.1. Autocorrelations ofrt, r2
t and|rt| for S&P 500.

Lag rt r2
t |rt|

1 0.0140 (0.0199) 0.1108 (0.0297) 0.1952 (0.0421)
[-0.0250,0.0530] [0.0526,0.1689] [0.1127,0.2777]

2 -0.0395 (0.0312) 0.1525 (0.0080) 0.2187 (0.0392)
[-0.1007,0.0217] [0.1369,0.1682] [0.1418,0.2957]

3 -0.0382 (0.0243) 0.0824 (0.0324) 0.2171 (0.0302)
[-0.0858,0.0094] [0.0190,0.1459] [0.1580,0.2762]

4 -0.0133 (0.0190) 0.0257 (0.0177) 0.1776 (0.0248)
[-0.0505,0.0239] [-0.0090,0.0604] [0.1290,0.2262]

5 0.0008 (0.0363) 0.1406 (0.0047) 0.2268 (0.0245)
[-0.0703,0.0719] [0.1313,0.1499] [0.1787,0.2749]

6 -0.0096 (0.0198) 0.0330 (0.0142) 0.1764 (0.0177)
[-0.0484,0.0292] [0.0051,0.0609] [0.1417,0.2110]

7 -0.0298 (0.0192) 0.0182 (0.0149) 0.1554 (0.0257)
[-0.0674,0.0078] [-0.0110,0.0474] [0.1051,0.2058]

8 -0.0014 (0.0199) 0.0523 (0.0090) 0.1788 (0.0161)
[-0.0404,0.0376] [0.0346,0.0699] [0.1472,0.2104]

9 -0.0073 (0.0234) 0.0346 (0.0200) 0.1645 (0.0208)
[-0.0532,0.0386] [-0.0046,0.0738] [0.1238,0.2052]

10 0.0015 (0.0193) 0.0162 (0.0119) 0.1568 (0.0232)
[-0.0363,0.0393] [-0.0070,0.0395] [0.1113,0.2024]

20 -0.0114 (0.0174) 0.0100 (0.0104) 0.1273 (0.0251)
[-0.0455,0.0227] [-0.0103,0.0304] [0.0780,0.1766]

30 -0.0066 (0.0168) 0.0123 (0.0097) 0.1161 (0.0182)
[-0.0395,0.0263] [-0.0067,0.0312] [0.0804,0.1519]

40 -0.0324 (0.0154) 0.0056 (0.0060) 0.0958 (0.0190)
[-0.0626,-0.0022] [-0.0062,0.0174] [0.0584,0.1331]

50 -0.0159 (0.0152) 0.0111 (0.0079) 0.1098 (0.0187)
[-0.0457,0.0139] [-0.0045,0.0266] [0.0732,0.1464]

60 0.0009 (0.0136) 0.0006 (0.0034) 0.0675 (0.0206)
[-0.0258,0.0276] [-0.0060,0.0073] [0.0271,0.1079]

70 -0.0069 (0.0141) 0.0035 (0.0026) 0.0791 (0.0151)
[-0.0345,0.0207] [-0.0016,0.0086] [0.0494,0.1088]

80 0.0040 (0.0139) 0.0008 (0.0031) 0.0572 (0.0166)
[-0.0232,0.0312] [-0.0053,0.0068] [0.0248,0.0897]

90 -0.0062 (0.0132) -0.0004 (0.0026) 0.0652 (0.0180)
[-0.0321,0.0197] [-0.0055,0.0047] [0.0299,0.1005]

100 -0.0030 (0.0140) 0.0009 (0.0032) 0.0729 (0.0192)
[-0.0304,0.0244] [-0.0052,0.0071] [0.0352,0.1105]

Note: The numbers in parentheses are Newey-West corrected standard errors, and95% confidence intervals indicate by square brackets.
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TABLE B.2. Autocorrelations ofrt for the MF model.

Lag β Min. Max. 95% CIs
1 0.0504 (0.0186) -0.2987 0.5411 [0.0492,0.0515]
2 0.0393 (0.0182) -0.1556 0.5060 [0.0382,0.0404]
3 0.0279 (0.0182) -0.1412 0.4546 [0.0267,0.0290]
4 0.0200 (0.0178) -0.1303 0.4197 [0.0189,0.0211]
5 0.0141 (0.0178) -0.1008 0.3721 [0.0130,0.0152]
6 0.0087 (0.0178) -0.1125 0.3619 [0.0076,0.0098]
7 0.0055 (0.0177) -0.1002 0.3325 [0.0054,0.0076]
8 0.0034 (0.0176) -0.0799 0.2934 [0.0023,0.0044]
9 0.0011 (0.0175) -0.1191 0.2668 [0.0000,0.0022]
10 0.0004 (0.0174) -0.0900 0.2435 [-0.0007,0.0015]
20 -0.0053 (0.0172) -0.2243 0.0937 [-0.0063,-0.0042]
30 -0.0024 (0.0171) -0.0592 0.0566 [-0.0034,-0.0013]
40 -0.0007 (0.0170) -0.0652 0.0572 [-0.0018,0.0004]
50 0.0009 (0.0170) -0.0580 0.0793 [-0.0002,0.0019]
60 -0.0002 (0.0170) -0.0646 0.0887 [-0.0013,0.0009]
70 -0.0004 (0.0170) -0.0615 0.0689 [-0.0015,0.0006]
80 0.0006 (0.0171) -0.0627 0.0802 [-0.0004,0.0017]
90 -0.0007 (0.0171) -0.0761 0.0795 [-0.0017,0.0004]
100 0.0002 (0.0170) -0.0763 0.0723 [-0.0008,0.0013]

TABLE B.3. Autocorrelations ofr2
t for the MF model.

Lag β Min Max 95% CIs
1 0.1443 (0.0256) 0.0135 0.4917 [0.1427,0.1459]
2 0.1397 (0.0256) 0.0049 0.5457 [0.1381,0.1413]
3 0.1362 (0.0254) -0.0059 0.4338 [0.1346,0.1378]
4 0.1325 (0.0247) 0.0076 0.4431 [0.1309,0.1340]
5 0.1301 (0.0246) -0.0051 0.3251 [0.1286,0.1316]
6 0.1304 (0.0249) -0.0084 0.4107 [0.1289,0.1320]
7 0.1280 (0.0243) -0.0002 0.4056 [0.1265,0.1295]
8 0.1270 (0.0240) -0.0026 0.3644 [0.1255,0.1284]
9 0.1259 (0.0240) -0.0035 0.3683 [0.1245,0.1274]
10 0.1242 (0.0234) -0.0066 0.3219 [0.1227,0.1256]
20 0.1195 (0.0226) 0.0009 0.5453 [0.1181,0.1209]
30 0.1153 (0.0226) -0.0056 0.4194 [0.1139,0.1167]
40 0.1143 (0.0222) -0.0040 0.3041 [0.1129,0.1156]
50 0.1138 (0.0226) -0.0039 1.2611 [0.1124,0.1152]
60 0.1119 (0.0221) -0.0063 0.4257 [0.1105,0.1133]
70 0.1122 (0.0228) -0.0144 0.7911 [0.1108,0.1136]
80 0.1103 (0.0222) -0.0078 0.5088 [0.1089,0.1117]
90 0.1082 (0.0220) -0.0038 0.3497 [0.1068,0.1095]
100 0.1101 (0.0224) -0.0093 0.4121 [0.1087,0.1115]
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TABLE B.4. Autocorrelations of|rt| for the MF model.

Lag β Min Max 95% CIs
1 0.1710 (0.0185) 0.0111 0.5923 [0.1699,0.1722]
2 0.1676 (0.0186) 0.0074 0.5018 [0.1664,0.1688]
3 0.1649 (0.0186) -0.0030 0.4928 [0.1637,0.1660]
4 0.1624 (0.0183) 0.0026 0.5154 [0.1613,0.1636]
5 0.1607 (0.0181) -0.0029 0.4567 [0.1596,0.1618]
6 0.1600 (0.0181) -0.0055 0.4892 [0.1589,0.1612]
7 0.1587 (0.0181) -0.0035 0.4918 [0.1576,0.1598]
8 0.1572 (0.0180) -0.0004 0.4684 [0.1560,0.1583]
9 0.1562 (0.0179) -0.0024 0.4954 [0.1551,0.1573]
10 0.1548 (0.0177) -0.0067 0.4642 [0.1537,0.1559]
20 0.1507 (0.0175) 0.0033 0.5045 [0.1496,0.1518]
30 0.1464 (0.0174) -0.0018 0.4620 [0.1453,0.1475]
40 0.1461 (0.0174) -0.0014 0.4826 [0.1451,0.1472]
50 0.1444 (0.0173) -0.0174 0.4781 [0.1433,0.1455]
60 0.1433 (0.0174) -0.0069 0.4716 [0.1423,0.1444]
70 0.1432 (0.0174) -0.0085 0.4970 [0.1422,0.1443]
80 0.1419 (0.0174) -0.0113 0.4974 [0.1409,0.1430]
90 0.1401 (0.0173) -0.0043 0.4863 [0.1390,0.1412]
100 0.1407 (0.0174) -0.0069 0.5069 [0.1397,0.1418]


