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abstract 
 

 We tend to interact with same people, day after day.  Might this affect our 
behavior?  In an abstract fashion, we look at this question.  To model this repeated 
interaction with a small subset of the entire population we place agents on the nodes of a 
network and have them play a prisoners’ dilemma game exclusively with their neighbors.  
We then alter the payoffs of the game and the topology of the network to see if, when, 
and to what degree cooperation survives.  We find widely divergent aggregate decisions 
across networks and across payoffs.  But, there is commonality as well.  It seems clear 
that some networks, or some organizational structures, are more conducive to fostering 
cooperation     
 
 
 
 
 
 
 
 
 
*This study is in its infancy; this manuscript and results preliminary.  We urge caution 
when considering our results and we welcome comments and suggestions.   
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PD Games on Networks 
I.  Introduction 

 
Unexpected things happen when a prisoners’ dilemma game is repeatedly played 

on a network.  For example, Nowak and May (1993, 1994) place players on a grid and 
find that the distribution of strategies can be chaotic, making it impossible to predict the 
actions of any individual player.  Eshel, Samuelson and Shaked (1998) look at players on 
a ring and even though the defection strategy dominants any individual pairing, they find 
that cooperation not only survives but spreads to dominate the network.  Wilhite (2005) 
compares the distribution of strategies on a series of networks and finds that each 
network leads to a unique long term distribution of cooperation and defection.   
 
 But network topology affects more than the eventual number of cooperators and 
defectors.  Given a particular network, one set of payoffs can lead to one dynamic 
outcome while slightly different payoffs may create a completely different set of 
decisions by the actors.  And, the long run distribution of strategies may be stable with 
one set of payoffs but cycle with a different payoff matrix.  This paper investigates PD 
games played on networks and the distribution of strategies selected by players.  Within 
the remarkable variation that arises, we find order.  For example, all regular networks 
have ranges of payoffs that trigger identical dynamics but, the internal dynamics change 
at certain critical values.  Moreover, these critical values are the same for all regular-size 
networks of a particular order. 
 
II.  The game, playing the game, and the playing field: 

 
the game: 
Two person symmetric games can be expressed in their normal form with the 

familiar 2X2 matrix.  
       C          D 

 (a,a)  (b,c) 
 (c,b)  (d,d) 

 
Symmetric prisoners’ dilemma games refer to those in which c > a > d > b and  
a+d > c+b (although this second condition is not pertinent in the following applications).  
A simplified version of this game illustrates the activity that provided the motivation for 
this paper.  For now, let’s restrict three of the parameters such that a=1; b=d=0.  While 
this isn’t strictly a prisoner’s dilemma game (because b = d thus the dual-defection result 
is only a weak Nash equilibrium), it still demonstrates the behavior of interest when c>1 
and allows us to analyze the game by adjusting this single parameter, c.  In section IV we 
will remove these simplifications to investigate true PD games.  
 
 play 
 This is an evolutionary game in which strategies evolve over time with repeated 
play.  However, agents don’t learn in the sense that they remember and react to the play 
of other specific agents.  Instead, agents initially play a randomly selected strategy (C, 
cooperate or D, defect), playing the same strategy with all of their neighbors.  After one 
round of play, they collect their payoffs and observe the play and payoffs of each 

C 
D
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neighbor.  Preceding the next round of play, each agent updates his strategy by imitating 
the most successful strategy adopted in his neighborhood.  Notice that in each round each 
agent plays the same strategy with all of his neighbors, that is, if agent i has chosen the 
defection strategy, he defects with all of his neighbors.  Other flavors of imitation 
strategies have also appeared in the literature such as imitating the most successful 
average strategy (Eshel, et.al.,1998) or the most popular strategy (Ellison and Fudenberg, 
1993) but we have selected one of the simplest, agents imitate their most successful 
neighbor.   
 
 networks (the playing field) 
 Each agent plays this PD game with a select group of other agents defined by the 
network.  In this paper we concentrate on networks in which each node is connected to k 
nodes, k being a constant.  We call these networks with regular-size neighborhoods.  For 
instance, if k = 4, then each agent is connected to four neighbors.1   
 

We introduce our study by exploring three simple networks in which k = 4, the 
ring, the grid, and a portion of a tree.  To visualize a k4 ring think of a network in which 
agents are spread around a circle being connected to four others, the two agents on each 
side.  Regardless of which agent is selected his neighborhood looks like every other 
agent’s neighborhood.  The grid also sees agents laid out as on a chessboard each agent 
connected to the four closest agents, one above, one below and one on each side.  
Boundaries are eliminated by wrapping the edges around to connect creating a torus.  
Again, select any agent on this network and his neighbors line up in the same 
configuration.  Constructing a tree within which each agent has four neighbors is 
impossible because agents out on the tips of the branches have only one neighbor, but for 
everyone else, the neighborhood is constant.  For example, start with a central agent and 
connect him to four agents.  Each of these branch off to connect to another three agents, 
each of which branches thrice, and so forth.  The interior of this tree consists of agents 
with identical neighborhoods.  But at the tips of the branches many agents have only one 
neighbor, the immediately higher neighbor.  To avoid that boundary issue, we create a 
large tree and concentrate on the interior.  

 
III. Results of some simple experiments: 

 
Identical games played on different networks behave differently.  To illustrate 

these differences consider the eventual distribution of strategies on these three networks 
as we adjust the defection payoff, c.  Table 1 shows the final distribution of strategies 
adopted by a network of 1600 agents engaged in a repeated PD game following the rules 
outlined above, starting with a randomly selected distribution of strategies in which 

                                                 
1 A regular-size neighborhood is a bit more inclusive than a network of constant degree.  Constant degree 
networks (or more explicitly constant degree graphs) are those in which each node has the same number of 
edges.  Regular size (a constant number of neighbors) includes all constant degree networks but also allows 
for self-play, i.e. an agent can be a neighbor with himself or more importantly engage in self-play.  Self 
play allows us to think of the “decision maker” occupying a node as an organization (family or firm) that 
also plays the game internally.  In addition self-play allows us to consider networks with a specific 
topology and an odd number of neighbors.  For example, without self-play you cannot have a regular-sized 
ring network with an odd number of neighbors.  
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approximately 10% initially defect.  The final tallies are an average of 20 separate runs 
for each network and payoff combination. 

 
Table 1 

Eventual distribution of strategies and dynamics 
 of PD games on three networks 

 
 1 < c < 4/3 4/3 < c < 3/2 3/2 < c < 2 2 < c < 3 
Ring 3-cycle:  

87% 
cooperators 

   3-cycle: 
85% 
cooperators 

  stable: 
52% 
cooperators 

 
all defectors 

Tree stable: 
73% 
cooperators 

some 2-cycles: 
20% 
cooperators 

2-cycles: 
42% 
cooperators 

some 2 cycles: 
12% 
cooperators 

Grid stable/2-cycle: 
68% 
cooperators 

chaotic: 
35% 
cooperators 

long cycle: 
22% 
cooperators 

 
all defectors 

 
 
Table 1 shows how the dynamics of play lump into groups.  Reading across the 

table, we see that there are ranges of payoffs that yield identical results.  Consider a ring.  
If the defection payoff, c, is between 1 and 4/3, the network converges to a population in 
which about 87% on the individuals cooperate, while the remaining defectors roll through 
a three-period cycle.  It does not matter what the initial value of c is, as long as it lies in 
the identified range.  In fact, given the same initial distribution of strategies, the long run 
distribution cooperators and defectors is identical for any value of c as long as it lies 
between 1 and 4/3.  If c > 4/3, the dynamics abruptly change and we see fewer 
cooperators and, if c is even higher such that it crosses the next threshold (c> 3/2), the 
dynamics of play shifts into a third pattern.  These initial experiments suggest that there is 
a phase transition at these critical values of c.  Table 1 also shows that for these three 
networks, these critical values of c are identical for each network; the phase transitions 
are triggered by the same payoff parameters.  In the next section we will see this applies 
to any regular-sized network.   

 
Second, while each network shares phase-transition points, they display different 

behavior within a specific parameter range.  For example, suppose c = 1.4, reading down 
the center column we see that a ring topology leads to a population consisting of 85% 
cooperators.  That same population distributed on a tree yields a population in which only 
20% of the population cooperates and a grid yields an average level of cooperation of 
about 35%.   

 
Third, the nature of each network’s long-term steady-state distribution of 

strategies differs.  Again reading down the center column, a ring evolves into a 3-period 
cycle of cooperation and defection, a tree is usually stable but occasionally evolves a 2-
period cycle and the grid yields a chaotic pattern of cooperation and defection that on 
average yields 35% cooperation, but leaves the specific strategy of any particular agent 
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uncertain.  These dynamic characteristics also depend on the topology of the network that 
defines the players. 

  
  This paper investigates the origins of these three characteristics: (i) what are the 

critical payoffs that trigger the transition from one set of results to another on a particular 
network, (ii) why do different networks display different strategy patterns given a 
particular set of payoffs, and (iii) why do some networks converge to a stable distribution 
of strategies while others fall into a cycle with some agents perpetually switching their 
strategy.  Our first task is to formally derive the critical values that identify these phase 
transition points.  We approach this by investigating the circumstances under which a 
particular strategy will spread.  In this formal derivation we will abandon the simplified 
payoffs and explore the general form, symmetric, PD game.  We also allow a network to 
have any size neighborhood, maintaining the restriction that that size is constant through 
the network.  When examples are useful, we will return to our k4 applications.   

 
IV. Spreading strategies 
1. critical values and phase transition 

The eventual distribution of strategies depends on the circumstances under which 
a particular strategy spreads to its neighbors.  So, when does defection spread?  Consider 
two neighboring agents, i and j where agent i is currently defecting and agent j is 
cooperating.  Agent j switches to defection if his most successful neighbor is currently 
defecting and is earning more than himself.  He retains his cooperative strategy if his 
most successful neighbor (including himself) is cooperating.  Focusing on agent j’s 
decision, suppose agent i is his most successful defecting neighbor and agent j* is his 
most successful cooperative neighbor (for the remainder of this paper, defecting agents 
will have superscripts i and cooperative agents will be j’s).  Let ni be the number of agent 
i’s neighbors and i

Cn  the number of i’s cooperating neighbors.  Note, agents i,  j, and j* 
are all in j’s neighborhood, agents i and j are in i’s neighborhood, but agent j* may or 
may not be a neighbor of  i.  Also note that agent j could be that most successful agent, 
agent j*.   With this notation, agent j switches to defection if agent i earns more than j*.  
Given the payoffs of the prisoners’ dilemma game agent j switches to defection if 
equation (1) holds. 
 

(1) )()()()( *** j
C

jj
C

i
C

ii
C nnbnanndnc −+>−+     

 
In the simple game a = 1, d = b = 0, this becomes *)( j

C
i
C nnc > .   

 
Rearranging (1) agent j switches to defection if 
 

  (2) i
C

i
C

ij
C

jj
C

n
nndnnbna

c
)()()( *** −−−+

> . 

 
By definition of a prisoner’s dilemma game, this inequality always holds if 
*j

C
i
C nn ≥  (because c > a and d > b).  Thus the potentially interesting cases are those in 

which agent j has a neighbor with more cooperating neighbors than agent i, or if nj*
C > 
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ni
C.  In those cases, defection spreads if c exceeds the critical values given in the left half 

of Table 2 (assuming a k4 network).   
 

Table 2 
Critical values for a k4 network 

 
 Defection spreads:  

(2) true; (4) false 
Cooperation spreads: 

(2) false (4) true 
 neighborhood 

configuration 
payoffs 

(PD) 
neighborhood 
configuration 

payoffs 
(PD) 

1 i
Cn = 1; *j

Cn = 4 c > 4a-3d * * 
2 i

Cn = 1; *j
Cn = 3 c > 3a + b - 3d *i

Cn  = 1; j
Cn  = 3 c < 3a + b - 3d 

3 i
Cn = 1; *j

Cn = 2 c > 2a + 2b - 3d *i
Cn  = 1; j

Cn  = 2 c < 2a + 2b - 3d 
4 i

Cn = 2; *j
Cn = 4 c > 2a – d * * 

5 i
Cn = 2; *j

Cn = 3 c > 2
3 a + ½ b– d *i

Cn  = 2; j
Cn  = 3 c < 2

3 a + ½ b - d 

6 i
Cn = 3; *j

Cn = 4 c > 3
4 a - 3

1 d * * 

7 i
Cn  ≥   *j

Cn  c > a 
(any PD game) 

*i
Cn   ≥   j

Cn  c < a 
(no PD game) 

       * cells are empty because by definition 4<j
Cn  

 
So, if a particular defector has two cooperating neighbors ( i

Cn  = 2) and one of 
those has another neighbor with three cooperating neighbors ( *j

Cn = 3) defection spreads 
only if c exceeds the payoffs in row 5 (c > 2

3 a + ½ b– d).  If c is less than that 
expression defection no longer spreads. 

 
On the other hand, even if c falls below that value, cooperation may not spread 

either.  For cooperation to spread, a defecting agent’s most successful cooperating 
neighbor must earn more than his most successful defecting neighbor.  Labeling agent i’s 
most successful defecting neighbor as i*, and his most successful cooperating neighbor as 
j, agent i switches to cooperation if 

 
(3)  )()()()( *** j

C
jj

C
i
C

ii
C nnbnanndnc −+<−+  

 
or 

(4)   *

** )()()(
i
C

i
C

ij
C

jj
C

n
nndnnbna

c
−−−+

<    

 
 As for the case of spreading defection we can use equation (4) to calculate the 
critical values of the payoffs that trigger a phase transition in the spread of cooperation.  
For a k4 network those calculations are in the right hand side of Table 2. 
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The key to the dynamic change across networks is that these two criteria, 
equations (2) and (4), are not symmetric.  In total they can involve four different 
neighborhoods, those defined by agents, i, i*,  j, and j*.  But the spread of defection 
depends on i and  j* while the spread of cooperation depends on i* and j.  Given a 
particular set of payoffs, equations (2) and (4) show that it is the number of cooperating 
neighbors that determines the relative earnings of agents and determines their decision to 
switch strategies or maintain their current play.  By construction j

C
j

C
i
C

i
C nnnn ≥≥ ** and , 

but, i
C

i
C nn and*  can be greater or less than j

C
j

C nn and* .  Consequently, for any specific 
pair of neighbors, i~j, inequality (2) can be true or false, inequality (4) can be true or 
false, and they can both be false, but both inequalities cannot be true.  These 
combinations give rise to the spread or contraction of a particular strategy.  For example, 
if (2) is true and (4) is false, defection spreads from i to j, if (4) is true and (2) is false, 
cooperation spreads from j to i, and if both are false, both agents retain their current 
strategy. 

 
 A more intuitive way to present the combinations of payoffs that trigger the 
transition from one distribution of strategies to another is to view those payoffs spatially.  
Setting a = 1 and holding b = 0 for a moment, the combinations of payoffs that yield 
identical distributions of strategies can be graphed as in Figure 1 by letting the vertical 
axis be the payoff value for c and the horizontal axis the payoff value for d. 

 
Figure 1 

Critical payoff combinations in k4 networks 
 

 
 

A 

J

D 

I 

H G 

F 

E 

C 

c 

1 

2 

d1 2

4/3

3/2

B 
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PD games occupy the shaded region of Figure 1 (c > a =1 > d > b = 0).  Instead 
of the four parameter ranges given in Table 1 (when only c changed) there are now ten 
regions of payoffs that trigger unique dynamics (A through J).2  As before, any 
combination of payoffs that lie within a particular two-dimensional region leads to 
identical dynamics on any specific network.  Moving from one region to another, say by 
increasing d, triggers a phase transition to different dynamics and distribution of 
strategies.  Finally, Figure 1 can also show how a change in the sucker’s payoff, b, affects 
the game.  The dashed arrows in the bottom of Figure 1 show how the three indicated 
boundaries shift outward as b increases.  This further alters the specific combinations of 
payoffs that yield identical results, that is, this changes the shape of the regions a bit.  In 
addition three new regions can emerge as b rises, but as before, the dynamics within each 
of these spaces is identical for any initial distribution of strategies.     
 
2.  Differences across Networks: 

   Just as the inequalities (2) and (4) can be used to identify combinations of 
parameters that trigger different dynamics in the same network, they can also be used to 
see how different networks respond to the same payoffs.  Given a set of payoffs, the 
deciding parameters in the inequalities (2) and (4) are the size of the neighborhood and 
the number of neighbors who cooperate.  Different networks define different 
neighborhoods and different overlapping of neighbors.  Consider a section of a k4 ring in 
which agents have neighborhoods that overlap with either three or four common 
neighbors as shown in the following diagram.   

 
 
 Agent p’s neighborhood consists of the shaded agents while agent  q’s 
neighborhood is indicated with the bold nodes.  Neighbors n, p, q, and s, are common to 
both neighborhoods.  Contrast that with following piece of a k4 grid. 

 
 

In the grid, each pair of neighbors has no additional common neighbors.  Agent p, 
whose neighborhood consists of the shaded agents, overlaps with agent q’s neighborhood 
(bold nodes) only through agents p and q.  However, while p and q have no common 
neighbors, their neighbors are neighbors.  For example agents p and q’s northern 

                                                 
2 Note, if d=0, the tick marks on the vertical axis lie at the critical values of c presented in Table 1.   

m    n    p     q    s      t     

ts 

qp
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neighbors (agents s and t) are neighbors.  This “once removed” overlapping is absent in 
other networks, such as a tree.  As you can see in the tree below, p and q share no 
neighbors nor are their neighbors neighbors, nor do they share neighbors. 

 

 
 The overlap of neighbors’ neighborhoods is critical to the spread of a strategy.  
Suppose agent i is defecting.  Spreading depends on the number of cooperators and 
defectors in agent i’s neighborhood relative to the number of cooperators and defectors in 
agent j*’s neighborhood (recall that j* is the most successful cooperating agent in j’s 
neighborhood and i~j).  If the neighborhoods overlap a great deal (as in the ring) when 
one agent has many cooperators in his neighborhood, it is likely that his neighbors have 
cooperating neighbors as well (they share so many neighbors.)  Visa versa, if j has many 
defecting neighbors (reducing his payoff) it is likely that agent i will have many defectors 
in his neighborhood which also reduces his payoff.  But in a network in which 
neighborhoods overlap little, the payoff to agent i’s strategy is much more independent of 
the strategies of j’s and j*’s neighbors.   
 
 Consequently, identical payoffs lead to different aggregate behavior in different 
networks.  Consider a network in which every agent in a single neighborhood is playing 
the defection strategy and everyone else is cooperating.  Focus on agent i, i~j, i defecting 
j, cooperating.  In a grid, ni*

C = ni
C = 3, while nj = 3 and nj* = 4.  Holding a = 1, 

defection spreads if c > 4/3 -1/3 d.  We are now in regions A, B, C, D, F, or I (depending 
on the values of b and d) in Figure 1. 
 

For a contrast, suppose this defecting neighborhood is on a ring.  Now ni*
C = 2 

and ni
C = 1 or 2 while nj* = 4 and nj = 2 or 3. Holding a = 1, defection spreads if 

c > 2 – d; we are in the regions labeled A and B in figure 1. Thus, if d < 1 (which is true 
by the definition of a PD game) there exists a values of c for which defection spreads on 
the grid but does not spread on the ring.  In this example, any combinations that land us 
in regions C, D, F, or I will trigger a different response in the ring versus the grid.  So, 
while all regular networks share the same critical values, the dynamics that arise for a 
given set of payoffs differs across networks. 
 
 
3. Cycles vs stable outcomes 

The final network characteristic to be explored is the presence of cycles in some 
of the long run distribution of strategies.  Stable or unchanging long run outcomes are 
easily understood.  Some pockets of agents playing one strategy or the other are either 
sufficiently resilient to change that they maintain the status quo, or some pockets are 

p 
q
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sufficiently weak that they are driven to extinction.  In either case a stable distribution of 
strategies emerges.   

 
Cycles typically involve decisions made in a single neighborhood.  Consider 

agents i~j when i is defecting and j is cooperating.  Recall, the spread of either defection 
or cooperation depends on the number of cooperators in their neighborhood 
( ** ,,, j

C
j

C
i
C

i
C nandnnn ).  Suppose the payoffs in a particular network are such that 

cooperation is spreading.  Once again, focus on a single neighborhood consisting of 
defectors and surrounded by defectors.  As cooperation spreads this set of defectors 
diminishes.  It diminishes to a single neighborhood of defectors, and finally to a single 
agent playing the defection strategy.  We now have a sole defector surrounded by 
cooperators.  For this agent, ni*

C =  ni
C = 4 and nj*

C = 4.  In the next round of play, 
everyone in his neighborhood copies the defection strategy (because c > a).  But now we 
are once again in a pattern in which cooperation is spreading and the number of defectors 
shrinks once again.  It dwindles to a single defector who then converts his neighborhood 
and so forth; a cycle.   

 
In a k4 ring 3 period cycles emerge if the payoffs lie in regions D, E, or H, for 

example, if c = 1.4, a = 1, d = .2, b = 0, we get a three period cycle as shown below (the 
shaded nodes represent defectors). 

 
                                          Figure 2 
                             Three-period cycle in a RING 

 

 

 

 
 

There is another three-period cycle on the ring that arises when spreading 
cooperation squeezes defectors down to a group of two neighbors.  In region D, these two 
defectors are earning enough to spread to their entire neighborhood (six agents).  Now, 
however, the string of six agents begins to unravel at the ends to four then again two 
agents.  This creates a three-period cycle [2, 6, 4], [2, 6, 4],… 

 
Two-period cycles arise in k4 tree networks emerge when the proper mix of 

cooperation and defection meets at a particular junction.  For instance, if the payoffs lay 
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in regions C, D, F, or I and agents have adopted the strategies as shown in Figure 3 
(shaded nodes are defectors), the tree oscillates in a 2-period cycle.3   
 

  Figure 3 
          Two-period cycle in a TREE 

 

 
 
V.  Extensions: 
 
 While this manuscript looks at PD games, the critical payoff regions shown in 
Figure 1 can be used to examine other games as well.  First, instead of considering action 
C as cooperation and D as defection just consider them as some general choice.  That is, 
an agent can take action C or action D.  As we have seen, PD games are those whose 
payoffs appear in the upper left-hand quadrant of Figure 1 (the shaded region).  The 
lower left-hand quadrant consists of the stag hunt (when c > d) and games of 
coordination in which the CC choice is the payoff dominant equilibrium (when  
1 > d > c).  The lower right-hand quadrant consists of games of coordination in which 
the DD selection is payoff dominant (when d > 1 > c).  As with PD games, the aggregate 
number of agents who choose action C or action D differs as we move from region to 
region.4  And, as before, given a particular set of payoffs, aggregate coordination depends 
on the topology of the underlying network.5  
  
 The upper right-hand quadrant of Figure 1 is another game, one with a single 
dominant equilibrium strategy shared by both players.  In this region the payoffs are 
either, d > c > a > b = 0 or c > d > a > b = 0 and both players choose action D.  Notice 
that this region is not subdivided into smaller areas, the dynamics and eventual 
distribution is the same; all agents choose action D.   
 

Finally, the examples used in this manuscript concentrated on a few k4 networks, 
but these results generalize to all regular-sized, uniform networks.  Consider, for 
example, playing a PD game on a k6 network.  The dynamics and eventual distribution of 

                                                 
3 In Figure 3 it is assumed that the tree extends further in every direction, and the hidden generations have 
adopted the strategy of the last neighbor showing.  That is, a defector on the pictured “rim” has additional 
neighbors who are defecting and a cooperator on the rim has cooperating neighbors. 
4 Actually the lines appearing in Figure 1 includes only those tradeoffs that trigger phase transitions in 
prisoners’ dilemma games.  There are additional regions to consider with games of coordination (and some 
of these regions are unimportant) but inequalities (2) and (4) generate will all of the pertinent combinations. 
5 For an extensive look at coordination games on networks, particularly grids, see Young (2002, 1993) and 
Morris (2000). 
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strategies of k6 networks depends on the payoffs and the network that defines the players.  
Once again each network has its own equilibrium set of strategies that change abruptly 
when the payoffs cross a threshold.  And, within a particular payoff areas, different 
networks generate different behavior.  The transition points for any size network can be 
calculated using equations (2) and (4).  Figure 4 shows the payoffs again assuming a = 1 
and b = 0 for a k6 network.  As before, prisoners’ dilemma games lie in the shaded 
region, but there are now 24 parameter combinations that create different dynamics 
across networks. 

 
 

VI. Conclusions: 
 
 In many economic and social situations the individuals with whom we interact are 
the same people, time after time.  We shop at the same stores, work with the same group 
of colleagues and our homes are surrounded by a largely unchanging set of neighbors.  
Networks are a method of formalizing these relationships.  With this in mind this 
manuscript looks at a particular type of interaction, the prisoners’ dilemma, to find that 
that the aggregate behavior of individuals is markedly affected by the topology of their 
network.  Viewing networks as alternative organizational structures, is seems quite clear 
that the level of cooperation is affected by the type of organization in which one is 
situated.  There seem to be certain features shared across networks, the critical payoffs 
that trigger the different types of aggregate behavior for instance, but there are stark 
differences as well.  Some organizational structures seems to be much more conducive to 
cooperative behavior, other structures seem to be hostile to its survival and still other 
networks see perpetual changes as agents cycle through periods of cooperation versus 
defection. 
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                                                                 Figure 4 

Critical payoff combinations for  
prisoners’ dilemma games played on k6 networks 
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