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Abstract

I consider (frequentist) maximum likelihood estimation of stochastic volatility models with
leverage, where the correlation between the mean and volatility innovation can provide
a more accurate estimate of the underlying volatility. I consider two filtering algorithms
(quadrature and mixture Gaussian) for maximum likelihood estimation based on numeri-
cal integration. These algorithms extend straightforwardly to stochastic volatility models
with non-Gaussian innovations. A small Monte Carlo simulation experiment shows that
the mixture Gaussian filter performs remarkably well both in terms of accuracy and com-
putation time. As an empirical application, I fit the asymmetric stochastic volatility model
to the S&P 500 index daily returns with a Gaussian and skew-t innovation. The estimates
from the two filtering algorithms are remarkably similar, suggesting the usefulness of the
mixture Gaussian filter for practical use.
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1 Introduction

Stochastic volatility (SV) models arise prominently in certain option pricing models and have

been studied extensively in the literature (Ghysels, Harvey and Renault 1996, Broto and Ruiz

2004). However, due to the innovation in the unobserved volatility equation, estimation of SV

models remains a difficult problem and appears to hamper its widespread use. In particular,

until recently there was relatively little discussion of estimation of SV models with leverage

effects, where the innovation in the volatility equation can be correlated with the innovation

in the mean equation. In the presence of leverage, this correlation can provide a more accurate

estimate of the underlying volatility from the information in the observed asset returns. Thus

ignoring the leverage effect when in fact it is present can yield misleading estimates of the

underlying volatility and result in mispricing of options. A number of researchers have recently

proposed Bayesian Markov chain Monte Carlo (MCMC) methods for SV models with leverage

(Jacquier, Polson and Rossi 2004, Omori, Chib, Shephard and Nakajima 2004, Yu 2004). The

purpose of this paper is to consider (frequentist) maximum likelihood estimation (MLE) of

SV models with leverage effects.

I consider estimation of the following univariate class of autoregressive stochastic (ARSV)

models:1

yt = β0σtut (1a)

log(σ2
t+1) = β1 log(σ2

t ) + β2vt+1 (1b)



ut

vt+1


 ∼ N







0

0


 ,




1 ρ

ρ 1





 (1c)

yt is the scalar observed series such as the returns from an financial asset, σ2
t is the unobserved

volatility series, and ut, vt+1 are innovations. The parameter vector to be estimated is θ> =

(β0, β1, β2, ρ) where we restrict −1 < β1 < 1, β2 > 0, and −1 < ρ < 1. β0 is a scale parameter

1As noted recently by Yu (2004), once we allow ρ 6= 0, the interpretation of leverage differs depending on
whether we define ρ = cor(ut, vt) or ρ = cor(ut, vt+1). Following empirical evidence in Yu (2004) which favors
the latter definition, I adopt this latter definition of ρ. The modification to handle the former defintion of ρ is
straightforward.
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that removes the constant term from the log-volatility equation (1b).

Broto and Ruiz (2004) have recently surveyed estimation methods for ARSV models with-

out leverage effects (ρ = 0). They classify estimation methods into one of the following three:

GMM, MLE, and indirect inference (EMM). The main drawback of GMM and EMM is that

they do not directly provide estimates of the underlying volatility process. To estimate the

volatility process from these methods, an additional step based on re-projection as proposed

by Gallant and Tauchen (1998) needs to carried out. As the underlying volatility process is

often of primary interest, I focus on MLE methods based on non-linear filtering that provide

filtered estimates of the underlying volatility as a by-product of the estimation step.

The MLE approach I consider is based on filtering via numerical integration. Kitagawa

(1987) proposed numerical integration based on piecewise linear approximation of the inte-

grand for general non-linear non-Gaussian state-space models. Fridman and Harris (1998)

used Gauss-Legendre quadrature and applied it to estimate stochastic volatility models with-

out leverage (ρ = 0). To implement the numerical integration approach to non-linear filtering,

I first cast the ARSV model (1) into a non-linear state-space form in section 2. While the

state-space representation is not unique, computational considerations dictate us to choose

a representation with a scalar state variable. In particular, I use an alternative parameter-

ization to (1) which removes the dependency of the unconditional state distribution on the

unknown parameter vector. I note that, unlike the QML approach of Harvey and Shephard

(1996), I do not linearize the measurement equation via a log-square transformation. This is

partly to avoid the need to introduce sgn(yt) as in Harvey and Shephard (1996).

In section 3, I describe and provide pseudo-code for the non-linear filtering algorithm based

on Gaussian quadratures. The Gauss-Legendre quadrature used by Fridman and Harris (1998)

requires truncation of the state-space as we need to specify the integration bounds. To avoid

the need to truncate the state-space, I consider the use of Gauss-Hermite quadrature which

approximates an integral over the real line. As the Gauss-Hermite quadrature is tailored for

use with a specific weighting function (exponential), it appears to be a natural choice for SV

models based on Gaussian innovations. Gaussian quadratures can approximate an integral

quite accurately with only a few nodes if the integrand has a known functional form. However,
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as the filtered state density in the integrand is unknown, we need a reasonably large number

of nodes as they also serve as “particles” that span the unknown state-space.

To address the computational cost of the quadrature filters, in section 4, I consider ap-

proximating the unknown state distributions with a mixture of Gaussians. These so-called

Gaussian filters, of which the extended Kalman filter is a special case, have a long history in

the engineering literature (Alspach and Sorenson 1972, Ito and Xiong 2000). The primary

focus in the engineering literature is the filtering problem with known parameters, while the

focus in this paper is the estimation of unknown parameters. The formulation in Ito and

Xiong (2000) assumes additive innovations and hence needs to be modified for the ARSV

model with leverage (1). I show that, once we make the Gaussian assumption, the integral

for the prediction step is available in closed form and dramatically reduces the computational

cost. The integrals for the updating step, however, do not appear to have a closed form even

with the Gaussian assumption. The extended Kalman filter approach would approximate the

integrand by a first order Taylor expansion. However, because of the Gaussian assumption,

we can now efficiently evaluate the integral by the Gauss-Hermite quadrature with only a few

number of nodes.

Section 5 shows that the non-linear filtering algorithms discussed in sections 3–4 extend

straightforwardly to SV models with non-Gaussian innovations. A number of researchers

have considered non-Gaussian SV models to model the fat-tails observed in asset returns

(Liesenfeld and Jung 2000, Cappuccio, Lubian and Raggi 2004, Jacquier et al. 2004, Omori et

al. 2004). In section 5 I consider the use of the skew-t distribution proposed in Azzalini and

Capitanio (2003) and provide expressions for the implied moments. The use of the skew-t

distribution is motivated by the fact that it nests the commonly used Student-t distribution.

Moreover, using results in Azzalini and Capitanio (2003), a simple diagnostic check of the

distributional assumption based on the quantile-quantile plot is available as illustrated in the

empirical application in section 7.

In section 6, I conduct a small Monte Carlo simulation experiment to assess the finite

sample performance of the proposed algorithms. The simulation experiments reveal conver-

gence problems with the Gauss-Hermite filter. On the other hand, the mixture Gaussian
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filters with only a small number of mixture components perform remarkably well both in

terms of accuracy and computational cost. Section 7 fits the SV model to the daily returns

from the S&P 500 index for two sample periods, one containing the market crash in October

1987. While the skew parameter is statistically significant for the skew-t model, it still fails

to capture the extreme spike observed at the October 1987 crash. Finally, section 8 concludes

with some suggestions for further research.

2 State-space formulation

A general state-space model can be formulated as

yt = ft(xt, wt) (measurement equation) (2a)

xt+1 = gt(xt, vt+1) (state equation) (2b)

where wt, vt+1 are zero mean independent innovations.

To cast the stochastic volatility model (1) into state-space form (2), we define the state

variable xt = log(σ2
t ) and apply a transformation so that the innovations in the state and

measurement equations are independent. There are two ways to do this. First, if we define

wt = 1√
1−ρ2

(ut − ρvt+1), we have the state-space form

yt = β0e
xt

2
( ρ

β2
(xt+1 − β1xt) +

√
1− ρ2wt

)
(3a)

xt+1 = β1xt + β2vt+1 (3b)



wt

vt+1


 ∼ N







0

0


 ,




1 0

0 1





 (3c)
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Second, if we define wt+1 = 1√
1−ρ2

(vt+1 − ρut), we have the state-space form

yt = β0e
xt

2 ut (4a)

xt+1 = β1xt + β2ρ
β0

yte
−

xt

2 + β2

√
1− ρ2wt+1 (4b)




ut

wt+1


 ∼ N







0

0


 ,



1 0

0 1





 (4c)

The first formulation (3) fits into the general state-space form (2) by defining the state

vector as α>
t = (xt+1, xt) and a linear state equation

αt =




β1 0

1 0


αt−1 +




β2

0


 vt+1 (5)

The difficulty with this formulation for the numerical integration approach is that the state

vector has dimension two. Because the state innovation in (5) is uni-dimensional, the pre-

diction step can be approximated by numerical integration over a univariate grid (Bølviken

and Storvik 2001). However, the updating (or correction) step needs to be done over a two-

dimensional grid to integrate out the state vector and can be quite computationally intensive.

For this reason, I use the state-space formulation (4) with a uni-dimensional state vector for

the numerical integration approach. For this parameterization, however, the unconditional

distribution of the state is xt ∼ N(0,
β2
2

1−β2
1
) and depends on the parameters β1, β2. The

numerical integration method outlined below selects a finite discretized grid to cover the

state-space. As the unconditional distribution of the state may provide guidance to the

choice of this grid, its dependence on the unknown parameters is a nuisance. To remove the

dependence of the unconditional state distribution on the parameters, I use the following
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parameterization instead.

yt = σtut (6a)

log(σ2
t ) = α0 + α1xt (6b)

xt+1 = φxt +
√

1− φ2vt+1, x0 ∼ N(0, 1) (6c)



ut

vt+1


 ∼ N







0

0


 ,




1 ρ

ρ 1





 (6d)

with state-space representation

yt = e
1
2
(α0+α1xt)ut (7a)

xt+1 = φxt + ρ
√

1− φ2e−
1
2
(α0+α1xt)yt +

√
(1− φ2)(1− ρ2)wt+1 (7b)




ut

wt+1


 ∼ N







0

0


 ,




1 0

0 1





 (7c)

Note that under this parameterization, the unconditional state distribution is standard normal

and does not depend on the parameter vector θ> = (α0, α1, φ, ρ) where we restrict |φ| < 1

and |ρ| < 1.2

Formulation (7) does not quite fit into the standard state-space form (2) because of the

presence of the measurement yt in the state equation. However, a simple modification to the

standard filtering recursions can accomodate formulation (7). Denote p(·) for generic density

functions and ys:t = {ys, ys+1, . . . , yt}. Then the standard filtering recursions for (2) can be

written as

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (prediction step)

p(xt|y1:t) = 1
ct

p(yt|xt)p(xt|y1:t−1) (updating step)

ct =

∫
p(yt|xt)p(xt|y1:t−1)dxt

2The mapping between the parameters in (1) and those in (6) are given by β0 = e
α0

2 , β1 = φ, β2 =
α1

p

1 − φ2 and α0 = 2 log β0, α1 = β2√
1−β2

1

, φ = β1.
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The prediction step for the standard formulation (2) is based on the Markov property

p(xt|xt−1, y1:t−1) = p(xt|xt−1). However, for formulation (7), we have p(xt|xt−1, y1:t−1) =

p(xt|xt−1, yt−1) instead. Thus the filtering recursions for (7) need to be modified as follows

p(xt|y1:t−1) =

∫
p(xt|xt−1, yt−1)p(xt−1|y1:t−1)dxt−1 (8a)

p(xt|y1:t) = 1
ct

p(yt|xt)p(xt|y1:t−1) (8b)

ct =

∫
p(yt|xt)p(xt|y1:t−1)dxt (8c)

Recursion (8) forms the basis of the numerical integration approach to likelihood evaluation

for nonlinear state space models advocated in this paper. From the recursion (8), the log-

likelihood value for a given parameter vector θ can be obtained as

`(θ) =
T∑

t=1

log(ct) (9)

The difficulty in using the recursions (8) to evaluate the likelihood is that the prediction

p(xt|y1:t−1) and filtered p(xt|y1:t) densities are typically not known. Below I reconsider two

approaches to approximate these unknown densities. The first approach is to approximate

these densities nonparametrically by a set of m (deterministic) particles, or points, in the

state-space with associated weights or “probabilities”. The key to this approach is to tradeoff

accuracy (large m) with computational efficiency (small m). The second approach is to

approximate the unknown densities with a flexible parametric function. As discussed below,

I reconsider the use of Gaussian mixtures as an approximating density. The key to this

approach is to how to handle the additional parameters in this approximating function.

3 Quadrature filters

The first approach I consider is to evaluate the integrals in (8) by numerical integration. The

feasibility of numerical integration for low dimension state vectors was shown by Kitagawa

(1987). Bølviken and Storvik (2001) call this as filtering based on deterministic particles.

Kitagawa (1987) evaluates the integral with Newton-Cotes quadrature where the integrand
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is approximated by a piecewise linear function on an arbitrarily chosen equi-spaced grid on a

closed interval. Fridman and Harris (1998) and Bølviken and Storvik (2001) choose the grid

based on the Gaussian quadrature. Fridman and Harris (1998) analyze stochastic volatility

models only for the case ρ = 0 with possibly non-Gaussian distributions.3

The Gaussian quadrature integration rule is based on the approximation (Judd 1998,

p.258) ∫ b

a
f(x)ω(x)dx ≈

m∑

i=1

wif(xi) (10)

where ω(x) is a non-negative weighting function and xi, wi are the quadrature nodes and

weights, respectively. Note that the nodes xi and weights wi do not depend on the function

f(·). Both Fridman and Harris (1998) and Bølviken and Storvik (2001) use Gauss-Legendre

quadrature for weighting function ω(x) = 1. The algorithm presented below uses two arrays

p1, p0, each of size m, which store the deterministic “particles” that approximate the predic-

tion p(xt|y1:t−1) and filtered p(xt|y1:t) densities, respectively. The idea is to use the nodes xi

to represent the support of the state distribution and to propagate the particles through the

recursion (8).

p1(xi) =

m∑

j=1

p(xi|xj , yt−1)p̃0(xj) i = 1, . . . , m

ct =

m∑

j=1

wjp(yt|xj)
p1(xj)

ω(xj)

p̃0(xi) =
1

ct
p(yt|xi)wi

p1(xi)

ω(xi)
i = 1, . . . , m

where p̃0(xj) = wjp0(xj)/ω(xj). Note that xj with weights p̃0(xj) for j = 1, . . . , m is the

particle approximation of the filtered distribution p(xt|y1:t).

3Fridman and Harris (1998) only mention the possibility that their method can be modified to accomodate
the leverage case ρ 6= 0.
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Algorithm 1 : Gaussian quadrature numerical integration

input: y (T × 1), θ (np × 1), m (scalar), a (scalar), b (scalar)
output: ` (scalar) (9)

initialization:
x, w ← Gaussian quadrature nodes and weights (m× 1) based on a and b
p0[i]← wip0(xi)/ω(xi) for i = 1, . . . , m (pre-sample state distribution)
`← 0

for t = 1 to T do

p1[i]←
∑m

j=1 p(xi|xj , yt−1) p0[j], i = 1, . . . , m (8a)
p0[i]← p(yt|xi) wi p1[i]/ω(xi), i = 1, . . . , m
ct ←

∑m
j=1 p0[j] (8c)

p0[i]← p0[i]/ct, i = 1, . . . , m (8b)
`← ` + log(ct) (9)

end for

The algorithm reveals that the computational bottleneck is the prediction step (8a) which

is of order O(m2) for each observation t. That is, for each of m points xt, we need to evaluate

the integral using m points of xt−1. This is quite frustrating as Gaussian quadratures are

quite accurate even with a small number of nodes m. The reason for the O(m2) cost is that

the integrand does not have a functional form but is represented by a set of m points with

associated weights. That is, the particles in the quadrature filter are serving two purposes,

one to cover the support of the state-space and two to evaluate the integral.

To deal with this computational bottleneck, we somehow need to separate these two roles

of the particles. One way to do this is to assume a flexible parameteric form for the integrand

and is discussed below in section 4. Alternatively, I note that the main cost in the prediction

step arises from having to the evaluate the conditional density p(xi|xj , yt−1) (which may be

non-Gaussian) at m2 points (xi, xj). One way to reduce this computational cost is to pre-

calculate the conditional density p(xi|xj , yt−1). For ρ = 0, this would only cost an additional

m × m array for p(xi|xj). For ρ 6= 0, however, pre-computing and holding the m2T array

for p(xi|xj , yt−1) would become costly as the sample size T gets large. An ad hoc method

to reduce the cost of evaluating the conditional density is to check the weights p0 and to

evaluate p(xi|xj , yt−1) only if p0 is not close to zero. This approximation would work well if

p(xt−1|y1:t−1) were close to zero for most points in the grid for xt−1 and p(xt|xt−1, yt−1) were
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close to zero at xt−1 points where p(xt−1|y1:t−1) is close to zero.

There remains the issue of the choice of the Gaussian quadrature. Both Fridman and

Harris (1998) and Bølviken and Storvik (2001) use Gauss-Legendre quadrature with weighting

function ω(x) = 1. The problem with Gauss-Legendre quadrature is that one needs to select

the integration bounds [a, b] in (10). For non-stationary models, one might need to adjust

these bounds and hence the quadrature nodes and weights by observation. For stationary

models with a fixed set of nodes and weights, it is natural to choose the integration bounds

so that they cover most of the support of the unconditional state distribution. For the

stochastic volatility model with parameterization (6), the unconditional state distribution is

p(x0) ∼ N(0, 1). Thus one could set the bounds centered about the unconditional mean of

zero with b = −a where a has the interpretation of the standard deviations covered by the

interval.

In this paper, I consider the use of Gauss-Hermite quadrature which takes the form (Judd

1998, p.261) ∫ ∞

−∞
f(x)e−x2/2dx ≈

m∑

i=1

wif(xi) (11)

As can be seen, the Gauss-Hermite quadratute approximates an integral over the entire real

line with weighting function ω(x) = e−x2/2. This quadrature rule is ideal for the Gaussian

density and certain members of the exponential family. The problem, of course, is that

there are many distributions that do not have a weighting of the form ω(x) = e−x2/2 such

as the t-distribution. For these densities, one needs to use the approximation of the form

∑m
i=1 wif(xi)e

x2
i /2 instead. The effect of the choice of the quadrature rule on the performance

of the numerical integration filter is examined by a Monte Carlo experiment in section 6.

4 Mixture Gaussian filters

The quadrature filters in section 3 will consistently evaluate the likelihood (9) as the number

of nodes m→∞. However, because the prediction step is of order O(m2) the computational

cost increases rapidly with m. In this section, I consider approximation methods based on

the parameterization of the unknown prediction p(xt|y1:t−1) and filtered p(xt|y1:t) densities.
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The key to the parameteric approach is to choose a flexible functional form. The tradeoff is

between flexibility and ease of estimation. One should note that the unknown densities must

be estimated for each observation t. A natural candidate for the parametric form is a low order

polynomial. However, “the Gram-Charlier and Edgeworth expansions have been proposed and

investigated. . . . , it has the distinct disadvantage that, when truncated, the resulting series

approximation is not itself a valid density function.” (Alspach and Sorenson 1972).

In this section, I follow Alspach and Sorenson (1972) and consider approximations based

on mixtures of Gaussians. The mixture Gaussian filters considered by Alspach and Sorenson

(1972) and Kitagawa and Gersch (1996) are based on the linearization of the nonlinear state-

space model. Here I consider mixture Gaussian filters based on numerical integration without

the linear approximation. This filter was recently analyzed by Ito and Xiong (2000). The

analysis in Ito and Xiong (2000) assumes additive innovations in the measurement and state

equations and hence does not directly apply to the stochastic volatility model (7). Therefore,

instead of the generalized Kalman filter algorithm of Ito and Xiong (2000), I construct an

approximate filter based directly on the recursions (8).

In addition to solving the truncation problem of polynomial approximations, the use of

mixture Gaussian approximation for the proposed filter has the distinct advantage that nu-

merical integration can be done efficiently with the use of Gauss-Hermite quadrature. Unlike

the quadrature filter in section 3, the nodes of the Gauss-Hermite quadrature need not be

large as we now have a functional approximation to the unknown densities.

4.1 Component Gaussian filter

The idea of the Gaussian mixture filter is to use the recursions (8) to update each Gaus-

sian component in parallel. In this subsection I discuss filtering recursions for each Gaussian

component under the assumption that the prediction p(xt|y1:t−1) and filtered p(xt|y1:t) state

distributions can both be approximated by a Gaussian distribution. As the Gaussian distri-

bution is fully characterized by its first two moments, once we make the Gaussian assumption,

all we need to do is to update the first two moments.

The main benefit of making the Gaussian assumption is that the first two moments from
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the prediction step (8a) may be evaluated analytically. This is the case for the stochas-

tic volatility model (7) with Gaussian innovations. If we assume that p(xt−1|y1:t−1) ∼

N(µt−1, s
2
t−1), then the prediction density has first two moments

E[xt|y1:t−1] =

∫
xp(x|y1:t−1)dx

=

∫ (∫
xp(x|xt−1, yt−1)dx

)
p(xt−1|y1:t−1)dxt−1

=

∫
E[xt|xt−1, yt−1]p(xt−1|y1:t−1)dxt−1

=

∫
(φxt−1 + ρ

√
1− φ2yt−1e

− 1
2
(α0+α1xt−1))p(xt−1|y1:t−1)dxt−1

= φµt−1 + ρ
√

1− φ2yt−1e
−

α0
2
−

α1
2

µt−1+
α2
1
8

s2
t−1

E[x2
t |y1:t−1] =

∫
x2p(x|y1:t−1)dx

=

∫ (∫
x2p(x|xt−1, yt−1)dx

)
p(xt−1|y1:t−1)dxt−1

=

∫
E[x2

t |xt−1, yt−1]p(xt−1|y1:t−1)dxt−1

=

∫
(φ2x2

t−1 + ρ2(1− φ2)y2
t−1e

−α0−α1xt−1 + (1− φ2)(1− ρ2)

+ 2φρ
√

1− φ2yt−1xt−1e
− 1

2
(α0+α1xt−1))p(xt−1|y1:t−1)dxt−1

= φ2(µ2
t−1 + s2

t−1) + ρ2(1− φ2)y2
t−1e

−α0−α1µt−1+
α2
1
2

s2
t−1 + (1− φ2)(1− ρ2)

+ 2φρ
√

1− φ2yt−1(µt−1 −
α1

2
s2
t−1)e

−
α0
2
−

α1
2

µt−1+
α2
1
8

s2
t−1

Thus the Gaussian approximation to the prediction density is N(µt|t−1, s
2
t|t−1) where

µt|t−1 = φµt−1 + ρ
√

1− φ2yt−1e
−

α0
2
−

α1
2

µt−1+
α2
1
8

s2
t−1 (12a)

s2
t|t−1 = φ2(µ2

t−1 + s2
t−1) + ρ2(1− φ2)y2

t−1e
−α0−α1µt−1+

α2
1
2

s2
t−1 + (1− φ2)(1− ρ2)

+ 2φρ
√

1− φ2yt−1(µt−1 −
α1

2
s2
t−1)e

−
α0
2
−

α1
2

µt−1+
α2
1
8

s2
t−1 − µ2

t|t−1 (12b)

Now consider the integral (8c) in the updating step. Under the Gaussian assumptions,

12



p(yt|xt) ∼ N(0, eα0+α1xt) and we need to evaluate

ct =

∫
1

2πst|t−1
exp
(
−1

2
(α0 + α1x)− y2

t

2
e−α0−α1x −

(x− µt|t−1)
2

2s2
t|t−1

)
dx

This integral does not appear to have a closed form solution.4 Therefore, I use the Gauss-

Hermite quadrature approximation to compute the first two moments from the updating step

(8b)–(8c). Let zi, wi be m nodes and weights for the Gauss-Hermite quadrature such that

∫ ∞

−∞
f(z)e−z2/2dz ≈

m∑

i=1

f(zi)wi

The first two moments from the updating step are then approximated as

ct =
m∑

i=1

f0(zi)wi

µt = 1
ct

m∑

i=1

f1(zi)wi (13a)

s2
t = 1

ct

m∑

i=1

f2(zi)wi − µ2
t (13b)

where

fj(zi) =
xj

i

2π
exp
(
−1

2
(α0 + α1xi)−

y2
t

2
e−α0−α1xi

)
, xi = µt|t−1 + st|t−1zi

I note that compared to the quadrature filter considered in section 3, the number of nodes

m in the approximation for ct can be quite small. This is because the nodes no longer represent

particles to span the support of the state-space. Once we have a functional form, the integral

can be evaluated accurately with only a small number of nodes because an m-point Gaussian

quadrature integrates a polynomial of order 2m− 1 exactly (Judd 1998, p.258).

4Mathematica 5.1 does not return a closed form solution.
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4.2 Mixture Gaussian filter

The Gaussian filter given by the recursions (12a)–(12b) and (13a)–(13b) is based on the as-

sumption that the prediction p(xt|y1:t−1) and filtered p(xt|y1:t) state distributions are both

Gaussian. This assumption is questionable, especially for models with non-Gaussian innova-

tions. Therefore, I consider approximating the unknown prediction and filtered distributions

with a mixture of Gaussian distributions. Assume then that

p(xt|y1:t−1) ≈
n∑

i=1

a
(i)
t|t−1pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1), a

(i)
t|t−1 ≥ 0,

m∑

i=1

a
(i)
t|t−1 = 1 (14a)

p(xt|y1:t) ≈
n∑

i=1

a
(i)
t pN (xt|µ(i)

t , s
2(i)
t ), a

(i)
t ≥ 0,

m∑

i=1

a
(i)
t = 1 (14b)

where pN (x|µ, s2) denotes the Gaussian density function with mean µ and variance s2. a
(i)
t|t−1

and a
(i)
t are the non-negative mixture weights.

It is intuitively clear that a mixture of Gaussians converges to any density function as the

number of components n → ∞ and s2(i) → 0 (Alspach and Sorenson 1972). As n → ∞ and

s2(i) → 0 we are back to the particle filter discussed in section 3. Note that I am assuming

that the number of mixture components n is the same for both the prediction and filtered

distributions and that n does not change over time.

The problem then is to find the mixture approximations (a
(i)
t|t−1, µ

(i)
t|t−1, s

2(i)
t|t−1) and (a

(i)
t , µ

(i)
t , s

2(i)
t )

for each t. One approach is to use method of moments or least squares. This may be feasible

if we are only interested in filtering the state variable given the model parameters. However,

for estimating the model parameters by numerically maximizing the likelihood evaluated by

the filter, observation-by-observation approximation based on the method of moments or least

squares is too costly. Here, I follow Ito and Xiong (2000) and update each mixture component

(µ
(i)
t|t−1, s

2(i)
t|t−1) and (µ

(i)
t , s

2(i)
t ) separately by the recursions (12a)–(12b) and (13a)–(13b). To

determine the recursions for the mixture weights a
(i)
t|t−1, a

(i)
t , note that the prediction step

14



(8a) becomes

p(xt|y1:t−1) =

∫
p(xt|xt−1, yt−1)

n∑

i=1

a
(i)
t−1pN (xt−1|µ(i)

t−1, s
2(i)
t−1)dxt−1

=
n∑

i=1

a
(i)
t−1

∫
p(xt|xt−1, yt−1)pN (xt−1|µ(i)

t−1, s
2(i)
t−1)dxt−1 (15)

By matching each component in (14a) and (15), we have

a
(i)
t|t−1pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1) = a

(i)
t−1

∫
p(xt|xt−1, yt−1)pN (xt−1|µ(i)

t−1, s
2(i)
t−1)dxt−1

As this condition should hold for any xt, we “average out” xt by integrating it out from both

sides to get

a
(i)
t|t−1

∫
pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)dxt = a

(i)
t−1

∫ ∫
p(xt|xt−1, yt−1)pN (xt−1|µ(i)

t−1, s
2(i)
t−1)dxt−1dxt

a
(i)
t|t−1 = a

(i)
t−1

∫
pN (xt−1|µ(i)

t−1, s
2(i)
t−1)

(∫
p(xt|xt−1, yt−1)dxt

)
dxt−1

= a
(i)
t−1 (16)

The updating step (8b)–(8c) becomes

ct =

∫
p(yt|xt)

n∑

i=1

a
(i)
t|t−1pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)dxt

=
n∑

i=1

a
(i)
t|t−1

∫
p(yt|xt)pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)dxt

=
n∑

i=1

a
(i)
t|t−1c

(i)
t

p(xt|y1:t) =
1

ct
p(yt|xt)

n∑

i=1

a
(i)
t|t−1pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)

=
1

ct

n∑

i=1

a
(i)
t|t−1p(yt|xt)pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1) (17)

where c
(i)
t is the contribution to the likelihood from component i in the update step (13). By
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matching each component in (14b) and (17) and using (16), we have

a
(i)
t pN (xt|µ(i)

t , s
2(i)
t ) =

1

ct
a

(i)
t−1p(yt|xt)pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)

As this condition should hold for any xt, we “average out” xt by integrating it out from both

sides to get

a
(i)
t

∫
pN (xt|µ(i)

t , s
2(i)
t )dxt =

1

ct
a

(i)
t−1

∫
p(yt|xt)pN (xt|µ(i)

t|t−1, s
2(i)
t|t−1)dxt

a
(i)
t =

a
(i)
t−1c

(i)
t

ct
=

a
(i)
t−1c

(i)
t∑n

i=1 a
(i)
t−1c

(i)
t

The last expression shows that the mixture weight for the i-th component is updated according

to its contribution to the likelihood, a fairly intuitive result.5

5 Non-Gaussian stochastic volatility

A number of studies have examined stochastic volatility models with non-Gaussian innova-

tions. This line of research is motivated by the observation that Gaussian stochastic volatility

models may fail to capture fat-tails, and possibly skewness, in asset returns yt. Therefore,

most studies model the mean equation innovation ut to be non-Gaussian. For models without

leverage (ρ = 0), distributions such as the Student-t (Fridman and Harris 1998, Liesenfeld and

Jung 2000), generalized error (GED) (Liesenfeld and Jung 2000), and skew-GED (Cappuccio

et al. 2004) have been considered. For models with leverage (ρ 6= 0), Jacquier et al. (2004)

consider Student-t and Omori et al. (2004) consider a scale mixture distribution.

One could also consider the volatility innovation vt+1 to be non-Gaussian. However, care

must be taken to ensure that moments of yt exist. To see this point, consider the non-Gaussian

5Alternatively, rather than integrating out xt, we can “collocate” each component at a particular value of
xt, say xt = µ

(i)
t (Ito and Xiong 2000). We then have

a
(i)
t pN (xt = µ

(i)
t |µ(i)

t , s
2(i)
t ) =

1

ct

a
(i)
t−1p(yt|xt = µ

(i)
t )pN (xt = µ

(i)
t |µ(i)

t|t−1, s
2(i)

t|t−1)

a
(i)
t =

a
(i)
t−1

ct

s
(i)
t

s
(i)

t|t−1

exp

 

−
(µ

(i)
t − µ

(i)

t|t−1)
2

2s
2(i)

t|t−1

!

p(yt|xt = µ
(i)
t )
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stochastic volatility model (6) where the Gaussian assumption for the innovations ut, vt+1 is

dropped. The r-th moment of yt is given by

E[yr
t ] = E[σr

t ]E[ur
t ] = E[e

r
2
(α0+α1xt)]E[ur

t ]

To obtain this moment, we need to evaluate E[ecxt ] for some constant c. From (6) we can

write

xt =
√

1− φ2

∞∑

j=0

φjvt−j

E[ecxt ] = E[ec
√

1−φ2
P∞

j=0 φjvt−j ] = E[
∞∏

j=0

ec
√

1−φ2φjvt−j ] =
∞∏

j=0

E[ec
√

1−φ2φjvt−j ]

=
∞∏

j=0

M(c
√

1− φ2φj)

where M(s) = E[esvt ] is the moment generating function of vt. This expression shows that

moments of yt exist only if all moments of vt exist. For example, as noted by Jacquier et al.

(2004, p.190), the moments of yt do not exist if vt has a Student t-distribution.6

The filters discussed in sections 3–4 can be easily adapted for non-Gaussian models. Below

I remark on the issues that might arise for each filtering method.

5.1 Quadrature filters for non-Gaussian stochastic volatility

The filter based on Gaussian quadratures discussed in section 3 can be adapted for non-

Gaussian models as long as the conditional densities p(xt|xt−1, yt−1) and p(yt|xt) can be eval-

uated. As these densities must be evaluated at each of the m points in the state-space grid for

all t, the computational cost will rise for densities that are costly to evaluate. Moreover, the

Gauss-Hermite quadrature suggested in section 3 may perform poorly for non-Gaussian dis-

tributions that do not belong to the exponential family. For these cases, the Gauss-Legendre

quadrature with finite bounds may be considered instead.

6Fridman and Harris (1998) consider a signed normal power transform vt+1 = sgn(z)|z|γ where z ∼ N(0, 1).
It is not clear under what conditions on γ the moments of yt exist for this distribution.
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5.2 Mixture Gaussian filters for non-Gaussian stochastic volatility

As shown in section 4, the main benefit from making the Gaussian assumption for the predic-

tion and filtered densities is that the prediction step can be done analytically. Note that this

is still the case with non-Gaussian innovations; all that is required is that the innovation is

standardized so that E[vt+1] = 0 and E[v2
t+1] = 1. For non-Gaussian innovations, the number

of mixture components n may need to increased. The computational cost for each prediction

step is of order O(mn) for m quadrature points and n mixture components and may still be

cheaper than the O(m2) cost of the quadrature filter.

I note that an alternative approach is to approximate the non-Gaussian innovation distri-

butions by a mixture of Gaussians (Kotecha and Djurić 2003, Omori et al. 2004). However,

there is little advantage to this approach for the mixture filter as the updating step cannot be

done analytically even for Gaussian innovations. The mixture approximation for the innova-

tion distribution introduces an additional source of approximation error. Furthermore, if the

non-Gaussian innovation distribution depends on an unknown parameter (such as the degrees

of freedom parameter for the Student-t), then the approximating mixture for the innovation

distribution may have to be updated as this parameter changes during estimation. For these

reasons, I will not consider this approach in this paper.

5.3 Skew-t stochastic volatility

For a non-Gaussian stochastic volatility model, I consider the case where the mean equa-

tion innovation ut has the skew-t distribution of Azzalini and Capitanio (2003). The skew-t

distribution nests the commonly used Student-t distribution with heavy tails. The skew-t

distribution is a four parameter distribution with density function7

f(u) = 2fν(u)Fν+1

(
α

σ
(u− ξ)

√
ν + 1

ν + (u− ξ)2/σ2

)

7As noted in Azzalini and Capitanio (2003), an alternative (and simpler) density function for the skew-t is
f(u) = 2fν(u)Fν(αu). However, I follow the recommended formulation of Azzalini and Capitanio (2003) who
argue that there is no reason to restrict the argument of Fν(·) to be linear in u.
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where

fν(u) =
1

σ
√

πν

Γ(ν+1
2 )

Γ(ν
2 )

(
1 +

(u− ξ)2

νσ2

)− ν+1
2

Fν(u) =

∫ u

−∞
fν(s)ds

fν(·) is the Student-t density function and Fν(·) its distribution function. The parameters ξ,

σ2, α, ν are the location, scale, skew, and tail-thickness parameter respectively. The Student-t

distribution is obtained by setting α = 0.

As with the Student-t distribution, the r-th moment of skew-t exists provided ν > r

(Azzalini and Capitanio 2003). The first two moments are

E[u] = ξ + σc c =
α√

1 + α2

√
ν

π

Γ(ν−1
2 )

Γ(ν
2 )

E[u2] = ξ2 + 2ξσc + σ2 ν

ν − 2

To standardize the innovation process so that E[u] = 0 and E[u2] = 1, I set the location and

scale parameters to

σ2 =
1

ν/(ν − 2)− c2
(18a)

ξ = −σc (18b)

Therefore, there are two additional parameters α (skew) and ν (tail-thickness) to estimate

for this non-Gaussian stochastic volatility model.

Using (18), the third and fourth moments can be written as

E[u3
t ] = σ3

(
2c3 + c

(
3− α2

1 + α2

) ν

ν − 3
− 3c

ν

ν − 2

)

E[u4
t ] = σ4

(
3ν2

(ν − 2)(ν − 4)
− 4c2

(
3− α2

1 + α2

) ν

ν − 3
+ 6c2 ν

ν − 2
− 3c4

)
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As the volatility innovation is assumed to be Gaussian, the r-th moment of yt is given by

E[yr
t ] = exp

(ra0

2
+

r2a2
1

8

)
E[ur

t ] (19)

6 Monte Carlo simulations

In this section, I conduct a small Monte Carlo experiment to assess the finite sample perfor-

mance of the proposed nonlinear filtering methods. This section is in two parts. As numerical

optimization of the likelihood is fairly expensive, I first consider the choice of tuning param-

eters (such as the number of quadrature nodes and mixture components) by examining how

closely the filtered estimates of the state variable track the simulated state variables. Then I

examine the finite sample performance of the maximum likelihood estimator.

The Monte Carlo experiments are conducted using (6) as the data generating process with

sample size T = 1000. For the Gaussian model, the parameter values are set to

α0 = 0, α1 = 0.45, φ = 0.975, ρ = {0,−0.3,−0.6} (20)

These parameter values correspond to one of those used in Harvey and Shephard (1996,

Table 1).8 For the skew-t model, the parameter values are set to

α0 = 0, α1 = 0.50, φ = 0.980, ρ = {0,−0.3,−0.6}, α = 0, ν = 11 (21)

These parameter values roughly correspond to the estimates obtained for the S&P 500 index

with Student-t distribution estimated by Fridman and Harris (1998) and Liesenfeld and Jung

(2000).9

6.1 Filtering methods

In this subsection, I examine the choice of tuning parameters for the nonlinear filters. I

assume the model parameters are known and use the root mean squared error RMSE =

8β0 = 1, β1 = 0.975, β2 = 0.1 for parameterization (1).
9β0 = 1, β1 = 0.980, β2 = 0.1 for parameterization (1).
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√
1

MT

∑M
i=1

∑T
t=1(x

(i)
t − x

(i)
t|t )

2 as the performance criterion over M = 1000 Monte Carlo

replications of sample size T = 1000. x
(i)
t is the series generated according to (6) for the i-th

replication and x
(i)
t|t is the estimated mean of the filtered distribution of the state variable.

For the quadrature filter, I compare filters based on the Gauss-Legendre and Gauss-Hermite

quadratures for a number of quadrature nodes m. For the mixture Gaussian filter, I examine

the choice of the number of mixture components n.

The Gaussian quadrature nodes and weights are obtained from IQPACK (Elhay and

Kautsky 1987). For the quadrature filter, the presample (particle) state distribution is cali-

brated to the unconditional state distribution. To initialize the mixture Gaussian filter, we

need to find the weights a
(i)
0 and first two moments µ

(i)
0 , s

2(i)
0 of the component Gaussian distri-

butions that approximate the unconditional state distribution. I consider two methods to de-

termine the initial mixture approximation. Both methods set the means µ
(i)
0 = 0,±δ, . . . ,±kδ,

k = (n − 1)/2 to an equi-spaced grid about zero and common variances s
2(i)
0 = s2

0.
10 The

weights a
(i)
0 are then chosen to match the first two moments E[x0] = 0 and E[x2

0] = 1. The

first method sets δ = 1 and geometrically declining weights a
(i)
0 = a, aλ, . . . , aλk. The condi-

tion
∑n

i=1 a
(i)
0 = 1 requires a = 1−λ

1+λ−2λn+1 . Then the moment matching condition givens the

common variance

s2
0 = 1− 2aλ

(1− λ)3
(
1 + λ− λn(1 + λ + 2(1− λ)n + (1− λ)2n2)

)

This leaves us with a choice of 0 < λ < 1 such that s2
0 > 0. The second method sets

equal weights a
(i)
0 = 1

n and the moment matching condition gives the spacing of means as

δ2 =
3(1−s2

0)
k(k+1) . For this second method, the tuning parameter is the common variance s2

0 such

that s2
0 ≤ 1. In the Monte Carlo simulations and empirical applications reported below, I

set λ = 0.2 for the initial mixture with geometrically declining weights and s2
0 = 0.1 for the

initial mixture with equal weights. As reported below, the mixture filter appears not to be

sensitive to the choice of the initial mixture approximation, especially for applications with a

reasonably large sample size.

10This assumes an odd number of mixture components n.
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Table 1 reports the root mean squared error of the filtered state variable for the data

generating processes (20)–(21). I make the following observations. First, for all filters the

filtered means become more precise as the magnitude of the leverage effect ρ increases. This

is not surprising since the prediction step (8a) uses information from the observed series yt

only if ρ 6= 0 in (4b). This suggests the importance of not constraining ρ = 0. Second, for the

Gauss-Hermite quadrature filter, using more than m = 100 nodes does not appear to result in

any marked improvement of the filter precision. This is a useful result as the computational

cost for using m = 300 is quite high. Third, the performance of the mixture Gaussian filter

is surprisingly good, both in terms of precision and execution time. This is the case even for

the Student-t innovation case. The performance of the mixture Gaussian filter appears not

to be sensitive to the specification of the initial mixture distribution and number of mixture

components, at least for these data generating processes.

6.2 Maximum likelihood estimation

The proposed maximum likelihood estimation procedure is to maximize the log likelihood as

evaluated by (9). In this subsection, I conduct a small Monte Carlo experiment to assess the

finite sample performance of the maximum likelihood estimators based on the quadrature and

mixture filters. From the filtering results in Table 1 and because of computational costs, for

the quadrature filters I restrict attention to those with m = 100 nodes. The log likelihood (9)

was numerically maximized using the unconstrained trust region BFGS code by Gay (1983).

In order to constrain the parameters, I use the one-to-one transformations

φ =
eλ1 + 0.5

eλ1 + 1
, ρ =

eλ2 − 1

eλ2 + 1
, ν = eλ3 + 2 (22a)

λ1 = log

(
φ− 0.5

1− φ

)
, λ2 = log

(
ρ + 1

1− ρ

)
, λ3 = log(ν − 2) (22b)

where λ1, λ2, λ3 are the unconstrained parameters to be estimated. Note that while −1 <

φ < 1, for practical purposes, I follow Harvey and Shephard (1996) and restrict 0.5 < φ < 1.

Tables 2–3 report means and root mean squared errors of the maximum likelihood esti-

mates based on the quadrature and mixture filters. I must note that these results are based
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on a rather small number of replications (M = 100) due to the computational cost of the

quadrature filter. With this caveat in mind, I make the following observations. First, as in

Table 1, the root mean squared errors decline with the magnitude of the leverage effect ρ.

While this effect is not as strong as in Table 1 perhaps due to the small number of replications,

it again highlights the importance of not constraining ρ = 0. Second, the root mean squared

errors for the Gaussian case in Table 2 compares quite favorably against those from the QML

estimates reported in Harvey and Shephard (1996). For example, the QML root mean squared

errors reported in Harvey and Shephard (1996, Table 1) for (φ, ρ) = (0.975,−0.3) are 0.088

and 0.298, respectively. Third, as with filtering, the performance of the mixture Gaussian

filter is surprisingly good even with only n = 1 component.

The most troubling and disappointing result from Tables 2–3 is that more than half

of the cases for the Gauss-Hermite quadrature filter fail to converge. An examination of

the failed cases reveals that these failures are caused by the estimate of φ approaching the

stationarity boundary of unity during numerical optimization. I have experimented with

alternative transformations to impose −1 < φ < 1 such as φ = 2
π arctan(λ1) and an alternative

derivative-free optimizer APPSPACK (Hough, Kolda and Torczon 2001) with little effect to

alleviate the problem.11 It thus appears that while m = 100 might be sufficiently accurate for

filtering purposes, the Gauss-Hermite quadrature filter requires a larger number of nodes to

accurately evaluate the log-likelihood function for parameter estimation. As Figure 1 clearly

shows, this is because for large m the Gauss-Hermite quadrature nodes have mostly zero

weights compared to the Gauss-Legendre nodes.

7 Empirical application

In this section, I estimate ARSV models with leverage effects to the daily returns from the S&P

500 index for two sample periods, Jan/1980–Dec/1987 (T = 2022) and Jan/1990–Dec/2003

(T = 3532). The first sample was used by a number of authors to fit a variety of stochastic

volatility models (Jacquier, Polson and Rossi 1994, Fridman and Harris 1998, Liesenfeld and

11APPSPACK can handle bound constraints without the use of transformations but does not allevi-
ate the convergence failure problem. APPSPACK (Asynchronous Parallel Pattern Search) is available at
http://software.sandia.gov/appspack.
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Jung 2000, Jacquier et al. 2004, Yu 2004). As can be seen in Figure 2, the first sample

contains the stock market crash in October 1987. To ascertain the effect of the extreme spike

at the crash on the estimates, I also estimate the model for the second sample which does not

contain as extreme a spike as the October 1987 crash.

Tables 4–5 report maximum likelihood estimates of the stochastic volatilty model (6)

assuming Gaussian and skew-t innovations for the two sample periods. Robust standard

errors are computed using the estimated QML covariance matrix

V (θ̂) = 1
T H−1GH−1 (23)

where the derivatives H = 1
T

∑T
t=1

∂2`t

∂θ∂θ>
, G = 1

T

∑T
t=1

∂`t

∂θ
∂`t

∂θ>
are evaluated numerically.

Table 4 reports estimates for the sample Jan/80–Dec/87. The maximized log-likelihood

values suggest that for the Gauss-Legendre quadrature filter we need to cover at least seven

standard deviations of the unconditional state distribution.12 For the mixture Gaussian filter,

the log-likelihood values from estimates based on s2
0 = 0.1 with equal weights were always

slightly lower than those based on λ = 0.2 with geometrically declining weights and are

not reported. For the Jan/80–Dec/87 sample, Yu (2004) reports MCMC posterior means of

φ = 0.972 and ρ = −0.3179 for the Gaussian model. For a Student-t model restricting ρ = 0

and α = 0, Liesenfeld and Jung (2000) report point estimates of φ = 0.986 and ν = 10.718

which are very close to those reported in Table 4 with ρ 6= 0 and α 6= 0.

For the sample period Jan/90–Dec/03 reported in Table 5, estimates based on the Gauss-

Legendre quadrature do not improve once we cover five standard deviations of the uncondi-

tional state distribution. This is expected as there is no obvious extreme spike as the October

1987 crash in the sample. Compared to the Jan/80–Dec/87 sample, the size of the leverage

effect ρ and the skew parameter α is much larger in the Jan/90–Dec/03 sample. The esti-

mates obtained from the mixture Gaussian filters are remarkably similar to those obtained

from the quadrature filters, especially in the Jan/90–Dec/03 sample. This is an important

finding as the computational cost of the mixture Gaussian filter is a fraction of that from the

12For the skew-t model, both the Gauss-Legendre and Gauss-Hermite quadrature filters with m = 100 failed
to converge as φ → 1.
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quadrature filter.13

As diagnostic check of the distributional assumption, Figure 3 displays the qq-plots (quantile-

quantile plots) for the Gaussian and skew-t models for the two sample periods.14 As the

quantiles of the skew-t distribution are not readily computable, I use the result in Azzalini

and Capitanio (2003) who show that if ut ∼ SKt(ξ, σ
2, α, ν) then (ut−ξ)2/σ2 ∼ F (1, ν). Thus

for the Gaussian model, we compare the sample quantiles of û2
t against the χ2(1) quantiles

where ût = yt/σt|t and σt|t is the square root of the filtered volatility. For the skew-t model,

we compare the sample quantiles of (ût − ξ̂)2/σ̂2 against the F (1, ν̂) quantiles. If the distri-

butional assumption is correct, the qq-plot should lie on the 45 degree line. Figure 3 shows

that for the Jan/80–Dec/87 sample, neither model captures the extreme spike at the October

1987 crash. The fit is much better for the Jan/90–Dec/03 sample but the skew-t model does

not appear to provide a much better fit than the Gaussian model, at least according to the

qq-plots.

Table 6 compares the sample moments of the daily returns with the implied moments from

the estimated model for the two sample periods. The skewness and kurtosis are computed

as E[yr
t ]/(E[y2

t ])
r/2 for r = 3, 4, respectively. The moments are given by E[y3

t ] = 0 and

E[y4
t ] = 3ea2

1 for the Gaussian model and by (19) for the skew-t model. Consistent with the

qq-plots in Figure 3, Table 6 indicates that allowing for fat-tails in the mean innovation does

not improve much upon the Gaussian model in terms of replicating the observed moments of

the return series, especially in the sample containing the October 1987 market crash.

8 Concluding remarks

I have considered two filtering algorithms based on numerical integration for maximum like-

lihood estimation of stochastic volatility models with leverage effects. In particular, the

mixture Gaussian filter was shown to perform remarkably well both in terms of accuracy and

13To obtain the maximum likelihood estimates and QML standard errors for the Jan/90–Dec/03 sample
(3532 observations), it takes about 7.3 hours using the GL-300-7 filter for the Gaussian model on a P4 2GHz
machine. For the same model, the MFG-13 filter takes about 46 seconds on the same machine.

14Sample quantiles based on the Gauss-Legendre and Gauss-Hermite quadrature are visually identical as
can be expected from the estimates reported in Tables 4–5. To avoid clutter, Figure 3 only plots quantiles
based on the Gauss-Legendre filter with m = 300 nodes over [−7, 7].
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computational cost/robustness. Given its remarkable performance, it appears worth pursuing

other applications of the mixture Gaussian filter for estimation of non-linear non-Gaussian

state-space models. As the algorithms proposed in the paper are quite simple to implement,

I hope they see widespread use among practitioners in the finance field.

In concluding the paper, I suggest a few areas for further research. While the Gauss-

Hermite quadrature removes the need to specify the integration bounds, the Monte Carlo

results in section 6 indicate that its use in maximum likelihood estimation often fails to

converge. As it is desirable to remove the need to specify the integration bounds, one needs

to further investigate the instability of the Gauss-Hermite quadrature for estimation purposes.

Some preliminary experimentation suggests that using parameterization (1) rather than (6)

might improve the performance of the Gauss-Hermite quadrature (albeit with a large number

of nodes m). The main difference between the two parameterization is the presence of the

Jacobian term 1/
√

1− φ2 in the conditional densities for parameterization (6). This might

be the reason for the optimizer converging towards the boundary φ→ 1. In this paper, I have

preferred parameterization (6) to (1) as the unconditional state density does not depend on

the parameters. Moreover, parameterization (6) extends naturally to higher order models as

in Meddahi (2001) and Kawakatsu (2004).

While the mixture Gaussian filter was shown to perform remarkably well, a number of

issues remain to be investigated. First, the choice of the initial mixture approximation may

have an important effect on the performance, especially for short sample sizes. I have only

discussed two ad hoc approximations with geometric declining and equal mixture weights.

Second, the choice of the number of mixture components needs to be investigated. While I

have used a predetermined number of components, one might consider data based methods

to “optimally” choose the number of mixture components.
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ut ∼ N(0, 1)

m n [a, b] ρ = 0 ρ = −0.3 ρ = −0.6 secs

QF-GL 300 [−5, 5] 0.7087 0.6873 0.6114 38.20
QF-GH 300 0.7087 0.6873 0.6114 58.93

100 0.7087 0.6873 0.6114 5.62
50 0.7091 0.6881 0.6184 1.27

MF-GW 10 5 0.7087 0.6873 0.6114 0.03
MF-EW 10 5 0.7087 0.6873 0.6114 0.03
MF 10 1 0.7087 0.6873 0.6114 0.01

ut ∼ t(0, 1), α = 0, ν = 11

m n [a, b] ρ = 0 ρ = −0.3 ρ = −0.6 secs

QF-GL 300 [−5, 5] 0.6851 0.6650 0.5940 38.26
QF-GH 300 0.6851 0.6650 0.5940 59.98

100 0.6851 0.6650 0.5942 5.82
50 0.6875 0.6691 0.6251 1.37

MF-GW 10 5 0.6851 0.6650 0.5940 0.08
MF-EW 10 5 0.6852 0.6652 0.5942 0.08
MF 10 1 0.6851 0.6650 0.5941 0.02

Table 1: Root mean squared errors of the filtered state variable. QF-GL
and QF-GH are the quadrature filters based on m nodes of Gauss-Legendre
over the interval [a, b] and Gauss-Hermite quadrature, respectively. MF-
GW and MF-EW are the mixture Gaussian filters based on n components
and m nodes of Gauss-Hermite quadrature with initial weights geomet-
rically declining and equally weighted, respectively. Root mean squared
errors based on M = 1000 replications of sample size T = 1000. The
last column indicates the execution time in seconds per replication of the
corresponding filter.
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ut ∼ N(0, 1)

m n α0 α1 φ ρ fail

DGP 0 0.45 0.975 0.00
QF-GL 100 −0.0088 0.4019 0.9651 0.0078 4

(0.1341) (0.1782) (0.0228) (0.2065)
QF-GH 100 −0.0100 0.3952 0.9497 −0.0269 53

(0.1142) (0.1345) (0.0316) (0.2161)
MF-GW 10 5 −0.0092 0.4064 0.9663 0.0177 0

(0.1359) (0.1755) (0.0226) (0.2179)
MF-EW 10 5 −0.0084 0.4074 0.9663 0.0177 0

(0.1378) (0.1774) (0.0226) (0.2182)
MF 10 1 −0.0088 0.4068 0.9663 0.0178 0

(0.1363) (0.1761) (0.0226) (0.2177)

DGP 0 0.45 0.975 −0.30
QF-GL 100 −0.0031 0.4118 0.9669 −0.3056 3

(0.1257) (0.1563) (0.0207) (0.2059)
QF-GH 100 −0.0002 0.4050 0.9495 −0.3020 59

(0.1222) (0.0847) (0.0306) (0.2010)
MF-GW 10 5 −0.0055 0.4129 0.9677 −0.3011 0

(0.1268) (0.1560) (0.0206) (0.2074)
MF-EW 10 5 −0.0043 0.4145 0.9678 −0.3032 0

(0.1292) (0.1584) (0.0206) (0.2069)
MF 10 1 −0.0048 0.4135 0.9677 −0.3016 0

(0.1273) (0.1569) (0.0206) (0.2069)

DGP 0 0.45 0.975 −0.60
QF-GL 100 −0.0032 0.4275 0.9710 −0.6286 0

(0.1097) (0.1111) (0.0148) (0.1601)
QF-GH 100 0.0009 0.4148 0.9593 −0.6013 53

(0.1047) (0.1304) (0.0199) (0.1808)
MF-GW 10 5 −0.0053 0.4205 0.9711 −0.6180 0

(0.1130) (0.1373) (0.0147) (0.2040)
MF-EW 10 5 −0.0048 0.4220 0.9711 −0.6178 0

(0.1154) (0.1394) (0.0147) (0.2034)
MF 10 1 −0.0048 0.4210 0.9711 −0.6177 0

(0.1133) (0.1380) (0.0147) (0.2038)

Table 2: Finite sample performance of MLE with Gaussian innovations.
QF-GL and QF-GH are the quadrature filters based on m nodes of Gauss-
Legendre over the interval [−5, 5] and Gauss-Hermite quadrature, respec-
tively. MF-GW and MF-EW are the mixture Gaussian filters based on n
components and m nodes of Gauss-Hermite quadrature with initial weights
geometrically declining and equally weighted, respectively. Reported are
means over M = 100 replications of sample size T = 1000. Numbers in
parentheses are the root mean squared errors. The last column is the num-
ber of cases out of M = 100 in which the numerical optimizer failed to
converge.
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ut ∼ t(0, 1), α = 0, ν = 11

m n α0 α1 φ ρ α ν fail

DGP 0 0.50 0.98 0.00 0 11
QF-GL 100 −0.0022 0.4481 0.9672 −0.0016 0.0062 15.8675 6

(0.1746) (0.2022) (0.0222) (0.2043) (0.4224) (16.6669)
QF-GH 100 0.0203 0.4443 0.9518 −0.0116 0.0157 14.9081 57

(0.1682) (0.1614) (0.0321) (0.1993) (0.4360) (10.4903)
MF-GW 10 5 −0.0012 0.4473 0.9685 −0.0108 0.0055 15.6090 1

(0.1777) (0.1976) (0.0218) (0.2068) (0.4112) (16.9559)
MF-EW 10 5 −0.0050 0.4489 0.9686 −0.0109 0.0051 15.4918 1

(0.1764) (0.1978) (0.0219) (0.2069) (0.4113) (15.9110)
MF 10 1 −0.0020 0.4474 0.9685 −0.0109 0.0053 15.5913 1

(0.1768) (0.1976) (0.0218) (0.2067) (0.4112) (16.8141)

DGP 0 0.50 0.98 −0.30 0 11
QF-GL 100 −0.0108 0.4441 0.9658 −0.2816 0.0020 14.8346 5

(0.1658) (0.1958) (0.0250) (0.2334) (0.4150) (10.5379)
QF-GH 100 0.0150 0.4256 0.9516 −0.2710 0.0420 14.5191 53

(0.1663) (0.1953) (0.0350) (0.2175) (0.4288) (7.6994)
MF-GW 10 5 −0.0058 0.4527 0.9672 −0.3019 0.0055 14.4423 0

(0.1647) (0.1712) (0.0245) (0.2354) (0.4042) (9.9018)
MF-EW 10 5 −0.0102 0.4541 0.9673 −0.3027 0.0044 14.4008 0

(0.1645) (0.1711) (0.0245) (0.2362) (0.4043) (9.6974)
MF 10 1 −0.0069 0.4529 0.9672 −0.3021 0.0052 14.4309 0

(0.1642) (0.1712) (0.0245) (0.2357) (0.4042) (9.8307)

DGP 0 0.50 0.98 −0.60 0 11
QF-GL 100 −0.0032 0.4501 0.9710 −0.5846 0.0106 14.0938 3

(0.1423) (0.1687) (0.0148) (0.2545) (0.3947) (10.1199)
QF-GH 100 −0.0217 0.4468 0.9598 −0.5812 0.0096 13.6599 61

(0.1445) (0.1582) (0.0220) (0.2146) (0.3808) (6.1794)
MF-GW 10 5 −0.0037 0.4656 0.9718 −0.6217 0.0079 13.8454 0

(0.1426) (0.1236) (0.0148) (0.1902) (0.3881) (9.3075)
MF-EW 10 5 −0.0035 0.4587 0.9719 −0.6042 0.0063 13.8246 0

(0.1497) (0.1532) (0.0148) (0.2400) (0.3888) (9.3052)
MF 10 1 −0.0039 0.4658 0.9719 −0.6218 0.0075 13.8340 0

(0.1431) (0.1234) (0.0148) (0.1902) (0.3883) (9.2268)

Table 3: Finite sample performance of MLE with Student-t innovations.
QF-GL and QF-GH are the quadrature filters based on m nodes of Gauss-
Legendre over the interval [−5, 5] and Gauss-Hermite quadrature, respec-
tively. MF-GW and MF-EW are the mixture Gaussian filters based on n
components and m nodes of Gauss-Hermite quadrature with initial weights
geometrically declining and equally weighted, respectively. Reported are
means over M = 100 replications of sample size T = 1000. Numbers in
parentheses are the root mean squared errors. The last column is the num-
ber of cases out of M = 100 in which the numerical optimizer failed to
converge.
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Figure 1: Gaussian quadrature nodes xi and weights wi for m = 100. The
Gauss-Legendre nodes are for the interval [−5, 5]. The tick marks for the
Gauss-Hermite nodes indicate the positions of the nodes xi which have
mostly zero weight outside the [−5, 5] interval.
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Figure 2: Daily returns from the S&P 500 index. The daily returns are
computed as the log difference of the index, dropping any missing obser-
vations and treating the resulting sample as equi-spaced.
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Jan/80–Dec/87: ut ∼ N(0, 1)

α0 α1 φ ρ `

GL-300-5 −0.0535 0.6616∗ 0.9716∗ −0.3383∗ −2775.9637
(0.1143) (0.0901) (0.0128) (0.0872)

GL-300-7 −0.0817 0.6353∗ 0.9680∗ −0.3346∗ −2775.6913
(0.1175) (0.1099) (0.0142) (0.0857)

GL-300-9 −0.0817 0.6353∗ 0.9680∗ −0.3346∗ −2775.6913
(0.1175) (0.1099) (0.0142) (0.0857)

GH-300 −0.0817 0.6353∗ 0.9680∗ −0.3346∗ −2775.6913
(0.1175) (0.1099) (0.0142) (0.0857)

MFG-13 −0.0818 0.6449∗ 0.9641∗ −0.3542∗ −2778.9196
(0.1115) (0.1061) (0.0187) (0.0832)

MFG-5 −0.0822 0.6445∗ 0.9640∗ −0.3541∗ −2778.9538
(0.1115) (0.1060) (0.0187) (0.0832)

MFG-1 −0.0827 0.6440∗ 0.9639∗ −0.3541∗ −2778.9878
(0.1114) (0.1059) (0.0188) (0.0831)

Jan/80–Dec/87: ut ∼ SKt(0, 1)

α0 α1 φ ρ α ν `

GL-300-5 0.0290 0.5785∗ 0.9859∗ −0.4158∗ −0.1827∗ 10.0714∗ −2764.3638
(0.1501) (0.0881) (0.0070) (0.1010) (0.0305) (3.2083)

GL-300-7 0.0289 0.5784∗ 0.9859∗ −0.4158∗ −0.1827∗ 10.0719∗ −2764.3637
(0.1503) (0.0883) (0.0070) (0.1010) (0.0305) (3.2088)

GL-300-9 0.0289 0.5784∗ 0.9859∗ −0.4158∗ −0.1827∗ 10.0718∗ −2764.3637
(0.1503) (0.0883) (0.0070) (0.1010) (0.0305) (3.2134)

GH-300 0.0290 0.5785∗ 0.9859∗ −0.4158∗ −0.1827∗ 10.0703∗ −2764.3634
(0.1507) (0.0887) (0.0071) (0.1010) (0.0305) (3.2095)

MFG-13 0.0354 0.5790∗ 0.9860∗ −0.4274∗ −0.1848∗ 9.7879∗ −2764.9785
(0.1499) (0.0878) (0.0071) (0.1014) (0.0305) (2.9578)

MFG-5 0.0343 0.5781∗ 0.9859∗ −0.4272∗ −0.1847∗ 9.7890∗ −2765.0179
(0.1500) (0.0873) (0.0071) (0.1014) (0.0305) (2.9543)

MFG-1 0.0327 0.5771∗ 0.9859∗ −0.4270∗ −0.1846∗ 9.7866∗ −2765.0484
(0.1498) (0.0866) (0.0071) (0.1014) (0.0305) (2.9539)

Table 4: Maximum likelihood estimates for the Jan/80–Dec/87 sample
(2022 observations). Numbers in parentheses are robust standard errors
based on (23) and ` is the log-likelihood value. For the skew-t distribution
(SKt), α is the skew parameter and ν is the degrees of freedom. ∗ indicates
(two-sided) significance at size 0.05. GL-m-b is the quadrature filter based
on m Gauss-Legendre nodes over [−b, b], GH-m is the quadrature filter
based on m Gauss-Hermite nodes, and MFG-n is the mixture filter with n
components.
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Jan/90–Dec/03: ut ∼ N(0, 1)

α0 α1 φ ρ `

GL-300-5 −0.0916 0.8385∗ 0.9806∗ −0.6747∗ −4635.1650
(0.1162) (0.0685) (0.0050) (0.0457)

GL-300-7 −0.0916 0.8385∗ 0.9806∗ −0.6747∗ −4635.1650
(0.1162) (0.0685) (0.0050) (0.0457)

GL-300-9 −0.0916 0.8385∗ 0.9806∗ −0.6747∗ −4635.1650
(0.1162) (0.0685) (0.0050) (0.0457)

GH-300 −0.0916 0.8385∗ 0.9806∗ −0.6747∗ −4635.1650
(0.1162) (0.0685) (0.0050) (0.0457)

MFG-13 −0.0913 0.8379∗ 0.9805∗ −0.6768∗ −4635.4832
(0.1148) (0.0679) (0.0051) (0.0449)

MFG-5 −0.0920 0.8376∗ 0.9805∗ −0.6767∗ −4635.5427
(0.1150) (0.0678) (0.0051) (0.0449)

MFG-1 −0.0931 0.8370∗ 0.9804∗ −0.6764∗ −4635.6145
(0.1152) (0.0677) (0.0051) (0.0449)

Jan/90–Dec/03: ut ∼ SKt(0, 1)

α0 α1 φ ρ α ν `

GL-300-5 −0.0352 0.8457∗ 0.9859∗ −0.7425∗ −0.6029∗ 12.6937∗ −4618.1876
(0.1219) (0.0739) (0.0036) (0.0356) (0.0346) (2.3904)

GL-300-7 −0.0352 0.8457∗ 0.9859∗ −0.7425∗ −0.6029∗ 12.6937∗ −4618.1876
(0.1219) (0.0739) (0.0036) (0.0356) (0.0346) (2.3967)

GL-300-9 −0.0352 0.8457∗ 0.9859∗ −0.7425∗ −0.6029∗ 12.6937∗ −4618.1876
(0.1219) (0.0739) (0.0036) (0.0356) (0.0346) (2.3941)

GH-300 −0.0311 0.8485∗ 0.9862∗ −0.7437∗ −0.6012∗ 12.6276∗ −4618.1566
(0.1270) (0.0790) (0.0046) (0.0367) (0.0346) (2.3834)

MFG-13 −0.0375 0.8441∗ 0.9857∗ −0.7423∗ −0.6068∗ 12.7539∗ −4618.0284
(0.1204) (0.0726) (0.0035) (0.0355) (0.0348) (2.4206)

MFG-5 −0.0374 0.8437∗ 0.9857∗ −0.7423∗ −0.6067∗ 12.7513∗ −4618.0924
(0.1208) (0.0726) (0.0035) (0.0355) (0.0348) (2.4165)

MFG-1 −0.0374 0.8432∗ 0.9857∗ −0.7423∗ −0.6065∗ 12.7449∗ −4618.1693
(0.1213) (0.0724) (0.0036) (0.0356) (0.0348) (2.4230)

Table 5: Maximum likelihood estimates for the Jan/90–Dec/03 sample
(3532 observations). Numbers in parentheses are robust standard errors
based on (23) and ` is the log-likelihood value. For the skew-t distribution
(SKt), α is the skew parameter and ν is the degrees of freedom. ∗ indicates
(two-sided) significance at size 0.05. GL-m-b is the quadrature filter based
on m Gauss-Legendre nodes over [−b, b], GH-m is the quadrature filter
based on m Gauss-Hermite nodes, and MFG-n is the mixture filter with n
components.
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Figure 3: QQ-plots for standardized mean innovation in quadratic forms.
The Gauss-Legendre quadrature filter is based on m = 300 nodes over
[−7, 7] and the mixture Gaussian filter is based on n = 13 components.
The χ2(1) quantile plots are for the Gaussian model, while the F (1, ν)
quantile plots are for the skew-t model.
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Sample ut ∼ N(0, 1) ut ∼ SKt(0, 1)
Jan/80–Dec/87 GL-300-7 MFG-13 GL-300-7 MFG-13

Skewness −2.56 0.00 0.00 −0.07 −0.07
Kurtosis 51.68 4.49 4.55 5.58 5.65

Sample ut ∼ N(0, 1) ut ∼ SKt(0, 1)
Jan/90–Dec/03 GL-300-7 MFG-13 GL-300-7 MFG-13

Skewness −0.10 0.00 0.00 −0.23 −0.23
Kurtosis 6.57 6.06 6.05 7.66 7.63

Table 6: Sample and implied moments of S&P 500 index daily returns.
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