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Abstract

This paper discusses how agents in the SFI-ASM are able to ac-
quire more wealth than non-classifier agents, even though Ehrentreich
(2005) had established that the classifier system does not provide any
useful trading information. Besides learning speed, the number of ac-
tivated rules and the specific selection mechanisms that agents employ
in choosing a trading rule to act upon are identified as additional fac-
tors that influence wealth accumulation. It is also shown that higher
wealth levels in the SFI-ASM are generally a sign of less efficient model
behavior, which is counterintuitive to economic intuition. To avoid
similar pitfalls, I finally propose as a dictum for agent-based simu-
lations that emergent behavior should only be the last resort when
explaining complicated or surprising model behavior.
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1 Introduction

As one of the pioneering stock market simulations, the SFI-ASM was able
to generate emergent behavior. For fast learning rates of agents, a complex
regime emerged which was characterized by higher price volatility, GARCH-
behavior, cross-correlation between price and trading volume, and signifi-
cant levels of technical trading. In their 1997 paper, Arthur et al. asked
themselves to what extent the existence of the complex regime is an arti-
fact of design assumptions in their model. They found by “varying both
the model’s parameters and the expectational-learning mechanism, that the
complex regime and the qualitative phenomena associated with it are robust.
These are not an artifact of some deficiency in the model” (p. 35).

In Ehrentreich (2005) it was shown that these results were based on the
design of the mutation operator which introduced an upward bias in the level
of set trading bits in the classifier system. When corrected by a bit-neutral
mutation operator, NESFI-agents (Norman Ehrentreich’s SFI-agents) always
find the correct homogeneous rational expectations (hre) equilibrium of no-
bit usage, independent of their learning speed. Emergence of technical trad-
ing cannot be observed anymore and complex time series behavior arises only
for much higher learning speeds than in the original model.

An analysis wealth levels in both model versions was omitted in Ehren-
treich (2005). Attentive readers might have noticed, though, that the endoge-
nous abandoning of the classifier system by NESFI-agents is in apparent con-
tradiction to studies by Joshi et al. (1998) and Joshi et al. (2002) who found
that technical trading can generate excess profit. The results of the NESFI-
ASM, on the other hand, imply that none of the trading bits improves the
forecast accuracy of agent’s trading rules. Unless a rule’s forecast accuracy
is a wrong proxy for its profitability, the convergence at the zero-bit solution
should imply that classifier-agents, i.e., those who use the information pro-
vided by their classifier system, cannot outperform agents who neglect the
classifier system altogether. This is in contradiction to studies by Joshi et al.
(1998 and 2002) who found that agents with access to technical trading bits
acquire more wealth than fundamental traders.

Unfortunately, things are more complicated than that. Wealth differences
between different trader types—technical or fundamental traders, fast or slow
learning agents, SFI- or NESFI-agents, classifier or non-classifier agents—
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most generally arise. While the explanation of these wealth differences had
often been sought in elaborate economic reasoning, this paper identifies the
number of active trading rules as the main reason for varying wealth levels.

In order to be self-contained, section 2 will briefly recapitulate the design
of the SFI-ASM. This will include a short discussion of its mutation operator
and its rectification by Ehrentreich (2005). More details, however, are given
in the original contributions by Arthur et al. (1997) or LeBaron et al. (1999).
Section 3 will briefly introduce two studies by Joshi et al. (1998 and 2002).
In section 4, alternative explanations for wealth divergence will be provided.
Based on these findings, a final section will draw some general conclusion for
agent-based simulations.

2 The Original SFI-ASM

The SFI-ASM is inhabited by N traders who are all initially endowed with
one unit of risky stock and 20, 000 units of cash. During each period, traders
have to decide how much to invest in risky stock and how much to keep in
cash which yields a risk-free rate of return rf . The stock pays a stochastic
dividend per period which is generated by a stationary AR(1)-process

dt+1 = d̄+ ρ(dt − d̄) + εt+1, (1)

with εt ∼ N(0, σ2
ε ). Traders have identical constant absolute risk-aversion

expected utility functions

U(Wt+1) = −e
−λWt+1 , (2)

with λ being the degree of risk-aversion and Wt+1 being an agent’s expected
wealth level in the next period. Given the budget constraint

Wt+1 = xt(pt+1 + dt+1) + (1 + rf )(Wt − ptxt), (3)

the optimal amount of stock x̂t that an agent desires to hold is

x̂t =
Et[pt+1 + dt+1]− pt(1 + rf )

λσ2
t,p+d

, (4)

where Et[pt+1+dt+1] is the expectation in t about the next period’s realization
of the stock’s price and dividend, and σ2

t,p+d is the empirically observed vari-
ance of the combined price plus dividend time series. A specialist balances
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the effective demands with the fixed supply of shares by setting a market
clearing price in an iterative process.

Traders have heterogeneous expectations about future prices and divi-
dends Et[pt+1 + dt+1]. These expectations are formed through a classifier
system by generating linear forecasts

Et[pt+1 + dt+1] = aj(pt + dt) + bj, (5)

with aj and bj being real valued parameters constituting the predictor part of
a chosen trading rule j. Each rule consists of a condition part, a forecast part
(predictor), its fitness value, and its forecast accuracy. The condition parts
are checked against a Boolean market descriptor Dt which holds current and
past price and dividend information. For example, a particular market state
could be that the price of the stock is greater than n-times its fundamental
value, while at the same time, the 25-period moving average of the stock price
is greater than the current price. When a particular predefined condition is
met, the corresponding descriptor bit is set to 1, and otherwise to 0. The
condition part is coded as a ternary string holding either 1 or 0, depending
on whether the corresponding bit in the market descriptor has to be matched
or not, or holding the don’t care sign # if the rule ignores that particular
descriptor bit. Rules with numerous #-signs are quite general, hence, they
will be activated more often than more specific rules. The bits of a trading
rule may be characterized as either technical or fundamental. Technical bits
check only price or trading volume information, while fundamental bits relate
the price of a stock to its fundamental value by using dividend information.
For example, dividends and prices are checked to determine whether they
have increased or decreased, and whether they are above or below certain
moving averages. Most importantly, prices are checked against a stock’s
fundamental value by comparing for each ratio in the brackets to determine
whether

price x interest rate/dividend >

{
1

2
,
3

4
,
7

8
, 1,

9

8
,
5

4
,
3

2

}
(6)

is fulfilled.

From the set of 100 individual trading rules that each agent possesses,
normally more than one match the market state Dt and are marked as active.
From the set of activated rules, agents either choose the rule with the highest
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fitness value (select best mechanism), or choose a rule with a probability
proportionate to its fitness (select roulette mechanism). Only when no rules
match the market descriptor, the forecast parameters a and b are determined
as a fitness weighted average of all aj and bj with j = 1 . . . 100 (select average
mechanism). Rule fitness is defined as

ft,j = C −
(
ν2

t,j + bitCost× specificity
)
, (7)

where ν2
t,j is rule’s j forecast accuracy which is measured as a weighted av-

erage of previous and current squared forecasting errors

ν2

t,j =

(
1−

1

θ

)
ν2

t−1,j +
1

θ

[
(pt + dt)− [aj(pt−1 + dt−1) + bj]

]2
. (8)

The parameter θ determines the size of the time window that agents consider
when estimating a rule’s accuracy.1 The positive constant C in equation 7
ensures positive fitness, specificity refers to the number of non-ignored
conditions in a rule which are penalized with some associated bitCost. The
forecast accuracy ν2

t,j is used as the variance of the combined price plus
dividend time seriesσ2

t,p+d in equation 4.

The set of 100 trading rules is, on average, altered every K periods by a
genetic algorithm (GA) which replaces the 20 worst rules with new, possibly
better ones.2 The real valued parameters a and b of the prediction part
and the bit strings of the condition part are altered by the genetic operators
of either crossover (with probability 1 − Π) or mutation (with probability
Π = 0.7).

For the condition parts, the SFI-ASM uses uniform crossover. Here, an
offspring’s bit is chosen with equal probability from the corresponding bit
positions of either parent. Note that the fraction of bits set in the offspring
is an unweighted average of the two parents’ bit fraction. Thus, there is
no systematic influence on average specificity through the working of the

1As LeBaron et al. (1999) have pointed out, the value of θ is a crucial design question
since it strongly affects the speed of accuracy adjustment and the resultant learning in
the artificial stock market. If θ = 1, the rules would be judged only on the last period’s
performance and forecast accuracy would be strongly prone to noise. At the other extreme,
however, as θ goes to ∞, agents would take all past information into account, implicitly
assuming they live in a static world. As in LeBaron et al., a value of 75 is chosen for θ.

2Two useful introductions to genetic algorithms, which were originally developed by
Holland (1975), are provided in Goldberg (1989) and Mitchell (1996).
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crossover operator. As for the real valued parameters, the crossover operator
constructs the new parameter values by determining a weighted average of
the two parents’ values, with 1/σ2

j,p+d as the weight for each parent. The
weights are normalized to sum up to 1.

The real valued parameters of the predictor parts are mutated by adding
random numbers to them. The condition parts are mutated by randomly
flipping each bit with a small mutation probability of π = 0.03. Though
unsuspicious at first, the specific bit transition probabilities

P =




0 1/3 2/3
1/3 0 2/3
1/3 1/3 1/3


 (9)

with which individual bits are mutated are crucial for the main result of
emergent technical trading for faster learning speeds.3 Even though LeBaron
et al. assert that these transition probabilities would, on average, maintain
the number of don’t care sings #’s in a rule, we find by applying a Markov
chain analysis that, in the long run, the fraction of non-# bits converges to
one half.

Because the model usually functions well below the bit-level of one half,
the mutation operator introduces an upward tendency in the bit distribution.
Invoking the mutation operator more often per time period results in a higher
equilibrium bit level, prompting the researchers from the Santa Fe Institute
to infer that there is emergent technical trading. Because of the cost they
have attached to every non-# bit, they conjectured that emerging trading
bits must have, on average, some fitness-based advantages by producing more
accurate forecasts.4 The Markov chain analysis suggests that this emergence

3The transition matrix is interpreted as follows: 0- or 1-bits are never left unchanged
and are converted into the do not care sign # with a probability of two thirds. After
mutation, an initial do not care bit will be either 1, 0, or # with an equal probability of
one third.

4Arthur et al. (1997) emphasize that positive bit costs allow them to speak of “emer-
gence” since “the information represented by a particular bit is used only if agents find it

genuinely useful in prediction” (p. 34). There are several indications that this is a prema-
ture conclusion. First, their logic implies that the SFI-model could be forced into a non-bit
(or at least a low-bit) usage solution if bit costs are sufficiently high. This, however, is
never the case. Second, no significant differences in the level of fundamental and technical
trading bits can be detected for various learning speeds or mutation rates. Last, but not
least, one cannot assert that agents act upon technical trading bits simply because they
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is simply a design artifact of the mutation operator. In Ehrentreich (2005), an
alternative bit-neutral mutation operator is suggested, i.e., one that leaves
the probability of non-# bits before and after mutation unchanged. The
transition matrices, one for fundamental bits

Pfund. =




0 Ffund. 1− Ffund.
Ffund. 0 1− Ffund.
1

2
Ffund.

1

2
Ffund. 1− Ffund.


 (10)

and one for technical bits defined in the same way, are characterized by dy-
namically adjusting transition probabilities where Ffund. refers to the initial
fraction of fundamental 0- or 1-bits.

With this new mutation operator, agents endogenously abandon the use of
their classifier system. In the long run, the fraction of set trading bits in each
agent’s rule set always approaches zero. This result confirms the prediction of
the hre-equilibrium, given the mean reverting dividend process. Furthermore,
the simulated time series are generally closer to the hree-benchmark than in
the original SFI-ASM. Only at much faster learning rates than in the original
model can the claim of emergent complex price series behavior still be upheld.

3 Wealth Levels in the SFI-ASM: An Econo-

mic(al) Explanation

Since agents in the rectified NESFI-ASM endogenously give up the use of
their classifier system, it is strongly implied that it does not provide any
profitable trading information. If technical trading rules would generate ex-
cess profit, technical trading should strive rather than vanish.5

The conclusion of a useless classifier system is in direct contradiction to
Joshi et al. (1998) who find that agents with access to technical trading

exist. In fact, when counting an agent’s rule usage, one realizes that general rules are
selected for use much more often than more specific ones.

5Strictly speaking, the trading rules are not evaluated according to their wealth gen-
erating ability, but on their forecast accuracy. While it is possible that a more accurate
trading rule is less successful in terms of generated wealth, Arthur et al. (1997) believed
this scenario to be highly unlikely. Their intuition was confirmed by Wilpert (2004) who
evaluated trading rules according to their generated profits. His results did not differ much
from those of the original SFI-ASM.
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bits acquire more wealth than fundamental agents. The wealth differences
that they report are not negligible and grow over time, as figure 1 vividly
illustrates.
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Fig. 1: Wealth levels for the situation when one agent includes technical rules
while all others exclude them. Note that the singular agent using technical
rules accumulates significantly more wealth than those agents using only
fundamental rules almost all through the run, and that this difference grows
over time. Source: Joshi et al (1998), p. 11

The observed differences in wealth accumulation between fundamental
and technical traders were used by Joshi et al. for a game theoretic analysis.
They concluded that technical trading creates a typical prisoner’s dilemma.
As long as there are fundamental traders in the market, technical traders can
acquire more wealth, yet when all agents include technical trading rules, the
overall market wealth is less than if everybody excludes them. In a related
study, Joshi et al. (2002) vary their focus and determine an agent’s optimal
learning speed. They find that the unique symmetric Nash-equilibrium im-
plies a fast learning rate that clearly falls into the complex regime. Hence,
they conclude that financial markets can operate at sub-optimal equilibria.

The two studies by Joshi et al., however, simply take the observed wealth
differences as given and deduce economic interpretations from them. As
to where these wealth differences come from, they just offer some vague
economic rationalization. They argue, for instance, that if a single agent with
access to technical trading bits detects a short term price trend, he might be
able to exploit this pattern without dissipating it. If more and more agents
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detect the price trend, the particular technical trading rules are reinforced
through positive feedback, thus making them self-fulfilling prophecies, which
can cause bubbles and crashes. Similar arguments on the emergence and
profitability of technical trading can be found in Arthur et al. (1997) or
Joshi and Bedau (1998).

It is clear from Ehrentreich (2005) that this explanation based on pattern
detection and exploitation cannot be upheld. Since NESFI-agents voluntarily
forfeit the possible gains from technical trading by giving up their classifier
systems, it is implied that the patterns they detected are not profitable in
the long run. Thus, the question remains why technical traders accumulate
different wealth levels than fundamental traders?6

4 Wealth Levels in the (NE)SFI-ASM: Alter-

native Explanations

Fundamental traders in Joshi et al. (1998) had no access to technical trading
bits in their trading rules, yet they were still using the fundamental trading
information. NESFI-agents in the corrected stock market version, on the
other hand, endogenously give up checking technical and fundamental trading
information. It thus seems straightforward to shorten the whole adjustment
process and to introduce non-classifier agents, i.e., agents who do not check
any environmental information at all and have trading rules that only consist
of prediction parts and fitness information. How would these agents compare
when they have to compete with old-fashioned SFI-classifier agents?

It was my initial hypothesis was that non-classifier agents should never
outperform classifier-agents since only the latter were equipped with an ad-
ditional tool to analyze and exploit potentially useful information. Figure 2,

6Initially, I even doubted the validity of Joshi et al.’s (1998) simulation results. In
Ehrentreich (2002), a working paper version of Ehrentreich (2005), I reported that wealth
levels of classifier and non-classifier agents rise equally after some initial divergence during
the warm-up phase, which is in contradiction to figure 1 with diverging wealth slopes. I
then noticed, however, that while the absolute wealth differences were tiny, the classifier-
agents did slightly better in 23 out of 25 simulation runs. A paired two sided t-test then
revealed that these minuscule wealth differences were significant, sometimes even at the
1% percent level. It was this outperformance of the classifier agents that prompted me to
look for alternative explanations how wealth differences in the SFI-ASM come about.
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Fig. 2: Wealth differences between SFI-agents and non-classifier agents, both
trader types using select best for rule selection, recorded for different GA
invocation intervals and averaged over 25 simulation runs. Positive values
indicate that SFI-agents outperform the non-classifier agents, the shaded
area indicates mean wealth difference ± one standard deviation.

however, tells a different story. While for most GA-invocation intervals the
classifier-agents acquire more wealth, there is a significant dip in the curve
when non-classifier agents do better than their SFI-counterparts. Better per-
forming non-classifier agents, however, point to reasons other than pattern
recognition and exploitation which determine accumulated wealth levels.

4.1 Rule Selection from Activated Rules

First of all, when attempting to explain the wealth differences one stumbles
upon an important difference between SFI- and non-classifier agents. For
SFI-agents, the mutation operator increases the number of set bits in trading
rules. An increase in the learning speed thus results in more specific and
more illogical rules, thereby systematically reducing the number of activated
rules. The size of the activated rule set for non-classifier agents, on the other
hand, is largely independent of the GA-invocation interval. For both agent
types, trading rules that had been activated less than “mincount” times since
their creation, are not included in the active rule set either. The mincount-

9



parameter was set at a value of five and thus tends to decrease the number
of activated rules only for very fast learning speeds.

Secondly, when further investigating wealth performance of different trader
types I realized that the model versions used in Joshi et al. (1998 and 2002)
differ in one detail from the version used by LeBaron et al. (1999). From
the set of activated rules, an agent must choose one for a price and dividend
forecast. In LeBaron et al. (1999), always the best, i.e., the rule with the
lowest variance estimate from equation 8 is selected. In Joshi et al. (1998
and 2002), however, a rule is randomly chosen from among the active rule
set with a probability proportional to it’s fitness value. This mechanism is
known as roulette wheel selection since a rule’s selection probability could
be conceptualized as the size of the wedge on a biased roulette wheel.
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Fig. 3: Wealth differences between SFI- and non-classifier agents as a function
of learning speed, number of trading rules they possess, and rule selection
mechanism (left: select-best, right: select-roulette). Data were averaged
over 25 simulation runs. Note that non-classifier agents outperform the SFI-
agents for most parameter combinations (negative wealth differences) and
that the peak in the upper left corner for select-best was truncated for better
comparability.

Considering the increasing gap between active trading rules for SFI- and
non-classifier agents for faster learning speeds, and taking into account the
different selection mechanisms used so far, it seemed reasonable to look at
wealth levels for different rule set sizes under both selection procedures. Fig-
ure 3 thus gives a more complete impression of wealth behavior than figure 2

10



does. First one notices that wealth differences between SFI- and non-classifier
agents do not obey any simple relationship when changing either the learn-
ing speed or the rule set size. Both directions have pronounced “wealth
valleys”, thus indicating at least two or more overlapping factors that influ-
ence an agent’s wealth accumulation. Secondly, while the general shape in
both wealth graphs seems similar, there are some noticeable differences such
as a peak in the upper left corner for select-best.

While figure 3 does only report wealth differences between SFI- and non-
classifier agents, the same analysis had been made for absolute wealth levels
in markets with only one agent type (top sections in figures 4 & 5). When
only looking at the wealth differences between SFI-and non-classifier agents
in figure 3, one is inclined to say that using either select-best or roulette
wheel for rule selection does not matter very much. Yet when looking at
the absolute wealth levels in figure 4 and 5, a completely different wealth
behavior between the two selection mechanisms becomes apparent.

I attribute this difference to a widely known problem with simple roulette
wheel selection, i.e., that of scaling invariance. Adding an offset to all fitness
values tends to equalize the selection probabilities in roulette wheel selection.
The constant C in equation 7 with a value of 100, added to each raw fitness
value intended to avoid negative fitness, effectively leads to almost uniform
selection probabilities. The fitness information is thus widely neglected, es-
pecially in large active rule sets.7 Given the problem of scaling invariance,
select-best seems a better choice for rule selection in the SFI-ASM than sim-
ple roulette wheel selection.

The middle and bottom sections in figures 4−5 point to another possible
reason why wealth levels differ for different trader types and learning speeds.
Even when told to use select-best or roulette wheel selection for forecast pro-
duction, SFI-agents may not be able to do so and employ certain fall back
methods. By increasing the learning speed for SFI-agents or by reducing
the number of rules they possess, the size of their activated rule set shrinks
(middle section in figure 4). When there are no active rules at all, SFI-agents
derive their forecast parameters as a fitness weighted average of all the rules

7Goldberg (1989) and Mitchell (1996) report various approaches to deal with scaling
invariance. Sigma scaling, for instance, remedies the problem by taking into account also
the mean and standard deviation of fitness values in a population. Other approaches are
to use different selection procedures such as ranking-based schemes, select-best being just
the simplest to implement.
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Fig. 4: Top: Final wealth levels for SFI-agents with select-best (left) and
roulette-wheel selection (right). Middle: Number of activated rules. Bottom:
Number of “select-averages” during simulation. Data were averaged over 10
simulation runs.

that have been activated at least mincount-times in their lifetime. If none
of the rules had been activated at least mincount times, SFI-agents resort to
use the global average of past prices and dividends as their forecast. Depen-
dent on the parameterization, the relative importance of each method varies
greatly, whereby each method alone leads to a different model behavior. In
the following, I subsume both fall back mechanism in the SFI-ASM as select-

12



5
10

25
50

75
100

250
500

750
1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules

270.000

290.000

310.000

330.000

350.000

370.000

390.000

Final Wealth in Non-Classifier Best

5

10
25

50
75

100
250

500
750

1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules 0

500

1000

1500

2000

2500

3000

Number of Activated Rules in Non-Classifier Best

5

10
25

50
75

100
250

500
750

1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules 0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

Number of "Selected Averages" in Non-Classifier Best

5

10

25

50

75

100

250

500

750

1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules 300.000

320.000

340.000

360.000

380.000

400.000

420.000

440.000

460.000

480.000

500.000

Final Wealth in Non-Classifier-Roulette

5

10
25

50
75

100
250

500
750

1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules 0

500

1000

1500

2000

2500

3000

Number of Activated Rules in Non-Classifier Roulette

5

10
25

50
75

100
250

500
750

1000

5 Rules

10 Rules

25 Rules

50 Rules

75 Rules

100 Rules 0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

Number of "Select Averages" in Non-Classifier Roulette

Fig. 5: Top: Final wealth levels for non-classifier agents with select-best
(left) and roulette-wheel selection (right). Middle: Number of activated rules.
Bottom: Number of “select-averages” during simulation. Data were averaged
over 10 simulation runs. Note that the wealth peak in the upper left corner
for select best, reaching as high as 1.7 million, was truncated for better
visibility.

average. The bottom section in figure 4 shows how SFI-agents increasingly
resort to select-average when the number of activated rules becomes smaller.

Non-classifier agents, on the other hand, are not plagued by the problem
of a diminishing active rule set. Their rules are always activated (middle
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section of figure 5) and hence there is no need for them to resort to any of
the fall back methods (bottom section). Even though non-classifier indeed
stick to the intended selection mechanism, we still see a wealth peak for GA-
intervals around 50 and a valley at about 500 for roulette wheel selection.
These remaining wealth differences most likely reflect the working of the GA
which changes the forecast parameters, yet other still unidentified influences
are possible, too.

Separating and attributing price and wealth effects to each individual
factor seems impossible, though. Changing one factor affects the price se-
ries which in turn will affect the GA, which in turn will affect the triggering
change. Because of these interdependencies, an exhaustive explanation of
price and wealth behavior cannot be given. Earlier results in Ehrentreich
(2005) have implied that the wealth differences reported by Joshi et al. (1998
and 2002) cannot be attributed to pattern recognition and exploitation. By
identifying other factors that influence wealth behavior, the puzzle of diverg-
ing wealth levels for different trader types can be at least partly solved.

4.2 Risk-Premium, Taxation, and Wealth Levels

When looking at the absolute wealth levels in figures 4 and 5, an economically
trained mind easily spots some potential for optimization. For instance, Joshi
et al. (1998) asked themselves whether the observed wealth differences could
be helpful in finding an agent’s optimal learning speed. Or the designer of
an artificial stock market might ask whether there is an optimal number of
rules agents should use.

Because of the specific design of the SFI-ASM, however, wealth levels are
somewhat counterintuitive to interpret. The hre-equilibrium as the bench-
mark towards which the model behavior should optimally converge is, for
instance, usually characterized by lower wealth levels than when the model
is run in non-hree mode. Gulyás et al. (2003) pointed out that in the SFI-
ASM, agents usually increase their wealth more or less independent of their
actions. In the hre-equilibrium, agents are basically inactive, holding on to
their one unit of stock, collecting its dividend, and receiving interest on their
cash holdings. To avoid a long-run explosion of wealth levels, wealth in the
SFI-ASM is taxed at a rate equal to the exogenous interest rate. When
the model is run in hree-mode, it is possible to approximate a theoretical
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hree-base wealth level W hree
t in period t as

W hree
t = C0 + t

(
d− rfphree

)
, (11)

rf being the risk free interest rate, d the theoretical dividend mean of the
dividend process, and C0 as agent’s initial cash endowment.8 The constant
phree is the theoretical hree-price average which is a linear function of agent’s
risk aversion, the risk free interest rate, the theoretical dividend mean, speed
of mean reversion of the dividend process, and the variance of the dividend
noise process.9 Since risk aversion leads to phree < d/rf , equation 11 implies
that hree-base wealth W hree

t grows linearly with t.

In a real simulation run, however, stock prices diverge from their theo-
retical hree-levels. Base-wealth is defined as the wealth of an inactive agent
when his one unit of stock is evaluated with the realized prices instead of
hree-prices.10 It is determined as Wt = Ct + pt with Ct as base cash in t,
determined as

Ct = Ct−1 + (dt − rfpt). (12)

It is important to realize at this point that base wealth usually exceeds
hree-base wealth since the long term average of realized prices pt is smaller
than the theoretical hree-price average. This reflects an additional risk pre-
mium that is attached to realized prices since the constant learning of agents
introduces some additional noise. Equation 12 also implies that an increase
in the risk premium due to higher volatility, reflected in smaller values for
pt, will result in higher wealth levels in the SFI-ASM. It is easy to see that
wealth would be maximized stock prices would be zero. An efficient market
outcome in the SFI-ASM thus should not be equated with high wealth levels,

8The derivation of equation 11 is given in the appendix. The approximation allows us
to determine a hree-base wealth level without an actual simulation run. If a particular
simulation is run in hree-mode, the exact hree base wealth in t would be W hree

t = C0 +

t(d− rfphree) + phree
t , yet d and phree would represent the empirical averages (instead of

theoretical averages). Since equation 11 considers only cash, we would have to add the
current hree-price of the stock, given the current dividend. In the long run, however, the
averages converge to their theoretical means and the stock value becomes negligible in
relation to cash holdings.

9The exact formula of hree-prices is given in LeBaron et al. (1999) or Ehrentreich
(2005). The model parameters in use resulted in a hree-price of 87.92 and a hree-base
wealth of 322,096 after 250,000 periods.

10I owe this idea of base wealth to Gulyás et al. (2003).

15



in the contrary, the hree-benchmark equilibrium could almost be considered
as a lower bound for non-hree wealth levels. Even though this seems quite
counterintuitive, it is merely a result of taxation of last period’s wealth in
the model, while dividends are collected tax-free.

Wealth levels much higher than the corresponding hree-base wealth are
thus usually accompanied by rather extreme model behavior, high volatility,
and realized prices far away from equilibrium prices. Remember that non-
classifier agents with select-best, with many trading rules, and extremely
high learning speed acquired excessively high wealth levels (figure 5). The
price series accompanied by this, however, do not resemble any real stock
prices at all. Because of its specific design, an isolated look at wealth levels
in the SFI-ASM can lead researchers easily astray.

5 Conclusion

This paper has dealt with the puzzle how SFI-agents are able to acquire
more wealth than non-classifier agents, even though Ehrentreich (2005) had
established that the classifier system does not provide any useful trading in-
formation. It has been shown that wealth levels in the SFI-ASM are not only
tied to learning speed, but also to the number of activated rules and to the
specific selection mechanisms that agents employ in choosing a trading rule
to act upon. These last factors represent in my opinion more programming
technicalities than any economic content. It has also been established that
efficient market outcomes close to the hre-equilibrium benchmark are charac-
terized by lower wealth levels than when the market exhibits complex price
behavior.

It seems to me that the lesson to be learned from this discussion could
be of general interest to the agent-based simulation community. On the
one hand, this paper highlights the importance of seemingly inconspicuous
programming details such as the appropriate number of genetic individuals
or the choice of a specific selection operator. On a more general level, it
cautions from premature declarations of emergent behavior or the necessity
to produce intuitive economic explanations of model behavior. Even as re-
searchers, it is hard not to be fooled by our confirmation and observer biases.
The SFI-ASM was designed to allow for emergent technical trading, and the
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first signs of it were accepted as proof. The reasons for different wealth per-
formances were immediately sought in elaborate economic arguments such
as exploited technical trading patterns. To avoid similar pitfalls, I would
therefore like to close with positing a dictum for agent-based models: Try to
link complicated or surprising model behavior to the known model structure.
Only if all attempts fail, resort to emergence as a possible explanation.

Appendix
The cash and wealth positions of agents in the SFI-ASM are determined
according to

Wt = Ct−1 + ptxt (13)

Ct = Ct−1 + rfCt−1 + xtdt (14)

Ct = Ct−1 − rfWt, (15)

xt being the amount of stock held by them. Equation 13 denotes the previous
wealth before adjustment, equation 14 takes interest and dividend earnings
into account, while equation 15 lowers cash through tax payments at a tax
rate equal to the risk free interest rate. Taxation is incorporated in the model
to avoid an explosive wealth behavior in the long run through compound
interest effects. Equations 13− 15 can be summarized as

Ct = Ct−1 + xt (dt − rfpt) . (16)

Since base wealth was defined as the wealth of inactive agents, their stock
position xt remain at their initial endowments of one unit. Equation 16
simplifies to

Ct = Ct−1 + (dt − rfpt) (17)

and base wealth is thus Wt = Ct+pt. An approximation for hree-base wealth
can be obtained by substituting the simulated prices and dividends in period
t by their theoretical averages phree and d. Since these are constants, the
recursive relationship of equation 17 can be written as a function of initial
cash endowment

Ct = C0 + t
(
d− rfphree

)
. (18)
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beiträge 45/02, Martin Luther University Halle-Wittenberg.

Ehrentreich, N. (2005). A corrected version of the Santa Fe Institute Artificial
Stock Market model, Journal of Economic Behavior and Organization,
(forthcoming).

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, MA.

Gulyás, L., Adamcsek, B. and Kiss, A. (2003). An early agent-based stock
market: Replication and participation, Proceedings 4th Soft-Computing
for Economics and Finance Meeting (NEU 2003), May 29, 2003, Uni-
versity Ca’ Foscari, Venice, Italy.
*http://omega.ailab.sztaki.hu/%7Egulya/papers/NEU2003.zip

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, University of Michigan Press, Ann Arbor, MI.

Joshi, S. and Bedau, M. A. (1998). An explanation of generic behavior
in an evolving financial market, Santa Fe Institute Working Paper
(98-12-114).
*http://www.santafe.edu/research/publications/workingpapers/98-12-
114.pdf

Joshi, S., Parker, J. and Bedau, M. A. (1998). Technical trading creates a
prisoner’s dilemma: results from an agent-based model, Santa Fe Insti-
tute Working Paper (98-12-115).

Joshi, S., Parker, J. and Bedau, M. A. (2002). Financial markets can be at
sub-optimal equilibria, Computational Economics 19: 5–23.

18



LeBaron, B., Arthur, W. B. and Palmer, R. (1999). Time series properties of
an artificial stock market, Journal of Economic Dynamics and Control
23: 1487–1516.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA.

Wilpert, M. (2004). Künstliche Aktienmarktmodelle auf Basis von Classifier-
Systems, Knapp, Frankfurt/M.

19


