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Abstract:

We estimate the intensity of choice parameter in heterogenous agent models in both a static
and dynamic setting. Mean-variance optimizing agents choose among mutual funds of similar styles
but varying performance. Actively managed funds have a lower Sharpe ratio than passive index
funds, yet they attract a majority share of asset allocation. By estimating the relative growth of
passive funds, we obtain a dynamic estimate of the intensity of choice calibrated to 10 years of
mutual fund flows.
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I. Issues

Question being asked in the static model: Why do people still put new funds into the inferior

product? We do not model the switching of funds from one type to the other and by using net

inflow rather than gross inflow for measuring λ, we implicitly set transfers to zero. Thus, we

should not discuss switching by investors until we introduce the dynamic model. The dynamic

model explicitly models the flow from one fund to the other, so here it is appropriate to bring up

switching.

The IOC parameter is interesting because within the ARED it determines whether or not the

population process, and thus other dynamic processes in the model such as price, are stable or

unstable. To what extent have we enabled a researcher to determine whether his or her model is

stable or unstable based on our findings?

II. Introduction

There is growing recognition among economists that the individual interactions between agents

matter when trying to explain a variety of aggregate economic phenomenon. The changing in-

teractions of dynamic heterogeneous populations provided explanations for observed economic

behavior that is often difficult to explain using more tradition models. This has been particularly

true in financial markets where such phenomena as market bubbles, excess volatility of returns,

volatility clustering of returns, and the success of technical trading rules have all been investigated

using heterogeneous agents (include list of papers).

The Adaptive Rational Equilibrium Dynamic (ARED) introduced by Brock and Hommes

(1997) is a frequently employed tool for modeling the evolutionary process of a dynamic popu-

lation. The model applies to a population in which each agent chooses between a finite number

of discrete options. The heterogeneity of the population manifests as the population becomes

distributed among the available options. A key parameter of the ARED defines the population’s

”intensity of choice” (IOC). The parameter captures the strength with which the population re-

sponds to the measured benefit of being associated with one group over the others. Its value

determines the nature of the population dynamics and thus the evolution of the model as a whole.

The IOC often determines whether a model converges to a stable fixed point or produces unstable

cycles or chaotic behavior. It is thus reasonable to strive for an estimate of the IOC parameter in
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order to know whether a given system is stable or unstable.

The literature has yet to attempt such an estimate. This paper address this deficiency by

examining the distribution of the inflow of funds into and between actively managed and passively

managed mutual funds. By narrowing the category of funds examined, we are able to limit the

analysis to a population with a reasonably uniform investment objective.

(or your superior version of the same motivational paragraph: What the current literature lacks

is a reliable estimate of ρ and even how to interpret the units of the parameter once a model has

been properly calibrated. Our approach addresses both of these objections. We place the intensity

of choice into a utility maximizing framework so that ρ can be measured in a standard economic

context. An added advantage of the portfolio choice setting is that we can also easily transform

utility differences into dollar returns to further assess their reasonableness.)

While the IOC parameter is intended to capture a descriptive feature of the population that is

very likely stable and uniform across different settings, the scale of any IOC measure is unique to

the setting under examination. In order to produce a useful measure that is relevance across a wide

range of economic queries, we translate the estimate of the IOC into a monetary value representing

the willingness of the population to bear a cost in order to avoid tightening the population distri-

bution. We examine the same economic choice under a variety of utility specifications. Though

this produces a wide range of values for the model specific IOC parameters, the cost measure is

fairly uniform.

Section 1 defines the intensity of choice. Section 2 describes our baseline one-period model.

Section 3 discusses data and parameters used to calibrate the models. Section 4 reports estimates

of choice intensity in the one-period problem, and analyses the sensitivity of these estimates. We

describe a more general dynamic model in Section 5. Section 6 re-estimates the model in this

dynamic setting. Section 7 concludes and secures fame and fortune for the authors.

III. Intensity of Choice

The foundation for the ARED system is the randomized discrete choice framework of Manski and

McFadden (1981). Consider an environment in which agents select from a set of K of discrete

options from which each agent must make a single selection. The agents estimate the relative

benefits of each choice. In empirical studies, not all of agents necessarily choose the option the

model indicates to be the best choice for the individual. This is generally attributed to either
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unmodelled idiosyncratic components of the agents’ utility function or to a random component

in individual preferences. Either explanation introduces a degree of randomness allowing that the

individual agent’s ranking of the options may differ from the modeler’s. Each agent can be thought

of as having a private estimate of the value of each of the options.

Consider K = 2. Manski and McFadden establish that the probability individual i selects

option 1 is

Pr(xi = 1) =
eρUi,1

eρUi,1 + eρUi,0
. (1)

The Ui,k, k = 0, 1 is the model indicated utility value of option k to individual i,

Ui,k = Uk + σεik. (2)

The idiosyncratic component, σεi, is IID with an Extreme Value distribution for εi, E(εik) =

0, V (εik) = 1. The parameter ρ is an inverse function of σ. The greater ρ the less unmodeled

aspects play a role in determining individual choice and thus the more responsive are the investors

to the model’s measured difference in anticipated utility. The greater σ, the weaker is the model

at predicting an agent’s choice. At the extreme, as σ −→ ∞, the model has no predictive ability
and the probability associated with each choice is 1/2 which is the result produced in (1) by ρ = 0.

At the other extreme, if there is zero variance in the random component of choice, then the agent

always selects the choice indicated by the model to be the favorite. Thus, Pr(xi = k ) = 1 for the

indicated Ui1 > Ui0, 0 or the indicated Ui1 < Ui0, and 1/2 if Ui1 = Ui0. This result is produced in

(1) by ρ −→∞.
In a population of N , the law of large numbers ensures that for the proportion of the population

selecting k, nk −→ Pr(xi = k) as N −→ ∞. For 0 ≤ ρ <∞ there is a tail of the population that

selects what the modeler measures to be the inferior option. A larger ρ represents a smaller σ

producing a tighter population distribution around the modeler’s U1 − U0 and thus a smaller tail

of the population who believe U1 < U0.

In a dynamic setting in which the choice is repeated each period, let nt indicate the proportion

of the population choosing option 1 in period t. Often, the values of U1 and U0 are functions of nt,

thus there is a reduced form expression of nt+1 is a function of nt (though not in this case). The

evolution of nt over time is affected by the value of ρ. Setting ρ = 0 ensures a fixed point with nt

= 1/2. As ρ increases, the system can become unstable, producing multiple equilibria or chaos. A
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large number of papers employ the ARED model to explore the range of dynamics produced ρ in

different market environment.

We first approach this estimation in a one-period setting trying to describe the changes from

the beginning to the end of our samp leperiod.Welatertry to model the annual flows.

IV. Static Model

Investors have two types of mutual funds in which they can place their wealth. The first are

the more numerous actively managed funds in which investors hire managers to increase their

returns. Recent literature has amply documented the underperformance of mutual fund managers1.

Beginning with the Vanguard funds in 1976, a growing pool of money has been managed passively,

with portfolio weights tied to an index. By far the most popular of these is the Standard and

Poor’s 500 index, an index of large capitalization stocks, that represents approximately 85% of the

total U.S. market capitalization. Mostly due to their lower expenses, these passive funds have on

average produced higher returns than their actively managed counterparts.

Each period new investors place wealth into one of the two fund types. Cumulative past

performance serves as an indicator of the future value of placing wealth into the funds. Thus, the

inflow into passive funds, λP , is a reflection of how sensitive investors are to the utility differences

in the two options,

λP =
eρUP

eρUP + eρUA
, (3)

λA =
eρUA

eρUP + eρUA
= 1− λP .

Using

λP − λA = 2λP − 1 = tanh(ρ(UP − UA)/2) (4)

the value of ρ can be backed out from observations of λP , and estimates of UP and UA,

ρ = 2 tanh−1(2λP − 1)/(UP − UA). (5)

1 The most comprehensive reference remains the study by Carhart (1997).
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We will assume that agents are mean-variance optimizers. To estimate the intensity of choice,

we will need data on expected returns and variances for active and passive funds and inflows into

the two funds types. Fortunately, these data are readily available, and we discuss them in the next

section.

V. Data and parameters

V.A Fund universe

To estimate the intensity of choice, we must find a group of agents with homogenous risk pref-

erences. To do this, we look at a group of mutual funds that track closely the S&P 500 index.

Morningstar groups these funds as an equity style called “Large Cap Blend.” 209 funds in the

Morningstar Principia database have 10-year track records from 1994 to 2003. We have data on

assets under management for all but 10 of the funds, and two funds merged, leaving a final sample

of 198. The group is diverse, including load and no-load funds. There are 161 active funds, ranging

in asset size from Fidelity Magellan (FMAGX) with $68.0 billion to Black Rock Select Equity

(PCESX) with only $1.9 million. Among the 37 passive funds are the Vanguard S&P 500 index

(VFINX) with $71.9 billion under management and the Black Rock Index Equity (PNESX) with

$70.8 million.

The underperformance of the actively managed funds is evident in our sample. No group of

fund managers seems to display a consistent track record of stock picking, and the additional

costs from trading, higher expenses and loads lead them to trail most index funds. In our 10-year

sample, this is true with an average 10-year load adjusted performance of 9.70% versus 10.49% for

the index funds. Over the 10 years, choosing the active funds will lead to a nearly 30% cumulative

underperformance, or $2, 997 on a $10,000 investment.

The index funds display a surprising degree of heterogeneity2, with mean 10-year returns

ranging from 11.13% for the Vanguard Institutional Index (VINIX) to MainStay Equity Index

A (MSCEX) at 10.12%. The Vanguard S&P 500 Index has an expected 10-year return of 10.99%.

Even though the S&P 500 index, the benchmark for all the funds in this group, is a passive

index, it has been quite volatile, especially in the last three bear market years. The index funds

2 See Elton, Gruber and Busse (2004).
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have a standard deviation of 21.39% versus only 19.44% for the active funds3. Using the average

3-month Treasury bill rate over the sample of 4.10%, the passive funds have a higher Sharpe ratio,

0.2880 versus 0.3197. For VFINX, the Sharpe ratio is 0.3212.

Based on the higher Sharpe ratio, many risk averse investors would prefer to hold the passive

funds. In this class of funds though, the ratio of actively managed money to index money is more

than 5 to 1 at the beginning of our sample i n1994.Astimegoesby,thehigherreturnsandgreaterinflows

raise to ratio.

0.25
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0.75

1.00

1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 1: Ratio of Inflows to Passive Funds

We graph the relative inflows into the index funds in Figure 1, λP = (passive/(active+passive)).

In years in which both types of funds experience outflows (2000, 2001 and 2002), we measure

1−(passive/(active+passive)), to reflect the ratio of outflows. When the active flows are negative
and the passive flows positive as in 2003, we set λP = 0.99.

Relative inflows rise from 0.39 in 1994 to 0.99 in 2003. By the end of the sample, assets in the

active funds have risen to $297.4 billion from $110.4 billion, but the index funds have risen from

$20.5 billion to $178.1 billion. The value for λP using the 10 years of cumulative flows is 0.9037.

3 This is due to the higher cash levels in the active funds.Reference to this here.
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Our objective in the next section that is to explain the ratio of invested assets in 2003 measuring

the intensity of agent choice over the entire period. Later, we will use this estimate to calibrate

annual flows into both groups of funds.

V.B Preferences

We consider four utility functions: (1) constant relative risk aversion U = W 1−γ/(1 − γ); (2)

log utility U = ln(W ); (3) exponential utility U = − exp(−αW )/α; (4) quadratic utility U =

aW + bW 2. We set γ = 0.5, α = 0.5, a = 10 and b = −1. We then take a second order Taylor
expansions around expected wealth, so that means and variances are sufficient statistics,

U ≈ U(E[W ])− U 00(E[W ])V [W ],

where E[W ] is expected wealth, V [W ] is the variance of wealth.

[Insert Table 1 Here]

Table 1 contains static estimates of the intensity of choice for the four utility functions. The

range of estimates from 1.02 for the quadratic utility function to 28.46 for the exponential is

indicative of the difficulty in drawing inferences from estimates in the literature. Fortunately, all

four estimates can be analyzed in terms of the trade-off of between risk and return.

For all four utility functions, we will do two comparative statics experiments. The first will be

to look at the change in expected return at the estimated intensity of choice required to increase

fund inflows to the passive funds by 5%. The second experiment is to ask what change in required

return is necessary to keep fund flows constant after a 5% decline in the intensity of choice. Since

both these experiments are stated in terms of expected return, we can quantify them in dollars

with some assumptions about investor wealth.

Despite a wide range of estimates for ρ, the changes in expected return ∆Eλ[W ] in Table 1

differ slightly across utility functions. At the low end, for quadratic utility, a 0.4175% increase in

expected return would raise average fund inflows by 5% to 95.37%. The high end estimate, for

exponential utility, is just 3 basis points higher at 0.4478%. These rate of return differentials are

within the more than 1.0056% cross-section range of the performance of the passive funds.

To put these estimates in dollars, we assume an initial wealth of $10,000. By 2003, 90% of

investors are allocating their new wealth to passive funds. The intensity of choice estimates imply,

in the CRRA case, that an additional $5.45 per year in return is needed to induce an additional
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5% of investors to put their money in the passive funds. The 54.5 basis points differential seems

reasonable compared to the 160 basis points transactions costs4 on the average equity mutual fund.

The second experiment is to examine the increase in required return ∆Eρ[W ] needed to offset

a 5% decline in the intensity of choice. This is essentially a sensitivity analysis for our results.

The range of results across all four utility functions is again minimal, ranging from 0.0631% for

exponential utility to 0.0652% for log utility. Assuming an initial wealth of $10,000, these imply

very tight dollar estimates, with the inflows held constant by only $1.85 per year in the CRRA

case.

VI. Dynamic model

(Revelation: The increase in ρ as dU increases is actually in the wrong direction from my intuition.

The traders are not under reacting but over reacting.

work in this transition. The increasing value of the estimate of ρ over the sample period

suggests another process is in play. The model accomodates with an increased measure of respon-

siveness on the part of the investors. This suggests the need a dynamic model that accounts for

the flow that takes place as funds are transfered from the active to the passive mutuals. (My

new objective for the dynamic model is to find the cost that is consistent with a fixed value of ρ

(probably at the first year estimate if it is necessary to specify a value.))

As a new entrant into the investor’s choice set, not only will passive funds attract a portion of

the new funds, but some investors will look to transfer funds out of active funds into passive funds.

Thus, the inflow of funds into both the active and passive funds represents both the distribution of

new wealth and the redistribution of existing wealth. Consider the gross inflows in each year to be

the result of informed investors who have researched their options and made selections according to

the discrete choice model. With an estimate of the spread in utility, UP −UA, and of the intensity

of choice, the rate at which investors transfer funds indicate the cost of transferring wealth.

There are two costs involved in transferring funds. First, an investor must spend resources eval-

uating the relative benefits of each fund type. Second, there may be fees involved with transferring

the funds. A dynamic model of the proportion of wealth invested in active and passive funds will

be developed and used to estimate these costs. The presumption of the model is that low intensity

4 See John C. Bogle, “Mutual Fund Directors: The Dog that Didn’t Bark,” Speech on January 28, 2001.

9



of choice investors have little inclination check (or monitor, or respond to) the relative benefits of

one investment strategy over the other. Thus, the investor may have funds in a low performing

mutual fund but fail to recognize this or fail to respond, even if higher utility can be realized by

switching funds, even after accounting for the costs.

In the dynamic model, at the beginning of each period there is a pool of investors who evaluate

the relative performance of active versus passive funds. This pool is comprised of investors with new

wealth to invest, investors who currently have wealth invested in active funds but have decided to

check whether this is optimal for them, and investors who currently have wealth invested in passive

funds but have decided to check whether this is optimal for them.

Let θA and θP represent the proportion of current investors in the active and passive funds

respectively who decide to evaluate their investment options (@The input to deciding λ is different

than the input to deciding θ. What will the difference be? >From meeting, θ includes the cost

while λ does not. Are there other differences, such as a difference in the computation of U? We

discussed that costs will come out before taking utility. @@Followup by Bruce: I think this is the

$5.45 estimate in the static case)

θP =
eρUA(c)

eρUP + eρUA(c)
(6)

θA =
eρUP (c)

eρUP (c) + eρUA
Of those who evaluate their options, λP of the static analysis remains the proportion who place

wealth into the passive funds. (Note: can only treat everyone as equivalent if there are no fees

involved in transferring wealth. If there is a fee, then have to treat the 3 groups separately).

Let xA and xP represent the dollar value of the funds in the active and passive funds respec-

tively. With xn representing the inflow of new wealth to the mutual funds market, the evolution

of x over time is

xP,t+1 = xP,t(1 + rP,t)(1− θP ) + (xP,t(1 + rP,t)θP + xA,t(1 + rA,t)θA + xn,t)λP (7)

xA,t+1 = xA,t(1 + rA,t)(1− θA) + (xP,t(1 + rP,t)θP + xA,t(1 + rA,t)θA + xn,t)(1− λP )

Let nt represent the proportion of total wealth invested in mutual funds that are in the passively

managed funds. By (7), the evolution of nt over time is
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nt+1 =
(nt(1− θPt + θPtλPt)(1 + rpt) + (1− nt)(1 + rAt)θAtλPt + δtλP )

nt(1 + rPt) + (1− nt)(1 + rAt) + δt
where δt = xn,t/(xP,t + xA,t). (Note: if have a net outflow, replace λPt with (1− λPt) = λAt.)

(@Alternative version that I think is more consistent with the definition in (6). The transition

equation below is version ”A” in the spreadsheet while the original above is ”B”. The above set

of equations have investors dump funds into a general pool along with new investment funds for

further evaluation if θ is triggered. The set below has the investors decide to switch if θ is triggered.

For further implications, see the included note)

xA,t+1 = xAt(1 + rA,t)(1− θA) + xPt(1 + rP,t)θP + xnt(1− λP )

xP,t+1 = xPt(1 + rP,t)(1− θA) + xAt(1 + rA,t)θP + xntλP

nt+1 =
(nt(1 + rpt)(1− θPt) + (1− nt)(1 + rAt)θAt + δtλP )

nt(1 + rPt) + (1− nt)(1 + rAt) + δt
(Note: if have a net outflow, replace λPt with (1− λPt) = λAt.))

(From here, as I understand the project, take ρ as given based on the static model results.

Plug (3), (6) into ??. Use data to estimate c. Alternately, could estimate both ρ and c. Allowing

δt < 0 is probably a good way to handle the net outflow years.)

VII. Dynamic Estimates

We will use time series of estimates in the spreadsheet. The standard errors make the estimates for

2002 and 2003 statistically significant which should offset any and all doubts of even the keenest

referees.

VII.A discussion after playing with the Dynamic model in the spead-
sheet.

The dynamic model allows investors to transfer wealth between mutual funds. Since some of the

net inflow is the result of this transfer, a correct estimate of ρ would be lower. The fact that xA

is larger than xP also means that the static model based estimate of ρ is biased upwards. While

a reasonable model of the distribution of new funds, the ARED model may not be the best model

of population dynamics to capture the transfer of wealth. The discussion will highlight some of

the issues.
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In the absence of any costs to transfering funds, UP − UA > 0. As a result, greater than

half of the wealth in the actively managed funds should be considered for transfer to the passive.

This is likely too large a number. Take the cost of research and transfer fees into account and

can get UP (c)− UA < 0. Now, less than half of the investors with funds in the actively managed

funds will consider transfering wealth. The value of ρ matters. If ρ is large, the periods in which

UP (c) − UA < 0 a very low proportion of the population transfer wealth. Once UP (c) − UA > 0

is realized as the disparity grows, there is a sudden shift as almost all of the wealth is available

for transfer. If ρ is small then regardless of UP (c)− UA about half of the funds are available for

transfer. Neither situation is particularly satisfactory. Basically, desirable parameters that might

come close to matching the data would involve a medium value of ρ and a cost sufficiently high so

that UP (c)− UA < 0 and θA remains below 1/2.

I feel that I have little guildance in selecting the correct ρ to use. The range of estimates

from the different periods is sufficiently broad to be able to produce both extremes described above.

I think that what I would prefer is to have some kind of Maximum Likelihood estimate of a single

ρ and the cost done simultaniously in order to minimize the squared deviation of the fitted nt from

the actual. This capability is outside of my area of experties. Would such an estimate be possible?

VIII.Conclusion

Static estimates are within the range of typical mutual fund fees.

Dynamic estimates vary but are statistically significant by the end of the sample.
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Table 1

Intensity of Choice in the One Period Model

Utility function UP − UA ρ ∆Eλ[W ] ∆Eρ[W ]

CRRA 0.1833 12.2181 0.4210% 0.0635%

Log 0.1123 19.9421 0.4361% 0.0652%

Exponential 0.0787 28.4636 0.4478% 0.0665%

Quadratic 2.1916 1.0219 0.4175% 0.0631%

UP is the utility with the passive fund investment returns, and UP is utility under the active.

ρ is the estimate of the intensity of choice. Inflows λP are set at the 10-year average of 90.37%.

∆Eλ[W ] is the change in expected return required to achieve a 5% increase in inflows to the passive

funds. ∆Eρ[W ] is the increase in expected return needed to keep fund inflows constant after a 5%

decline in the intensity of choice.
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