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1 Introduction

Interest in the business cycle has a long standing history in both theoretical investigations

and empirical applications. The important contribution of Burns and Mitchell (1946) paved

the way for methods to measure it. The literature has, however, departed from their methods

due to its complexity and the need for subjective evaluations. Instead, much of the work

has concentrated on easily applicable mechanical and non-subjective methods. In the last

few decades, many alternative procedures have been suggested. The need for a quantitative

measure of the business cycle arises in great part because most macroeconomic models deliv-

ers implications that pertains to the non-trending component of series. In order to confront

these models with the data, there is, accordingly, a need to separate the trend and the cycle.

This issue of trend-cycle decomposition is the object of our paper.

We shall concentrate on the trend-cycle decomposition of (log) post-war quarterly US

real GDP seasonally adjusted. Popular methods to extract the cyclical component include

the following, among others: the Beveridge-Nelson (1981) (BN) decomposition based on

unconstrained ARIMA model (Campbell and Watson, 1987, Watson, 1986, Cochrane, 1986),

Unobserved Components (UC) (Clark, 1987), the Hodrick-Prescott (1997) (HP) filter, and

the Band-Pass (BP) filter (Baxter and King, 1999). Note that the latter is not per se a trend-

cycle decomposition since it also eliminates high-frequency components. Nevertheless, for

the real GDP series analyzed, high frequency movements are not important and it effectively

acts as a trend removal procedure. For reviews and applications, see Stock and Watson

(1987, 1999).

A major problem faced by practitioners is that these methods usually lead to a different

trend cycle decomposition and the differences are often substantial and they lead to quite dif-

ferent “stylized facts” about the business cycle to be used when confronting models with the

data (see, e.g., Canova, 1998, 1999). It is therefore important to carefully assess the suitabil-

ity of each method. In this paper, we shall concentrate on the BN and UC decompositions

with some remarks about the HP and BP filters.

It is well known that the UC and BN decompositions yield very different cycles, in

particular the latter ascribes most movements to the trend and leaves little to the cycle.

Such differences may, at first sight, not be surprising since the UC decomposition assumes

no correlation between the shock to the trend and the cycle, while the BN decomposition

assumes a perfect correlation (provided the trend is stochastic). In a recent paper, Morley

et al. (2003) show that by specifying a simple AR(2) process for the cycle, it is possible
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to identify an unobserved components model in which this correlation is a free parameter

to be estimated. When doing so, the data suggest a high (negative) correlation and the

decomposition is virtually identical to that provided by BN.

Hence, we are left with what may be perceived by some as a set of puzzling features: 1)

the fact that these methods yield drastically different answers; 2) the small scale and noisy

structure of the cycle delivered by the BN decomposition; 3) the fact that most methods yield

a cycle that bears little resemblance to the NBER chronology; 4) the negative correlation

between the noise to the cycle and the trend.

We shall argue that these puzzling features are artifacts created by the neglect of the

presence of a change in the slope of the trend function in real GDP. Once this is properly

accounted for the results show that 1) all methods yields the same cycle and the trend is

non-stochastic except for a few periods around the date of the change in the slope; 2) this

cycle is important in magnitude, more so than previously reported; 3) it accords very well

with the NBER chronology; 4) there is no correlation between the trend and cycle, since the

former is non-stochastic. All the puzzling features disappears and we are left with a cyclical

component that agrees much better with common notions of the business cycle.

The outline of the paper is as follows. Section 2 presents preliminary results about

the trend-cycle obtained using standard unobserved component models (with and without

correlation in the noise of the trend and cycle) and their relation to the Beveridge-Nelson

decomposition. We discuss the important differences across various specifications. Section 3

presents similar decompositions for which the only modification is to allow for the possibility

of a one time change in the slope of the trend function in 1973:1. The results are very

different from those models without the possibility of a change in slope, yet they all agree

across different specifications. Section 4 shows via simulations that if our decomposition

is right, previous results can be explained, in particular the importance of variations in the

trend component and the negative correlation between the noise to the trend and the noise to

the cycle. Section 5 presents an alternative framework for trend-cycle decompositions based

on mixtures of Normal distributions for the noise components. It is able to capture infrequent

changes to the slope and also allows different variances in the cycle for periods of recessions

and expansions. The results show a trend-cycle decomposition that agrees well with common

notions of business cycles and the NBER chronology. Section 6 presents further comparisons

with the Hodrick-Prescott and Band Pass filters. Section 7 offers brief conclusions. An

appendix contains all technical material related to estimations and simulations performed.

We organized the paper such that the main text contains only a description of the main
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issues and results without the important technical details contained in the appendix. Note

finally that since we shall make frequent comparisons to the results of Morley et al. (2003),

we use exactly the same data set that they used, namely the (log) quarterly US real GDP

series seasonally adjusted for the period 1947:1-1998:2. Hence, any differences reported will

be the result of different methods, not different data.

2 Preliminaries

Consider the basic unobserved components model that describes log real GDP yt as the sum

of a trend τ t and a cyclical component ct:

yt = τ t + ct (1)

τ t = µ+ τ t−1 + ηt

A(L)ct = B(L)�t

where A(L) and B(L) are polynomials in L of order p and q, respectively, with all roots

outside the unit circle, and⎡⎣ ηt

�t

⎤⎦ ∼ i.i.d. N

⎛⎝⎡⎣ 0
0

⎤⎦ ,
⎡⎣ σ2η ση�

ση� σ2�

⎤⎦⎞⎠ .

Hence, the trend is a random walk with drift and the cycle is an ARMA(p, q) process. It is

well known that, under this level of generality, the model is not identified (see, e.g., Watson,

1986). A sufficient condition for identification is to specify a value for the covariance ση�.

A popular choice is to set ση� = 0, that is to specify that the shocks to the trend function

are uncorrelated with the shocks to the cyclical component. This implies that the reduced

form of the system is a constrained ARMA(p, q∗) with q∗ = max(p, q+1). In particular, the

constraints are such that the only class of permissible models are those for which the spectral

density function of ∆yt, the growth rates of real GDP, takes a minimal value at frequency

zero. This rules out, in particular, an AR(1) specification for ∆yt. This specification will be

denoted UC0.

An alternative specification is to assume that the shocks are perfectly (negatively) cor-

related. In this case the reduced form is an unconstrained ARMA(p, q∗) process of the

form

A(L)∆yt = µ+B∗(L)ut
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where ut ∼ i.i.d. N(0, σ2u) with the value σ
2
u depending on the parameters of the model. The

trend function can then equivalently be obtained via the Beveridge-Nelson (1981) decompo-

sition

BNt = µ+BNt−1 + ϕ(1)ut

with ϕ(1) = B∗(1)/A(1). This decomposition will be denoted with the acronym BN .

To see the trend and cycle decompositions implied by each specification, we use the

same data set as in Morley et al. (2003), namely the logarithm of U.S. real GDP 1947:1-

1998:2 seasonally adjusted. A specification for the cyclical component that was found to be

adequate is a simple AR(2), and accordingly an ARIMA(2,1,2) for the BN decomposition

is used. Figures 1 reproduces the results of Morley et al. (2003) for the estimated trend and

cycle for each method (details about the estimation method can be found in Appendix A).

As can be seen the decompositions are very different. The BN decomposition ascribes most

movements in the real GDP series to the trend function leaving a cyclical component that is

very small, noisy and which bears no resemblance to the NBER chronology, whose periods

of recessions are indicated with a shaded area. On the other hand, the UC0 decomposition

leaves more importance to the cyclical component whose peaks and throughs corresponds

somewhat more closely to the NBER chronology.

The great differences in the implied trend and cycle suggests that either or both of the

crucial identifying assumptions are at odds with the data, i.e., the correlation between the

shocks to the trend and the cycle may not be 0 or 1. With cleaver insight, Morley et al.

(2003) recognized that it is possible to identify model (1) with ση� unconstrained, provided

p ≥ q + 2. With an AR(2) cyclical component (p = 2, q = 0), we have a just identified

system. This is important since an AR(2) specification for the cycle is, at least with US data,

a reasonable approximation which can be tested ex-post. Following Morley et al. (2003),

this decomposition is labeled UCUR. The resulting trend-cycle decomposition is found

to be indistinguishable from the BN decomposition (hence, the graphs are not repeated).

This suggests the following conclusions: 1) the data do not support the hypothesis that the

correlation between the shocks to the trend and the cycle is 0; 2) the constraints imposed by

the UCUR model are compatible with the estimated unrestricted ARIMA(2, 1, 2) model.

Remark 1 It is important to note that the results discussed so far remain basically un-
changed if the trend function is specified as follows

τ t = βt + τ t−1 + ηt

βt = βt−1 + ωt
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where ωt ∼ i.i.d. N(0, σ2ω), i.e., by allowing the slope of the trend function to follow a random

walk with Normal errors. With the real GDP series, the estimate of σ2ω is very small and

this generalization leaves the trend-cycle decompositions virtually unchanged.

This analysis implies the following, provided the basic structure of the model (1) is

adequate: 1) the trend dominates the series leaving only a small role to the cycle; 2) shocks

to the trend are very negatively correlated with shocks to the cycle; and 3) the cycle bears

no resemblance to the NBER chronology. Various explanations have been advanced to

explain these results. For item (1), the common explanation is that technology shocks

are mostly responsible for movements in aggregate production. These having a permanent

effect, variations in real GDP show up as variations in the trend function. Hence, this type of

results tends to support a real business cycle approach to movements in production leaving

little room for monetary type explanations, which could account for the cyclical component.

Explanations for item (2) follows from this real business cycle approach. For example, a

positive shock to technology may imply that some labor skills become obsolete, thereby

inducing a decrease in employment of a temporary nature until re-training is completed

(note, however, that this type of explanation is harder to justify in the case of a negative

technological shock). Finally explanations for item (3) often center on a distinction between

“growth cycles” and “business cycles” (e.g., Zarnowitz and Ozyildirim, 2002). The NBER

chronology is then viewed as pertaining to “business cycles” while decompositions of the type

considered here pertains to document “growth cycles”. Whatever the appeal, or lack thereof,

of such explanations, the issue is ultimately an empirical one. It is therefore important to

carefully assess whether the basic model (1) is free of important mispecifications.

Our argument will be that the basic model suffers from an important mispecification,

which completely biases the results and their implications. A glimpse of our explanation

can be gleaned from Figure 1, where it is seen that the cyclical component of the UC0

decomposition shows a marked decrease in mean from the pre to the post 1973 periods. The

decrease in mean is such that the cyclical component completely misses the boom period of

the late 90s and classify it as one of below trend activity. A more precise characterization of

this feature can be obtained looking at the mean of the estimates of the residuals of the trend

function ηt, using the filtered values. For the period pre-1973:1, the sample averages are 0.159

and 0.148 for the UCUR and UC0 decompositions, respectively, while for the post 1973:1

period the corresponding sample averages are -0.168 and -0.143. This is an economically

important difference since it suggests a mean growth rate of the trend that is 1.31% (on an

annual basis) lower after 1973:1 using the UCUR decomposition. The implied decrease is
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1.16% using the UC0 decomposition, a figure that is smaller due to the fact that the change

in the cyclical component also accounts for a part of the decrease (unlike the UCUR cycle

which shows no apparent change). Given that the full sample estimate of the rate of growth

µ is 3.24% on an annual basis (see Tables 1 and 3, Morley et al., 2003), the shocks to the

trend function accounts for a 40% decrease in the overall rate of growth after 1973:1 (using

the UCUR decomposition).

Hence, if we take the results suggested by Morley et al. (2003) and others at face values

we are led to conclude that, on average, the post 1973 period has been subject to a sequence

of negative shocks and the pre-1973 period enjoyed a sequence of positive shocks. While one

may find appealing some ex-post justifications for the fact that the decomposition leaves

little to the cycle, that the shocks to the trend and the cycle are negatively correlated and

that the cycle bears no resemblance to the NBER chronology, it is hard to find any plausible

explanation for sequences of shocks having different means and signs for the pre and post

1973 periods. Our aim is to show that all these seemingly puzzling results are artifacts of a

neglected change in the slope of the trend function in 1973, and that once this is accounted

for, all methods agree on a single decomposition, which is albeit very different.

3 Decompositions allowing a change in the trend function.

Our approach is to allow for the possibility of a permanent change in the trend function

of real GDP occurring in 1973:1. To that effect, we introduce a simple modification to the

basic model (1) such that

τ t = µ+ d1(t > Tb) + τ t−1 + ηt

where 1(A) is the indicator function for the event A, and Tb is the observation corresponding

to the time of break, 1973:1. The rest of the model stays the same. In particular, we shall

continue to adopt an AR(2) specification for the cyclical component.

It is important to discuss the implications of this, seemingly, minor change. First, we

model the change in the trend function by a change in the deterministic component of the

trend. This is to capture the fact that the change is viewed as a “permanent” one time change

in the rate of growth. By “permanent”, we mean that the change is still in effect at the end of

the sample period under consideration. Also, it is modelled as exogenously given to separate

this change from the noise component. We shall return in Section 5 with a specification

that allows for a stochastic change occurring at an unknown date. We start with this simple

exogenous change occurring at a known date to better highlight how such a generalization
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leads to dramatically different results, quantitatively and qualitatively. Finally, note that

our specification nests the previous ones. We are not forcing a change in the average rate of

growth in 1973, we are simply allowing it to happen.

As a matter of notation, we denote the corresponding models by UC073, UCUR73 and

ARIMA73. Technical details about the estimation are in Appendix B. The results for the

parameter estimates are presented in Table 1 and the trend-cycle decompositions in Figure

2. The results are now strikingly different.

First, all three models agree on the point estimates of the rates of growth. It is 3.8%

on an annual basis for the pre-1973 period and 2.64% for the post-1973 period, thereby

indicating a 31% decrease. The UC073 specification, which constrains the shocks to the trend

and cycle to be uncorrelated, shows a point estimate of ση = 0, implying a deterministic

trend function, i.e., all random variations are captured by the cyclical component. For the

UCUR73 specification, the point estimates are different; the standard deviation ση is slightly

higher at 0.011 and the correlation of the shocks to the trend and the cycle is 1.0, perfectly

positively correlated. The value of the likelihood function is, however, barely higher by

a value of 0.19, for the UCUR73 model compared to the UC073. This suggests that the

numerical results for the UCUR73 model may be due to an ill-behaved likelihood function or

some in-sample overfitting problems. The numerical values for the ARIMA73 specification

are slightly different, especially with respect to the AR coefficients for the cycle, and the

likelihood fonction is higher by a value 1.58, which suggests that neither constraints imposed

by the UC073 and UCUR73 specifications are exactly satisfied. Yet the point estimates

of the moving-average coefficients sum to −1, which again indicates a deterministic trend
function since the first-differences of real GDP is over-differenced.

Despite the numerical differences in the point estimates reported above, the trend-cycle

decompositions for the 3 specifications, reported in Figure 2, are virtually identical. They

clearly show a trend function that is piecewise linear (except at the very beginning of the

sample period), with a clear decrease in the average rate of growth. The implied cycle is

very different from those without the change in trend. It is important in magnitude and

shows movements that corresponds very closely to the NBER chronology. Indeed, with two

minor exceptions, a crossing of the zero axis from above occurs during a period identified

by the NBER as a recession (the main exception is the recession of 1958, which would

have been called a few quarters earlier according to our cycle). Also, unlike most trend-

cycle decompositions proposed, ours clearly identifies the late 90s as a period of above-trend

activity.
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To summarize, the main qualitative features of the trend-cycle decompositions allowing

for a change in the rate of growth in 1973:1 are: 1) all three specifications leads to the same

conclusions, there are no conflicts anymore; 2) the average rate of growth has decreased 31%

after 1973; 3) the trend function is piece-wise linear so that random variations are ascribes

solely to the cyclical component; 4) the correlation of the shocks to the trend and cycle is

trivially zero since the former is non-stochastic; 5) the cycle shows movements that follow

closely the NBER chronology.

Note that these result are consistent with the findings of Perron (1989) who argued that

once allowance is made for the possibility of a change in the trend function of real GDP, the

null hypothesis of a unit root can be rejected. This result was criticized by several authors

(e.g., Christiano, 1992, and Zivot and Andrews, 1992) who argued that one must take into

account the possibility of data-mining induced by the ex-post choice of the break date and

suggested method to treat the break date as unknown, in which case the unit root could no

longer be rejected. Some of the ensuing literature viewed their result as convincing evidence

that a unit root was present. Such a conclusion simply misses the fact that a failure to reject

does not provide evidence about the null hypothesis, indeed the differences obtained may

simply be due to a reduction in the power of the tests.

3.1 Additional Evidence

The fact that our ARIMA73 model shows a non-invertible moving-average structure and that

our UC073 model has a point estimate of zero variance for the trend needs to be carefully

assessed. The problem is that such estimates are likely to occur with some probability even

if the true value is different. This is often referred to as the “pile-up” problem. In the case of

the ARIMA73 specification, the problem is that if the sum of the moving-average coefficients

is negative and close to -1, the probability distribution of the maximum likelihood estimate

(MLE) of this sum will show a mass at the value -1. Similarly in the UC073 model, if the

value of σ2η is small, the MLE will also have a probability distribution with a mass at 0. So

care must be exercised to assess the extent to which such a problem may be present.

If, as we conjecture, the UC073 or ARIMA73 specifications are appropriate ones for the

data, two equivalent representations are an ARIMA(2,1,1) with a moving average coefficient

of −1 or a trend-stationary model in levels of the form

φ(L)(yt − c− µt− d1(t > Tb) (t− Tb)) = et

where φ(L) = 1− φ1L− φ2L
2. The maximum likelihood estimates of these two models are
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presented in Table 2. For the ARIMA(2,1,1), the moving-average coefficient is indeed −1
and the estimates of the other parameters are virtually identical to those obtained from the

UC073 specification. Similarly, the estimates of the model in level, which are unaffected

by the pile-up problem are, again, basically identical. Hence, this is additional evidence

pointing to the fact that the appropriate specification for the data is that delivered by

the UC073 specification (the UCUR and ARIMA73(2,1,2) may be subject to inaccuracies

resulting from an ill-behaved likelihood function even though the trend-cycle decomposition

are similar). Note also that the AR(2) specification for the cyclical component is supported

by the data. Both coefficients are significant and the Ljung-Box statistics applied to the

estimated residuals êt show no evidence of remaining serial correlation.

An alternative way to provide additional evidence for our proposed specification is to

obtain a median unbiased estimate of σ2η for the UC073 model. A method to do so was

provided by Stock and Watson (1998). To implement this procedure, we write the UC073

model can as

yt − c− µt− d1 (t > Tb) (t− Tb) = τ t + ut (2)

τ t = τ t−1 +
µ
λ

T

¶
η∗t

φ (L)ut = et

or in first-differences, as

∆yt − µ− dI(t>Tb) =
λ

T
η∗t +∆ut

where η∗t ∼ i.i.d. N(0, 1) so that ηt = (λ/T )η∗t ∼ i.i.d. N(0, (λ/T )2). This specifies that

the variance of the trend function is “close to” zero, pertaining to cases where the pile-up

problem may occur. Stock and Watson (1998) provide methods to construct a median-

unbiased estimate of λ as well as a confidence interval. The method relies on the fact that

the component τ t + ut will show structural changes in levels if λ 6= 0, the extent of which
depends on the parameter λ. The idea is then to apply a structural change test to this

component and back out from it a confidence interval and the median unbiased estimate of

λ. Since τ t+ut is unobserved, one applies the procedure to the least-squares residuals from a

regression of yt on a constant, and the split trend. Stock and Watson (1998) suggest a variety

of structural change tests to perform this procedure. We applied all of them and the results

are presented in Appendix C. The results are unanimous. The median unbiased estimate of

λ is 0, there is no evidence of a pile-up problem (sensitivity analyses showed that the same

results obtain with alternative specifications for the order of the autoregressive process for
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the cyclical component). This reinforces our conclusion that the appropriate specification is

that provided by the UC073 model.

4 Can the UC073 model explain previous results?

The next issue we wish to address is the following: assuming that the true data generating

process is one with a piecewise linear trend with zero variance and an AR(2) noise component,

can we explain the estimates found in Section 2 based on specifications that do not allow

a change in the rate of growth in 1973? To answer this question, we resort to simulation

experiments. The data is generated by the following broken-trend stationary process

yt = a+ µt+ d1 (t > Tb) (t− Tb) + ct

ct = φ1ct−1 + φ2ct−2 + et

et ∼ i.i.d. N
¡
0, σ2e

¢
with the following parameters: a = 724.18, µ = 0.95, φ1 = 1.38, φ2 = −0.28 and σ2e = 0.94.

The sample size is set to T = 200 and the break is assumed to occur at mid sample,

i.e. Tb = 100 (we generate 206 value and discard the first 6 observations). The base case

considers a change in slope d = −0.29, consistent with the estimate obtained. However,
we also consider simulations with d = −0.1,−0.4 and −0.6 to better assess the effect of the
change in trend on the key parameters of interest. For each set of generated data, we compute

the parameter estimates of the UC0, UCUR and ARIMA(2,1,2) models. For the UC0 and

UCUR models, we also compute the means of the median values of the filtered estimates of

the residuals of the trend function, ηt. This is repeated until we have 200 draws for which

the estimation was successful in the sense that convergence was achieved. The computer

language used in this simulation is MATLAB, and the maximization was implemented using

the command ‘fminunc’. For the initial values, we used the output value of the original

estimation by Morley et al. (2003). When evaluating the likelihood function, if any matrix

becomes close to singular, we skip that replication and treat it as having “not converged”.

The condition used is that the inverse of the condition number is less than machine epsilon

(‘rcond_(X)<eps’).

The results for the base case are presented in Table 3, which for convenience also repro-

duces the estimates reported in Tables 1-3 of Morley et al. (2003). Consider first the UC0

specification. The simulated values obtained are indeed very close to the sample values, cer-

tainly within Monte Carlo standard errors. For the UCUR and ARIMA models the match
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is not as good but the values obtained are again within Monte Carlo standard errors of the

sample estimates. But the key point is that the simulated values reveal that the piece-wise

trend stationary structure can explain the main qualitative findings that occur when the

change in slope in ignored. First, the variance of the residual to the trend function is biased

away from zero suggesting a stochastic trend. Secondly, in the UCUR model, the correlation

of the shocks to the trend and the cycle is large and negative.

Table 4 shows the same simulation exercise for different values of the change in slope

d. It is clear from the results that, as the change in slope increases in absolute value, the

variance of the shocks to the trend, σ2η, increases, and, for the UCUR model, the correlation

ρηe approaches −1. Hence, these features, which may be puzzling to some, can easily be

accounted for by the neglected change in slope.

But why is this the case? The fact that σ2η is biased away from 0 in the presence of

a change in slope that is unaccounted for is simply a manifestation of the phenomenon

documented by Perron (1989), namely that a trend-stationary process with a change in

slope can appear as a unit root process. The fact that the correlation is biased towards −1
follows basically as a Corollary. Indeed, since σ2η is inflated, large fluctuations are ascribed to

the trend. Hence, to compensate, cyclical fluctuations in the opposite direction are needed.

Finally, Table 5 presents the mean of the average values, for the pre (using observations

from t = 3 onwards) and post break samples, of the median (over the 200 replications) of the

filtered estimates of the residuals of the trend function. The results confirm the following

features: 1) for both the UC0 and UCUR models, the mean is positive for the pre-break

period and negative for the post-break period; 2) the difference is bigger for the UCUR

model than for the UC0 model (recall that the cyclical component also shows a change in

level for the UC0 model); 3) the spread increases as the magnitude of the change increases;

4) the base case with d = −0.29 delivers values quite close to the sample estimates.

5 An alternative framework for trend-cycle decompositions

Our aim in this section is to suggest a class of unobserved components models that is able

to capture structural changes in the trend function endogenously. While we believe our

suggested framework to be powerful, we make no claim about its optimality, nor do we claim

to have solved all problems related to identification and numerical estimation. Nevertheless,

we will show how it can be a powerful tool for issues related to trend-cycle decompositions

and, hence, a viable avenue for further developments.

To understand the need for the key ingredients, let us go back to the generalized trend
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function

τ t = βt + τ t−1 + ηt (3)

βt = βt−1 + vt

As stated in Remark 1, this specification provides very similar results compared to the

case where βt is assumed fixed, when the noise to the slope component βt is assumed i.i.d.

N(0, σ2v). The reason is that any positive variance σ2v would imply changes in the slope

occurring at every period, though of different magnitudes each time. Now, if our proposed

specification is adequate, the slope of the trend function changes very rarely, indeed it is

expected to change only once, or if the change occurs smoothly, for a few periods around

1973:1. This is the key observation and it suggests the use of a non-Normal distribution for

the errors vt. The natural one to adopt in our context is a mixture of Normal distribution

where a realization of vt is a draw from one of two Normal distributions, one with high and

the other with small or zero variance. More specifically,

vt = λtγ1t + (1− λt) γ2t (4)

where γit ∼ i.i.d. N(0, σ2γi) and λt is a Bernoulli random variable that takes value one with

probability α1, and value 0 with probability 1− α1. In our case, we would expect α1 to be

close to one and σ2γ1 to be zero, so that most of the time there is no change in the slope of

the trend function. Furthermore, if σ2γ2 > 0, there will be occasional changes to the value of

the slope. Hence, this specification appears ideally suited to the problems we face.

More generally, the unobserved component model we propose is the following:

yt = τ t + ct + ωt (5)

where τ t is specified by (3) with ηt ∼ i.i.d. N(0, σ2η) and vt is generated by the mixture

distribution (4). The component ωt is introduced to capture measurement errors and is

assumed to be i.i.d. N(0, σ2ω). The cyclical component will still be assumed to be an AR(2)

but we shall also generalize it to have shocks generated by a mixture of Normals as well, i.e.,

we have

ct = φ1ct−1 + φ2ct−2 + �t (6)

where

�t = δtξ1t + (1− δt)ξ2t (7)
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with ξit ∼ i.i.d. N(0, σ2ξi) and δt a Bernoulli random variable that takes value one with

probability α2, and value 0 with probability 1 − α2. This generalization is made to poten-

tially capture the fact that the variance of recessions may be different from the variance of

expansions.

So the complete model consists of the specifications (3) to (7) with the added assumption

that all errors terms and Bernoulli random variables are mutually independent.

This type of model is not new and has been used in the statistics literature to model

structural changes; see, in particular, Kitagawa (1987). It is a generalized State Space model

where some of the errors are non Normal. The State Space model is of the form

yt = Hxt + ωt

xt = Fxt−1 +Gut

where xt = [τ t, ct, ct−1, βt]
0, H = [1, 1, 0, 0]

F =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1

0 φ1 φ2 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
and ut = [ηt, εt, vt]

0. What is different from the usual State Space model is that the distribu-

tion of ut is not Normal. However, we can view the specification as a State Space model with

Normal errors but with four possible states. These states are defined by the combined values

of the Bernoulli random variables λt and δt and imply four possible covariance matrices for

the vector of errors ut, namely

Q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

σ2η 0 0

0 σ2γ1 0

0 0 σ2ξ1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

σ2η 0 0

0 σ2γ1 0

0 0 σ2ξ2

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

σ2η 0 0

0 σ2γ2 0

0 0 σ2ξ1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

σ2η 0 0

0 σ2γ2 0

0 0 σ2ξ2

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where each component occurs with probabilities α1α2, α1 (1− α2), (1− α1)α2, and

(1− α1) (1− α2), respectively. This interpretation is helpful in constructing an algorithm
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for estimation. Note also that this specification is different from the popular Markov type

regime switching model (e.g., Hamilton, 1989). Our structure does not assume Markov

type transition probabilities but rather that each state is drawn independently with some

probability.

Our generalization complicates the estimation procedure considerably and details are

given in Appendix C. The basic principles are, however, the same as for the estimation of

the usual State Space model with Normal errors. The likelihood function is estimated using

a variant of the Kalman filter and a by-product is an estimate of the conditional expectation

of the State vector xt using information available up to time t. These are denoted xt|t and

are called filtered estimates. One can also construct estimates using the full sample, i.e.,

xt|T which are obtained using a smoothing algorithm and are, accordingly, called smoothed

estimates. The main goal here is to obtain smoothed estimate of the trend function τ t and

of the cyclical component ct.

It is important to note that, as stated, not all parameters are identified, though the trend-

cycle decomposition is. To get parameter estimates we impose the following restrictions:

α1 > 0.9, σ2γ1 < 0.0001, σ
2
γ1 < σ2γ2 and σ

2
ξ1 < σ2ξ2. The last two restrictions are standard and

inconsequential. The first two are, however, more substantive. They impose the variance of

the state occuring with highest probability be very small and that the latter probability be

quite high. This is to allow for the possibility of having relatively rare events occuring to the

trend function. Changes in these restrictions do no change the trend-cycle decomposition

but do change the parameter estimates obtained. More work is needed to carefully assess the

identification of such models. Meanwhile, since the main object of interest is the trend-cycle

decomposition, we feel confident with the results since this decomposition is identified.

5.1 Discussion of the results

The results are presented in Table 6 and Figure 3. The most important element is the

smoothed trend-cycle decomposition presented in the bottom panel of Figure 3. It shows

a trend and a cycle that are qualitatively similar to those obtained imposing an exogenous

break in the slope of the trend in 1973:1. To better understand its properties, it is useful to

look at the parameters estimates presented in Table 6.

First, and most important, is the fact that the estimate of the variance of the residuals

of the trend function, σ2η is estimated to be 0. Hence, except for changes in the slope βt, the

trend is deterministic. The innovations to the trend function are governed by a process that

has standard deviation .0001 with probability .9 and one that has standard deviation 0.0633
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with probability .10. These estimates are, however, highly dependent on the restrictions

imposed and we shall return below with a better method to identify the pattern of the slope

of the trend function. But the basic message is clear, most of the time the slope does not

vary. A look at Figure 3 suggests that the changes occur smoothly around 1973:1.

Other estimates are also very informative. The noise of the cyclical component also

consists of draws from Normal distributions with very different variances. With probability

.58 the standard deviation is small at the value 0.26, and with probability .42 it is high at

the value 1.28. We interpret these results are follows. The variance of shocks in recessions

are much larger than the variance of shocks in expansions. A look at the smoothed cycle

in Figure 3 shows this to be indeed the case. Recessions are much more pronounced than

expansions. This accords well with previous studies on business cycles asymmetries; see, e.g.

Beaudry and Koop (1993), Neftci (1984) and Sichel (1993, 1994). The parameter estimates

of the AR coefficients are well within the stationary region, the sum being close to 0.91.

The variance of the measurement errors is quite small and does not account for much of the

movements of real GDP. Finally, note that the value of the maximized likelihood function is

-272.5, well above that for the models discussed earlier.

The smoothed estimate of the cycle share many of the interesting features that were

present for the models with an exogenous change in 1973:1. First, the movements agree

quite well with the NBER chronology. Second, the late 90s are, as should be expected,

characterized by above trend activity. Third, as alluded to above, recessions are characterized

by sharp drops in activity, while expansions are gradual increases. Fourth, the sharpest

recession is that of 1982, while our model with an exogenous change in slope and symmetric

errors for the cyclical component indicated the recession of 1958 as the sharpest. Fifth,

depth of recessions are larger than highs of expansions in the sense that recessions are

often characterized by a value 6 to 8 percentage points below trend, while expansions are

characterized by values that reach between 2 and 4 percentage points above trend.

The filtered estimates of the trend and cycles also show some interesting features. This

filtered decomposition gives the best estimates of the trend and cycle using only the infor-

mation available up to the current period. One fact is that the slope of the trend seemed

to be on the increase in the late 1990s. This accord well with discussions at the time that

the trend may have been on a new path with the new information technology. However, a

comparison with the smoothed trend, which uses all information in the sample, shows this

hope not to have materialized (at least by the end of 1998). Another feature of interest is

that the sharpness of the 1991 recession was ex-post more severe than what could have been
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inferred at the time.

We believe these results to be in accordance with common notions about the business

cycles and to lend credence to our framework as a general methodology for trend-cycle

decomposition.

5.2 Filtered estimates for the slope of the trend function

As discussed, while the trend-cycle decomposition is well identified, the identification of

some components is more problematic. Since the temporal behavior of the slope of the trend

function is of central concern here, we present a two-step method to document it. We start

with the filtered estimates of the trend function, {eτ t = τ t|t}, as the basic inputs. We then
estimate the following model

eτ t = βt + eτ t−1 + eηt (8)

βt = βt−1 + vt

where eηt = ¡τ t − τ t|t
¢− ¡τ t−1 − τ t−1|t−1

¢
+ ηt.

and vt is specified by the mixture of Normal distribution (4). This model is simple enough

that an exact numerical procedure to obtain smoothed estimates of the slope is possible, i.e.,

βt|T . The Fortran algorithm was constructed by Kitagawa (1993) and we translated it in

Matlab for the estimation reported (this is useful since such an exact algorithm avoids the

approximations that are necessary to estimate the full model, see Appendix C).

The results are presented in Figure 4. The solid line is the smoothed estimate of the

slope βt|T and the dashed lines are 1, 2 and 3 standard deviations intervals. The results are

quite informative and in line with our main argument. The slope starts at a value 0.94 at

the beginning of the sample and remains at that value until roughly the late 60’s when a

minor decrease starts to take effect. The main change occurs in the period 1973-1974 when

the slope decreases to a value of approximately 0.75. Until 1977 there is a further gradual

decline to a new value of 0.66 that remains in effect until the end of the sample.

These results lend support to the central them of our work, namely that an important

change in the slope of the trend function has occurred around the year 1973. While, the

change depicted here is more gradual than the assumed sudden change used in the previous

sections, the message is the same. The change is important and is responsible for the severe

biases arising when estimating models that neglect its presence.
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6 Comparisons with other decompositions

Many trend-cycle decompositions have been suggested in the literature. Besides the Beveridge-

Nelson decomposition and the Unobserved Components models examined previously, two

other popular methods are the Hodrick-Prescott (1997), or HP, filter and the Band Pass, or

BP, filter (Baxter and King, 1999). The former is a method to extract a trend function and

delivers, as a consequence, a cycle as the difference with the original series. The BP filter,

however, does not address the issue of trend estimation. The cycle is defined as movements

having periods between 6 and 32 quarters. Hence, both high and low frequency movements

are eliminated and the difference between the cycle obtained and the original series cannot

be viewed as an estimate of the trend function.

In this section, we compare how these trend and cycle extraction procedures compare

with our decomposition. Figure 5 presents the cycle obtained from the HP filter with the

usual value of the smoothing parameter λ = 1, 600. Figure 6 presents the cycle obtained

from the BP filter using the two-sided filter suggested by Baxter and King (1999) with 12

terms on each sides (accordingly the cycle is undefined for the first and last 12 quarters of

the sample).

The cycles obtained are somewhat “in between” our decomposition and the BN cycle

advocated by Morley et al. (2003). Both show much less variations than our cycle and

slightly more than the BN cycle. Also, the movements are more frequent than in our cycle

but less so than in the BN cycle. Overall, they capture rather well the timing of the recessions

(as does our cycle) but the depth of the recessions and the heights of the expansions are very

different. For example, both the HP and BP cycles show the sixties as a period of average

activities or very mild expansion following a mild recession in 1961, while ours characterize

the sixties as a period of important and sustained expansion following a deep recession in

1961. Other differences can be ascertained from the graphs, but the most striking feature is

the magnitude of the cycle. The HP trend being stochastic, a lot of the movements in real

GDP are due to movements in the trend, while little is left for the cycle. While the BP filter

does not estimate a trend directly, the overall picture is much the same.

Finally, Figure 7 presents an interesting result about the HP filter. It gives the trend-cycle

decomposition when the smoothing parameter is set to the very large number λ = 800, 000.

The results are then basically equivalent to our decomposition with a trend that has a single

shift in slope in 1973. So we can, in a sense, reconcile our results with the decomposition of

the HP filter. The latter depends crucially on the choice of the smoothing parameter λ and,
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as is well known, the best value depends on the underlying true structure of the process and

the usual rule of thumb of setting λ = 1, 600 is unlikely to be appropriate in most cases. Our

decomposition does not suffer from such arbitrariness and suggests that for the particular

case of the real GDP series analyzed, λ = 1, 600 is too small a value that has an effect of

ascribing too much variation to the trend and too little to the cycle.

7 Concluding Remarks

The title of the paper by Morley et al. (2003) asks the following question: “Why are the

Beveridge-Nelson and Unobserved-Components Decomposition of GNP so Different?”. Their

answer was that the latter does not allow for the presence of negative correlation between

the noise to the trend and the noise to the cycle and is, hence, mispecified. They also argued

that an unobserved component model that allows for this feature is consistent with the data

and yields a decomposition virtually identical to the Beveridge-Nelson decomposition. Our

results, based on allowing for a one time change in the slope of the trend function in 1973,

offers a rather different picture. First, the question is ill-posed. Both methods yields the

same decomposition. Second the trend function is non-stochastic except for a brief period

around 1973 and, hence, their is no issue about the correlation between the noise to the

trend and the cycle, they are uncorrelated.

Our results also show the trend-cycle decomposition to be very different from that ob-

tained using currently popular methods (BN or UC decompositions, HP or BP filters). It

also agrees much better with the NBER chronology and has the advantage of being able to

explain results pertaining to decompositions obtained by methods such as that of Beveridge

and Nelson and the Unobserved Components models.

We also presented a generalized Unobserved Components model based on errors that

follow a mixtures of Normal distribution. It was found to be successful in reaching the

same conclusions without the need to make any prior specifications about the nature or

timing of the change in the slope. Such a framework should find wide appeal for trend-

cycle decompositions in a variety of contexts, when the trend path of some series is affected

by infrequent level shifts or changes in slope, or when the noise function shows different

variability across two regimes, or when the overall series is affected by aberrant observations.

Needless to say, our work is a first attempt in using such Non-Gaussian State Space models

with this level of generality, at least in economics, and there is certainly a need to refine the

framework and estimation method used. One useful generalization would be to allow for the

possibility of correlation across the stochastic components of the trend and the cycle. While
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we have documented that such a feature is not present with the particular US real GDP

series used, this may not be the case in general. Also, our experience has shown that the

estimation of such models is a difficult task, mainly due to a likelihood function that is not

well behaved. While all our trials showed the trend-cycle decomposition to be well identified,

this is not so for some subsets of the parameters and makes difficult a careful interpretation

of the results. Developments to solve or mitigate these problems are important. Finally,

while most decompositions used in applied work is based on univariate methods, extensions

to decompositions based on modelling multiple series jointly are important.
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A-1 Appendix A: Details on the computations in Section 2.

In Section 2 to 4, unless otherwise indicated, the estimation of the models is done by casting

them in the appropriate State Space model and estimating their parameters by Maximum

Likelihood using the Kalman Filter algorithm. In general, the State Space model is of the

form

yt = Hxt (A.1)

xt = M + Fxt−1 +Gut (A.2)

E(utu
0
t) = Q

where (A.1) is the measurement equation and (A.2) is the transition equation. For the

UCUR model, xt = [τ t, ct, ct−1]0, ut = [ηt, εt]
0, H = [1, 1, 0]0, M = [µ, 0, 0]0

F =

⎡⎢⎢⎢⎣
1 0 0

0 φ1 φ2

0 1 0

⎤⎥⎥⎥⎦ G =

⎡⎢⎢⎢⎣
1 0

0 1

0 0

⎤⎥⎥⎥⎦ Q =

⎡⎣ σ2η σηε

σηε σ2ε

⎤⎦
The UC0 model is obtained as a special case with σηε = 0. For the ARIMA(2,1,2) the

measurement equation is

∆yt − µ = Hxt

with H = [1, 0, 0, 0]0 and the state vactor is of dimension 4 with transition equation given by

(A.2) with M = 0 and

F =

⎡⎢⎢⎢⎢⎢⎢⎣
φ1 φ2 θ1 θ2

1 0 0 0

0 0 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
G = [1, 0, 1, 0]0, ut = et and Q = σ2e.

A-1.1 Numerical Estimation

For the numerical estimation, we used both a Gauss code provided by Morley written in

the Gauss language and based on the ‘optmum’ command. We also estimated all models

using an independently constructed code in Matlab 6.5 using the command ‘fminunc’. Both
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are based on a quasi-Newton method and the numerical Hessian is updated by the BFGS

equation.

For the Gauss code the tolerance for the gradient change is less than 1e − 5. For the
Matlab code the stopping rule is slightly different and is based on i) a tolerance for parameter

change less than 1e − 6 (‘TolX’); and ii) a tolerance for a value function change of 1e − 6
(‘TolFun’).

The restrictions for the parameters are imposed by reparameterizations so that i) the

covariance matrix is positive definite and ii) the AR coefficients satisfy the stationarity

conditions. Throughout, the computation is skipped and the results not used when a reliable

inverse for a matrix cannot be obtained, i.e., when the condition number of the matrix is

less than the machine epsilon (in our case, 2.2204e− 16).
As initial conditions, x0|0 and P0|0, we use the steady state values as in Morley et al.

(2003). For a nonstationary component, we use a very large value on the corresponding

diagonal element of P0|0 and the first observations into the first row of x0|0. The likelihood

function is computed using the prediction errors from time t = 2 onward.

A-2 Appendix B: Details on the computations in Section 3.

The estimation method is the same except that for all models µ is replace by µt = µ +

d1(t > Tb) where Tb is the observation corresponding to 1973:1. The level estimation is also

implemented by maximizing the likelihood function of the State Space model specified by:

∆yt − c− µt− d1(t > Tb) (t− Tb) = Hxt

with H = G = [1, 0]0, ut = et, Q = σ2e and

F =

⎡⎣ φ1 φ2

1 0

⎤⎦
The results were also confirmed using the Gauss arima routine.

To maximize the chances of obtaining values corresponding to the global maximum of the

likelihood function, we estimated each model 1000 times using randomly generated initial

values. Since we use a reparameterization such that Q is ensured to be positive definite and

the cyclical component is stationary, the random initial conditions were generated as draws

from a N(0, 3). We then ranked the results according to the value of the likelihood function.

For the UCUR (UC0, resp.) model, the first 200 (300, resp.) sets of results gave almost the
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same parameters. For the ARIMA(2, 1, 2) model, the initial conditions for the MA coeffi-

cients are random draws from a N(0, 1). More than 600 sets results were such that the sum

of the MA coefficients was minus one, with almost the same AR coefficients. We performed

this using codes in both GAUSS and MATLAB, which gave almost the same parameter

estimates. The results reported in the Tables are those obtained with GAUSS. The reported

numerical standard errors of the parameters are obtained using the Gauss commands ‘hessp’

and ‘gradfd’ in the prototype code provided by Morley. Yet, we failed to reproduce their

results using our computer environment and were not able to get results simular to either

using the Matlab code. Hence, these standard errors should not be considered reliable, and

we do not make any inference based on them.

For the ARIMA models, we did not rely on the GAUSS arima library since its algorithm

tries to avoid getting non-invertible MA roots, hence it sometimes converges a the local

maximum in the strictly invertible region.

To check the adequacy of the AR(2) specification, we constructed the Ljung-Box test for

the residuals of the level estimation. We cannot reject the null hypothesis that there is no

serial correlation (the p-value is .28 with both 12 and 24 lags). The test statistic is con-

structed using the standardized forecast errors (for more details, see Durbin and Koopman,

2000).

A-2.1 Median Unbiased Estimate

To implement the median unbiased estimate of λ in the specification (2) we apply the pro-

cedures suggested by Stock and Watson (1998) to the residuals from a regression of log

real GDP on a piece-wise linear trend with a change in slope in 1973:1. The idea of the

procedure is as follows. Consider a test of the null hypothesis that λ = 0, say FT . Since

the model specifies a variance that is local to zero, such tests will have a non-degenerate

limit distribution that will depend on the parameter λ such that, say, FT ⇒ F (λ). Consider

a transformation g(F (λ)) and suppose there exists a monotone increasing function m(λ),

which gives the median of g(F (λ)). Then, the median unbiased estimate of λ is the value

λ̂MU such that λ̂MU = m−1(g(FT )). As in Stock and Watson (1998), the function g(·) is
chosen to be the cumulative distribution function of F (λ).

We applied this procedure using a variety of tests: Nyblom’s (1989)’s L (L), the mean and

exponential Wald tests of Andrews and Ploberger (1994) (MW,EW ), Quandt’s (1960) like-

lihood ratio test (QLR), the point optimal invariant test for λ = 7 (POI7), and for λ = 17

(POI17) of Saikkonen and Luukkonen (1993) and Shively (1988). All procedures were per-
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formed using a GAUSS code available onMarkWatson’s home page (http://www.wws.princeton.edu/~mwa

An AR(2) specification for the cyclical component was used. The results are presented in

Table A.1.

Table A.1: Stock and Watson’s (1998) Median Unbiased Estimate of λ

Test Test Statistics p value λ 90% C.I. σ∆β 90% C.I.

L 0.0373 (0.9450) 0 (0, 0.8440) 0 (0, 0.0403)

MW 0.2323 (0.9050) 0 (0, 3.4306) 0 (0, 0.1647)

EW 0.1282 (0.9050) 0 (0, 3.4507) 0 (0, 0.1646)

QLR 1.3222 (0.9200) 0 (0, 3.2556) 0 (0, 0.1553)

POI(7) 1.5913 (0.8600) 0 (0, 5.3004) 0 (0, 0.2529)

POI(17) 6.8392 (0.6500) 0 (0, 9.2410) 0 (0, 0.4409)

The results are consistent across all tests: 1) the null hypothesis of a zero value of λ cannot

be rejected, with p-values ranging from 0.65 to 0.95; 2) the median unbiased estimate of λ is

zero using any test; 3) the confidence interval for λ and σ∆β is narrow and include the value

0. Hence, we view this as providing no evidence against the hypothesis that λ = σ∆β = 0,

or that the trend is deterministic. Also, sensitivity analyses revealed the same conclusions

to hold for different specifications of the autoregressive order of the cyclical component.

A-3 Appendix C: Details on the computations of Section 5

Let Yt = (y1, ..., yt) be the vector of data available up to time t. The objective function to

be maximized is

ln(L) = ln

"
TX
t=1

p (yt|Yt−1)
#

p (yt|Yt−1) =
4X

st=1

4X
st−1=1

p (yt|st−1, st,Yt−1) Pr (st−1 = i, st = j|Yt−1)

Also let the prediction errors be

νijt|t−1 = yt −E[yt|Yt−1, st−1 = i, st = j] = yt −Hxijt|t−1.
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Conditional on the states at periods t and t− 1 taking values i and j, respectively, and the

value of Yt−1, the prediction errors are such that

(νijt|t−1|st−1 = i, st = j, Yt−1) ∼ N
³
0, f ijt|t−1

´
(A.3)

with

f ijt|t−1 = E
³
νijt|t−1ν

ij0
t−1
´
= HP ij

t|t−1H
0 +G

so that

p (yt|st−1, st,Yt−1) = 1√
2π

¯̄̄
f ijt|t−1

¯̄̄−1/2
exp

(
−ν

ij0
t|t−1(f

ij
t|t−1)

−1νijt−1
2

)
Also,

Pr (st−1 = i, st = j|Yt−1) = Pr (st = j|st−1 = i) Pr (st−1 = i|Yt−1)
= Pr (st = j) Pr (st−1 = i|Yt−1)

Pr (st−1 = i, st = j|Yt) = Pr (st−1 = i, st = j|yt, Yt−1) = p (yt, st, st−1|Yt−1)
p (yt | Yt−1)

=
p (yt|st, st−1,Yt−1) Pr (st−1 = i, st = j|Yt−1)

p (yt|Yt−1)

Pr (st = j|Yt) =
4X

i=1

Pr (st−1 = i, st = j|Yt) .

The basic inputs are therefore the best estimates of the sate vector and their mean squared

errors, namely

xijt|t−1 = Fxit−1|t−1

P ij
t|t−1 = FP i

t−1|t−1F
0 +GQjG0

where

xijt|t−1 = E [xt|Yt−1, st−1 = i, st = j]

xit−1|t−1 = E [xt−1|Yt−1, st−1 = i]

P ij
t|t−1 = E

h¡
xt − xt|t−1

¢ ¡
xt − xt|t−1

¢0 |Yt−1, st−1 = i, st = j
i

P i
t−1|t−1 = E

h¡
xt−1 − xt−1|t−1

¢ ¡
xt−1 − xt−1|t−1

¢0 |Yt−1, st−1 = i
i

for i, j = 1, 2, 3, 4. The problem that arises with four possible states is that the number of

estimates for the state vector and their mean square error matrices grows exponentially with
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time. Indeed, at a given time t, we have t4 estimates of the state vector to compute. The

solution we adopt is to use the re-collapsing procedure suggested by Harrison and Steven

(1976) which effectively provides re-approximations at each time t. These are given by:

xjt|t =

P4
i=1 Pr (st−1 = i, st = j|Yt)xijt|t

Pr (st = j|Yt)

P j
t|t =

P4
i=1 Pr (st−1 = i, st = j|Yt)

½
P ij
t|t +

³
xjt|t − xijt|t

´³
xjt|t − xijt|t

´0¾
Pr (st = j|Yt)

The filtered estimate of the state vector is then obtained as:

xt|t =
4X

i=1

4X
j=1

Pr (st−1 = i, st = j|Yt)xijt|t.

A-3.1 Initial Values

Since one component of the state vector is non-stationary, we cannot initialize all components

of the state vector and its covariance matrix to their unconditional expected values. The

initial value we used are:

x0|0 = [0.95, 0, 0, 0, 0]0

and

P0|0 =

⎡⎣ 1e− 5 0

0 P

⎤⎦
where the submatrix P is given by

vec (P ) = [I4 − F1⊗ F1]−1 vec (Q1)

with

F1 =

⎡⎢⎢⎢⎢⎢⎢⎣
φ1 φ2 0 0

1 0 0 0

0 0 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎣
α1σ

2
ξ1 + (1− α)σ2ξ2 0 0 0

0 0 0 0

0 0 σ2ω 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
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The initial value of the slope component βt is set to 0.95, the average value of the slope for

the pre-1973:1 period. We set its variance to a small number to reflect our prior that the

trend function was stable before the break. The other components of the state vector are

stationary and we use their steady state values as initial conditions. We experimented with

different initial values for the first component of the state vector. The results were basically

the same, except for the filtered trend function at the very beginning of the sample. The

smoothed trend and cycle remain unchanged.

A-3.2 Constraints

A practical difficulty in the estimation of such Gaussian mixture models is the so called

“label-switching problem” (see, e.g., Hamilton, Waggoner and Zha, 2002). This problem

is due to the fact that the likelihood function p (yt|Yt−1) does not change if the individual
components of p (yt|st−1, st,Yt−1) Pr (st−1 = i, st = j|Yt−1) are interchanged, and likewise for
p (yt|st−1, st,Yt−1) Pr (st−1 = i, st = j|Yt−1), so that

p(yt|st−1, st,Yt−1) Pr (st−1 = i, st = j|Yt−1) + p (yt|st−1, st,Yt−1) Pr (st−1 = i∗, st = j|Yt−1)
= p (yt|st−1, st,Yt−1) Pr (st−1 = i∗, st = j|Yt−1) + p (yt|st−1, st,Yt−1) Pr (st−1 = i, st = j|Yt−1)

Hence, we cannot identify the sates i and i∗ without some normalization. To overcome this

problem, we impose the restrictions discussed in the text.

A-3.3 Initial conditions and computations

To maximize the chances of obtaining parameter estimates that correspond to the global

maximum of the likelihood function, we re-estimate the model 200 times with different initial

values for the parameters that are drawn from a N(0, 3). The convergence criterion is set at

1e−4 in the MATLAB command ‘fminunc’. We also repeated the same estimation procedure
using a GAUSS code, setting the convergence criterion of the tolerance for a gradient change

to less than 1e− 5. Since GAUSS trials gave better results, we used its output as the initial
values for the MATLAB program, which then gave back the same answers.

Since this estimation and the filtering procedure are similar to the ones for Markov

switching models, the basis for the construction of our computer codes was the GAUSS

programwritten by Chang-Jin Kim (KIM_JE1.OPT) as discussed in Kim and Nelson (1999).

The code is available from the book’s website.
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A-3.4 Smoothing

The smoothing algorithm used follows Kim (1994). The basic updating equations are:

xijt|T = xit|t + eP ij
t

³
xjt+1|T − xijt+1|t

´
(A.4)

P ij
t|T = P i

t|t + eP ij
t

³
P j
t+1|T − P ij

t+1|t
´ eP ij0

t (A.5)

where

xijt|T = E [xt|YT , st = i, st+1 = j]

P ij
t|T = E

h¡
xt − xt|T

¢ ¡
xt − xt|T

¢0 |YT , st = i, st+1 = j
i

eP ij
t = P i

t|tF
0
[P ij

t+1|t]
−1.

The smoothed probabilities are given by:

Pr (st = i, st+1 = j|YT ) = Pr (st+1 = j|YT ) Pr (st = i|st+1 = j, YT )

= Pr (st+1 = j|YT ) Pr (st = i|st+1 = j, Yt)

=
Pr (st+1 = j|YT ) Pr (st = i|Yt) Pr (st+1 = j|st = i)

Pr (st+1 = j|Yt)
= Pr (st+1 = j|YT ) Pr (st = i|Yt)

and

Pr (st = i|YT ) =
4X

j=1

Pr (st = i, st+1 = j|YT ) .

As for the filtering procedure, we also use a re-collapsing approximation to avoid the problems

given by the exponential increase in the number of states:

xit|T =

P
j Pr (st = i, st+1 = j|YT )xijt|T

Pr (st = i|YT )

P i
t|T =

P
j Pr (st = i, st+1 = j|YT )

½
P ij
t|T +

³
xit|T − xijt|T

´³
xit|T − xijt|T

´0¾
Pr (st = i|YT ) .

A-3.5 Numerical Integration for the slope of the trend function

To detect the break in the value of the slope of the trend function more accurately, we used

the numerical integration method for non Gaussian (Gaussian Mixture) smoothing with
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numerical updating and filtering. These are basically the equivalent of the general formulae

given by:

p (xt|Yt−1) =

Z
p (xt|xt−1) p (xt−1|Yt−1) dxt−1 (A.6)

p (xt|Yt) =
p (yt|xt) p (xt|Yt−1)

p (yt|Yt−1) (A.7)

where

p (yt|Yt−1) =
Z

p (yt|xt) p (xt|Yt−1) dxt
and

p (xt|YT ) = p (xt|Yt)
Z

p (xt+1|YT ) p (xt+1|xt)
p (xt+1|Yt) dxt+1. (A.8)

Equation (A.6) is the one step ahead prediction, or updating, (A.7) gives the filtered pro-

cess, and the smoothing process is given by (A.8). For more details, see Kitagawa (1989).

Our input is the filtered trend,
©eτ t = τ t|t

ª
, obtained using the algorithm described at the

beginning of this section. We then estimate model (8). The parameters to be estimated are

α1, σeη, σγ1, and σγ2. The initial values used are the same as before (see Section A3.1). After
obtaining the parameter estimates, we compute (A.6), (A.7), and (A.8). The FORTRAN 77

programing code for these steps (except those for the parameter estimation) is provided by

Genshiro Kitagawa from the Institute of Statistical Mathematics (see also Kitagawa, 1993).

The Fortran code was translated to MATLAB code.
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Table 1: Maximum Likelihood Estimates when a Change in Slope is Allowed

UCUR73 UC073 ARIMA73(2, 1, 2)
Estimate s.e. Estimate s.e. Estimate s.e.

φ1 1.328 (0.024) φ1 1.279 (0.045) φ1 1.522 (0.117)
φ2 −0.418 (0.014) φ2 −0.373 (0.042) φ2 −0.601 (0.109)
µ 0.952 (0.026) µ 0.951 (0.024) µ 0.951 (0.021)
d −0.288 (0.046) d −0.288 (0.043) d −0.287 (0.038)
ση 0.104 (0.007) ση 0.000 (0.207) θ1 −1.283 (0.138)
σε 0.843 (0.008) σε 0.945 (0.005) θ2 0.283 (0.137)
σηε 0.088 (0.006) σηε σe 0.936 (0.047)
ln(L) = −280.505 ln(L) = −280.697 ln(L) = −278.930
Note: ln(L) denotes the value of the maximized likelihood function.

Table 2: Maximum Likelihood Estimates of the Alternative Specifications

a) ARIMA73(2, 1, 1)

Estimate s.e.
φ1 1.279 (0.064)
φ2 −0.373 (0.064)
µ 0.951 (0.024)
d −0.288 (0.043)
θ −1.000 (0.013)
σe 0.945 (0.047)

ln(L) = −280.697

b) AR73(2) in level
Estimate s.e.

φ1 1.275 (0.064)
φ2 −0.375 (0.064)
µ 0.951 (0.023)
d −0.287 (0.041)
c 724.175 (1.592)
σe 0.942 (0.047)

ln(L) = −281.201



Table 3: Simulation Results: Base Case.

UCUR UC0 ARIMA(2, 1, 2)
Sample Median s.e. Sample Median s.e. Sample Median s.e.

φ1 1.34 1.21 (0.29) φ1 1.53 1.44 (0.10) φ1 1.34 1.23 (0.25)
φ2 −0.71 −0.52 (0.18) φ2 −0.61 −0.57 (0.10) φ2 −0.71 −0.44 (0.20)
µ 0.82 0.81 (0.02) µ 0.81 0.80 (0.02) µ 0.82 0.80 (0.02)
ση 1.24 0.97 (0.20) ση 0.69 0.65 (0.18) θ1 −1.05 −0.88 (0.28)
σε 0.75 0.94 (0.34) σε 0.62 0.65 (0.13) θ2 0.52 0.07 (0.25)
σηε −0.84 −0.59 (0.47) σe 0.97 0.96 (0.05)
ρηε −0.91 −0.65
Notes: 1) The values under the columns "sample" are reproduced from Tables 1-3, Morley et al. (2003); 2)

"Median" and "s.e." denote the Median value and the Monte Carlo standard errors from 200 replications.

Table 4: Simulation Results: Effect of varying the change in slope d.

a) UCUR
d = −0.1 d = −0.4 d = −0.6

Median s.e. Median s.e. Median s.e.
φ1 1.24 (0.26) 1.12 (0.28) 0.99 (0.29)
φ2 −0.51 (0.16) −0.48 (0.16) −0.40 (0.18)
µ 0.90 (0.02) 0.75 (0.02) 0.65 (0.02)
ση 0.74 (0.37) 1.15 (0.16) 1.39 (0.15)
σε 0.83 (0.28) 1.08 (0.33) 1.27 (0.38)
σηε −0.28 (0.43) −0.95 (0.50) −1.52 (0.65)
ρηε −0.46 −0.76 −0.86

b) UC0
d = −0.1 d = −0.4 d = −0.6

Median s.e. Median s.e. Median s.e.
φ1 1.32 (0.10) 1.47 (0.11) 1.51 (0.11)
φ2 −0.45 (0.11) −0.62 (0.11) −0.67 (0.13)
µ 0.90 (0.01) 0.75 (0.02) 0.65 (0.02)
ση 0.31 (0.26) 0.75 (0.16) 0.84 (0.25)
σε 0.86 (0.13) 0.55 (0.15) 0.48 (0.21)

c) ARIMA(2,1,2)
d = −0.1 d = −0.4 d = −0.6

Median s.e. Median s.e. Median s.e.
φ1 1.26 (0.27) 1.15 (0.36) 1.03 (0.47)
φ2 −0.45 (0.20) −0.45 (0.23) −0.33 (0.25)
µ 0.90 (0.01) 0.75 (0.02) 0.65 (0.19)
θ1 −1.00 (0.29) −0.80 (0.38) −0.64 (0.49)
θ2 0.09 (0.25) 0.13 (0.26) 0.12 (0.28)
σe 0.95 (0.05) 0.97 (0.05) 0.99 (0.05)



Table 5: Simulation Results: Filtered estimates of the residuals of the trend function ηt|t.

a) Sample mean and simulated values with d = −0.29

Sample mean Simulated
UCUR UC0 UCUR UC0

Full Sample −0.003 0.004 0.003 0.012
Pre-break 0.159 0.148 0.144 0.136
Post-break −0.168 −0.142 −0.139 −0.109

b) Simulated values for different values of d

d −0.1 −0.4 −0.6
UCUR UC0 UCUR UC0 UCUR UC0

Full Sample 0.008 0.011 −0.002 0.004 −0.004 0.008
Pre-break 0.048 0.030 0.208 0.189 0.294 0.278
Post-break −0.030 −0.009 −0.205 −0.176 −0.293 −0.254



Table 6: Parameter Estimates of the Gaussian Mixture Model

Estimate
ση 0.0000
σξ1 0.2599
σξ2 1.2809
σγ1 0.0001
σγ2 0.0633
σω 0.2495
φ1 1.3795
φ2 −0.4714
α1 0.9000
α2 0.5833
ln(L) = −272.4807

Table 7: Estimates for the Gaussian Mixture Model of the Filtered Trend

Estimate
ση 0.4650
σγ1 0.0000
σγ2 1.0686
α 0.9992
ln(L) = −138.1379
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Figure 1: Trend and Cycle Decompositions of US log real GDP, 1947:1 -1998:2
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Figure 2: Trend and cycle decompositions allowing for a change in slope in 1973:1
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Figure 3: Trend and cycle decompositions of the Gaussian mixture model
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Figure 4: Smoothed estimate of the slope of the trend function



1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
-10

-8

-6

-4

-2

0

2

4

6

8

10

year

D
e
v
i
a
t
i
o
n
 
(
%
)

Figure 5: Hodrick-Prescott Cycle with λ = 1, 600.
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Figure 6: Cycle from the Band-Pass filter (6-32 quarters).
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Figure 7: Trend-cycle decomposition from the Hodrick-Prescott Filter with λ = 800, 000.




