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EXTENDED ABSTRACT 
 
 

Perturbation methods have recently received much attention as methods for 

accurately and quickly computing numerical solutions of dynamic stochastic 

economic equilibrium models, both single-agent or rational-expectations models 

and multi-agent or game-theoretic models. A perturbation method is based on the 

following three aspects. (1) The goal is to solve a set of nonlinear algebraic 

equations in terms of the same number of current endogenous variables (dated t), 

for given values of predetermined endogenous variables (dated t-1 or earlier), 

predetermined exogenous variables (dated any period), and parameters (constant, 

hence, undated). The current endogenous variables, predetermined endogenous and 

exogenous variables, and parameters are, respectively, collected in the decision 

vector y, the state vector x, and the parameter vector θ. (2) The equations to 

be solved are sufficiently "smooth" or sufficiently differentiable a number of 

times in the required regions of variables and parameters. (3) The approximate 

solution function to be computed, y = f̂ , is a kth-order Taylor series 

approximation of the exact, unknown, true solution function, y = f(x), and is 

centered around a point in the state space, x

)x(

0, which is usually a steady state 

of a nonstochastic version of the algebraic equations. The parameters, θ, are 

implicit in f(x) and . )x(f̂

The computed approximate solution is evaluated in a region, R0, centered 

at x0 and can usually achieve maximal numerical accuracy at x = x0, which usually 

means that the approximation error, ε = |f(x)-f |, is about double precision or 

ε ≅ 10

)x(̂

-16. If  is a kth-order approximation of f(x) in R)x(f̂ 0, then, Taylor-series 

theory says that ε = c|x-x0|
k+1, for x ∈ R0 and some constant c > 0, or, 

equivalently, in orders of magnitude, 0(ε) = |x-x0|
k+1. We call this standard 
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approach single-step perturbation or SSP. In this paper, we develop and 

illustrate the multi-step generalization of SSP or MSP. 

Think of a data sample over periods t = 1, ..., T. Each (discrete) period 

t is viewed as a continuous unit-duration interval, starting at the (continuous) 

moment t-1. At the starting moment, for given predetermined state variables in 

xo and given parameter values, the goal every period is to solve the nonlinear 

algebraic equations for the period t decision variables in y. Then, the given x0 

and the computed y determine the end-of-period-t predicted value of x. We could 

take this x as the initial value, x0, for next period t+1's computations or we 

could start anew and take the observed period t+1 sample value of x as x0. We 

are interested in solving algebraic equations that represent Euler equations and 

dynamic state equations of nonlinear rational expectations (NLRE) models. Thus, 

every period t, we wish to apply MSP to compute y, hence, to compute the 

predicted x, for given x0. 

In SSP, we can think of evaluating at x the computed approximate solution 

based on x0 as moving from x0 to x in "one big step" along the straight-line 

vector x-x0. By contrast, in MSP we move from x0 to x along any chosen, 

continuous, curved-line or connected-straight-line, path in h steps of equal 

length h-1, where h is a positive integer. We could consider steps of unequal 

length (Allgower and Georg, 1997), but do not. If at each step we apply SSP, 

Taylor-series theory says that the approximation error per step is 0(ε) = h-k-1, 

so that the total approximation error in moving away from x0 to x in h steps is 

0(ε) = h-k. Thus, MSP has two major advantages over SSP. 

First, both SSP and MSP accuracy declines as the approximation point, x, 

deviates from the initial point, x0, although only in MSP can the decline be 

countered by increasing h. Increasing k is much more costly than increasing h, 

because increasing k requires new derivations of derivatives, more computer 

programming, more computer storage, and more computer run time. By contrast, 

increasing h generally requires only more computer run time and often only 

slightly more, as our experience shows (Chen and Zadrozny, 2004). Once MSP has 

been programmed, h can be set to any numbers of steps. Zadrozny and Chen (2004) 

explain the details of implementing MSP, for k = 4, to the static consumer 

allocation model and Chen and Zadrozny (2004) apply the derived MSP formulas, 

for k = 4 and h = 100, to an econometric analysis of the mathematically-

equivalent producer allocation model with a data sample of 50 periods and 

obtained about double-precision MSP solution accuracy for every sample period. 

Second, in SSP the initial point is usually a nonstochastic steady state 

but can sometimes also be set up in function space as the known exact solution 

of a close but simpler model. This "closeness" of a related, simpler, and known 

solution can be exploited much more explicitly in MSP, when moving away from x0 

toward x. Specifically, in MSP the state space could include parameters, so that 

the initial point, x0, would represent the simpler model with the known 

solution, and the final point, x, would continue to represent the model of 
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interest. Then, as we would move from the initial x0 to the final x in h steps, 

the state variables and parameters would move together from their initial to 

final values and the model being solved would vary continuously from the simple 

model to the model of interest. This is exactly what numerical path-following 

methods are designed to do (Allgower and Georg, 1997). 

Both advantages of MSP facilitate repeatedly, accurately, and quickly 

solving a NLRE model in an econometric analysis, over a range of data values, 

which could differ enough from nonstochastic steady states of the model of 

interest to render computed SSP solutions, for a given k, inadequately accurate. 

In the present paper, we extend the derivation of SSP for k = 4 in Chen 

and Zadrozny (2000) to MSP, also for k = 4. As before, we use a mixture of 

gradient and differential form differentiations (Chen and Zadrozny, 2003, 

appendix A) to derive the MSP computational equations in conventional linear-

algebraic form and illustrate the derived computational equations with a version 

of the stochastic optimal one-sector growth model. Although in this extension 

nonstochastic and static models are extended to stochastic and dynamic models, 

it is the extension from static to dynamic models which is especially 

challenging. In particular, whereas all computations for static allocation 

models are linear, dynamic NLRE models, whether stochastic or nonstochastic, 

also require solving a nonlinear matrix quadratic equation. An accurate and 

quick method for solving this equation has been developed (Zadrozny, 1998) and 

has been programmed and successfully used to compute solutions with about 

double-precision accuracy (Chen and Zadrozny, 2000). 
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