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Abstract

Insurance companies invest their wealth in financial markets. The wealth evolution
strongly depends on the success of their investment strategies, but also on liquidity
shocks which occur during unfavourable years, when indemnities to be paid to the
clients exceed collected premia. An investment strategy that does not take liquidity
shocks into account, exposes insurance companies to the risk of bankruptcy, when
liquidity shocks and low investment payoffs jointly appear. Therefore, regulatory au-
thorities impose solvency restrictions to ensure that insurance companies are able to
face their obligations with high probability. This paper analyses the behaviour of in-
surance companies in an evolutionary framework. We show that an insurance company
that merely satisfies regulatory constraints will eventually vanish from the market. We
give a more restrictive no bankruptcy condition for the investment strategies and we
characterize trading strategies that are evolutionary stable, i.e. able to drive out any
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1 Introduction

Institutional investors, like pension plans or insurance companies, are usually active on asset
markets that do not provide complete insurance against all possible risks. The performance of
those institutions strongly depends on the success of their investment strategies. On the other
hand, pension plans and insurance companies are also exposed to liquidity shocks, that occur
when the pensions or claims to be paid out to the clients exceed collected premia. In order
to ensure that insurance companies or pension plans are able to face their obligations with
high probability, regulatory authorities impose solvency constraints, that are constraints on
the investment strategies, such that a safely invested reserve capital exists. A part from the
regulatory constraints, institutional investors still face the problem of choosing the proportion
of wealth to be invested prudently, in order to be able to cover future losses and, therefore,
to avoid going bankrupt, but, on the other hand, to also profit from growth opportunities
offered by financial markets.

In this paper we analyse the long-run performance of insurance companies with an evo-
lutionary model, that is well suited to study the performance of large institutional investors,
since they have a considerable impact on asset prices, face relatively small transaction costs
and their investment horizon is potentially infinite.
According to this approach, investors’ trading strategies compete for the market capital
and the endogenous price process is thus a market selection mechanism along which some
strategies gain market capital while others lose. Analogously, insurance companies sell in-
surance contracts depending on their ability of facing liquidity shocks, and premia are also
endogenously determined by demand and supply. We use the theory of dynamical systems
(Arnold 1998) to derive evolutionary stable trading stable strategies, i.e. those that have
the highest exponential growth rate in a population where they determine asset prices.

The evolutionary model that we present in this paper, has one long-lived risky asset and
cash. Withdrawals and savings are the difference between collected premia and pensions or
indemnities to be paid. Here, in particular, we consider insurance companies, and the pricing
principle for insurance contracts is given by regulatory constraints, set up to ensure that with
their supply for insurance contracts, insurance companies are able to face their obligations
with high probability. This relates to the investment strategies, i.e. the proportion of wealth
safely invested, so that, finally, regulatory constraints represent minimal requirements on
investors’ investment strategies. A bankruptcy occurs when the investment’s payoff and pre-
mia are not enough to pay the indemnities. Moreover, borrowing and short-selling are not
allowed, so investors that go to bankrupt simply disappear from the market. We establish a
no bankruptcy condition for the investment strategies. The no bankruptcy condition is the
minimal sufficient condition on the trading strategies that ensures that, in the presence of
any type of competitor or trading strategy, the investor is able to face almost surely liquidity
shocks. In fact, since asset prices are endogenously determined, it happens that, depending
on other players’ strategies and wealth shares, with any strategy that satisfies a less restric-
tive condition than the no bankruptcy condition, the probability of going bankrupt is strictly
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positive. In particular, if an investor is the unique survivor at some point in time, the no
bankruptcy condition is sufficient but also necessary to avoid almost surely going bankrupt.
Nevertheless, while investors with strategies satisfying the no bankruptcy condition will not
almost surely go bankrupt, we also show that investors who use the simple strategy that
corresponds to the no bankruptcy boundary, will eventually disappear from the market.
Moreover, we characterize trading strategies that are evolutionary stable, if they exist, fol-
lowing the idea first introduced by Hens and Schenk-Hoppé (2002a). We give the condition
on the dividend process and liquidity shocks factor for the existence of evolutionary stable
strategies, when the state of the world follows an i.i.d. process. We show that the condition
for the existence of evolutionary stable strategies is related to the slope of the growth rate
of the trading strategies in a neighbourhood of the strategy investing according to the no
bankruptcy boundary. If the slope is strictly positive, then an investor putting more than
the no bankruptcy boundary on the risky assets is able to further increase her market share,
when asset prices are dominated by the strategy corresponding to the no bankruptcy bound-
ary. However, this is true only as long as liquidity shocks do not force the investor to use
all her wealth, or else she will disappear from the market. Therefore, while it can happen
that the growth rate of a strategy in a neighbourhood above the no bankruptcy boundary
is positive, this strategy cannot be evolutionary stable, since it will almost surely disappear,
because of liquidity shocks. In this case, no evolutionary stable strategies could exist. This
result also suggest that in the presence of liquidity shocks, evolutionary stability should be
characterized in term of both the growth rate and the probability of default.

This work contributes to the development of the evolutionary portfolio theory, that started
with the seminal paper of Blume and Easley (1992), where an asset market model is first
introduced to study the market selection mechanism and the long run evolution of investors’
wealth and assets’ prices. In their model, Blume and Easley (1992) consider diagonal se-
curities1, with no transaction costs and positive proportional saving rates are exogenously
given. In the case of complete markets with diagonal securities, Blume and Easley (1992)
show that there is a unique attractor of the market selection mechanism and prices do not
matter. With simple strategies2 and constant, identical saving rates across investors, the
unique survivor is the portfolio rule known as “betting your beliefs” (Breiman 1961), where
the proportion of wealth to be put on each asset is the probability of the corresponding state
of nature. This strategy can also be generated by maximizing the expected logarithm of
relative returns, which is know as the Kelly rule, studied in discrete-time by Kelly (1956),
Breiman (1961), Thorp (1971) and Hakansson and Ziemba (1995) (for an overview, see
also Ziemba 2002) and, in continuous-time, by Pestien and Sudderth (1985), Heath, Orey,
Pestien, and Sudderth (1987) and Karatzas and Shreve (1998), among others. Hens and

1A system of securities is called diagonal, if for each state of nature there is exactly one asset which has
a strictly positive payoff.

2A portfolio rule called a simple strategy, if the proportion of wealth put on each asset is constant over
time.
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Schenk-Hoppé (2002a) proposed a more general setting, with incomplete markets, general
short-lived assets that re-born each period and constant, positive, proportional and, identical
saving rates across investors. In their evolutionary model, the equilibrium notion refers to
wealth distributions that are invariant under the market selection process. The authors show
that invariant wealth distributions are generated by a population, where only one investor
(or portfolio rule) exists (a so-called monomorphic population). Moreover, they introduce
the concept of evolutionary stable portfolio rules, that is also considered in this paper. The
main result of Hens and Schenk-Hoppé (2002a) is that, in the case of ergodic state of the
world processes and without redundant assets, there is a unique evolutionary stable portfolio
rule, which is the one that puts on each asset the proportion of wealth corresponding to the
expected relative payoff of the asset. In Evstigineev, Hens, and Schenk-Hoppé (2003) this
result is extended to a model with long-lived assets, under the assumption of Markow state
of the world. Introducing long-lived assets allows to take into account the capital gains and
losses due to assets’ prices changes. This will also be of much importance in the presence
of liquidity shocks, as we will discuss in this paper. Moreover, in Evstigneev, Hens, and
Schenk-Hoppé (2002) it is also shown that, with independent and identically distributed
state of world processes, the strategy that invests according to relative dividends is the
unique simple portfolio rule that asymptotically gathers total wealth. A generalization of
the results obtained by Blume and Easley (1992). Sandroni (2000), and Blume and Easley
(2002) have also studied the case of long-lived assets, to include market prices in the evolu-
tion of wealth shares. The main result of Blume and Easley (2002) and Sandroni (2000), is
that, with complete markets, among all infinite horizon expected utility maximizers, those
who happen to have rational expectation will eventually dominate the market and this result
holds independently of investors’ risk aversion. In his model Sandroni (2000) also includes
endogenously determined positive and proportional saving rates.
All these models assume that withdrawals and savings are a positive proportion of the cur-
rent wealth, so that bankruptcy is excluded in their setup. Moreover, e.g. in Evstigineev,
Hens, and Schenk-Hoppé (2003), the withdrawal rates are assumed to be identical among
investors. Under these assumptions, the only criterion that matters for a trading strategy to
be evolutionary stable, is its exponential growth rate in the presence of a mutant strategy.
This paper shows that with non-proportional and maybe negative withdrawal rates, a second
criterion has to be considered, since in fact, even if a strategy has the maximal exponential
growth rate in the presence of any mutant, it can disappear because exogenously determined
liquidity shock occurs.

In the classical finance approach with exogenously given price dynamics, asset-liability
management models already assume that investors maximize the investment’s expected pay-
off less penalties for bankruptcy or targets not meet (see Carino, Myers, and Ziemba 1998,
Carino and Ziemba 1998). Liu, Longstaff, and Pan (2003) consider a price dynamic for the
risky asset with jumps (event risk) and take utility functions identical to −∞ for strictly
negative terminal wealth, so that no portfolio rule, that has a strictly positive probability
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of going bankrupt, will be optimal. They obtain lower (since they do not exclude short-
selling) and upper bounds for the proportion of wealth to be put on the risky asset and they
provide optimal portfolio weights. Alternatively, Browne (1997) distinguishes between the
survival problem and the growth problem. He first looks at portfolio rules that maximize
the probability of surviving in the so-called danger-zone (where bankruptcy has strictly pos-
itive probability to occur) and second, he considers portfolio rules that maximize the growth
rate in the safe-zone, where bankruptcy is almost surely excluded. Browne (1997) identifies
wealth-level dependent strategies, but in his time-continuous setup, no optimal strategy is
found for the danger-zone, and a weaker optimality criterion is introduced. The optimal
strategy for the safe-zone corresponds to a generalization of the Kelly criterion previously
discussed. Zhao and Ziemba (2000) propose a model with a reward function on minimum
subsistence, i.e. the objective function to maximize equals the sum of the expected final
wealth and a concave increasing function on the supremum over the wealth levels that are
almost surely smaller than final wealth. In this way, the optimal portfolio rule solves a
trade-off between expected payoff and minimum subsistence.

The rest of this paper is organized as follows. In the next section we present the model
setup. In Section 3 we derive the no bankruptcy condition on investment strategies, that
ensures that liquidity shocks do not cause bankruptcy. In Section 4 we present the main
results of the paper. Section 5 concludes. Technical results and proofs are given in the
Appendix.

2 An evolutionary model with bankruptcy

Time is discrete and denoted by t = 0, 1, 2, . . . . Uncertainty is modelled by a stochastic
process (St)t∈Z with values in some infinite space S, endowed with power σ-algebra 2|S|.
F t = σ(. . . , S0, S1, . . . , St) denotes the σ-algebra giving all the information available at time
t and F = σ (∪t∈ZF

t). Let Ω = SZ be the space of sample paths (st)t∈Z, where st, t ∈ Z

is the realization of St on S. Finally, P denotes the unique probability measure on (Ω,F)
generated by (St)t∈Z. There are i = 1, . . . , I (I ≥ 2) investors, with initial wealth wi

0.
There is one long-lived risky asset and cash. Cash is risk-less both in terms of its return

R = 1 + r ≥ 1 and price, which is taken as numéraire. The risky asset pays a dividend
Dt(s

t) ≥ 0 at time t, depending on the history st = (. . . , s−1, s0, s1, . . . , st) up to time
t. Moreover, at each time t each investor i withdraws or collects the amount Ci

t(s
t), also

depending on the history st up to time t. Here, we consider insurance companies, so that Ci
t

is the difference between the indemnities to be paid and collected premia.
Let wi

t be the total wealth of investor i at time t after claims’ payment and premia collection,
mi

t ≥ 0 and ai
t ≥ 0 be the unit of cash and risky asset, respectively, held by investor i at

time t and qt be the price of the risky asset. The budget constraint at time t of each investor

4



i is given by
wi

t = mi
t + qt a

i
t. (1)

The wealth of investor i evolves as follows3

wi
t+1 = (1 + r) mi

t + (Dt+1 + qt+1) ai
t − Ci

t+1. (2)

We say that investor i goes bankrupt during period (t, t + 1] (or simply period t + 1) iff
wi

t+1 ≤ 0. In this case she uses all her wealth to pay the indemnities and vanishes from
the market, i.e. we arbitrarily write mi

s = ai
s = 0 for all s ≥ t + 1 (and thus we also set

wi
s = 0 for all s ≥ t + 1). Note that the investor’s wealth at time t + 1 also depends on the

price qt+1 of the risky asset, which is determined at equilibrium by investors’ demand for the
risky asset and supply. Thus, time t + 1 investors’ strategies may cause a bankruptcy. Let
It = {i |wi

t > 0} be the set of investors, who survive period t. Obviously, It ⊆ It−1 and thus
mi

t = ai
t = 0 for all i 6∈ It−1. Investor j is said to be the unique survivor at time t if and

only if It = {j}.
The next period amount Ci

t+1 is determined by the following. At time t investor i can
decide to sell δi

t ≥ 0 insurance contracts on one single future stochastic claim Xt+1 ≥ 0
(which is identical for all investors). The premium Pt+1 of each contract is F t-measurable
(depends only on information available up to time t), determined by the market clearing
condition on the insurance market at time t, and is paid at time t + 1 by the buyer of the
insurance contract, who is supposed to be external to the economy just defined, i.e. buyers
of insurance contracts do not participate to the financial market. The amount collected or
withdrawn by investor i at time t + 1 is then given by the difference

Ci
t+1 = δi

t (Xt+1 − Pt+1)

between claims and premia.
We suppose that the insurance market is regulated and solvency constraints are imposed.
Each investor i should be able to meet her obligation, in a way that conditioning on the
current history st only a proportion αi

t > 0 of her current wealth will be affected with a
small probability ǫi

t > 0, i.e.

P
[
δi
t (Xt+1 − Pt+1) > αi

t w
i
t |s

t
]

= ǫi
t (3)

where for all t and i ∈ It

αi
t ∈ (0, α) and ǫi

t ≤ ǫ. (4)

3To be formally correct, the wealth evolution of equation (2) should be replaced by

wi

t+1 =
[
(1 + r)mi

t
+ (Dt+1 + qt+1) ai

t
− Ci

t+1

]+
,

where for x ∈ R, x+ = max(0, x). We prefer to keep the notation simpler and since we are essentially
looking at strategies that survive in the long run, the wealth evolution of those strategies is correctly given
by equation (2).

5



The parameters α and ǫ are exogenously given by regulatory authorities. Equation (3)
defines the pricing rule for insurance contracts and is called quintile principle and it has
been discussed in Schnieper (1993) and Embrechts (1996). Moreover, it corresponds to
the proportional value-at-risk constraints studied by Leippold, Vanini, and Trojani (2003)
with time independent proportional factors, and sameness between investors in their general
equilibrium consideration. The parameters αi

t and ǫi
t are fixed and can be interpreted as the

“loss acceptability” of investor i and, in the general setting of the model, we assume that
they can vary between investors. Other simplifying assumptions will be introduced later. For
a given premium Pt+1 and parameters αi

t and ǫi
t, equation (3) serves to compute the number

δi
t of insurance contracts that investor i can sell, in order to satisfy the solvency constraint.

The premium Pt+1 is determined endogenously when the insurance market clears.
We should bear in mind that for an investor, going bankrupt means vanishing from

the market and thus should be avoided! They can further decrease their insurance risk by
choosing a smaller αi or a smaller ǫi. As we will see below, an investor with a small αi, who
is a “safer investor” with respect to minimal solvency requirement, is also forced to reduce
her exposure to the insurance market, “losing” in this way growth opportunities when claims
are less than premia. The amount αi

t w
i
t represents the technical reserve or the proportion of

current wealth to be invested prudently by investor i to make the risky insurance business
acceptable in the future (see Norberg and Sundt 1985). If the amount δi

t (Xt+1 − Pt+1) is
strictly greater than the technical reserves, we say that investor i faces a liquidity shock .
From equation (3), investor i faces liquidity shocks with probability ǫi

t during period t + 1.

In our setting, the solvency constraint essentially imposes that mi
t ≥

αi
t

R
wi

t, for all i, or
equivalently

mi
t

wi
t

≥
αi

t

R
, ∀i ∈ It. (5)

Let µt = E
[
Xt |F

t−1
]

and σ2
t = Var(Xt |F

t−1) be the conditional expectation and the con-
ditional variance of Xt, given F t, respectively, and let Ft be the conditional cumulative
distribution function of Yt = Xt−µt

σt
, i.e.

Ft(y) = P
[
Yt ≤ y |F t−1

]
.

Moreover, F−1
t denotes the generalized inverse of Ft. To avoid the premium Pt+1 fully

covering the insurance risk, we impose the following restrictions

Assumption 1 (Insurance market). For t ∈ Z and i ∈ It, let (αi
t, ǫ

i
t) and (α̃i

t, ǫ̃
i
t) be two

possible choices for the loss acceptability parameters of investor i. Let αi
t = α̃i

t. Then for all
premia Pt+1

δi
t > δ̃i

t ⇒ ǫi
t > ǫ̃i

t.

This assumption says that for given technical reserves, the probability of having liquidity
shocks strictly increases with the number of insurance contracts sold. If this is not satisfied,
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then it would be possible to cover additional insurance risk only through collected premia,
which is not a fair pricing rule. Since δi

t = 0 solves equation (3) with αi
t = 0 and ǫi

t = 0,
Assumption 1 also implies that an insurance company without technical reserves that sells a
strictly positive number of contracts, faces liquidity shocks with a strictly positive probability.
Assumption 1 indirectly imposes restrictions on equilibrium premia, as shown in the following
lemma.

Lemma 1. If Assumption 1 holds, then for all t ∈ Z and i ∈ It:

Pt+1 < µt+1 + σt+1 F−1
t+1(1 − ǫi

t).

Proof. Let us suppose that

Pt+1 ≥ µt+1 + σt+1 F−1
t+1(1 − ǫi

t).

for some t and i ∈ It. Then
Pt+1 − µt+1

σt+1

≥ F−1
t+1(1 − ǫi

t)

and thus for all δ > 0

P
[
δ (Xt+1 − Pt+1) > 0

]
= P

[
Xt+1 − Pt+1 > 0

]
= P

[
Yt+1 >

Pt+1 − µt+1

σt+1

]
≤ ǫi

t

independently from δ. This contradicts Assumption 1, since the last inequality shows that
the probability of liquidity shocks is in fact independent of the number of contracts, with
fixed technical reserves.

From equation (3) and Lemma 1, we obtain

δi
t

[
µt+1 + σt+1 F−1

t+1(1 − ǫi
t) − Pt+1

]
= αi

t w
i
t, (6)

or

δi
t =

αi
t w

i
t

µt+1 + σt+1 F−1
t+1(1 − ǫi

t) − Pt+1

. (7)

Lemma 1 ensures that δi
t ≥ 0. Equation (7) says that investor i supply for insurance con-

tracts is proportional to her technical reserve and decreases with increasing probability ǫi
t.

For a fixed supply of insurance contracts, an investor can therefore decrease her technical
reserve by decreasing her liquidity shock probability ǫi

t. Naturally, the solvency constraints
(3) and (4) do not take into account the magnitude of a liquidity shock! This is a well know
critique of quintile constraints (see e.g. Artzner, Delbaen, Eber, and Heath 1997).

We assume that demand for insurance contracts is normalized to 1, i.e.
∑

i δ
i
t = 1 for all

t. It follows:
Pt+1 = µt+1 + σt+1

∑

i

δi
t F−1

t+1(1 − ǫi
t) −

∑

i

αi
t w

i
t. (8)

7



σt+1

∑

i δ
i
t F−1

t+1(1− ǫi
t)−

∑

i α
i
t w

i
t is the so-called loading factor and is supposed to be strictly

positive. In fact, it is well known from the ruin theory, that if Pt+1 ≤ µt+1, i.e. if the
premium at time t is less or equal to the conditional expectation of next period claims given
all information available at time t, then for any value for the initial wealth (without financial
market) the probability of going bankrupt is equal one (see Feller 1971, page 396). From
the last equation, we see that the premium of the insurance contract increases with in-
creasing conditional variance, as one would expect, and decreases when the weighted wealth
∑I

i=1 αi
t w

i
t increases. Moreover, a safer investor, with a smaller αi or a smaller ǫi than a

riskier investor, contributes to an increase of the premium, from which all investors benefit.
This behaviour has also been described by Ceccarelli (2002). Equations (7) and (8) can be
solved for δi

t and Pt+1: they provide a unique solution with a strictly positive premium (this
will become clear for the special case considered below; however, we give a general proof of
the existence and uniqueness of a solution in the Appendix 6.1).

Since the goal of this paper is to analyse investors’ long-run wealth evolution with respect
to their investment strategies on financial markets, we assume that their profiles on insurance
markets are identical, meaning that they possess the same loss acceptability parameters.
Here, we do not address the question of investors’ strategies (choice of the loss acceptability
parameters) on the insurance market. It is not clear whether an investor who has higher
loss acceptability, will growth faster or not. In fact, while it is true by equation (7) that
higher loss acceptability means greater liquidity shocks (for both the probability and the
amount), it must also be said that investors who sell a larger number of contracts benefit
from growth opportunities when premia are greater than claims. Moreover, less technical
reserves means a smaller exposure to liquidity shocks (as discussed above), but also less
restrictive constraints for the investment strategies, meaning that those investors can put
less money into the risk-free asset and profit from growth opportunities on the financial
market. We address these issues in other works. Here, as in Leippold, Vanini, and Trojani
(2003) we make the following assumption.

Assumption 2 (Loss acceptability).
Investors’ “loss acceptability” is constant over time and identical for all investors, i.e. αi

t =
α ∈ (0, α) and ǫi

t = ǫ for all t and i = 1, . . . , I.

Note that by equations (7) and (8), when all investors possess the same ǫi
t, δi

t does not depend
on ǫi

t anymore and therefore the magnitude of liquidity shocks is minimized for all investors
if ǫi

t = ǫ. Moreover, by Assumption 2 and equations (7) and (8) it follows

Pt+1 = µt+1 + σt+1 F−1
t+1(1 − ǫ) − α

∑

i

wi
t, (9)

δi
t =

wi
t

∑

j wj
t

, (10)
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and therefore investor’s i supply for insurance contracts corresponds to her relative wealth.

Now, we introduce a precise structure for the claim Xt+1. In particular, we assume that
the total claim Xt+1 is proportional to the aggregate wealth available at time t, meaning
that the amount of insured claims increases or decreases depending on the aggregate success
of the investors (a similar assumption will be also made for the dividend process). This
assumption also prevents a shock from destroying the economy. The proportional factor is
supposed to be independent of the history up to time t and can be interpreted as the liquidity
shock factor for the economy. Mathematically we have

Xt+1 = ηt+1 Wt, (11)

where ηt+1 ∈ [0, 1] is independent of F t and Wt =
∑

i∈It
wi

t =
∑I

i=1 wi
t is the aggregate wealth

available in the economy at time t. From equation (11) it follows that µt+1 = Wt E
[
ηt+1

]

and σ2
t+1 = W 2

t Var(ηt+1). Moreover, ηt+1 ∼ Gt+1 where Ft+1(y) = Gt+1(
y

Wt
), ∀y. Thus

Pt+1 =
(
µ(ηt+1) + σ(ηt+1) G−1

t+1(1 − ǫ) − α
)

Wt.

Therefore, the premium Pt+1 is strictly positive for all t, if the loading factor (σ(ηt+1) G−1
t+1(1−

ǫ) − α) Wt is greater than zero for all t. Moreover, for the sake of simplicity, we make the
following assumption:

Assumption 3 (Liquidity shocks).
Liquidity shocks (ηt)t≥1 are independent and identically distributed, i.e. Gt = G for all t,
ηt ∼ η ∼ G, where G is a continuous cumulative distribution function.

Let µ = E
[
η
]

and σ2 = Var(η), then by Assumptions 2 and 3,

Pt+1 = µWt + σ G−1(1 − ǫ) Wt − α Wt = (β − α) Wt, (12)

Ci
t+1 = (ηt+1 − β + α) wi

t, (13)

where β = µ + σ G−1(1 − ǫ). As discussed above for the general case, we impose that the
loading factor (σ G−1(1 − ǫ) − α) Wt is strictly positive, i.e. α < min{α, σ G−1(1−ǫ)}. Then
β − α > β − σ G−1(1 − ǫ) = µ > 0 and thus Pt+1 > 0 for all t.

We now turn our attention to the financial market. We suppose that the risky asset
is in fixed supply, normalized to one. Instead, the supply of cash is exogenously given by
cumulated dividends and collected premia less withdrawals. The market clearing conditions
are

I∑

i=1

ai
t =

∑

i∈It

ai
t = 1 (14)

Mt = R
∑

i∈It

mi
t−1 + Dt

∑

i∈It

ai
t−1 − qt

(

1 −
∑

i∈It

ai
t−1

)

− Ci
t (15)
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where Mt =
∑

i∈It
mi

t and Ct =
∑

i∈It
Ci

t . Note that
∑

i∈It
mi

t−1 ≤ Mt−1 =
∑

i∈It−1
mi

t−1

since It ⊆ It−1. Moreover, if no bankruptcy occurs during period t, then It = It−1 and the
usual equation for Mt follows, i.e. Mt = R Mt−1 + Dt − Ct. Note that Mt ≥ 0 for all t. In
fact if for some t, Mt < 0, then there exists at least one investor, say j ∈ It, with mj

t < 0.
But since borrowing is not allowed, investor j is forced into bankruptcy during period t, a
contradiction to j ∈ It.
To be consistent with Assumption 3, and in order to avoid that dividends become very small
as compared to insurance shocks, we make the following assumption for the dividend process:

Assumption 4 (Dividend process).

(i) For each t,
Dt = dt Wt−1,

for some process (dt)t>0, with dt ∼ d ∼ H independently and identically distributed
with cumulative distribution function H on [0, 1].

(ii)
P
[
d > 0

]
= 1 − H(0) ∈ (0, 1),

i.e. at each time dividends have strictly positive probability of being zero and of being
strictly positive.

This assumption, together with Assumption 3, solves the difficulty encountered by Hens
and Schenk-Hoppé (2002b), where the rate of return on the long-lived asset eventually dom-
inates that of the numéraire, so that the strategy that invests only in long-lived asset is able
to drive out any other strategy. Hens and Schenk-Hoppé (2002b) suggest to base evolution-
ary finance model on Lucas (1978), where assets’ payoffs are in term of a single perishable
consumption good. In this way, the consumption rate is at least as the growth rate of the
total payoff of the market. In our model, also without relaying on Lucas (1978), the pricing
rule for insurance contracts (that also determines Ct) and, Assumption 3 and 4, ensure that
the rate of “consumption” increases proportionally to the growth rate of the total payoff.
Moreover, as will discuss later, if assets’ payoffs were in term of perishable consumption
goods, it would not be possible to find a trading strategy that preserves the wealth (the
reserve capital in the insurance business) and have positive growth rate.

Let λi
t ∈ [0, 1] be the proportion of wealth invested in the risky asset by investor i ∈ It

at time t. We have

ai
t =

λi
t w

i
t

qt

and mi
t = (1 − λi

t) wi
t.

We call the sequence (λi
t){t>0 | i∈It} the trading strategy of investor i and λi

t the strategy of
investor i at time t. We use the convention that λi

t = 0 if i /∈ It. Note that λi
t is a random

variable, i.e. it depends on the state of the world up to time t, st. Other assumptions on the
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process defining the trading strategy (λi
t)t≥0 will be introduced later. Here, we just impose

the following restriction on the strategies at time t, (λi
t)i∈It

, to prevent the price of the risky
asset from becoming zero.

Assumption 5 (Investors’ strategies).
For each t such that |It| > 1, there exists i, j ∈ It with (1 − λi

t) λj
t > 0.

Assumption 5 essentially states that if more than one investor survives period t, then there
exists at least one survivor with a strictly positive proportion of her wealth invested in
the risky asset and one survivor with a strictly positive proportion of her wealth invested
in the risk-free asset. Naturally, when a survivor has a mixed strategy4 λi

t ∈ (0, 1), then
Assumption 5 is obviously satisfied with i = j. If |It| = 1, then it might occur that the
unique survivor uses a strategy investing all her wealth in the risk-free asset. The strategy
λi

t = 1 is excluded by the solvency constraint. In fact, the solvency condition stated by
equation (5) is equivalent to

1 − λi
t ≥

α

R
⇔ λi

t ≤ 1 −
α

R
=: λ ∈ (0, 1), (16)

i.e., for each investor, the proportion of wealth invested in the risky asset is bounded from
above by λ. It seems to be a natural restriction for an insurance company (or a pension
fund), as shown e.g. in Davis (2001, Tables 5 and 6) for life insurances and pension funds
of several countries. Let λt = (λ1

t , . . . , λ
I
t )

′, then the market clearing condition for the risky
asset (14) implies

qt = λ′
twt.

Note that for i /∈ It, wi
t = 0 by assumption and thus λ′

twt =
∑

i∈It
λi

t w
i
t. We rewrite

equation (2) as follows

wi
t+1 =

[

R (1 − λi
t) + (dt+1 Wt + qt+1)

λi
t

qt

− (ηt+1 − β + α)

]

wi
t. (17)

3 The no bankruptcy condition

Before discussing the long run wealth evolution of investment strategies, we give conditions
for avoiding bankruptcy. In fact, a necessary condition for long-term survival is not to go
bankrupt and strategies that do not almost surely exclude bankruptcy are avoided by in-
vestors with long-term horizon. Therefore, as in Browne (1997) and Liu, Longstaff, and Pan
(2003), we distinguish between the conditions on the strategies to avoid going bankrupt and

4A strategy (λi

t
)t is called a mixed strategy, iff it assigns a strictly positive percentage to every asset, for

all t. In our setting, a mixed strategy is characterized by λi

t
∈ (0, 1) for all t (see Evstigneev, Hens, and

Schenk-Hoppé 2002).
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then, given that investors satisfy those conditions, we analyses the long-term wealth evolu-
tion. In our setting, analogously to Liu, Longstaff, and Pan (2003), we obtain upper bounds
for the λi

t’s (a lower bound is given by the no short sale restriction). We will show below
that an investor with a strategy that does not prevent bankruptcy at each period, has a
strictly positive probability of vanishing from the market, even if she is the unique survivor.
Moreover, if an investor uses a simple strategy that does not prevent bankruptcy, she has
probability 1 of vanishing from the market, even if at some point in time she is the unique
survivor and thus dominates assets’ prices. In particular, an investor holding only the risky
asset (i.e. λi

t = 1) becomes extinct with probability 1. This result shows that Theorem 1 in
Hens and Schenk-Hoppé (2002b) does not hold when bankruptcy can occur.

We first consider the case |It| = 1 for some t > 0, i.e. It = {j} for some j ∈ {1, . . . , I}.
We restrict ourself to strategies λj

t > 0. If λj
t = 0, as is clearly excluded since R >

sup supp(η) − β + α5! The price of the risky asset at time t is given by qt = λj
t wj

t and
the aggregate wealth at time t is Wt = wj

t : from equation (17) it follows immediately that

j ∈ It+1 ⇔ R (1 − λj
t) − (ηt+1 − β + α) + dt+1 > 0.

Let η = inf supp(η), η = sup supp(η) and d = sup supp(d) and K be the continuous

multivariate cumulative distribution of (η, d) on [η, η] × [0, d], i.e.

K(x, y) = P
[
η ≤ x, d ≤ y

]
.

Moreover, let K̃(z) = P
[
d − η ≤ z

]
=

∫ η

η

∫ x+z

0
dK(x, y) be the cumulative distribution

function of d − η. Then

P
[
j ∈ It+1

]
= P

[
dt+1 − ηt+1 > −R (1 − λj

t) − β + α
]

= 1 − K̃(−R (1 − λj
t) − β + α)

and thus

P
[
j ∈ It+1

]
= 1 ⇔ λj

t ≤
R + k + β − α

R
=: λ, (18)

where k = inf supp(K̃). We call this latter equation the no bankruptcy condition. Note that

λ = λ +
β + k

R
.

Therefore, the solvency constraint (16) is a stronger condition on the strategies than the
no bankruptcy condition (18), if β > −k, i.e. if higher shocks (greater than β) on the

5supp(η) denotes the support of η.
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insurance market and small dividends (less the η − β) in the financial market do not occur
simultaneously, which is not a realistic assumption. This is due to the fact that the solvency
constraint does not care about dividends, and thus does not take into consideration the
(positive) correlation between shocks and dividends, such that higher shocks will have a
smaller impact on the wealth evolution since they correspond to higher dividends. If β < −k
(which is the most common case, as for example when insurance shocks and dividends are
considered independent), the no bankruptcy condition (18) is stronger than the solvency
constraint and thus investors just care about the no bankruptcy condition (18). In this
case, the solvency constraint (16) does not eliminate bankruptcy! In the sequel we make the
following assumption on the joint distribution of (η, d):

Assumption 6 (Shocks and dividends joint distribution).
For all δ1 > 0 and δ2 > 0,

P
[
η > η − δ1, d ≤ δ2

]
> 0,

i.e., big shocks and very small dividends have strictly positive probability to jointly occur.

Assumption 6 implies the following Lemma on the distribution of d − η.

Lemma 2. For all δ > 0,
P
[
d − η ≤ −η + δ

]
> 0

and thus k = −η, i.e. maximal shocks and zero dividends have strictly positive probability to
jointly occur.

Proof.

P
[
d − η ≤ −η + δ

]
= P

[
d ≤ η − η + δ

]

=

∫

0<δ1<δ

P
[
d ≤ η − η + δ |η − η > −δ1

]
d P

[
η − η > −δ1

]

≥

∫

0<δ1<δ

P
[
d ≤ −δ1 + δ |η − η > −δ1

]
d P

[
η − η > −δ1

]

=

∫

0<δ1<δ

P
[
d ≤ −δ1 + δ, η > η − δ1

]

P
[
η > η − δ1

]

︸ ︷︷ ︸

>0

d P
[
η − η > −δ1

]

> 0

Thus, K̃(−η + δ) > 0 for all δ > 0, i.e. k = −η.

Under Assumption 6, the strategy λ corresponds to R−η+β−α

R
and is a stronger condition on

the strategies than the solvency constraint, since obviously β < −η. From now on, we take

λ =
R − η + β − α

R
.
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Let us now consider a single survivor j with a simple strategy λj > λ. Then at each period
she will have a strictly positive probability of going bankrupt and therefore P

[
j ∈ ∩tIt

]
= 0,

meaning that she will vanish almost surely from the market. We state these results in the
following Lemma.

Lemma 3. Let It = {j} for some t and j ∈ {1, . . . , I}, i.e. investor j is the unique survivor
at time t. The following holds:

(i) If λj
t > λ, then investor j has strictly positive probability of going bankrupt during

period t + 1.

(ii) If λj
s > λ for all s ≥ t, then investor j will almost surely eventually vanish from

the market. In particular, if investor j uses a simple strategy λj > λ, then she will
eventually almost surely vanish from the market almost surely.

Let us now consider the case |It| > 1. Without loss of generality we set It = {1, 2}:
if It = {i1, . . . , in} with n = |It| > 2, then we can still reduce the original setting to a
2-investors setting by defining a “new investor” with strategy ξs ∈ [0, 1] at time s ∈ {t, t+1}
and wealth ws, where

ξs =

∑n

l=2 λil
s wil

s
∑n

l=2 wil
s

, ws =
n∑

l=2

wil
s .

The price of the risky asset at time s ∈ {t, t + 1} is then given by qs = λi1
s wi1

t + ξs ws. Thus
let us assume that It = {1, 2}. Then from the wealth evolution (17) it follows immediately
that for i = 1, 2

i ∈ It+1 ⇔ R (1 − λi
t) + dt+1 Wt

λi
t

qt

+ wj
t+1 λj

t+1

λi
t

qt

− (ηt+1 − β + α) > 0, (19)

where j 6= i.

Proof. (i) Suppose that i ∈ It+1. Then wi
t+1 > 0 and by equation (17)

wi
t+1 = R (1 − λi

t) wi
t + dt+1 Wt

λi
t w

i
t

qt

+

+
(
w1

t+1 λ1
t+1 + w2

t+1 λ2
t+1

) λi
t w

i
t

qt

− (ηt+1 − β + α) wi
t,

and thus

wi
t+1

(

1 − λi
t+1

λi
t w

i
t

qt

)

= R (1 − λi
t) wi

t + dt+1 Wt

λi
t w

i
t

qt

+wj
t+1 λj

t+1

λi
t w

i
t

qt

− (ηt+1 − β + α) wi
t,
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where j 6= i. Since λi
t+1 6= 1 (solvency restriction), then

(

1 − λi
t+1

λi
t wi

t

qt

)

> 0, and thus

from wi
t+1 > 0 it follows that

R (1 − λi
t) wi

t + dt+1 Wt

λi
t w

i
t

qt

+ wj
t+1 λj

t+1

λi
t w

i
t

qt

− (ηt+1 − β + α) wi
t > 0.

Since i ∈ It, then wi
t > 0 and therefore dividing the last inequality by wi

t we obtain

R (1 − λi
t) + dt+1 Wt

λi
t

qt

+ wj
t+1 λj

t+1

λi
t

qt

− (ηt+1 − β + α) > 0.

(ii) Suppose now that

R (1 − λi
t) + dt+1 Wt

λi
t

qt

+ wj
t+1 λj

t+1

λi
t

qt

− (ηt+1 − β + α) > 0,

where j 6= i. Then for i ∈ It,

wi
t

[

R (1 − λi
t) + dt+1 Wt

λi
t

qt

+ wj
t+1 λj

t+1

λi
t

qt

− (ηt+1 − β + α)

]

> 0,

and thus wi
t+1 > 0, since

wi
t+1 =



wi
t

R (1 − λi
t) + dt+1 Wt

λi
t

qt
+ wj

t+1 λj
t+1

λi
t

qt
− (ηt+1 − β + α)

1 − λi
t+1

λi
t wi

t

qt





+

and 1 − λi
t+1

λi
t wi

t

qt
> 0 by equation (16).

The necessary and sufficient condition (19) for avoiding bankruptcy for investor i also

depends on other investors’ wealths and strategies, through the term wj
t+1 λj

t+1
λi

t

wi
t

. Spec-

ulating on other investors’ behaviour, investor i could essentially put less wealth on the
risk-free asset than allowed under the no bankruptcy condition (18). While this would imply
a strictly positive probability of going bankrupt when investor i dominates assets’ prices,
the no bankruptcy condition is not necessary for avoiding almost surely bankruptcy in the
presence of competitors, when they significantly invest in the risky asset. However, the no
bankruptcy condition is the minimal condition on investment strategies that almost surely
eliminates bankruptcy in the presence of each type of competitor. In fact, an investor who
systematically violates the no bankruptcy condition (18), will eventually disappear from the
market with probability one, if her opponents are investing all their wealth on the risk-free
asset, i.e. an investment strategy that systematically violates the no bankruptcy condition
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is almost surely driven out by the risk-free strategy. Thus the no bankruptcy condition
is the minimal condition that ensures that each investor will not go bankrupt with prob-
ability 1, regardless from other investors’ behaviour. In the sequel, because of the long
horizon perspective considered here, and following the approach of Liu, Longstaff, and Pan
(2003), we use the no bankruptcy condition to ensure that investors almost surely do not
face bankruptcy. In their setting, bankruptcy is penalized with minus infinity utility, so that
no optimal strategy will allow final negative wealth with strictly positive probability.

4 The main results

From the previous section, it is clear that an investor who uses a strategy that does not
almost surely eliminate bankruptcy, will eventually disappear from the market, also if at
some point in time she is the unique survivor. Thus, looking at the long-run evolution
of investors’ wealths, a strategy that does not prevent bankruptcy would not be fit, as it is
defined in Blume and Easley (1992). Neither can’t be evolutionary stable, as defined in Hens
and Schenk-Hoppé (2002a) and Evstigineev, Hens, and Schenk-Hoppé (2003), since it will
also disappear almost surely if it dominates asset prices, as shown in Lemma 3. Moreover,
as long as dividends and liquidity shocks are not positive correlated, the solvency restriction
is not enough to avoid bankruptcy. In fact, under the solvency restriction, an investor faces
liquidity shocks with strictly positive probability and if her investment strategy provides
small payoff (in particular, dividends are small), then the liquidity shock destroys her wealth.
Following the discussion of the previous section, we consider the case where the following
assumption holds and we study the long run evolution of investors, who are safe enough on
their investment positions to be almost surely able to face liquidity shocks.

Assumption 7 (The no bankruptcy condition).
For all i ∈ It and all t ∈ Z,

λi
t ∈ [0, λ].

Following Hens and Schenk-Hoppé (2002b), we rewrite the wealth dynamics. We define

Bi
t =

λi
t w

i
t

λ′
t wt

,

and

Ai
t = R (1 − λi

t) wi
t + Bi

t dt+1 Wt − (ηt+1 − β + α) wi
t.

By Assumption 7, we have

wt+1 = At + Bt λ
′
t+1 wt+1
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or

(I − Bt λ
′
t+1)wt+1 = At

where At = (A1
t , . . . , A

I
t )

′, Bt = (B1
t , . . . , B

I
t )

′ and I is the identity on R
I . Note that for

i /∈ It, Ai
t = Bi

t = 0. The inverse of I − Bt λ
′
t+1 is given by I + (1 − λ′

t+1 Bt )−1 Bt λ
′
t+1,

provided that λ′
t+1 Bt 6= 1 (see Horn and Johnson 1985, Sec. 0.7.4). It can be easily checked

that λ′
t+1 Bt < 1 if there exits an investor i ∈ It+1 with λi

t < 1 and λi
t+1 > 0 and this is still

the case when |It| > 1, by Assumptions 5 and 7. If It = {j} for some j, then investor j is
already the unique survivor and the wealth evolution is easily obtained. Therefore, in the
sequel we only consider the case |It| > 1. Under the assumption of no default during period
t + 1, the wealth evolution can then be written as

wt+1 =
(
I − Bt λ

′
t+1

)−1
At

=

(

I +
Btλ

′
t+1

1 − λ′
t+1Bt

)

At, (20)

and the i-th component is given by

wi
t+1 =

wi
t

∑

j(1 − λj
t+1) λj

t wj
t

×

×

[

dt+1 Wt λ
i
t +

[
R(λ − λi

t) + (η − ηt+1)
]

(

λ′
twt +

∑

j 6=i

(λi
t − λj

t)λ
j
t+1 wj

t

)]

.

This result is explicitly derived in the Appendix 6.2. We use that

λ =
R − η + β − α

R
⇐⇒ R + β − α = R λ + η.

The price at time t + 1 follows:

qt+1 = λ′
t+1 At +

λ′
t+1 Bt λ

′
t+1 At

1 − λ′
t+1 Bt

=
λ′

t+1 At

1 − λ′
t+1 Bt

.

Let ri
t =

wi
t

Wt
, and ζ i

t =
λi

t

λ
for i = 1, . . . , I and t ∈ Z. The vector rt = (r1

t , . . . , r
I
t )

′ is the

vector of wealth shares, i.e. rt ∈ ∆I−1 = {r ∈ R
i
+ |

∑

i r
i
t = 1}. By Assumption 7, ζ i

t ∈ [0, 1]
and ζ i

t = 1 iff λi
t = λ. We obtain

wi
t+1 =

ri
t Wt

∑

j(1 − λ ζj
t+1) ζj

t rj
t

×

×

[

dt+1 ζ i
t +

[
R λ (1 − ζ i

t) + (η − ηt+1)
]

(

ζ ′
trt + λ

∑

j 6=i

(ζ i
t − ζj

t ) ζj
t+1 rj

t

)]

.
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Let θt+1 be defined by

θt+1 = ζ ′
trt dt+1 +

+
∑

k

(

R λ (1 − ζk
t ) + (η − ηt+1)

)

rk
t

(

ζ ′
trt + λ

∑

j

(ζk
t − ζj

t ) ζj
t+1 rj

t

)

.

Then

Wt+1 =
θt+1

∑

j(1 − λ ζj
t+1) ζj

t rj
t

Wt.

The ratio θt+1
∑

j(1−λ ζ
j
t+1

) ζ
j
t r

j
t

is the growth rate of the economy. From the wealth evolution of

equation (20), we obtain the evolution of wealth shares:

ri
t+1 =

ri
t

θt+1

×

×

[

dt+1ζ
i
t +

[
R λ (1 − ζ i

t) + (η − ηt+1)
]

(

ζ ′
trt + λ

∑

j

(ζ i
t − ζj

t )ζ
j
t+1r

j
t

)]

.

(21)

From this last equation it follows directly that ri
t+1 = 0 if ri

t = 0 and therefore also, ri
t+1 = 1

if ri
t = 1.

Without any additional assumption on the dividend process, the liquidity shock factor and
the investment strategies we are now able to prove that a trading strategy that corresponds
to the no bankruptcy boundary λ, is almost surely driven out by any strategy that is bounded
away from λ. From equation (21) it follows that for i, k ∈ It,

ri
t+1

rk
t+1

=

(
ri
t

rk
t

)

×

×
dt+1ζ

i
t + [Rλ(1 − ζ i

t) + (η − ηt+1)]
(

ζT
t rt + λ

∑

j 6=i(ζ
i
t − ζj

t )ζ
j
t+1r

j
t

)

dt+1ζk
t +

[
Rλ(1 − ζk

t ) + (η − ηt+1)
] (

ζT
t rt + λ

∑

j 6=k(ζ
k
t − ζj

t ) ζj
t+1r

j
t

) .

Let us now suppose that only two investors exist. The first investor is using a simple strategy
corresponding to the no bankruptcy boundary, i.e. λ1

t = λ for all t. The second investor is
using a strategy which is bounded away from the no bankruptcy condition, as well as from
the strategy putting the wealth only on the risk-free asset, i.e. δ̃ < λ2

t < λ − δ̃ for all t > 0
and for some δ̃ > 0. Using the notation introduced above, we have ζ1

t = 1 for all t and

ζ2
t ∈ (δ, 1 − δ) for all t and δ = δ̃

λ
> 0. We obtain the following result.

Theorem 1. Under Assumptions 3-7, and given an investor with ζ1
t = 1 for all t > 0 and

an investor with ζ2
t ∈ (δ, 1 − δ) for all t > 0 and some δ > 0, the investor with the simple
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strategy corresponding to the no bankruptcy boundary, will almost surely vanish from the
market.

Proof. On {dt+1−ηt+1 > −η} (by Assumptions 4 and Assumption 6, this set has probability
one) we have

r2
t+1

r1
t+1

=

(
r2
t

r1
t

)
dt+1 ζ2

t + [R λ (1 − ζ2
t ) + (η − ηt+1)]

(
ζT

t rt − (1 − ζ2
t ) λ r1

t

)

dt+1 + (η − ηt+1)
(
ζT

t rt + (1 − ζ2
t ) λ ζ2

t+1 r2
t

)

=

(
r1
t

r2
t

)

×

×
dt+1ζ

2
t + [R λ(1 − ζ2

t ) + (η − ηt+1)] [1 − (1 − ζ2
t ) λ − (1 − ζ2

t )(1 − λ)r2
t ]

dt+1 + (η − ηt+1)
[
1 − (1 − ζ2

t )(1 − λζ2
t+1)r

2
t

]

≥

(
r1
t

r2
t

)

min

(
dt+1 ζ2

t + [1 − (1 − ζ2
t ) λ] [R λ (1 − ζ2

t ) + (η − ηt+1)]

dt+1 + (η − ηt+1)
,

ζ2
t

dt+1 + [R λ (1 − ζ2
t ) + (η − ηt+1)]

dt+1 + (η − ηt+1)
[
ζ2
t (1 − λ ζ2

t+1) + λ ζ2
t+1

]

)

≥

(
r1
t

r2
t

)

min

(
dt+1 ζ2

t + [1 − (1 − ζ2
t ) λ] [R λ (1 − ζ2

t ) + (η − ηt+1)]

dt+1 + (η − ηt+1)
,

ζ2
t

dt+1 + [R λ (1 − ζ2
t ) + (η − ηt+1)]

dt+1 + η − ηt+1

)

≥

(
r1
t

r2
t

)
R λ (1 − δ) δ

dt+1 + η − ηt+1

> 0.

By the first inequality, we use that

r 7→
d ζ + [R λ (1 − ζ) + (η − η)] [1 − (1 − ζ) λ − (1 − ζ) (1 − λ) r]

d + (η − η)
[

1 − (1 − ζ) (1 − λ ζ̃) r
]

is strictly increasing, strictly decreasing or flat as a function of r, depending on the param-
eters d, η, ζ, ζ̃, λ and R. Thus, the minimum of the function is attained for r = 1 or r = 0.
By the second inequality, we use that

[
ζ2
t (1 − λ ζ2

t+1) + λ ζ2
t+1

]
< 1,

for all ζ2
t , ζ

2
t+1 ∈ [0, 1].

Iteratively, we obtain

log
r2
t+1

r1
t+1

≥

t+1∑

τ=1

log

(
R λ (1 − δ) δ

dτ + η − ητ

)

+ log
r2
0

r1
0

.
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Let ǫ < R (1 − δ) δ λ, then

log
r2
t+1

r1
t+1

≥ C
t+1∑

τ=1

1{dτ+η−ητ≤ǫ} + log
r2
0

r1
0

where C = log R (1−δ) δ λ

ǫ
> 0 by definition of ǫ. By the Theorem,

lim
t→∞

1

t + 1
log

r2
t+1

r1
t+1

≥ C lim
t→∞

1

t + 1

(
t+1∑

τ=1

1{dτ+η−ητ≤ǫ} + log
r2
0

r1
0

)

= C K̃(d − η ≤ −η + ǫ) = γ > 0,

by Assumption 6. Thus
r2
t

1−r2
t

=
r2
t

r1
t
≈ exp(t γ) → ∞ as t → ∞, i.e r2

t → 1 almost surely.

The theorem states that, while being at the boundary of the no-bankruptcy condition
means that bankruptcy is excluded with probability one, the market selection mechanism still
forces such an investor to vanish from the market, if other investors are using strategies that
are bounded away from λ. Therefore, the trading strategy λi

t = λ cannot be evolutionary
stable as defined by Evstigineev, Hens, and Schenk-Hoppé (2003). In fact, even if this
strategy possesses almost the entire wealth, an investment strategy that is bounded away
from λ is able to drastically perturb the distribution of wealth shares and to drive out λi

t.
We next ask the question about investment strategies that are evolutionary stable, referring
to Hens and Schenk-Hoppé (2002a) and Evstigineev, Hens, and Schenk-Hoppé (2003). The
evolution of wealth shares from equation (21) can be written as follows. For i = 1, . . . , I let

f i(rt, t) =
ri
t

θt+1

[

dt+1ζ
i
t +

(

Rλ(1 − ζ i
t) + (η − ηt+1)

)

×

×

(

ζ ′
trt + λ

∑

j

(ζ i
t − ζj

t ) ζj
t+1 rj

t

)]

. (22)

Then
ri
t+1 = f i(rt, t)

or
rt+1 = f(rt, t), (23)

where f = (f 1, . . . , f I)′. Although it does not appear explicitly in the definition of f i
t , the

function ft also depends on the state of the world st+1 up to time t + 1, through investors’
strategies at time t + 1, the dividend dt+1 and the liquidity shock factor ηt+1. We make the
following additional assumption on the trading strategies to make f independent from t and,
therefore, the market selection mechanism stationary, also because Assumptions 3 and 4 on
(ηt)t∈Z and (dt)t∈Z, respectively.
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Assumption 8 (Stationary trading strategies).
The trading strategies are stationary, i.e. for all t ∈ Z and all i ∈ It

λi
t(s

t) = λi(st).

The market selection process (23) generates a random dynamical system (see Arnold
1998) on the simplex ∆I−1. Given a vector of initial wealth shares r ∈ ∆I−1 and t > 0, the
map

φ(t, ω, r) = f(st, ·) ◦ f(st−1, ·) ◦ · · · ◦ f(s1, r), (24)

on N × Ω × ∆I−1 gives the investors’ wealth shares at time t, if the state of the world is
ω = (st)t∈Z, and φ(0, ω, r) = r. In the sequel we characterize vectors of wealth shares that
are invariant under φ. We introduce the following definition.

Definition 1 (Fixed point). The vector of relative wealth shares r ∈ ∆I−1 is called a
deterministic fixed point of φ, if and only if

φ(t, r, ·) = r

almost surely for all t. The distribution of market shares r is said to be invariant under the
market selection process (23).

Clearly, r is a deterministic fixed point of φ if and only if f(r) = φ(1, r, ·) = r almost
surely. Therefore, the vectors of wealth shares r = ei for i = 1, . . . , I are deterministic fixed
points of φ, where

ei,j =

{
1 if j = i
0 else

.

The following lemma shows that ei are the unique deterministic fixed points of φ. This result
also holds if Assumption 8 is not satisfied.

Lemma 4. Let r be a deterministic fixed point of φ. Then r = ei for some i = 1, . . . , I.

Proof. Let assume that ri = ri
t+1 = ri

t ∈ (0, 1). Then

θt+1 = dt+1 ζ i
t +

(

R λ (1 − ζ i
t) + (η − ηt+1)

) (

ζ ′
trt + λ

∑

j

(ζ i
t − ζj

t ) ζj
t+1 rj

t

)

,

or equivalently

dt+1

∑

k 6=i

ζk
t rk

t +

+
∑

k 6=i

(

R λ (1 − ζk
t ) + (η − ηt+1)

)

rk
t

(

ζ ′
trt + λ

∑

j

(ζk
t − ζj

t ) ζj
t+1 rj

t

)

= dt+1 ζ i
t (1 − ri

t) +

+(1 − ri
t)

(

R λ (1 − ζ i
t) + (η − ηt+1)

)(

ζ ′
trt + λ

∑

j

(ζ i
t − ζj

t ) ζj
t+1 rj

t

)

.

(25)
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Since 1 − ri
t =

∑

k 6=i r
k
t , the right-hand side of equation (25) corresponds to

dt+1

∑

k 6=i

ζ i
t rk

t +
∑

k 6=i

(

R λ (1 − ζ i
t) + (η − ηt+1)

)

rk
t

(

ζ ′
trt + λ

∑

j

(ζ i
t − ζj

t ) ζj
t+1 rj

t

)

and thus equation (25) is equivalent to

0 = dt+1

∑

k 6=i

(ζ i
t − ζk

t ) rk
t + ζ ′

trt R λ
∑

k 6=i

(ζk
t − ζ i

t) rk
t

+
∑

k 6=i

(

R λ (1 − ζ i
t) + (η − ηt+1)

)

rk
t λ

∑

j

(ζ i
t − ζj

t ) ζj
t+1 rj

t

+
∑

k 6=i

(

R λ (1 − ζk
t ) + (η − ηt+1)

)

rk
t λ

∑

j

(ζj
t − ζk

t ) ζj
t+1 rj

t

= dt+1

∑

k

(ζ i
t − ζk

t ) rk
t + λ (η − ηt+1)

∑

k

(ζ i
t − ζk

t ) rk
t

∑

j

ζj
t+1 rj

t

+R λ2
∑

k

(ζ i
t − ζk

t ) rk
t

∑

j

(1 + ζj
t ) ζj

t+1 rj
t

−Rλ2
∑

k

(ζ i
t − ζk

t )(ζ i
t + ζk

t )rk
t

∑

j

ζj
t+1r

j
t − R λ

∑

k

(ζ i
t − ζk

t )rk
t

∑

j

ζj
t r

j
t .

Let us first suppose that
∑

k(ζ
i
t − ζk

t ) rk
t = 0. Then ζi = ξt, where ξt =

∑

k 6=i ζk
t rk

t

1−ri
t

. Moreover,

the last equation is equivalent to

∑

k

(ζ i
t − ζk

t ) ζk
t rk

t = 0

and thus
ξ2
t =

∑

k 6=i

(ζk
t )2 rk

t .

This last equation implies ζk
t = 0 for all k, or rk

t = 0 for k 6= i. In the first case we have a
contradiction to Assumption 5. In the second case we have a contradiction to ri

t ∈ (0, 1).
Let us now suppose that

∑

k(ζ
i
t − ζk

t ) rk
t 6= 0. Without loss of generality, we take

∑

k(ζ
i
t −
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ζk
t ) rk

t > 0 (the same argument can also be used for the case
∑

k(ζ
i
t − ζk

t ) rk
t < 0) . Then

0 = dt+1 + λ (η − ηt+1)
∑

j

ζj
t+1 rj

t − R λ
∑

j

(1 − λ ζj
t+1) ζj

t rj
t

−
R λ2

∑

l(ζ
i
t − ζ l

t) rl
t

∑

k

(

(ζ i
t)

2 − (ζk
t )2 −

∑

l

(ζ i
t − ζ l

t) rl
t

)

rk
t

∑

j

ζj
t+1 rj

t

= dt+1 + λ (η − ηt+1)
∑

j

ζj
t+1 rj

t − R λ
∑

j

(1 − λ ζj
t+1) ζj

t rj
t

−
R λ2

∑

l(ζ
i
t − ζ l

t) rl
t

∑

k 6=i

ζk
t (1 − ζk

t ) rk
t

∑

j

ζj
t+1 rj

t .

Since ri
t+1 = ri

t ∈ (0, 1), the set
{

∑

j ζj
t+1 rj

t = 0
}

has probability zero by Assumption 5.

Thus
∑

j ζj
t+1 rj

t > 0 almost surely. Let δ > 0, then by Assumptions 4 and 6, the set
{st+1 |dt+1(st+1) = 0, η − ηt+1(st+1) < δ} has strictly positive probability independently
from st. Thus

(1 − λ)
∑

j

ζj
t rj

t +
λ

∑

l(ζ
i
t − ζ l

t) rl
t

∑

k 6=i

ζk
t (1 − ζk

t ) rk
t < δ.

Since this is true for all δ > 0, ζj
t = 0 for all investors with strictly positive wealth share at

time t, a contradiction to Assumption 5 or ri
t = ri

t+1 ∈ (0, 1). Therefore, ri
t = 0 or ri

t = 1.

The Lemma implies that we can restrict ourselves to monomorphic populations of investors
(all investors with a strictly positive market share possess the same trading strategy), to
analyse invariant wealth share distributions. In particular, we are looking at deterministic
fixed points that are stable, such that a small perturbation of the vector of wealth shares does
not change the long-run evolution. Since invariant wealth share distributions correspond to
monomorphic populations, the stability of investment strategies is related to the stability of
the associated fixed point. Therefore, we consider a population of trading strategies with
an incumbent strategy λi (with market share ri

t) and a distinct mutant strategy λj (with
market share rj

t = 1 − ri
t).

Definition 2 (Evolutionary stable strategies). A trading strategy λi is called evolution-
ary stable if, for all strategies λj, there is a random variable ǫ > 0 such that limt→∞ φi(t, ω, r) =
1 for all ri ≥ 1 − ǫ(ω).
If the choice of mutant strategies is restricted to those trading strategies that are a local mu-
tation of λi, i.e. there exists a random variable δ(ω) > 0 with |λi(ω)− λj(ω)| < δ(ω) almost
surely, then λi is called locally evolutionary stable.
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Let us consider a population of only two investors, where the incumbent is investor 1 with
market share r1

t and the mutant is investor 2 with market share 1 − r1
t . The wealth share

dynamic for investor 1 is obtained from (21) by

ψ(r1
t ) = f 1(r1

t , 1 − r1
t ).

The derivative of ψ evaluated at r1
t = 1 corresponds to

∂ψ(r1
t )

∂r1
t

∣
∣
∣
r1
t =1

=
1

ζ1
t

ζ2
t dt+1 + [R λ (1 − ζ2

t ) + (η − ηt+1)] [ζ
1
t + (ζ2

t − ζ1
t ) λ ζ1

t+1]

dt+1 + R λ (1 − ζ1
t ) + η − ηt+1

.

The right-hand side of this last equation corresponds to the exponential growth rate of the
trading strategy λ2, when investor 1 owns total market wealth (see equation (21)). Note that
by Theorem 1, we can impose without loss of generality that ζ1 6= 1. Thus, the derivative

∂ψ(r1
t )

∂r1
t

∣
∣
∣
r1
t =1

is well defined and bounded for ζ2 ∈ [0, 1].
We restrict ourselves to the case where the processes (St)t∈Z determining the state of nature
is i.i.d. and we denote by µ the distribution of St on S. Then, the growth rate of investor’s
2 market share in a small neighborhood of r1

t = 1 is equal to

gζ1(ζ2) =

∫

SN

g̃ζ1(ζ2(s0), s0) µN(ds0)

where

g̃ζ1(ζ2(s0), s0) =

=

∫

S

µ(ds) log
{

ζ1(s0)−1
[
d(s) + R λ (1 − ζ1(s0)) + η − η(s)

]−1
[

ζ2(s0) d(s)+

+
(

R λ (1 − ζ2(s0)) + (η − η(s))
)(

ζ1(s0) + (ζ2(s0) − ζ1(s0)) λ ζ1(s0, s)
)]}

.

The function ζ2(s0) 7→ g̃ζ1(ζ2(s0), s0) is continuous, strictly concave on [0, 1] for all s0 and,
obviously g̃ζ1(ζ1(s0), s0) = 0 for all s0. Moreover,

∂g̃ζ1(ζ2(s0), s0)

∂ζ2(s0)

∣
∣
∣
ζ2(s0)=ζ1(s0)

=
1

ζ1(s0)
×

×

∫

S

µ(ds)
d(s) − Rλζ1(s0) + Rλ2ζ1(s0, s)(1 − ζ1(s0)) + (η − η(s))λζ1(s0, s)

d(s) +
(

Rλ(1 − ζ1(s0)) + (η − η(s))
) .

The following Theorem holds:
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Theorem 2. Let the state of nature (st)t∈Z be determined by an i.i.d. process. Suppose that
all investors use simple strategies λi(ω) ≡ λi ∈ (0, 1).

(i) If

E
[ d

d + η − η

]
+ λ E

[ η − η

d + η − η

]
≥ R λ E

[ 1

d + η − η

]
,

then there is no evolutionary stable investment strategy.

(ii) If

E
[ d

d + η − η

]
+ λ E

[ η − η

d + η − η

]
< R λ E

[ 1

d + η − η

]
,

then there is a unique evolutionary stable investment strategy λ⋆ = λ ζ⋆ where ζ⋆ sat-
isfies:

∫

S

µ(ds)

[
d(s) − R λ ζ + R λ2 ζ (1 − ζ) + (η − η(s)) λ ζ

]

d(s) + R λ (1 − ζ) + η − η(s)
= 0. (26)

Proof. An investment strategy ζ⋆ is evolutionary stable if gζ⋆(ζ) < 0 for all ζ ∈ [0, 1]. From
Theorem 1, we have ζ⋆ 6= 1. Moreover, if investors strategies are simple, we have

gζ1(ζ2) = g̃ζ1(ζ2).

Thus ζ2 7→ gζ1(ζ2) is continuous, strictly concave and gζ1(ζ1) = 0. Therefore, gζ1(ζ) < 0 for
all ζ ∈ [0, 1] if and only if

d gζ1(ζ2)

d ζ2

∣
∣
∣
ζ2=ζ1

= 0.

Hence, ζ⋆ is an evolutionary stable investment strategy if it solves

0 =

∫

S

µ(ds)

[
d(s) − Rλζ + Rλ2ζ(1 − ζ) + (η − η(s))λζ

]

d(s) + Rλ(1 − ζ) + η − η(s)
.

Let

h(ζ; d, η) =

[
d − R λ ζ + R λ2 ζ (1 − ζ) + (η − η) λ ζ

]

d + R λ (1 − ζ) + η − η
.

Then ∂h(ζ;d,η)
∂ζ

< 0 for ζ ∈ [0, 1], thus h is strictly decreasing on [0, 1] for all d and η and,

h(0; d, η) = d
d+R λ (η−η)

≥ 0 for all d and η, and strictly positive for d > 0. Thus

∫

S

µ(ds) h(0; d(s), η(s)) > 0
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since by Assumption 4 the set {s ∈ S |d(s) > 0} has strictly positive probability. Moreover,

h(1; d, η) = d−R λ+(η−η) λ

d+η−η
and

∫

S

µ(ds) h(1; d(s), η(s)) =

∫

S

µ(ds)
d(s) − R λ + (η − η(s)) λ

d(s) + η − η(s)

=

∫

S

µ(ds)
d(s)

d(s) + η − η(s)
+ λ

∫

S

µ(ds)
η − η(s)

d(s) + η − η(s)

−R λ

∫

S

µ(ds)

d(s) + η − η(s)

= E
[ d

d + η − η

]
+ λ E

[ η − η

d + η − η

]
− R λ E

[ 1

d + η − η

]
.

Therefore ∫

S

µ(ds) h(1; d(s), η(s)) < 0

if and only if

E
[ d

d + η − η

]
+ λ E

[ η − η

d + η − η

]
− R λ E

[ 1

d + η − η

]
< 0.

Thus, if the condition E
[

d
d+η−η

]
+ λ E

[
η−η

d+η−η

]
− R λ E

[
1

d+η−η

]
≥ 0 holds, then the function

∫

S
µ(ds)h(ζ; d(s), η(s)) is strictly positive on [0, 1) and therefore no evolutionary stable strat-

egy exists. Note that since gζ1 is continuous and strictly concave, if no evolutionary stable
strategy exists, then no local evolutionary stable strategy can exist either. In fact, in a small
neighborhood of ζ1 there exists an investment strategy ζ2 > ζ1 with gζ1(ζ2) > 0. This proves
(i).
If E

[
d

d+η−η

]
+ λ E

[
η−η

d+η−η

]
− R λ E

[
1

d+η−η

]
< 0, then there exists exactly one ζ⋆ ∈ (0, 1) such

that
∫

S
µ(ds)h(ζ⋆; d(s), η(s)) = 0 and therefore gζ⋆(ζ) < 0 for ζ ∈ (0, 1), ζ 6= ζ⋆. Obviously

ζ⋆ solves ∫

S

µ(ds) h(ζ; d(s), η(s)) = 0,

which proves (ii).

Remark
From Section 3, simple trading strategies λ > λ disappears almost surely owing to liquidity
shocks. Moreover, from Theorem 1, the simple investment strategy at the boundary of the
no bankruptcy condition is driven out of the market by any strategy that is bounded away
from the no bankruptcy condition and the risk-free asset. The condition for the existence
of evolutionary stable strategies given in Theorem 2, relates to the growth rate of a mutant
investment strategy in a neighborhood of ζ = 1, i.e. λ = λ. If this growth rate is strictly
positive, then an investor who puts a greater proportion of her wealth into the risky asset
than ζ = 1, is able to gain wealth share when asset prices are dominated by λ. However,
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this kind of strategy only delivers growth as long as it doesn’t lead to bankruptcy, which
will almost surely occur. Thus, if the growth rate at ζ = 1 is positive, no evolutionary stable
strategy can exist.

Example
Let us suppose that d and η are independent, d is distributed on [0, 0.1] with H(0) = P

[
d =

0
]

= 0.01, (d |d > 0) ∼ Beta(2, 2) and, η ∼ Uniform(0.05, 0.1). Moreover, we take α = 0.04
and R = 1.025. Then λ = 0.93796 and ζ⋆ = 0.213528. Thus, the unique evolutionary stable
investment strategy consists in investing only the 20.03% of the wealth on the risky asset.
The evolution of market shares is shown Figure 1.
If (d |d > 0) ∼ Beta(2, 3), then the unique evolutionary stable strategy is λ⋆ = 17.66%; ζ⋆

decreases with decreasing E
[
d
]
.

5 Conclusion

In this paper we have proposed an evolutionary portfolio model with bankruptcy. The in-
vestors are insurances companies, thus with insurance market exposures. The amount of
wealth that is withdrawn or collected at each period, corresponds to the difference between
indemnities, which must be paid out and premia paid in. If this difference is negative, in-
surance companies face liquidity shocks that could force investors to withdraw their entire
wealth, thus forcing the company into bankruptcy. We introduce the no bankruptcy condi-
tion on investment strategies that ensures that bankruptcy is excluded with probability one
and we analyse the set of simple strategies that are evolutionary stable if the state of nature
is generated by an i.i.d. process. In fact, if an investment strategy does not almost surely
eliminate bankruptcy, the company will almost surely disappear from the market eventually.
We prove that invariant wealth shares distribution only corresponds to monomorphic popu-
lations. Moreover, we show that, depending on the dividend and liquidity shock processes,
there exists a unique evolutionary stable strategy or, for all strategies there exists at least
one mutant that is able to drastically perturb the distribution of wealth shares. We give the
condition that characterize existence and, if this condition is satisfied we also characterize
the unique evolutionary stable strategy.
This work shows that when savings and withdrawals are not a positive percentage of the
investor’s wealth, then one should also take bankruptcy into account. Thus, an additional
dimension has to be considered as compared to the case where bankruptcy is excluded al-
most surely (Blume and Easley 2002, Evstigineev, Hens, and Schenk-Hoppé 2003). Here we
take a long-horizon perspective, so that a trading strategy with strictly positive probability
of going bankrupt at each period cannot be evolutionary fit, since it will disappear from the
market almost surely. This paper also suggest that near the growth rate, one should also
take the risk dimension into account, which is the probability of going bankrupt. Thus we
introduce the risk dimension in the Evolutionary Portfolio Theory.
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Figure 1: Evolution of market shares, for the λ⋆ strategy of Theorem 2 (full line), the strategy
λ (dotted line), the risk free strategy (dashed-dotted line), and a randomly chosen strategy
in (0, λ) (dashed line). In figure (a) all investors have the same initial wealth, while in figure
(b) the strategy λ⋆ initially possesses only the 2% of the market capital.
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6 Appendix

6.1 Existence and uniqueness of δi
t and Pt+1

For the sake of simplicity we drop the index t from the notation of equations (7) and (8).
Using the expression (7) for δi in (8), we obtain

P = µ +
∑

i

(
σ θi

µ + σ θi − P
− 1

)

αi wi,

where θi = F−1(1 − ǫi). Let f : [0, mini{µ + σ θi}) → R be defined by f(P ) = µ +
∑

i

(
σ θi

µ+σ θi−P
− 1

)

αi wi. f is well defined on [0, mini{µ+σ θi}) and continuous differentiable,

with f ′(P ) =
∑

i
σ θi

(µ+σ θi−P )2
αi wi > 0, f ′′(P ) =

∑

i
2 σ θi

(µ+σ θi−P )3
αi wi > 0, i.e. f is strictly

increasing and convex. Moreover, f(P ) ր ∞ as P ր mini{µ + σ θi} and

f(0) = µ +
∑

i

(
σ θi

µ + σ θi
− 1

)

αi wi = µ − µ
∑

i

αi wi

µ + σ θi

= µ − µ
∑

i

δi|P=0

︸ ︷︷ ︸

=1

= 0,

f ′(0) =
∑

i

σ θi αi wi

(µ + σ θi)2
≤ max

i

{
σ θi

µ + σ θi

}
∑

i

αi wi

µ + σ θi

︸ ︷︷ ︸

=1

< 1,

since µ > 0. Thus f(P ) ≥ 0 and it possesses exactly two fixed points: P = 0 and P ⋆ ∈
(0, mini{µ + σ θi}). Therefore, there is a unique premium P ∗ > 0 which satisfies equations
(7) and (8). Moreover, by equation (7), δi is also uniquely defined for all i.
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Figure 2: Proof of the existence and uniqueness of equilibrium insurance premium. The
demand function f(P ) has one strictly positive fixed point P ∗.

6.2 Derivation of the wealth dynamics

wi
t+1 = Ai

t+1 +
Bi

t

1 −
∑

j λj
t+1 Bj

t

∑

j

λj
t+1 Aj

t

= Ai
t+1 +

λi
t w

i
t

∑

j λj
t wj

t −
∑

j λj
t+1 λj

t wj
t

∑

j

λj
t+1 Aj

t

= wi
t

[

R (1 − λi
t) +

λi
t

λT
t wt

dt+1 Wt − (ηt+1 − β + α)

+λi
t

∑

j wj
tλ

j
t+1

(

R (1 − λj
t) +

λ
j
t

λ
T
t wt

dt+1 Wt − (ηt+1 − β + α)
)

∑

j(1 − λj
t+1) λj

t wj
t




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Thus

wi
t+1 =

wi
t

λT
t wt

[
R (1 − λi

t) λT
t wt + λi

tdt+1 Wt − (ηt+1 − β + α)λT
t wt

+λi
t

∑

j wj
tλ

j
t+1

(
R (1 − λj

t)λ
T
t wt + λj

tdt+1Wt − (ηt+1 − β + α)λT
t wt

)

∑

j(1 − λj
t+1)λ

j
tw

j
t

]

=
wi

t

λT
t wt

1
∑

j(1 − λj
t+1)λ

j
tw

j
t

×

[
∑

j

(1 − λj
t+1)λ

j
tw

j
t

(
R(1 − λi

t)λ
T
t wt + λi

tdt+1Wt − (ηt+1 − β + α)λT
t wt

)

+λi
t

(
∑

j

wj
tλ

j
t+1

(
R(1 − λj

t)λ
T
t wt + λj

tdt+1Wt − (ηt+1 − β + α)λT
t wt

)

)]

=
wi

t
∑

j(1 − λj
t+1)λ

j
tw

j
t

×

[

dt+1Wtλ
i
t +

[
R(1 − λi

t) − (ηt+1 − β + α)
]

(

λT
t wt +

∑

j

(λi
t − λj

t)λ
j
t+1w

j
t

)]

and therefore

wt+1 =
wi

t
∑

j(1 − λj
t+1)λ

j
tw

j
t

×

[

dt+1Wtλ
i
t +

[
R(λ − λi

t) + (η − ηt+1)
]

(

λT
t wt +

∑

j 6=i

(λi
t − λj

t)λ
j
t+1 wj

t

)]

.

We use that

λ =
R − η + β − α

R
⇐⇒ R + β − α = R λ + η.
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