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ABSTRACT

W develop an estimated tinme-series nodel of revisions of U 'S. payroll
enploynment in order to obtain nore accurate filtered estimtes of the

"true" or wunderlying condition of U S. enploynent. Qur estimtes of
"true" enploynent are filtered, according to an estinmated signal-plus-
noise (S+N) nodel, so as to renpve serially correlated observation

errors. W are nmotivated by the perception that raw unfiltered
enpl oynment estinates based on payroll surveys often overestinate true
enpl oynment in business-cycle downturns and underestinmate it in upturns.
Qur analysis and estinates operate in real tine in the sense that they
explicitly account for the timng of initial data rel eases and revisions
and do not sinply consider a historical sanple of the npost revised data
as is often done. W view each datum as the sum of a true signal value
pl us an observation error or noise. Accordingly, we estimate a S+N tine-
series nodel, in which each true signal value in the sanple is observed
multiple times as an initial release followed by revisions, such that
the signal and noises are generated by separate autoregressive
processes. The signal follows a univariate process and the noises foll ow
a vector process whose dinension depends on the nunber of vintages of
observations in the sanple. W use payroll enploynent data from 1969-
2003 to estinate by maximum likelihood an S+N nodel and use the
estimated nodel to obtain filtered estimtes of true enpl oynent for each
period in the sanple. Intuitively, the S+tN nodel structure is
sufficiently restrictive to allow us to exploit own- and cross-seria

correlations in the data to estinmate separate nodels of the signal and
the noises and, thereby, to obtain nore accurate estimates of true
enpl oynment than are indicated directly by raw and unfiltered data.

JEL d assification: E44, C53

*Qpi ni ons expressed herein are ours, not necessarily those of the
Federal Reserve Bank of Atlanta, Federal Reserve System or Bureau of
Labor Statistics. W thank Dean Croushore and the Federal Reserve Bank
of Phil adel phia for data and Ji m Nason and Juan Rubi o-Ramirez for
coment s.



1. Introduction

1.1. Motivation.

Busi ness journalists as well as nonetary and fiscal policymakers pay
close attention to the condition of the |abor market, a key indicator of
econom c activity, which gets special attention during business cycle
transition periods. In the United States, the Bureau of Labor Statistics
(BLS) produces aggregate |abor market indicators from two different
sources of labor market information: the household survey, the source
data for the unenploynent rate, and the establishment survey, the source
data for the payroll enploynment statistics. Hstorically, business
anal ysts have utilized both aggregate |abor narket indicators to infer the
nost recent status of the job market. In economc downturns and
recoveries, however, the weaknesses of each series are mmgnified and
their signals of whether enploynent is growing or shrinking can
conflict. Recent research by Kitchen (2003) questions the adequacy of the
payroll enploynment data as an effective real-tine neasure of true
enpl oynment during business-cycle transitions. He suggests that processing
and reporting delays in released payroll data could introduce biases that
woul d thereby hide changes in “true” |abor nmarket conditions, relative to
tinely rel eases of other data series that are nore quickly avail abl e.

W study whether information <concealed in payroll enploynment
revisions could be exploited to refine real-time payroll enploynent
estimates. W apply the established statistical technique of estimating a
signal from noi sy observations, such that both the signal and the noises
are assumed to be generated by estinated autoregressive processes (cf.,
HIllmer and Tiao, 1984). In particular, we consider the estimted signa
as representing an estimate of true enploynent, which is observed noisily
inreal time in an initial release followed by revisions. New and revised
payroll information is conbined in an estimated tine-series nodel to
obtain a presumably nore accurate estimate of the signal or true value of
aggregate enploynment. The nethod shoul d be especially useful in business-
cycle transitions, such as in the past two cycles, during which unfiltered
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estimates of enploynment have been considered poor indicators of true

enpl oynent .

The paper first outlines the elenents of the payroll enploynment
survey and the institutional explanation for the lag in final payroll
reports. Next, we illustrate graphically under and over estinmation of
payrol | enpl oynment during recession and recovery periods, along with the
magni tude and variability in the revision process. W show that nost
data revisions occur within 24 nmonths of a benchmark revision, although
benchmark revisions following a decadal census can extend beyond 24
months. The graphs show that the signal from revisions nmay be
particularly inportant during business cycle contractions. Then, we
state a Kalman filtering based nethod for extracting information from
the historical revisions. The resulting estimated state-space node
produces tinme-series estimates of the underlying enployment conditions,
whi ch are neasured inperfectly in real tinme by the payroll enploynent
survey. To date, this approach offers signal estimates of true
enpl oynment with accuracy conparable to real-tine household data.
Currently, the nodel is set up to only to handle nonth-to-nonth
revisions of the Current Enploynent Statistics (CES) and does not yet
handl e the annual benchmark revisions. In future work, we plan also to
nodel benchmark revisions. In such an extension, we could possibly also
i ncorporate other real-tine data series, |ike household enploynent, into
t he state-space nodel to enhance the real-tinme signal for the enpl oyment
mar ket .

1. 2. Background.

Kitchen (2003) suggests that real-time initial releases of household
survey enploynent provide a noisy yet reliable signal about underlying
| abor narket conditions. For exanple, his chart 3e shows that the real
time household enploynment neasure matches the nost recently revised
payroll data for 1990-93, the present best estimate of true enploynent. In
contrast, real-tine payroll enploynent data are nuch different from final
revised payroll enploynment data. A so, revisions in payroll enploynent
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reflect notable fluctuations in perceived enploynment conditions from

successi ve benchmark revisions.

Accepting Kitchen's conclusion, one might conclude that the
househol d survey produces the nore reliable real tinme signals of current
and recent enploynent conditions. Neverthel ess, released BLS payroll data
ains to be the best gauge of the enploynent narket. BLS payroll enploynent
data has other properties, such as a larger sanple and eventua
benchmarking to a population estimate, that nmake it the preferred
i ndicator in discussions of |abor narket conditions. Al so, there may be
unexploited information in the serial correlations of revisions for the
payrol | enpl oynent.

The household enploynment estimate is taken from the household
survey, a statistical sanple of 50,000 households. Typically, the survey
is revised only in terns of its level, based on the Census of Popul ation.
This revision does not affect the data' s turning points, a key point noted
by Kitchen. The household survey data are used mainly to produce the
unenpl oynent rate and other ratios such as the |abor force participation
rate and the enploynent to population ratio. Nevertheless, the statistica
sanple for household enploynent has been used to estinmate aggregate
enpl oynent, an estimate that Kitchen considers wuseful, especially in
providing a real-tinme signal of cyclical business cycle conditions.

The CES survey, typically called the payroll survey, is initially a
random sanple of firnms from a population of firns registered wth the
Internal Revenue Service that pay unenploynent insurance (U). Using a
sanpl e of establishnments to estimate the CES payroll enploynent allows BLS
to produce an estimate of payroll enploynent that is often released with
less than a week’s tine |lag. Each year, BLS releases a benchmark revision
of payroll enploynent that matches popul ation data. U S. popul ation data,
collected with by State Enploynment Security agencies, includes about 8
mllion business establishments of all registered firns and nore fully
reflects the aggregate |abor market. The benchmark revision updates
payroll enploynment to incorporate information on the level of the
popul ation in March of each year.?

The payroll survey is separate from the population data. BLS uses population data to calcul ate
busi ness enpl oyment dynamcs data, which enphasize the sources of changes in enploynent |evels.
Al though attractive as popul ation data, business enploynent dynamcs data are rel eased as long as three
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W can explain why signals from payroll enploynent data failed to

descri be accurately the US | abor nmarket in the early 1990s because payr ol
enpl oynent data did not account for job |osses caused by establishnent
cl osures. After several nont hs, BLS investigated non-reporting
establishnments.? In addition, there was difficulty accounting for the
| evel of enploynent increases caused by creation of newfirns, i.e. births
of firms. Although Business Enpl oynent Dynamics data for 1991-1992 are not
easily available for verification, it has been suggested that enploynent
was underestimated in the June 1993 benchmark revision because it failed
to account sufficiently for enploynent created by new firnms.

Recently, BLS attenpted to overcome the inherent inability to
account for net new firm changes in real-tine by estimting a nodel of
net enploynment changes over the past 5 years wusing the Business
Enpl oynent Dynami cs data. Although these nethods should inprove payrol
estimates by reducing their error, it remains likely that lags in
accounting for net changes in firns will still persist, although perhaps
less than in the past. In effect, nodels of net job changes are unlikely
to account fully for net changes in enploynent at turning points.?3

The data revisions that followed the 1990-91 recession are likely to
have reinforced the perception that raw payroll enploynent is an
unreliable real-tine signal of true enploynent during business cycle
transitions. Figure 1 displays peak-to-peak payroll enploynment in the
period after the 1990-1991 recession. The three lines report three
different vintages of enploynent: My 1992, My 1993, and June 1993. The
June 1993 vintage includes a benchmark revision that indicates that

previously reported enployment undercounted creation of new jobs.

quarters after payroll data are published and released. For exanple, although the payroll survey for
April 2004 is available in early May 2004, at that sane time the business enpl oyment dynanics data are
avai l abl e only through the second quarter of 2003.

2BLS currently uses a sanpling procedure to overcome this problem The exact wording on the BLS
website is: "Effectively, business deaths are not included in the sanple-based |link portion of the
estimate, and the inplicit inputation of their previous nonth's enploynment is assuned to offset a
portion of the enployment associated with births. There is an operational advantage associated with
this approach as well. Mst firms will not report that they have gone out of business; rather, they
sinply cease reporting and are excluded from the link, as are all other non-respondents. As a
result, extensive followup with nmonthly non-respondents to determ ne whether a conpany is out-of-
busi ness or sinply did not respond is not required."”

SUntil March 26, 2003, there was no indication that net new job creation from firm births |ess
deat hs had changed measurably follow ng the March 2003 benchmark revision. In addition, net changes
in enploynment levels fromnet firmbirths less deaths followed a different pattern in the 1993-94
recoveries.
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Presumabl y, ex-post, the revision reduced uncertainty about the state of

the US econony in 1991-1993. The My 1993 data incorporates a benchmark
revision that took place in June 1992 and reflects a downward revision
relative to May 1992 payroll enpl oynent. Much of that downward revision
was of fset by the June 1993 benchrark revision

Neverthel ess, the sizes of the revisions in Figure 1 are small. Even
revisions of 1 mllion jobs represent less than one percent of the
enpl oynment |evels of about 110 mllion persons. The purpose of this study
is to exploit the tenporal correlations of revisions in order to obtain
nmore accurate enploynment estimates, regardless of the average sizes and

directions of individual revisions.

1.3. The Process of Revising Payroll Enployment Data.

As nentioned above, the revision of payroll enploynent has two conponents.
The first revision process occurs nonthly at the same frequency as the
initial releases, consisting of correcting for the delayed responses of
surveyed firns. The initial release of a previous nonth's payrol
enpl oynment includes information from about 65 percent of surveyed firns.
The first revision, released after another nonth passes, includes about 80
percent of surveyed firnms. After a third nonth passes, enploynent is
further revised to include information from about 90 percent of surveyed
firms. For exanple, in May of a year BLS releases an initial estimte of
April employnment, a first revision of March enploynent, and a second
revi sion of February enpl oynent.

The second revision process of payroll enploynent reflects |ess
frequent, annual and decadal, revisions introduced by benchmarking payrol
enploynment to an estimate of "population" enploynent. The benchmarking
process matches the level of estimated payroll enploynment to the March
| evel of the population data for the previous year. The difference between
survey- and popul ati on-based estimates is divided evenly between nonths
before and after the WMarch benchmark. Benchmarking may produce |arge
changes in the level of estimated enploynment, which would often be
i nsi gni ficant as nont h-to-nonth changes.
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The CES payroll survey is a large sanple that covers about 37

percent of establishments of US firns. Although a | arge sanple indicates
small sanpling errors, benchnmarking introduces information that may be
overl ooked either by sanple conposition relative to establishnent
popul ation changes or by information from late survey subm ssions
defined as the |last 10 percent of the survey.

Non-sanpling errors arise in payroll enploynment fromthree sources:
(1) coverage or conposition of the sanple, (2) response of the last 10
percent of the survey respondents, and (3) processing errors nentioned
by BLS, but not considered in this discussion until now. From the
perspective of real tine business cycle analysis, one error in payroll
enpl oynment is not including enploynent of newy created establishnents.
This fact is known and BLS has advanced in overcom ng this gap. As noted
above, this gap in payroll enploynent becones nore prom nent at business
cycl e troughs. However, probability weight sanpling and forecasting net
new jobs from births and deaths of establishnents reduces this gap and
i mproves esti mates.

Benchmarking nmatches the level of payroll enploynent based on the
CES survey to the estinmated enployed population the previous Mrch. The
di fference between the nost recent benchmark and previous March estinates
is spread evenly or linearly over the previous 12 nonths.* This technique
attributes one twelfth of the level difference to each of the prior 12
nmonths (see the BLS website named "Benchmark Article"). Sonetines, the
benchmark revisions significantly change estimated enploynent up to 24
nmonths earlier. Decadal revisions that incorporate information in the
decadal Census can significantly change estinmates of enploynent even
further back.

If we focus mainly on the survey-response error rate, then, we can
limt the analysis to the first three data releases, the initial release
and two subsequent nonthly revisions. Such an approach greatly sinplifies
the analysis, although it limts the revision information that the study
considers. As a first pass of the nethod, we consider only two revisions
on the presunption that including additional revisions would not

significantly alter estimates of true enploynent, although, in the future,

‘See BLS web page on enpl oyment for a description of the linear "wedge back" procedure.
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we shall consider adding revisions going further back, including benchnmark

revisions.?®

2. Signal - Pl us- Noi se Model

2.1. Structure of the Mdel

The S+N nodel described here extends the StN nodel of three noisy
observations per period on a variable, considered by Chen and Zadrozny

(2001), to the general case of any nunmber of m noisy observations per

period on a variable. Throughout, the following three sets of ternms are

synonynous: "observations", "data", and "estinates"; "true" and
"signal"; and "observation errors" and "noises".
Let yi = (Yi¢s ---» Yme)' and u = (Ur¢, ..., Upy) ' denote nxl

vectors of observations and their unobserved observation errors or

noi ses, at vintages v =1, ..., m on unobserved true values or signals
of a scalar variable, denoted y,, in sanple periods t =1, ..., T
(superscript T denotes vector or matrix transposition). Thus, vy,
denotes a so-called vintage v observation in period t on y,_,,, made with

noi se u, . For now, to sinplify notation, we assune that there are no

m ssing observations in any sanple period t, so that in every period the

observation vector y, contains observations on all vintages 1, ..., m
For all periods t =1, ... T, the observations, signals, and noises
are linked by the scalar observation equations y,; = y,.,,, * U, Or

equi valently by the nxl vector observation equation

(2.1) ye = (1, ..., L™y, + u,

where L denotes the lag operator whose nultiplication of a variable
moves it back one period. It sinplifies notation to allow the first

el ement, y;¢, in the observation vector, y,, to be contenporaneous wth

® Harvey and Chung (2000) enploy the state-space formand a Kalman filter to estinmate the underlying
change in unenpl oynment in the UK Their application exploits the structure of the sanpling design
for the data series to aid the design and estimation of the tinme-series nodel. In addition, their
application also introduces an additional data series that is released in a nore tinely manner to
improve the forecast accuracy of the estimted nodel.
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the first element, y;, in the vector of signals (1, ..., L™)Ty;. Only
rel ative |agged positions of elenents of (1, ..., L™} Ty are relevant,
so that (1, ..., L™)7T could be nultiplied by any positive or negative

power of L and its inverse nerged into a redefinition of y,. Wether vy;
represents a current, past, or future signal depends on the application
We proceed as if y, represents a current signal

In an application, when a nodel is estimted using maxinmm
i kelihood, sonme or all elenents of y, could be mssing in sone sanple
periods. However, this causes no problens if, as we propose, the
i kelihood function is formed using an appropriate m ssing-data version
of the Kalnman filter (MDKF). W could al gebraically describe the correct
handl ing of m ssing-data with an appropriate MOKF (Zadrozny, 1988, 1990)
and this algebra could be inplenented variously. Wen some observations
are mssing in a period, the rows of equation (2.1) with mssing val ues
are deleted and the standard non-m ssing-data Kalman filter (Anderson
and Moore, 1979) is correspondingly reduced. For exanple, if all
vintages are observed in periods 2, ..., T, but only vintages 2, ..., m

1 are observed in period 1, then, in period 1, equation (2.1) becones
(Y2,1, C e, yml’l)T = (L, C ey, LmZ)Ty: + (U2’1, I Umzyl)T and, in periOdS
2, ..., T, equation (2.1) is unchanged.

The data may be visualized in the following Txmdata matri x:

Table 1: Data Matrix |ndexed by Sanple Periods and Vintages.

Yv.t, V = vintage, t = sanple period
Y11 Y21 Y31 Ya1 Y51 ce Ym1
Y12 Y2,2 Ys,2 Ya,2 Ys, 2 ce Ym2
Y13 Y23 Y33 Ya,3 Ys, 3 ce Yms
Yi1,4 Y2,4 Y34 Ya,4 Ys, 4 ce Yma
Y15 Y25 Y35 Ya,5 Ys,5 ce Yms
Yi 71 Yor VAR Yar Ys, T C. YT

In the table, row 1 contains period 1 observations y; = (Y11, ..., Ymi) '
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on signals y;, ..., y,, at vintages 1, ..., m row 2 contains period 2

observations y, = (Y12, ..., Ym2) ' oOn signals y,, ..., y,, at vintages 1,

., m and so forth; colum 1 contains T first observations (yi 1,

yi1)' on y,, ..., y:, colum 2 contains T second observations (y.i1, ...,
yar'on y.,, ..., yi,, and so forth. Going fromleft to right and top to
bottom in table 1, nanely, in the order vyii, ..., Ymu oYL e,

YmT, 1S @ natural order for inputting data from a storage file into a
program for estimating the nodel.

We assunme signals, y,, are generated by the scalar autoregressive

novi ng- aver age nodel ,
(2 2) Yo = Y oo aplyt—pl + & + Blst—l oo Bqlst—qla

denoted ARMA(Pp;, 01), Wi th scalar autoregressive coefficients, a,,

a, . scalar noving-average coefficients, p,, ..., B, , and scalar
di sturbance, ¢, distributed normally, independently, identically, with
mean zero, and constant variance o or ¢ ~ NIDO, o?).

We nmake the foll owi ng basic assunptions on the paraneters of signal
nmodel (2.2): (i) ARMA degrees p; and q; are finite and nonnegative
i ntegers, such that nmin(p;,q:) = 1, but max(pi, qi1) could be <, = or > m
t he maxi mum nunber of observations per period; (ii) nodel (2.2) could be
stationary or nonstationary but is invertible, which neans that any

conpl ex nunber, A, which satisfies 1 + BA + ... + Bpl)\”l = 0 also
satisfies |A| > 1; and, (iii) o > 0.

Simlarly, we assume noises, U, are generated by the nxl vector

aut or egr essi ve novi ng- aver age nodel ,

(2.3) Uu =AU + ... + A U + N + Bieer + ...+ By, Mi -, »

Py, T t-py
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denoted VARMA(Pp., (.), Wi th nmxm autoregressive coefficient natrices, A,

., Apz, mxm novi ng- average coefficient matrices, B, ..., qu, and nxl

di sturbance vector, n, distributed NI1D(0,Q) and i ndependently of ;.

We nake the foll owi ng basic assunptions on the paraneters of noise
model (2.3): (iv) VARVA degrees p, and (g, are finite and nonnegative

i ntegers, such that nmn(ps g2) = 1, but max(p., gq.,) could be <, = or > m

(v) nodel (2.3) is stationary, which nmeans that any conplex nunber, A,

which satisfies det[l, - AN - ... - AZ)\’)Z] = 0 also satisfies |A > 1,

p

where det[[] denotes the determ nant of a square matrix and |, denotes

the mm identity matrix; (vi) nodel (2.3) is invertible, which neans

that any conpl ex nunber, A, which satisfies det[l,+ BA + ... + qu)\qZ] =

0 also satisfies |A] > 1; and, (vii) Q is positive definite, which is
denoted by Q > 0.

Thus, we have nade basic assunptions (i)-(vii) on S+N nodel (2.1)-
(2.3). In (ii), we assume signal nodel (2.2) is nonstationary, but, in
(v), we assume noise nodel (2.3) is stationary, so that any observed
nonstationarity arises in the signal nodel. In practice, we expect any
observed nonstationarity can be accounted for by unit autoregressive
roots in the signal nodel.

Equations (2.2)-(2.3) purposely have no constant ternms. In the
absence of constant terns, if true nodel (2.2) is stationary, equations
(2.2)-(2.3) inmply that Ey, = 0. Thus, we assune that all data have been
normal i zed before being used to estimate a nodel. This is the sinpler
way to proceed because it avoids estimating the constant ternms jointly
with the other ARVA and VARMVA parameters. Strictly, when the true nodel
and the data are nonstationary, the means of the data do not exist, but
we ignore this subtlety and always nornalize the data before estinating
a nodel. In essence, the normalization can be viewed as only a tenporary
translation and rescaling of the data to facilitate estimtion, so that
the estimated nodel can be transformed back to the form of the original
unnornal i zed data. In section 2.3, we further discuss estimation of nean

val ues when we discuss identification of paraneters.
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2.2 State-Space Representation of the Signal-Pl us-Noise Mdel.

W now restate equations (2.1)-(2.3) as an single overall state-space
representation in terns of the state vector x;.

Let vi" = (yiiy ooy v ) T = (Vi oo Yieas &, oo, Eig ) be
an si;x1 state vector for true nodel (2.2), where s; = r; + ¢y and r; =

max(mp;). In terms of y,”, observation equation (2.1) is
(2 4) yt = My:* + utl

where M= [In Oy -yl and 0, ., denotes the nx(s;-m zero matrix. Wen

mz= p; and q; = 0, as in the application in section 3, M= I

Let & = (&,, ..., s;rt)T denote an s;x1 disturbance vector whose

first elenment ¢, = ¢, the disturbance in true nodel (2.2), and whose
remaining elenments are "alnobst" identically equal to zero in the
following sense. Theoretically, we wuld I|ike the second to |ast
el ements of ¢  to be identically equal to zero. Practically, ¢ is part

of the overall state-space representation to which a Kalman filter will

be applied and we can generally guarantee the filter's nunerical

accuracy only if the covariance matrix of ¢  is positive definite. Thus,

we assune that ¢ ~ NIDO, =), where = = o? el,slels1 + 0l . e = (1,
0, ..., 07T is the s;x1 vector with one in position one and zeroes
el sewhere, and & is a snmall positive nunber, small enough not to
noticeably affect Kalman filtering wth the overall st at e- space

representation, but |arge enough to guarantee the nunerical accuracy of

the filtering. [Note to Ellis: think carefully about the role of & in
the estimation. The gist is to use it as a trick to guarantee positive
definite covariance nmatrix for the signal process error. Look at the
estimate of the value fromthe enpirical estimtes of the nodel.]

Then, the following state equation in y,” incorporates true nodel

(2.2) as its first el enent,
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2. 5 - A* _ + B* SH, A* — 3,11 },12 ,
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where A ,,, A,,, and A,,,, have the dinmensions rixri, rixq;, and qgixq;.
Stacking equations (2.4), (2.5), and (2.3) on top of each other
inplies

(2.6)
I m -M - m Yy 0m><m Om><s1 mxm Yio1
Oslxm sy Oslxm yt = Oslxm Al Oslxm yt—l +
0m><m omel l m ut 0m><m Omxs1 Al ut—l
Omxm 0m><s1 Omxm yt—p2
+ oslxm Oslxs1 sy xm t-p,
Omxm 0m><s1 Ap2 ut—p2
ct Omxm 0m><s1 Omxm Ct -1 Omxm 0m><s1 Omxm Ct “d,
+ BOSI + Oslxm S %S, Oslxm BOSI -1 + . + Oslxm OleSl Sy xm Bost a5 |
ut Omxm 0m><s1 Bl ut—l Omxm 0m><s1 qu ut—q2
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where ¢; is an nxl di sturbance vector with a role anal ogous to the second

to last elenments of ¢ . In theory, we want {; to be identically equal to
zero, but, in practice, we want its covariance matrix to have sone
posi tive definiteness. Thus, we assume ¢ ~ NIIDO, %), where %, = &l , and

0 is a small positive nunmber, such that this & can be identical to the

previously introduced one in ;.

Let z, = (y], y.'", u])" be a (2mts;)x1 vector and let & = ((& +

* ko

MBie,” + 1) ', By, n/)" be its (2m+sy) x1 innovation vector. The inverse

of the leading matrix in equation (2.6) is just the sanme matrix with the

m nus signs del eted. Thus, we can wite equation (2.6) equivalently as

(2 7) Zy = F]_Zt_l + ... + szzt_pz + Et + G.I.Et—l + ... + quzt-qz’
0m><m NA: Ai 0m><m 0m><s1 Bj
Fl = Oslxm A| Oslxm ' G] = Oslxm S %Sy Oslxm ’
mxm Om><s1 Ai Ome 0m><s1 Bj
where Al = 0., for i > 1, F = Opncyemsy FOF 0 > P2 G = Opmes yuemes))

for j >0z & ~ NIDO, %), and

(2 8) Zg =
3l + MBfote,, el +3l,)BM +Q  MBfole,, e, +3dl,)B) Q |
Bg(o-gel,sle-lr,sl + 6' Sy B:)TMT B:J(Ogel,slelsl + 6' sl)BgT os1 xm
Q Ormes, Q

As desired, X is positive definite (¥ > 0) and, when m= r; and q; = O,

2; reduces to
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Bl +(0F +Qey el v Q (00 + ey el Q |
(2 9) ZE = (O‘i + 6)61, meIm (O-i + 6)el, meIm Ome
L Q Ome Q N
Let X¢ = (X, ..., erzvt )T denote the nxl1 overall state vector,
partitioned into r, subvectors x;y of dinmension vx1, where r, =

max(p2, g2+t1) and v = 2mts;, so that n = r,M. Following Ansley and Kohn
(1983), VARMA  representation (2.7)-(2.8) has t he st at e- space
representation, with the observation equation

(2 10) yt = HXt,

W th no observation error, where H= [l Ownm], and the state equation

(2.11) Xy = X + G,

I:1 I v vav vav r | A
F, O,. . N
G,
F = . , G = ,
vav
I, G.
_Frz vav vav_ L2t

where & ~ NIID(O, %) and % is given by equation (2.8).

The objective is to estimte y,. To do this using the Kalman

filter, we need to know where vy, is in x;. Backwards recursive
substitution in equation (2.11), in the order Xejn =0 X1t shows t hat
X1t = z¢ = (yl, y'", u)T and y, is the first elenent of y;". Thus,

because y; is nxl, y, is element m+l of x,. This holds in general,

regardl ess of the values of m pi, p2 Qi, and Qa.
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Overall state-space representation (2.10)-(2.11) is inefficient

because x; and & could be made much smaller by elininating zeroes in the
coefficient matrices F and G However, we use this representation
because it has the structure required by the FORTRAN estimtion program
that we use to estimate the StN nmpdel and to estimate the true val ues

y,. Because conputers operate so quickly today, it is not worth the

trouble to rewite the estimation program in ternms of a nore concise
version of representation (2.10)-(2.11).

2.3. ldentification of Structural Parameters.

W now state assunptions for identifying the structural paraneters of
S+tN nodel (2.1)-(2.3) and prove that they are sufficient for this
purpose. Unless the paraneters are identified, they cannot be estinmated
uni quely. We now discuss identification of the structural paraneters in
their order of estimation, first, the non-nean-value paraneters and,

t hen, the mean-val ue paraneters.

2.3.1. ldentification of Non-mean-val ue Paraneters.

Let 8 and ¢, respectively, denote vectors of structural and reduced-form
non- nean-val ue paranmeters. To estimate 0 by maxi mum |ikelihood, we mnust
define B8 so that it can vary in an open set. W can directly include the
true ARVA paraneters and the noise VARMA coefficients in 6, but cannot
directly include the noise disturbance-covariance matrix, Q, in 6,
because, being symetric, Q's upper and |lower triangular elenents would
duplicate each other. Similarly, because Q nust be positive definite, we
cannot just include its upper- or lower-triangular elenents in 6. Thus,

we reparaneterize Q to its lower-triangular Chol esky factor, QY2 which

2
£

satisfies QY2Q"2 = Q, and define 8 = (o, ..., ap s B ..y By O

vec(A)", ..., vec(A%)T, vec(B) ", ..., vec(B%)T, vech(QY?) N T, where

vec([) denotes the columw se vectorization of a matrix and vech([)
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denotes the columw se vectorization of the lower-triangular part of a

matrix, including its principal diagonal.
State-space form (2.10)-(2.11) always has the VARVA form

(2.12) Yi = Py + 000+ ¢r2yl—r2+ &1t + Oé i1 + ...+ erzal,l—rz’

where &, ¢, the first mxl subvector of &, is the innovation vector of z
in VARVA form (2.7). The covariance matrix of & . is the (1,1) block of
%; in equation (2.8), namely, z, = 8ln + MBfoZe,, e;, +8,)B'M + Q. Let
RR] = g, where R, is lower triangular. Then, we define ¢ = (vec(d;)",
. vec(m%)T, vec(O)", ..., vec(@%)T, vech(R) N

A nodel naps each admni ssible structural paraneter values to one or
nmore reduced-form paraneter values. W denote this nmapping by ¢ = f(0) O
X O RIMO for 80X OR'™MI. 1f f() maps each admissible value of 8 O
Xo to a unique value of @ O X, O R'™M?  then, f(Q) can be inverted
uniquely as 6 = g(@ = f (@ O X, for @ O X, and 8 O X i s identified
internms of @ O X, If 8 0 Xgis identifiedin terms of @ O X, and di n(9)
< dimg, then, 6 is over identified in ternms of ¢, otherwise, if 0 is
identified in terms of @ and dim8) = dim¢@, then, 6 is just identified
in terns of @ Priestley (1981, pp. 801-804) states Hannan's (1976)

sufficient conditions for identifying VARMA paraneters -- the reduced-
form paraneters here -- in terns of theoretical covariances of observed
variables. Strictly, identification concerns theoretical quantities,
but, in practice, we estimate paraneters using sanple covariances.

Presumably, sufficient conditions, such as stationarity, also hold so
that sanple covariances converge in probability to their theoretical
counterparts as the nunber of sanpling periods goes to infinity. It
remains for us to state and verify sufficient conditions for identifying
the S+N structural paraneters in terns of the reduced-form VARVA
par anmet ers.

For sinplicity, we discuss identification in the special case of m

=3, pr =2, p =1, and g1 = g = 0. The general case of any m p;, pi,
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g, and q, follows simlarly. In this special case, structural AR

coefficients are mapped to reduced-form AR coefficients according to

(2 13) ®;, = agl ;3 + A, ®, = asl 3 - 0jA, ®; = - 0A].

2.3.2. ldentification of Mean-val ue Paraneters.

To be conpl et ed.

3. Application.

We apply the signal plus noise nodel to payroll enploynment data in
a real-tine data exercise. The initial application exploits the
institutional features of the BLS enploynent release, nanmely that the
enpl oynent data estimates each neasured data period three tinmes in
sequence, an initial release and two subsequent revisions. In each
month, the new information consists of the initial release and the
revisions of the two prior nonths of payroll data. For concreteness,
suppose we have the first release estinate of March 2001 and then have
the first revision of February 2001, and the second revision of January
2001. These three neasures conprise an observation of the data in our
anal ysis. W enpl oy observations of this form — three observations per
observation — for the sanple period Novenber 1964 to Cctober 2004. The
interpretation of the Data matrix table is anal ogous to the description
of Table 1 above.

Table 2: Data Matrix For Application

Yv.t, V = vintage, t = sanple period

Y 1,1064:11 Y2,1964:10 Y3,1964:09
Y 1106412 Y2,1964:11 Y3,1964:10
Y1,1965:1 Y2,1964:12 Y3,1964:11
Y1, 1065:2 Y2, 1965:1 Y3,1964:12
Y1,1965:3 Y2,1965:2 Y3,1965:1
Y1,2004:10 Y2,2004:09 Y3,2004:08
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Wth three releases per period as “data,” we estimate a signal plus

noi se nodel assuming that the signal is an AR(3) and that the noise
process is a VAR(1). W allow the covariance matrix of the disturbance
terns in the nmeasurenent error equation to be unrestricted; that is, we
need to estimate only 6 paraneters for the variance-covariance matrix
[(3* 4)/2].° In this case, the nunber of structural paraneters that we
estimate is 19 (3 for the AR 1 for the standard error of the signal
process, 9 for the VAR paraneters, and 6 for the covariance matrix of
the disturbance ternms in the nmeasurenent error process).

W display the paraneter estimates for a specification using

differences from the previous period (consistent within vintages — not
across Vvintages). W are investigating alternative normalizing
transformati ons of the data. D fferencing across vintages, though in

conflict with nost real-tine data analysis intuitions, may capture nore
effectively the correlations anong the neasurenent errors for subsequent
formal analysis for the tinme-series processes. W have al so estimated
specifications that wuse differenced logs and they offer sinilar
insights. The sanple period is from Novenber 1964 to Cctober 2004, and
the forecast conparison periods are from Novenber 1989 to Cctober 2004.
Table 3 (below) lists the conplete set of paraneter estimates for the
full sanple period nodel. W enphasize the analysis of the coefficients
in the nmeasurenent error process bel ow.

TABLE 2: VAR Coefficients For The Measurement Error Process (A Matrix)

Uu = AUi.q + 1 in the VAR(1) case, U = [ Up¢ Uyt Ug¢ |°

ul,t all a12 a13 ul,t—l I71,t
u2,t = a21 a‘22 a23 u2,t—l + I72,t
u3,t | a31 832 833 | ugit—l /73,t

5 Recal| that the disturbance vector, n,, assumed to be distributed NIID(0, Q) and independently of
€, .
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A= 0. 1050457E- 01 0. 7531286 0. 3105490
0. 4954400 - 0. 6363300 -0.1728135
0. 9205456E- 01 0. 7701526 -0.1726643

The VAR coefficients from the neasurenent error process provide

interpretable rel ationships between the revision errors. For exanpl e,

the first coefficient (an) is small (.01) suggesting that there is

little <correlation between subsequent “first release” neasurenent
errors. This finding is reassuring in that such neasurenent errors
shoul d be unsystenatic. In contrast, the coefficient ( a21) nmeasuri ng

the relationship between the second release neasurenment error and the
first release error fromthe prior period (e.g., both nmeasuring the sane
data period) is relatively large (.495). Note that each neasure
(today’'s second release and last nonth’s first release) calculates
enpl oyment for the same neasurenent period, so that the sizable
coefficient estimate is plausible. Unfortunately, the other |arge
coefficients in the estimation are less «clearly interpretable.
Specifically, the entire second colum of the A matrix relates the
nmeasurenment error for the second release from the prior nonth to the
nmeasurenment errors for all releases in the current period. The
coefficient estimates for this colum are large for all releases. The
interpretation of each is ambiguous. One could forego interpretation
and suggest that these coefficients may reflect multicollinearity anong
the nmeasurenent error series. For exanple, the neasurenment error for
the second release of the prior nonth has a sizable positive coefficient
for the measurenent error for the first release of the current nonth.
However, the second release neasurenent error coefficient relating to
this nonth’s second release measurenent error is sizably negative.
Finally, the second release neasurenent error last nonth has a |arge

positive coefficient with respect to the neasurenent error for the third

rel ease for the current nonth. This coefficient ( asz) can be explai ned

in the same way as a21 noted above, that is, the neasurement of

enpl oynment in the same nonth. The other two coefficients in the second
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colum, however, are disconforting. The coefficients of the third

colum offer a less intuitive interpretation as well. Here again, we nay
infer the nulticollinearity of the measurenent errors hinders precise
coefficient estinates, and that there strength of ~correlation is

m ni mal

Estimates of the nodel using 5 rel eases display the sane degree of
fluctuation in coefficient estimates. W need to look further into this

i ssue.
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Initial results suggest that we are capturing sone of the
correlations in the nodel

Still thinking about how best to introduce the benchmark process

(clearly the nost substantial source of data revision)

Busi ness cycl e phase — recession, recovery have | argest revisions

[to be conpl et ed]

4. Concl usi on.

[to be conpl et ed]
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TABLE 1: DATA DESCRI PTI ON

Sanpl e consists of first, second and third rel eases of payroll
enpl oynment aggregate figures.
Data Period — 1964: Novenber ending in 2004 Cct ober.
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TABLE 2: VAR Coefficients For The Measurenment Error Process (A Matrix)

u = Au;.x + N in the VAR(1) case
U = [ Uyt Uzt Uz ]

ul,t a11 a12 a13 ul,t—l ,71,t
u2t = a21 a22 a23 u2,t—1 + ’72,t
u3,t L Ay 8 B 4L u3,t—1_ ’73,t

A = 0. 1050457E- 01 0. 7531286 0. 3105490
0. 4954400 - 0. 6363300 -0. 1728135
0. 9205456E- 01 0. 7701526 -0.1726643
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TABLE 3: Estimates For The Signal Process

Aut or egr essi ve paraneter estimates for the Signal process

O der Estimate Asynptotic SE T Ratio Marg. Sign. Leve
1 0. 4532663 1. 238658 0. 3659333 0. 7144149
2 0.2913920E-01 1.510261 0. 1929414E- 01 0. 9846065
3 0. 2308405 0. 8777201 0. 2630001 0. 7925505

Esti mated standard error for the signal process
Standard Error Asynptotic SE T Ratio Marg. Sign. Leve

0. 7567297 0.5468428 1. 383816 0. 1664149
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TABLE 3: FORECAST ERRORS FROM THE ESTI MATED MODEL

Summary Statistics

Seri es bs Mean Std Error M ni mum Maxi mum
FI RSTREL 177 100. 83 175.75 -415.00 705. 00
JULYO4RELEASE 177 129.01 178. 23 -361.00 506. 00
UNDERLY! NG 177 67. 83 96. 51 -205. 29 266. 30
UNDERLYERR 176 60. 32 132.12 -300. 36 460. 49
MEASERR 177 28.18 104. 26 -321.00 291. 00
RELEASERR 176 32.36 147. 44 -342. 84 730. 49
Mean error RMSE rho(1) rho(2)
Final less first rel ease 32.36 107.0 -.08 0. 09

Fi nal - under| yi ng 60. 32 124. 3 .22 .34
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APPENDI X 1: ESTI MATED PARAMETERS FOR FULL SAMPLE (1964: 11-2004: 10)

MAXI MUM LI KELI HOOD ESTI MATES, ASYMPTOTI C STANDARD ERRORS, T- RATI CS,
AND MARG NAL SI GNI FI CANCE LEVELS FOR THE 19 STRUCTURAL PARAMETERS

NO. PARAM EST. ASY. STD. ERR T RATIO MARG SI GN. LEVEL
1 0. 4532663 1. 238658 0. 3659333 0. 7144149
2 0. 2913920E- 01 1.510261 0. 1929414E- 01 0. 9846065
3 0. 2308405 0.8777201 0. 2630001 0. 7925505
4 0. 1050457E- 01 1. 390194 0. 7556190E- 02 0. 9939711
5 0. 4954400 1. 290463 0. 3839243 0. 7010346
6 0. 9205456E- 01 0. 7594781 0.1212077 0. 9035266
7 0. 7531286 2.737687 0. 2750967 0. 7832420
8 - 0. 6363300 1.924749 - 0. 3306041 0. 7409435
9 0. 7701526 1.282707 0. 6004119 0. 5482318

10 0. 3105490 2.291353 0. 1355309 0. 89219

11 -0.1728135 1.101437 - 0. 1568982 0. 8753251

12 -0.1726643 1. 051789 -0. 1641625 0. 8696032

13 0. 7567297 0. 5468428 1. 383816 0. 1664149

14 0. 3485250 0. 6253198 0. 5573548 0. 5772851

15 0.6274749E- 01 0. 6276029 0. 9997960E- 01 0. 9203605

16 0. 3583206E- 01 0. 2635071 0. 1359814 0. 8918360

17 0.1728637 0. 4403241 0. 3925829 0. 6946276

18 -0. 7561716E- 01 0. 4597150 -0.1644870 0. 8693478

19 0. 1552349 0. 3130848 0. 4958238 0. 6200187
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Figure 1

Payroll Employment Data -- Key Revision in 1993
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Figure 2: Preliminary Forecast Comparison
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