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Abstract 
 
Persistent regressors pose a common problem in predictive regressions.   Tests of the forward rate 
unbiasedness hypothesis (FRUH) constitute a prime example.  Standard regression tests that 
strongly reject the FRUH have been questioned on the grounds of potential long-memory in the 
forward premium. Researchers have argued that this could create a regression imbalance thereby 
invalidating standard statistical inference. To address this concern we employ a two-step procedure 
that rebalances the predictive equation, while still permitting us to impose the FRUH. We derive 
large sample results and conduct a comprehensive simulation study to validate our procedure. The 
simulations demonstrate the good small sample performance of our two-stage procedure, and its 
robustness to possible errors in the first stage estimation of the memory parameter. By contrast, the 
simulations for standard regression tests show the potential for significant size distortion, validating 
the concerns of previous researchers. Our empirical application to excess returns suggests less 
evidence against the FRUH than found using the standard, but possibly questionable, t-tests.  
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I. Introduction 

A common aspect of many predictive regressions is the highly persistent behavior of the regressor. 

Examples include stock return predictability tests using dividend-price ratios, earning price ratios or 

interest rates as regressors, tests of the permanent income hypothesis, and tests of forward rate 

unbiasedness. It has been understood since Mankiw and Shapiro (1986) that this persistence may 

lead to size distortion. The extant literature has also focused on the potential for regression 

imbalance in excess returns regressions, where returns typically exhibit little or no persistence.  

The problem of size distortion has led to a large empirical literature as well as the 

development of econometric techniques designed to address these issues, with much of the literature 

concentrated in the context of local-to-unity models (Cavanagh et al. 1995).  However, persistence 

can also manifest itself in the form of long-memory. Evidence of long-memory has been 

documented in several predictive regressors including the forward premium (Baillie and Bollerslev, 

1994, Maynard and Phillips, 2001, Maynard, 2003), volatilities (Baillie and Bollerslev, 2000) and 

dividend yields (Koustas and Serletis, 2005).   

With a few exceptions (Campbell and Dufour, 1997), the econometric literature on 

predictive regressions has focused on the case of near unit root regressors. The most common 

approach has been to maintain the same regression specification, but to adjust the critical values in 

order to preserve correct test size.  This may be attractive in some applications when economic 

considerations suggest this form of the alternative. Moreover, if the largest root of the regressor is 

merely close, but not equal, to unity, then the original regression specification may still be 

compatible with a stationary return series for the dependent variable. In other words, both the left 

and right hand side variables are stationary, despite the fact that the right hand side variable has a 

root near one.  Thus, while size distortion is of central importance in predictive regressions with 

near unit roots, problems of regression imbalance may arguably be avoided. This is no longer the 
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case when predictive regressors have long-memory, since imbalance may exist when a short-

memory dependent variable is regressed on a long-memory regressor.   

In this paper we propose a simple, intuitive two-stage rebalancing procedure that addresses 

both the regression imbalance and size distortion discussed above, while allowing for (without 

imposing) long-memory behavior in the predictive regressor. In the first stage, either a semi-

parametric or parametric estimator may be used to estimate the degree of long-memory in the 

regressor, while still allowing for rich short-memory dynamics. Then, in the second stage, the 

predictive regression is rebalanced by fractionally differencing the regressor. Although this alters 

the definition of the regression coefficient under the alternative hypothesis, it maintains the same 

interpretation under the null, allowing for a valid test of predictability. By fractionally differencing 

the regressor, we also remove the source of size distortion, yielding a t-statistic in the second stage 

regression with correct size.    

We derive the large sample theory for our proposed technique and demonstrate its 

applicability by a detailed Monte Carlo study.  The simulation study confirms the potential for size 

distortion in the absence of rebalancing (or other size adjustment), while showing that our two-stage 

procedure works well. We also find that estimation and inference in the second stage are unusually 

robust to estimation error or even modest mis-specification in the first stage. This is due to the fact 

that a fairly high degree of residual long-memory must be present in order to produce significant 

size distortion.  We see this as an important practical benefit, since the memory parameter can be 

difficult to estimate in small samples (see Nielsen and Frederiksen, 2004, for a survey). 

As an empirical application, we consider tests of the Forward Rate Unbiasedness 

Hypothesis (FRUH).  This hypothesis may be re-written as a test of the predictability of excess 

foreign exchange rate returns using the information in the lagged forward premium.  While excess 

returns are arguably stationary, beginning with Baillie and Bollerslev (1994), several studies have 

documented long-memory in the forward premium. Results from this regression, which indicate a 
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strong and rather counterintuitive rejection of the FRUH, have been called into question on account 

of this long-memory behavior (Baillie and Bollerslev, 2000, and Maynard and Phillips, 2001).   

Employing our two stage rebalancing procedure, we regress the excess currency return on 

the fractionally differenced forward premium.  We test the FRUH based on a zero restriction in the 

rebalanced regression, thus avoiding the potential for size distortion.  Our tests yield less evidence 

against the FRUH than do standard tests.  In particular, we find that the standard t-statistic in an 

OLS regression of excess returns on the forward premium is large in absolute value and 

significantly negative for every country in our sample.  In contrast, when our two step procedure is 

employed, we fail to reject the FRUH for two of the five cases in our sample, and in every case, the 

conventional p-values associated with the hypothesis of unbiasedness increases relative to the case 

where no fractional differencing is applied. 

The rest of the paper is organized as follows.  In section 2, we provide background on the 

FRUH, highlighting the relevant econometric issues underlying our analysis.  Section 3 outlines the 

proposed two step predictability test using long-memory regressors, provides its large sample 

properties, and discusses fist-stage estimation of the long-memory parameter.  Extensive simulation 

evidence is provided in Section 4.  Section 5 contains the results of our empirical investigation of 

the FRUH, and section 6 provides a summary of our results with ideas for future research.  An 

appendix contains the proofs affiliated with the asymptotic properties of our two-step procedure. 

2. Background 

Perhaps the most puzzling set of predictive regression results come from tests of the forward rate 

unbiasedness hypothesis (FRUH). These empirical results have provided the stylized facts 

underpinning what is often referred to as the forward discount anomaly.  The FRUH states that the 

current (log) forward exchange rate (ft) should provide an unbiased forecast of next period’s (log) 

spot exchange rate (st), i.e. Etst+1=ft .  This implies the orthogonality or non-predictability condition 
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     ,0][ 1 =−+ ttt fsE     (1) 

in which next period's forward rate forecast error (st+1-ft) is unpredictable using any information 

available at time t. Thus, the FRUH can be thought of as a test of excess return predictability. 

The classic predictability regression     

    11111 )( ++ +−+=− ttttt esfbcfs    (2) 

provides a simple specification in which to formulate the alternative hypothesis, along with the 

testable restriction b1=0.  This regression is equivalent to a spot return/forward premium regression  

    ,)( 12221 ++ +−+=− ttttt esfbcss    (3) 

where b2= b1+1=1, and satisfies b1=0 under the FRUH.  While these two equivalent regressions are 

the most common in the literature, it will be important to our analysis below to note that only the 

form of the null hypothesis in (1) is implied by the FRUH. Theory does not dictate the exact form of 

the alternative specifications and the regressions given above are simply convenient specifications. 

The empirical results from the predictability regressions in (2) and (3) are quite puzzling. 

Not only is unbiasedness strongly rejected (i.e. b1 ≠0; b2 ≠1), but the estimates of b2 are invariably 

negative.  In other words, the forward premium is not only found to be a biased predictor, it is also a 

perverse predictor, mis-predicting not only the magnitude of the exchange rate movement, but even 

the direction of change. 

Recent literature has questioned the validity of the inference on the basis of persistence in 

the forward premium, suggesting that this may induce bias and size distortion. Similar issues arise 

in other predictability regressions, such as those involving the regression of stock returns on interest 

rates or dividend and/or earnings price ratios. Proposed corrections have generally been undertaken 

employing an autoregressive or near unit root model for the regressor.1  However, evidence exists 

                                                           
1 For corrections to tests of the FRUH, see Newbold et. al (1998), Bekeart and Hodrick (2001), and Liu and 
Maynard  (2005). For corrections in the stock return predictability literature, see Stambaugh (1999), Rapach 
and Wohar (2004), Torous, Volkanov, and Yan, (2005), and the references within. 
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that suggests many predictive regressors, such as the forward premium (Baillie and Bollerslev, 

1994), may be subject to long memory rather than near unit root behavior. The statistical properties 

of long-memory and near-unit root processes are different, and it is unclear to what extent 

corrective procedures based on autoregressive or local-to-unity assumptions carry over to a long-

memory context.  It has also been argued that fractionally integrated regressors may cause inference 

problems in predictive regressions qualitatively similar to those found in regressions with near unit 

roots.  For example, the long memory behavior of the forward premium has been suggested as a 

possible resolution of the forward discount anomaly (Baillie and Bollerslev, 2000, Maynard and 

Phillips 2001).  To date, few studies have specifically attempted to design tests of predictability that 

account for the type of regression imbalance considered here. In this paper, we provide a valid test 

for predictability in the context of long-memory.  

We also address a second important issue that arises with long-memory regressors.  When 

regressors display long-memory, predictive regressions, such as (2), may suffer from a statistical 

imbalance since the return variables on the LHS are generally short-memory.  For example, under 

the FRUH, the forward rate forecast error (st+1-ft) must not only have short-memory, but must also 

be serially uncorrelated in order to meet the restriction in (1).  Empirically, its short-memory 

characteristics are apparent in the data.  For example, a plot of the log of excess returns for Canada 

from June 1973 to March 2000 is depicted in Figure 1.  By contrast, a time series plot of the 

forward premium for Canada for the same time period, in Figure 2, exhibits very different and much 

more persistent behavior.  The autocorrelations for these two series are depicted in Figure 3.  These 

figures clearly indicate that the forward premium has much stronger memory characteristics than 

the excess returns, which show very little autocorrelation.  

[FIGURES 1-3 ABOUT HERE] 

Although it may cause size distortion, the apparent imbalance between the components in 

(2) is not inconsistent with FRUH, which implies b1=0, in which case st+1–ft and ft –st are free to 
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exhibit different orders of integrations.  If test size were the only issue, corrections to the critical 

values could conceivably be derived. However, the apparent imbalance in (2) can cause 

fundamental problems under the alternative hypothesis as characterized by this regression 

specification. In fact, if the order of integration of the RHS variable exceeds 0.5, then the regression 

attempts to explain a stationary dependent variable with a nonstationary regressor.  Since the RHS 

has a tendency to wander off, whereas the LHS variable does not, Maynard and Phillips (2001) 

argue that b2=0 is the only possible parameter value consistent with this statistical unbalance and 

show that the OLS estimate of b2 converges to zero, but has a nonstandard distribution.2 In other 

words, there can be no linear relationship between short and long-memory (with d>0.5) variables.  

On the basis of the above discussion, one might be tempted to declare victory without 

further tests on the grounds that the imbalance in (2) implies b1=0.  However, it is crucial at this 

point to recall that our ultimate interest is in testing the non-predictability of the forward rate 

forecast error in (1) and not simply the parameter restriction in the convenient but rather simple 

regression specification given by (2). In other words, the parameter restriction b1=0 is only 

necessary, but not sufficient for the FRUH. From this perspective, the imbalance in (2) (short 

memory excess returns, long-memory forward premium) does not necessarily imply that the null 

hypothesis in (1) holds but rather indicates that (2) does not provide a meaningful parametric 

specification in which to couch the alternative.  This imbalance thus calls for a test that not only 

maintains correct size, but also allows for realistic and reasonable alternative specifications. 

Thus, as discussed in the previous literature, long-memory regressors, such as the forward 

premium pose substantial difficulties for predictive regression tests.  While the previous literature 

discussed above has clearly delineated these obstacles, few solutions to this testing problem have 

                                                           
2 Maynard and Phillips (2001) focus on the imbalance in (3), whereas as we focus on (2). Only an imbalance 
in the latter equation is compatible with the FRUH. Thus (2) seems a more natural choice. 
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been proposed.3 We contribute to this literature by providing a simple intuitive two-step 

predictability test in the presence of long-memory regressors, which remains valid under the null 

hypothesis and sensible under the alternative hypothesis.   

3.  Econometric Methodology 

Our two step procedure is intended to rebalance predictive regressions that have long memory 

regressors with dependent variables that are short memory.  In this section, we consider the 

implications of not knowing the true integration order, d, of the regressor.  In the first stage, the 

value of d is estimated, and the regressor, xt, is fractionally differenced with the estimated value of 

d.  In the second stage the regression is run with this fractionally differenced variable.  In section 

3.1, we validate our procedure showing that the estimate of the slope coefficient from the 

rebalanced regression is consistent.  Further, in instances where the null hypothesis of predictability 

can be re-written as a zero restriction on the slope coefficient, we show the t-statistic from the 

rebalanced regression achieves a standard normal asymptotic distribution. In section 3.2, we discuss 

the estimation alternatives for d that are available in the first stage. 

3.1  Two-Stage Test procedure 

We model xt as a Type I fractionally integrated process 

      ( ) { })1(1 0,2 >
−−= tt

d
t uLx       (4) 

where 1{t>0} is an indicator function and in which u2,t is a general linear process 

( ) ∑
∞

=
−==

0
22,2  where

j
jtjtt CLCu εε     (5) 

   ( ) ∑
∞

=

∞<Σ







=

0j

2

2
2

,2

,1 .   and  ,0i.i.d~ j
t

t
t Cj

ε
ε

ε   (6) 

                                                           
3 Maynard (2004) employs nonparametric sign tests that remain valid under long-memory assumptions, but 
apart from this paper, we know of no other work that attempts to deal with this issue.   
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Note, that C2(L) is a 2-dimensional row vector, and thus for generality we allow u2t to be linearly 

related to both ε1t and ε2t.  An ARFIMA(p,d,q) model results when C2(L)=[0 θ(L)/φ(L)], where θ(L) 

and φ(L) are moving average and autoregressive polynomials in the lag operator L such that all roots 

to φ(L) and θ(L)=0 lie outside the unit circle. 

 Next, we model yt as a linear function of the fractionally differenced predictor 

    ( ) 1,1101 1 ++ +−+= tt
d

t xLy εββ     (7) 

and consider tests of the hypothesis 0: 10 =βH .  Note, for example, that the FRUH holds (i.e. 

01 =−+ ttt fsE ) if 01 =β  but is violated for 01 ≠β , which implies a predictable excess return. 

 We propose a two-stage estimation procedure.  The first stage consists of obtaining a 

consistent estimate ( d̂ ) for d, with convergence rate Tα, where 4/1>α .  Using the estimate d̂ , we 

then regress yt+1 on the fractional difference of xt in the second stage regression: 

    ( ) 1,1
ˆ

101 1 ++ +−+= tt
d

t xLy εββ .    (8) 

This provides a feasible version of (7) with which to rebalance the relation between yt+1 and xt.  The 

standard t-test is then used to test the hypothesis that β1=0.  The following theorem establishes the 

large sample properties of our proposed two-step procedure. 

Theorem 1 ( ) [ ]( )( )    wherevar,0ˆ
11

1
,2111 Σ→−− −
tdT uNBT βββ   (9) 
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 The theorem shows that 1β̂  is consistent for 1β  with a convergence rate given by  

( ) ( )
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In general, the limit distribution in the second stage is contaminated by the estimation error in the 

first stage, leading to the addition term (BT) of order )( 2/1 α−TOp .  However, this contamination 

disappears in the special case when 01 =β  and thus no predictive relation exists for any value of d. 

In this case, the second stage limit distribution obtained by estimating d in the first stage is the same 

as the distribution that would be obtained if d were known.  Similar results hold for two-stage 

estimators in micro-econometrics (Newey and McFadden 1994, Section 6). 

 The asymptotic properties of the second stage t-statistic for predictability test (β1=0) are 

established in corollary 1.2, which shows that the test statistic is standard normal under the null 

(β1=0) and diverges at rate T1/2 under the alternative (β1≠0). It thus provides a solid basis for testing 

this hypothesis.  First, corollary 1.1 shows that the residual variance is estimated consistently.   

Corollary 1.1  ,ˆˆ 11

1

1

2
11

12 Σ→= ∑
−

=
+

−
p

T

t
tT εσ where ttt uy ,210111 ˆˆˆˆ ββε −−= ++ . 

Corollary 1.2 (a) If the null hypothesis 01 =β  holds, then ( )1,0Nt p→ .  (b) If the alternative 

01 ≠β holds then 1
2/1

,2
2/1

11
2/1 ]var[ βtp utT −− Σ→ , with 1

2/1
2/11

1
,2

211 ˆˆˆ βσ TuTt
T

t
t 







= ∑

−

=

−− . 

 The results of the theorem demonstrate that the two-stage procedure results in a consistent 

estimate of β1 for all possible values of this parameter.  Further, if the predictability test can be 

formulated in terms of a zero restriction on β1, then the asymptotic distribution of the standard t-test 

is standard normal, and thus achieves the same asymptotic distribution had d been known.  In 

section 4, we demonstrate the robust small sample properties of the two-stage estimator advocated 

here.  Before doing so, we briefly discuss the choice of the estimator for d. 

3.2 First Stage Estimation of d 

To utilize our two step procedure a consistent estimate of d must be obtained for a long 

memory model, which for our analysis is the ARFIMA model.  Fortunately, a plethora of estimation 
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techniques exist for the first stage calculation of d, which range from parametric, to semi-

parametric, and wavelet based estimators.  Parametric estimators include exact maximum likelihood 

estimators (see Sowell, 1992) and approximations of the exact MLE in both the time domain 

(constrained sum of squares, CSS, also known as approximate MLE or AMLE) and frequency 

domain (Fox and Taqqu, 1986).  The properties of the exact MLE estimator and Fox and Taqqu’s 

estimator are identical.  For -½<d<½, these estimators converge at rate T1/2 and are asymptotically 

normal.  For our purpose, the frequency based approximation to MLE and MLE have an established 

probability law only for stationary and invertible processes.  The typical response is to difference 

the data when it is believed d>½ and to add 1 to the resulting estimate. 

In the time domain, the CSS estimator has become popular because of its relative simplicity 

and robustness to non-stationary processes.  The CSS estimates are the set of parameters that 

maximize the approximate maximum likelihood function, ψ , which is given as follows, 

  
µ),(xL)(

θ(L)
(L)=a

a
σ

σTπ)(T=)σd,θ(µ

t
d

t

T

=t
t

−−

−−− ∑

1

,
2

1log
2

2log
2

,',',
2

2
2

22

φ

φψ
  (11) 

where at is a martingale difference sequence and φ(L) and θ(L) are autoregressive and moving 

average polynomials with all roots to φ(L)=0 and θ(L)=0 lying outside the unit circle.  It is 

necessary to initialize pre-sample values, which is usually accomplished by setting them equal to 0. 

The properties of the CSS estimator have been established by Beran (1995), who shows that the 

estimator of d converges at rate T1/2 and is asymptotically normal for d> -½.  Although, in the 

current context, any of the time domain based estimators will likely work well, we choose to utilize 

the CSS estimator given its relative simplicity and robustness to non-stationary processes. 

While the CSS estimator has good small sample properties when the ARFIMA model is 

correctly specified (Chung and Baillie, 1993, and Nielsen and Frederiksen, 2004), it is well known 
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that the estimator is inconsistent when the number of autoregressive and or moving average 

parameters are incorrectly chosen (Robinson, 1995).  A number of semi-parametric estimators that 

avoid the concerns of mis-specification have been developed.  These estimators include log 

periodogram regression (LPR) based estimators (Geweke and Porter-Hudak, 1983, Robinson, 1995, 

and Andrews and Guggenburger, 2003), and Whittle type estimators including the local Whittle 

estimator (Robinson, 1995), and the exact Whittle estimator (Phillips, 1999, and Shimotsu and 

Phillips, 2002).  The exact Whittle estimator is an attractive alternative, as Shimotsu and Phillips 

show that it is asymptotically normal for any value of d.   

The attractiveness of the LPR based estimators lie in their incredible simplicity.  These 

estimators are based on the properties of the spectral density function of a long memory fractional 

process.  In particular, the log of the spectral density function for a long memory fractional process, 

including an ARFIMA process, satisfies 

)log(2)](log[~)(log ωωω dgf −    (12) 

where “~” denotes asymptotic equivalence as ω→0, and g(ω) is an even function that is continuous 

at zero and finite.   An estimator of d can easily be obtained using the sample analogues of the 

quantities in (12), where the periodogram at the first m Fourier frequencies replaces the spectral 

density function.  A value for the bandwidth parameter, m, must be chosen, and in what follows 

below, we use m=T0.50 and m=T0.65, which are typical choices in the literature (see Nielsen and 

Frederiksen, 2004).  The remaining issue concerns the first term, log[g(ω)], in (12).  The original 

LPR based estimator of Geweke and Porter-Hudak (GPH, 1983) replaces this quantity with a 

constant.  Then, the log periodogram at the first m frequencies is regressed on a constant and  

–2log(ωj), j=1,….,m.  However, the approximation of log[g(ω)] may not be innocuous and may in 

fact lead to a sizeable small sample bias as shown by Agiakloglou, Newbold, and Wohar (1992).  

Andrews and Guggenberger (2003) have suggested that a decrease in the small sample bias can be 
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accomplished by approximating the term first term in (12) with a constant and the polynomial 

∑
R

=r

r
j m,=j,ω

0

2 .1,....   Recently, Nielsen and Frederiksen (2004) have shown the use of the biased 

reduced LPR (BRLPR) estimator of Andrews and Guggenberger (2003) does indeed result in 

substantial mitigation of the small sample bias relative to other frequency based estimators.  Based 

on this bias reduction, coupled with its simplicity, we chose to utilize the BRLPR estimator in our 

analysis below.  Following Nielsen and Frederiksen, (2004) we also set R=1 throughout.4  

4. Monte Carlo Evidence 

The simulation experiments in this section serve several purposes.  First, we wish to demonstrate 

the potential pitfalls that exist when long-memory regressors are used in predictive regressions.  To 

this end, we allow the regressors to follow long memory ARFIMA(0,d,0) and ARFIMA(1,d,0) 

processes, while allowing the dependent variables to be white noise. Second, we wish to evaluate 

the effectiveness of our proposed solution to this problem and thus we report extensive simulation 

results based on our two-step estimation procedure using both a time domain and frequency based 

estimator to filter the long memory regressor prior to running the predictive regressions. We offer 

further evidence of the robustness of our approach by demonstrating the applicability of our 

procedure using the CSS estimator, even when the model is mis-specified.  Finally, we close with a 

brief power experiment to further highlight the validity of our two-step procedure. 

Our simulations are based on the following model 
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4 Andrews and Guggenberger (2003) have shown that their estimator is consistent and asymptotically normal 
for -1/2<d<1/2.  Although it appears likely that it remains consistent for d<1, given the potential for non-
stationarity, we follow Sun and Phillips (2003), and apply the linear filter (1-L)0.50 prior to using the BRLPR 
estimation technique.  The final estimate of d is then given by the BRLPR estimate plus 0.50.   
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where 1<φ , and Σ  is a positive definite matrix with potentially non-zero diagonal elements.  To 

generate data, we first draw the residual vector εt, whose elements are correlated with correlation 

coefficient equal to 221112 ΣΣΣ=ρ .  The sequence u2t is then generated using the AR structure 

given above. Finally, the variable xt is created by multiplying the disturbance sequence by the 

Cholesky factorization of the Toeplitz matrix of exact autocovariances for the desired value of d.5  

For the majority of the simulation experiments, β1  is set equal to zero, although in our discussion of 

the power of our test, we allow β1 to take on values between 0 and 1. 

Based on the empirical example in our paper, we chose a sample size of 350 and perform 

3000 simulations.  A stylized fact regarding exchange rate dynamics and the FRUH regressions is 

the excessive volatility of the dependent variables relative to the forward premium (Baillie and 

Bollerslev, 2000).  Therefore, we set the standard deviations of ε1t and ε2t equal to 0.0329 and 

0.0009 respectively.6   In this paper, one of our major concerns is with accessing the size of the 

empirical tests, and in this regard, the tests are independent of the selection of the relative 

magnitudes of the standard deviations of the two innovation series.  Finally, we allow the 

correlation coefficient across the residuals to vary from -0.95 to 0.95. 

Tables 1-2 motivate the problem by demonstrating the size distortion that results when 

long-memory regressors are included in predictive regressions.  They show simulation results under 

the null hypothesis (b1=0) for a standard predictability regression, using the fitted model 

tt xbby 101
ˆˆˆ +=+ , in which our two-step procedure is not applied. In our empirical application this 

would correspond to the traditional tests of FRUH when the forward premium displays long-

memory. Our objective here is to observe the consequences of not adequately accounting for long 

                                                           
5 See Sowell (1992) for details about the autocovariances of an ARFIMA process.  To create a non-stationary 
series, we first create a series with a differencing parameter equal to d-1, and then integrate this series. 
6 These values result from the German data for the FRUH regressions discussed below.  The values used for 
standard deviations of ε1t and ε2t  are the standard deviations of the log of excess returns and the fractionally 
differenced log of the 1 month forward premium with a differencing parameter equal to 0.80 respectively. 
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memory.  Table 1 contains our results when the regressor follows an ARFIMA(0,d,0) specification.  

The values in the first column of Table 1 yield the integration order (d) of the regressor.  Across the 

top of each Table, we report the correlation coefficients (ρ) between the simulated residuals.    

Table 1a shows rejection rates under the null hypothesis for a standard predictability test 

when the regressor is I(d). The test retains the correct size when the regressor is stationary 

(regardless of correlation), but becomes oversized in the presence of residual correlation when the 

value of d exceeds 0.50. The size distortion increases with both the absolute value of the correlation 

coefficient and the persistence of the regressor, with rejection rates as high as 30% in a nominal 5% 

test.  These results are similar to those of Mankiw and Shapiro (1986), who analyze size distortion 

in predictive regression with near unit root regressors. Tables 1b and 1c contain the simulated biases 

and variances of 1b̂ .  The estimator is negatively (positively) biased when the correlation between 

the residuals is positive (negative) and this bias can be substantial.  Finally, it is interesting to note 

that the variance of 1b̂  declines as the regressor becomes more persistent, which is expected given 

the non-stationarity, and thus infinite variances, for most of the processes considered in these tables.   

We next consider the effects of adding short run dynamics to the system in Table 2.  In this 

case, we allow xt to follow various ARFIMA(1,0.40,0) specifications.  The results are similar to 

those reported in Table 1, although it is interesting to note that the inclusion of short term dynamics 

can influence predictive tests.  In particular, every process considered in Table 2 is stationary.  

Nonetheless, rejection rates of the true null of no predictability can be as high as 26% in a nominal 

5% test.  Again, we reach the same conclusion as above regarding the mean bias and variance of 1b̂ . 

The results of Tables 1-2 demonstrate the potential pitfall of using long-memory regressors 

in predictive regressions.  Tables 3-7 demonstrate the applicability of our suggested two step 

approach. We consider both time and frequency domain estimators, while allowing for the 

possibility of misspecification using our time domain estimator.  Tables 3-4 contain our results 
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using the correctly specified CSS estimator in the first step estimation of d, when xt follows both a 

fractional noise process (Table 3) and an ARFIMA (1,0.80,0) process (Table 4).7   The results for 

our two step procedure are quite promising and contrast quite nicely to those found above when 

long-memory regressors are employed in standard regressions without differencing. In each case, 

the empirical size of the test is approximately equal to the nominal size, with only one exception.  In 

Table 4, when xt is an ARFIMA(1,0.80,0) process with φ =0.99, we see that the true hypothesis that 

β=0 is rejected too frequently when the residual correlation differs from 0.  This is to be expected as 

the correctly differenced process is a near unit root variable and is thus persistent even though it is 

not long memory.  The results of Table 3b also indicate that the bias in the first set of tables is 

dramatically reduced by rebalancing, and we no longer observe a declining variance as xt becomes 

more persistent.  There are still some cases in Table 4, where the mean estimate of β1 is not centered 

precisely at 0.  Nonetheless, the resulting biases are usually smaller than those reported in Table 2.   

Table 5 presents our results using the semi-parametric BRLPR estimator for first stage 

calculation of d.  Here, we only analyze the case where xt follows an ARFIMA(1,d,0) process to 

conserve space.  Throughout, we allow the value of φ  to vary, but fix d to be equal to 0.80.  The 

last panel of the table documents the exceptional performance of the BRLPR estimator.  Unless a 

very large and positive autoregressive parameter is present, the estimated value of d is very near the 

true value.  When strong autoregressive dynamics are present, the spectral density function near the 

origin is contaminated with both short and long memory components (see equation 13).  The result 

is a substantial positive bias in the differencing parameter, which interestingly wipes out all of the 

activity near the origin, resulting in a correctly sized second stage t-test.  In other words, when 

φ ≥0.80, d is over-estimated resulting in xt being slightly over-differenced.  The result of this over-

differencing is a mitigation of the over-all persistence of the process due to both autoregressive and 

                                                           
7 The CSS estimator of d is remarkably accurate when there are no ARMA components, and thus we omit the 
mean estimated values of d from Tables 3.  These results are available upon request. 
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long memory components, and thus a correctly sized second stage t-test for all values of φ .  

Finally, there is a substantial bias reduction relative to the results in Table 2. 

Tables 6 and 7 demonstrate that our second stage test performs well even when the long-

memory model in the first stage is misspecified. Table 6 considers the case where xt follows an 

ARFIMA(1,d,0) process, but an ARFIMA(0,d,0) process is estimated using the CSS estimator.  

Table 7 considers the opposite scenario, in which the true process is fractional noise, but an over 

parameterized ARFIMA(1,d,0) model is estimated.  In Table 6, we fix d equal to 0.80 and consider 

the complications that result as φ increases from -0.99 to 0.99.  The value of d is not estimated well 

under the misspecification, a fact familiar to practitioners using parametric long memory estimators.  

For large negative values of φ, a substantial negative bias results for d, while d is dramatically over-

estimated for large positive values of φ.  In this case, the differencing parameter is burdened with 

the role of accounting for both short and long memory components.  Nonetheless, the second stage 

test has the correct size throughout, and the mean estimate of β1 is very near 0.  In Table 7, we we 

allow the value of d to vary from 0.40 to 1.00, and analyze the effects from fitting an 

ARFIMA(1,d,0) model when the regressor is actually fractional noise.  It is clear, from the last 

panel of the table, that d is underestimated, as the algorithm will routinely select large 

autoregressive parameters rather than the correct value of d.  However, the bias is reasonable, 

resulting in quite an accurate second stage test, with approximately an empirical size of 5%. 

We close this section by commenting on the implications of misspecification.  Under the 

null that β1=0, moderately imprecise estimation of d does not result in a large size distortion.  This 

does not suggest, however, that over-differencing is appropriate.  Indeed, our approach does not 

force the researcher to take any a-priori stand on the order of integration of the regressor and yields 

a consistent second stage estimator for any value of β1, an important property for test power.  To 

highlight the performance of our two-step procedure under the alternative, we ran a brief power 
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study.  Based on equation (13), we allowed β1 to vary from 0 to 1 with a step size of 0.10, and 

tested the hypothesis that β1=0.  For brevity, we chose a value of ρ=0.80 and set the standard 

deviations of both disturbance sequences equal to unity.  We allowed the regressor, xt, to follow a 

fractional noise process, and also allowed d to vary from 0 to 1, with a step size of 0.20.  The results 

clearly show that a substantial power loss will generally occur unless the two step procedure is used 

relative to cases in which no differencing is employed or over-differencing is utilized.8  As an 

example, consider Figure 4, which depicts the power related to the use of our two step procedure, 

application of a simple first difference, and the use of no differencing when xt is a fractional 

variable with d=0.40 and yt+1 is related to xt  with the value of β1 (ranging from 0 to 0.30) depicted 

along the x-axis.  As above, the sample size is set equal to 350, and we employ 3000 simulations.  

When β1=0, the statistic displayed corresponds to the size of the test.  The power is always greatest 

for our two-step procedure.  Substantial power loss occurs for the case when nothing is done to 

rebalance the equation, even though the processes considered here are stationary.  Over-differencing 

results in higher power relative to no differencing, but is clearly beat by the application of our two-

step procedure for every value of β1.9   

The results of our simulation section show that care must be taken in regressions involving 

short memory dependent variables and long memory regressors.  In particular, the t-statistics are too 

large in absolute value and can result in substantial over-rejection.  Our simulation results indicate 

that our two-step procedure results in a rebalanced regression whose t-statistic has the correct size.  

It is also robust, both with respect to the selected estimator and the potential for mis-specification.  

                                                           
8 Extremely small power gains were detected when the true value of d was 0 and unity with no differencing 
and the application of simple first difference, respectively, relative to our two-step procedure. 
9 The remaining power results are available upon request.  To summarize, for d<0.40, the power gain from 
differencing with the estimated d is even greater relative to the case where a simple first difference is used, 
but decreases relative to the case with no differencing.  The opposite occurs as the value of d rises, with the 
power generally remaining highest for the case in which our two-step procedure is employed. 
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Further, substantial power gains result when d is first estimated relative to the cases in which no 

differencing occurs or a simple first difference is used.  We now apply our procedure to the FRUH. 

5. Empirical Application Results 

As discussed above, the FRUH is typically tested by the regression depicted in equation (3), where 

the change in the spot rate is regressed on the forward premium. Constructing a test based on 

equation (3) that accounts for the long memory behavior of the forward premium is difficult.  In 

particular, in its present form, if the change in the spot rate is I(0), the finding of a non-stationary 

long memory forward premium implies an automatic rejection of the FRUH.  A more natural way to 

test the FRUH, while allowing for long memory in the forward premium, is based on the matching 

regression depicted in (2).  In particular, we base our test on the following regression:10 

   11101 )()1( ++ +−−+=− ttt
d

tt sfLfs εββ .   (14) 

If excess returns are I(0), as both intuition and empirical evidence suggest, then the regression in 

(14) contains components that are all integrated of the same order.  The test for unbiasedness, is 

then given by a simple t-test of the hypothesis 01 =β .   

We consider exchange rate data for Canada, France, Germany, Japan, and the UK vis-à-vis 

the US from July 1973 to March 2000.  The data are obtained from Data Resources International, 

and are the same data as employed in Liu and Maynard (2005).  We use the one month forward and 

spot US dollar price of the foreign currency, where the data are collected on the last day of each 

month. See Liu and Maynard (2005) for precise details. 

As a benchmark, Table 8 yields regression results for the standard FRUH equations shown 

in equations (2) and (3).  Under unbiasedness, we expect b1=1 and b2=0.  Using the probability 

values for these hypotheses, we encounter a strong rejection of the unbiasedness hypothesis.  In 
                                                           
10 Baillie and Bollerslev (2000) also analyze the effects of long memory in the conditional variance.  GARCH 
effects were less pronounced in our monthly data than they appear to be in daily data, and our results were not 
affected by the inclusion of a GARCH in mean term in (14).  We thus concentrate on the simple form of 
equation (14), but see the inclusion of GARCH effects as an interesting extension to our analysis. 
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every case the estimated coefficient is negative, and when the change in the spot rate appears as the 

dependent variable, we reject the hypothesis of a unity slope coefficient at the 1% level for 3 of the 

5 countries, while we are able to reject this hypothesis at the 5% level for every country in our 

sample.  Precisely the same finding regarding unbiasedness emerges when we use excess returns. 

We next consider the possibility that the rejection of the FRUH results from long memory 

in the forward premium by rebalancing the FRUH regression with excess returns as the dependent 

variable, using two different estimation techniques.  Table 9 presents our results using the CSS 

estimator.  It is interesting to note that our findings are very much in line with previous authors 

(Baillie and Bollerslev, 1994, and Maynard and Phillips, 2001) in that we find significant evidence 

of long memory dynamics in the forward premium.  Using the numerical standard errors as our 

guide, we see that we are able to reject the hypothesis that d is either 0 or 1 at the 5% level for every 

country in our sample, except Germany, where we fail to reject a unit root in the forward premium.  

After filtering the forward premium using the estimated value of d in the first stage, we run the 

regression associated with equation (14).  First we note that there is one case where the sign 

switches from negative to positive (for Japan).  Secondly, the probability values associated with the 

hypothesis of unbiasedness exceed the same values in Table 8.  We continue to reject the hypothesis 

that β2=0 at the 1% level in three cases (Canada, France, and the UK).  Now, however, we fail to 

reject the hypothesis at the 10% level for Germany and Japan.  Thus, rebalancing makes a 

difference for at least two countries in our sample, and we conclude that when our two-step 

procedure is implemented, substantially less evidence against unbiasedness is uncovered. 

Table 10 contains results for our two-step procedure using the BRLPR estimator of 

Andrews and Guggenberger (2003).  The first panel contains results using m=T0.50, with the latter 

panel presenting our results with m=T0.65.  While the estimated value of d can be erratic, which is 

not surprising given the large variance of the BRLPR estimator, we reach the exact same 

conclusions as we did in Table 9 regarding the unbiasedness hypothesis.  Again, in three cases we 
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reject unbiasedness at the 1% level with somewhat larger p-values than are recorded in Table 8, 

while we fail to reject unbiasedness for Germany and Japan for any conventionally sized test. 

6. Summary and Conclusion 

A substantial literature exists on predictive regressions with near unit root regressors, but far less 

attention has been paid to a second empirically relevant case in which predictive regressors display 

long-memory behavior. In both cases, size distortion can be problematic. However, the remedies 

employed in the context of near unit roots do not necessarily carry over to the long-memory case. 

Moreover, while problems of regression imbalance may be of concern in the near unit root case 

(Maynard and Shimotsu, 2004), they become unavoidable when regressors are fractionally 

integrated, particularly if returns are stationary, but the predictive regressors are integrated of order 

d>0.5, as in tests of the FRUH.    

In this paper we have suggested a two-stage predictive regression test in which the 

dependent variable is stationary, but which allows for, without imposing, long-memory behavior in 

the predictor. The first stage involves a consistent estimator of the long-memory parameter. This is 

then used to rebalance the second stage predictive regression by fractionally differencing the 

regressor. A full set of asymptotic results are provided. In particular, the t-statistic in the second 

stage regression has a standard normal limiting distribution. Likewise, extensive simulations 

suggest that the two step procedure works remarkably well in practice. It has good size, is highly 

robust to estimation error in the first stage, and can yield improved power over cases in which either 

no differencing or over-differencing is employed.   As an empirical application, we consider the 

puzzle affiliated with the FRUH.  We find that the forward premium is typically subject to long 

memory, while the standard regressands in the FRUH regressions appear to be I(0).  We 

demonstrate that the use of our technique is able to reverse a strong rejection of unbiasedness for 

two of the five countries in our sample.  



22 

Appendix 
    Lemma 1. Define δ >0, and let δδ <|| *

T .  Defining tu ,2
~ =ln(1-L)u2,t1{t>0}, tu ,2

~~ =ln(l-L) ũ2,t, and 

,~~)1( ,2
*

,,2
*

tTt uLu Tδ−= we have 

 maxt≤T E tu ,2
2~ < ∞<


















−








Σ ∑∑

∞

=

∞

= 1

22

1
2

1
rk

k kr
c ,    (A.1) 

 maxt≤T E tu ,2
2~~   = O(ln(T)²),           (A.2) 

maxt≤T E( Ttu ,,2
* )2  = 






















2_

)ln( δTTO .      (A.3) 

    Lemma 2 Using the same definitions in the statement of Theorem 1and Lemma 1, the  
 
following convergence rates apply  
 

 a)  T-1/2 ∑
−

=
+

1

1
1,1,2

~T

t
ttu ε = Op(1) ,    b) T-1 ∑

−

=

1

1
,2,2

~T

t
tt uu =Op(1) ,    c) T-1 ∑

−

=

1

1

2
,2

~T

t
tu =Op(1) , 

 d)  T-1 ∑
−

=
+

1

1
1,1,,2

*
T

t
tTtu ε = Op(ln(T)

_
δT )  e)  T-1 ∑

−

=

1

1
,2,,2

*
T

t
tTt uu =Op(ln(T)

_
δT )       

f)  T-1 ∑
−

=

1

1
,2,,2

* ~T

t
tTt uu =Op(ln(T)

_
δT )      g)  T-1 ∑

−

=

1

1

2
,,2

*
T

t
Ttu =Op(ln(T)2

_
2δT ).   

Proofs 

    Proof of Lemma 1 (A.1) follows by (6) and the series expansion ln(x) = ∑
∞

=

− −
−

1

1 )1()1(
j

j
j

j
x : 

 

tu ,2
~ = ln(1-L)u2,t1{t>0}= ∑ ∑∑

−

=

−+

+=
−

∞

=








−
−=−

1

1

1

10
2,2 ,11t

j

tk

kr
rt

k
kt

j

kr
CuL

j
ε   

maxt≤T E ũ2,t
2 = maxt≤T ∑ ∑ ∑∑

∞

=

−+

+=

−+

+=
−−

∞

=








−








−0

1

1

1

10
22 ].'[11

k

tk

kr

tj

js
strt

j
jk E

kskr
CC εε  

.1
1

22

0
2 ∞<


















−








Σ≤ ∑∑

∞

=

∞

= rk
k kr

C   

Since tu ,2
~ =0, t≤0 and ∑

−

=

1

1

1T

j j
= O(ln(T)) (Gradshtein and Ryzhik, 1994, eqn. 0.131), 

maxt≤T tu ,2
~~ 2 = maxt≤T ≤−

−

=

−

=
−∑∑ |~~|11

,2

1

1

1

1
,2 kt

t

j

t

k
jt uuE

jk
 maxt≤T =








∑

−

=

2
1

1

2
,2

1|~|
T

j
t j

uE  O(ln(T)2), 

 
showing (A.2).  Let 

jT ,
*δ

ψ  and 
jδψ , j=0,1,2,… denote the MA(∞) coefficients in the expansion of 



23 

TL
*

)1( δ−− and TL δ−− )1( , respectively.  Noting that tu ,2
~ = 0, t≤0, |||| _

,
*

j
jT δδ

ψψ ≤ , where 
jδψ is 

non-random, and ∑
−

=
−=

1

0
2,,2

* ~~
,

*

t

j
jtTt uu

jTδ
ψ , (A.3) then follows since 

maxt≤T E (u*
2,t,T)² = maxt≤T ktjt

t

j

t

k
uuE

kTjT −−

−

=

−

=
∑∑ ,2,2

1

0

1

0

~~~~
,

*
,

* δδ
ψψ ≤ 

maxt≤T ( )[ ] ( )[ ]
2/11

0

1

0

2
,2

22/12
,2

2 |~~||||~~|||
,

*
,

*∑∑
−

=

−

=
−−

t

j

t

k
ktjt uEuE

kTjT δδ
ψψ  

 

  ≤ maxt≤T 
2/1

1

0

1

0

2
,2

2
2/1

2
,2

2 |
~~||||

~~|||
,

_
,

_∑∑
−

=

−

=
−− 

























t

j

t

k
ktjt uEuE

kTjT δδ
ψψ  

   ≤ maxt≤T =







∑

−

=
−

2
1

0 ,

2
,2 |||

~~| _

T

j j
ktuE

δ
ψ O((ln(T)

_
δT )2), 

since ∑ ∑
−

=

−

=

−≈
1

0

1

0

1

,

_

_

T

j

T

jj
jδ

δ
ψ = O(

_
δT ) (Gradstein and Ryzhik, 1994, eqn. 0.121).  

Proof of Lemma 2 First, (c) follows since 
 

 T-¹
21

1
,2

1
1

1
,2

21
1

1
,2

2 ~~~ 







−= ∑∑∑

−

=

−
−

=

−
−

=

T

t
t

T

t
t

T

t
t uTuTu and 

 ∑∑
−

=

−
−

=

− ≤≤






 1

1
,2

21
21

1
,2

1 ~~ T

t
t

T

t
t uETuTE maxt≤T tuE ,2

2~ <∞.    (A.4) 

Employing the Cauchy Schwartz inequality, similar argument shows (b). For (a) write 
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The second term on the RHS is Op(1) by (A.4) and application of the standard CLT. For the first 

term, since  ũ2,t is predetermined, by the Law of Iterative Expectations, 
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Parts (e) and (f) follow by the same argument. 

    Proof of Theorem 1 Define ),ˆ(ˆ ddT −−=δ where Tδ̂ is the integration order of the second-

stage regressor.  By assumption 
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FIGURES 

 
Figure 1 

Log of Excess Returns for the Canadian Dollar vis-à-vis the US Dollar (1973-2000) 
 

Figure 2 
Log of the Forward Premium for the Canadian Dollar vis-à-vis the US Dollar (1973-2000) 
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Figure 3 

Sample Autocorrelations for Canadian Excess Returns and Forward Premium 
With 95% Confidence Intervals about Zero 

Figure 4 
Power to Reject the Null Hypothesis that β1=0 

Dependent Variable is Short Memory with a Long Memory Regressor (d=0.40) 
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Table 1 
Unbalanced Regression without Differencing 

Regressor is Fractional Noise; Dependent Variable is Short Memory 
Table 1a 

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that b1=0 
True Value of b1=0, Sample Size=350 

ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.20 0.0460 0.0483 0.0487 0.0513 0.0490 0.0503 0.0537 0.0530 0.0513 
0.40 0.0497 0.0523 0.0503 0.0507 0.0517 0.0540 0.0600 0.0583 0.0600 
0.60 0.0973 0.0910 0.0840 0.0587 0.0550 0.0620 0.0900 0.0987 0.1057 
0.80 0.2023 0.1873 0.1623 0.0820 0.0570 0.0790 0.1590 0.1933 0.2033 
0.90 0.2603 0.2350 0.2080 0.0920 0.0557 0.0913 0.1997 0.2337 0.2540 
0.95 0.2823 0.2550 0.2150 0.0900 0.0550 0.0957 0.2143 0.2547 0.2777 
1.000 0.3003 0.2743 0.2307 0.0917 0.0547 0.0957 0.2247 0.2703 0.2953 

Table 1b 
Bias of  1b̂   

True Value of b1=0, Sample Size=350 
ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.20 0.3013 0.2830 0.2475 0.1115 -0.0189 -0.1452 -0.2677 -0.2971 -0.3112 
0.40 0.7092 0.6714 0.5959 0.2955 -0.0041 -0.3041 -0.6007 -0.6741 -0.7107 
0.60 1.0326 0.9787 0.8716 0.4429 0.0091 -0.4290 -0.8628 -0.9721 -1.0274 
0.80 0.8930 0.8454 0.7524 0.3821 0.0063 -0.3732 -0.7423 -0.836 -0.8840 
0.90 0.7063 0.6682 0.5939 0.3004 0.0027 -0.2990 -0.5847 -0.6568 -0.6940 
0.95 0.6089 0.5761 0.5117 0.2585 0.0015 -0.2599 -0.5031 -0.5641 -0.5955 
1.000 0.5159 0.4882 0.4336 0.2190 0.0007 -0.2221 -0.4255 -0.4762 -0.5021 

Table 1c 
Variance of  1b̂  

True Value of b1=0, Sample Size=350 
ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.20 3.1439 3.1520 3.1735 3.2777 3.3613 3.3682 3.2637 3.2188 3.1918 
0.40 2.2559 2.2671 2.2942 2.4148 2.5057 2.5158 2.3773 2.3244 2.2958 
0.60 1.2069 1.2018 1.2077 1.2713 1.2983 1.2992 1.2387 1.2274 1.2241 
0.80 0.5211 0.5031 0.4846 0.4634 0.4480 0.4583 0.4968 0.5197 0.5330 
0.90 0.3205 0.3035 0.2827 0.2462 0.2305 0.2459 0.2915 0.3106 0.3229 
0.95 0.2461 0.2318 0.2128 0.1755 0.1614 0.1771 0.2190 0.2352 0.2444 
1.000 0.1864 0.1744 0.1588 0.1237 0.1115 0.1262 0.1615 0.1755 0.1820 

 
Notes: The table shows simulation results from the standard predictability regression without rebalancing 

yt+1 = c1 + b1 xt+ε1t+1 (1) 
under the null hypothesis (b1=0) when the regressor xt is integrated of order d and given by  

(1-L)dxt = c2+ε2τ ,  (2) 
where ( ) ),0(...~, 21 Σ′= Ndiittt εεε , and 221112 ΣΣΣ=ρ  denotes the residual correlation. 
Notes for tables 1-2: 
Throughout, the true value of β is equal to 0.  Values for c1 and c2 are set equal to 0, while the standard 
deviations of the innovations in equations (1) and (2)  above, have been estimated from the exchange rate data 
for Germany where the forward premium has been fractionally differenced with d=0.80.  The resulting values for 
the standard deviations of ε1t and ε2t are 0.03294 and 0.000942, respectively.  To calculate correlated residuals 
we use the Cholesky factorization of the desired correlation matrix. 

 



32 
 
 

Table 2 
Unbalanced Regression Based On Partial Differencing 

Regressor is an ARFIMA(1,0.40,0) Process  
Table 2a 

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that b1=0 
True Value of b1=0, Sample Size=350 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.0433 0.0403 0.0447 0.0447 0.0470 0.0470 0.0410 0.0423 0.0400 
-0.95 0.0410 0.0407 0.0437 0.0500 0.0490 0.0440 0.0367 0.0353 0.0360 
-0.80 0.0403 0.0417 0.0463 0.0520 0.0497 0.0430 0.0400 0.0380 0.0400 
-0.40 0.0490 0.0470 0.0493 0.0547 0.0553 0.0493 0.0480 0.0497 0.0507 
0.00 0.0497 0.0523 0.0503 0.0507 0.0517 0.0540 0.0600 0.0583 0.0600 
0.40 0.0623 0.0590 0.0580 0.0527 0.0517 0.0500 0.0660 0.0657 0.0663 
0.80 0.0937 0.0877 0.0853 0.0610 0.0543 0.0593 0.0750 0.0907 0.0963 
0.95 0.1170 0.1097 0.0947 0.0677 0.0543 0.0567 0.1003 0.1123 0.1243 
0.99 0.2640 0.2403 0.2060 0.0913 0.0570 0.0917 0.1973 0.2407 0.2627 

Table 2b 
Bias of  1b̂   

True Value of b1=0, Sample Size=350 
ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 

-0.99 -0.2197 -0.2089 -0.1888 -0.0973 -0.0009 0.0938 0.1880 0.2105 0.2211 
-0.95 -0.0711 -0.0699 -0.0662 -0.0430 -0.0125 0.0219 0.0521 0.0591 0.0630 
-0.80 0.0954 0.0871 0.0722 0.0216 -0.0203 -0.0571 -0.0946 -0.1038 -0.1077 
-0.40 0.5366 0.5062 0.4464 0.2127 -0.0166 -0.2427 -0.4646 -0.5187 -0.5453 
0.00 0.7092 0.6714 0.5959 0.2955 -0.0041 -0.3041 -0.6007 -0.6741 -0.7107 
0.40 0.6704 0.6356 0.5659 0.2861 0.0041 -0.2807 -0.5627 -0.6329 -0.6682 
0.80 0.4280 0.4062 0.3626 0.1860 0.0050 -0.1773 -0.3567 -0.4021 -0.4252 
0.95 0.3165 0.3003 0.2683 0.1390 0.0048 -0.1309 -0.2633 -0.2975 -0.3149 
0.99 0.1467 0.1381 0.1227 0.0635 0.0005 -0.0633 -0.1218 -0.1368 -0.1445 

Table 2c 
Variance of  1b̂  

True Value of b1=0, Sample Size=350 
ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 

-0.99 0.2398 0.2369 0.2343 0.2193 0.2105 0.2171 0.2382 0.2404 0.2394 
-0.95 1.0079 1.0191 1.0401 1.0962 1.1233 1.0944 1.0168 0.9954 0.9876 
-0.80 1.6492 1.6705 1.7071 1.8174 1.8716 1.8308 1.6860 1.6436 1.6251 
-0.40 2.7047 2.7301 2.7798 2.9535 3.0571 3.0313 2.8354 2.7649 2.7272 
0.00 2.2559 2.2671 2.2942 2.4148 2.5057 2.5158 2.3774 2.3245 2.2958 
0.40 1.2430 1.2421 1.2460 1.2840 1.3169 1.3260 1.2775 1.2645 1.2592 
0.80 0.2954 0.2897 0.2833 0.2723 0.2646 0.2679 0.2812 0.2907 0.2969 
0.95 0.1247 0.1207 0.1160 0.1058 0.1009 0.1046 0.1160 0.1235 0.1278 
0.99 0.0183 0.0165 0.0148 0.0117 0.0101 0.0123 0.0162 0.0178 0.0187 

Notes: The table shows simulation results from the standard predictability regression without rebalancing 
yt+1 = c1 + b1 xt+ε1t+1 (1) 

under the null hypothesis (b1=0) when the regressor xt is integrated of order d=0.4 throughout and given by  
(1-φL)(1-L)0.40xt = c2+ε2t,   (2) 

where ( ) ),0(...~, 21 Σ′= Ndiittt εεε . The values under the heading ρ/φ are the corresponding autoregressive 
coefficients (φ), while the values to the right of this heading yield the residual correlation coefficients.   
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Table 3 
Application of the 2-step Procedure using the Time Domain Estimator for d: 

Original Process is Fractional Noise  
Table 3a 

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1=0 
Sample Size=350, True Value of β1=0 

ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 0.0557 0.0550 0.0533 0.0537 0.0523 0.0523 0.0533 0.0520 0.0517 
0.50 0.0567 0.0540 0.0540 0.0550 0.0540 0.0523 0.0543 0.0523 0.0553 
0.60 0.0553 0.0557 0.0530 0.0543 0.0547 0.0523 0.0523 0.0520 0.0537 
0.70 0.0557 0.0563 0.0527 0.0547 0.0560 0.0530 0.0523 0.0513 0.0537 
0.80 0.0550 0.0563 0.0527 0.0547 0.0550 0.0527 0.0520 0.0517 0.0530 
0.90 0.0550 0.0550 0.0530 0.0547 0.0550 0.0533 0.0520 0.0517 0.0527 
0.95 0.0553 0.0550 0.0530 0.0550 0.0550 0.0537 0.0520 0.0513 0.0527 
1.000 0.0553 0.0550 0.0533 0.0553 0.0550 0.0530 0.0517 0.0513 0.0523 

Table 3b 
Bias of 1β̂  using two step-procedure 

Sample Size=350, True Value of β1=0 
ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 0.1605 0.1483 0.1260 0.0460 -0.0272 -0.0960 -0.1585 -0.1718 -0.1772 
0.50 0.1736 0.1605 0.1368 0.0503 -0.0296 -0.1047 -0.1741 -0.1890 -0.1953 
0.60 0.1510 0.1392 0.1178 0.0409 -0.0293 -0.0950 -0.1545 -0.1670 -0.1720 
0.70 0.1347 0.1240 0.1041 0.0344 -0.0291 -0.0878 -0.1408 -0.1517 -0.1558 
0.80 0.1274 0.1169 0.0980 0.0315 -0.0287 -0.0843 -0.1341 -0.1441 -0.1478 
0.90 0.1246 0.1143 0.0958 0.0307 -0.0283 -0.0829 -0.1310 -0.1407 -0.1443 
0.95 0.1240 0.1138 0.0954 0.0305 -0.0281 -0.0823 -0.1303 -0.1399 -0.1434 
1.000 0.1242 0.114 0.0955 0.0306 -0.0280 -0.0822 -0.1300 -0.1396 -0.1432 

Table 3c 
Variance of 1β̂  using two step-procedure 

Sample Size=350, True Value of β1=0 
ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 3.5096 3.5108 3.5126 3.5328 3.5617 3.5700 3.5325 3.5191 3.5131 
0.50 3.6275 3.6282 3.6289 3.6464 3.6766 3.6927 3.6699 3.6594 3.6540 
0.60 3.6090 3.6125 3.6198 3.6540 3.6860 3.6958 3.6594 3.6442 3.6351 
0.70 3.6090 3.6125 3.6198 3.6540 3.6860 3.6958 3.6594 3.6442 3.6351 
0.80 3.6020 3.6070 3.6162 3.6557 3.6898 3.6972 3.6554 3.6384 3.6287 
0.90 3.5999 3.6053 3.6152 3.6566 3.6918 3.6983 3.6545 3.6365 3.6267 
0.95 3.5991 3.6042 3.6143 3.6568 3.6926 3.6984 3.6538 3.6356 3.6253 
1.000 3.5996 3.6048 3.6152 3.657 3.6925 3.6987 3.6552 3.6362 3.6264 

Notes: The results reported above are based on a 2-step estimation procedure with the true model 
given as:  
 yt+1 =  β0+ β1(1-L)dxt+ε1t+1 (1) 
  (1-L)dxt = c2+ε2t  (2) 
Here, the CSS estimator is used in the first step to estimate the parameter d.  In the second step, yt+1 
is regressed on the fractional difference of xt using the estimated value of d obtained in step 1.   
Notes for tables 3-7: 
Throughout, the true value of β1 is equal to 0.  Values for β0 and c2 are set equal to 0, while the 
standard deviations of the innovations in equations (1) and (2)  above, have been estimated from the 
exchange rate data for Germany where the forward premium has been fractionally differenced with 
d=0.80.  The resulting values for the standard deviations of ε1t and ε2t are 0.03294 and 0.000942, 
respectively.  To calculate correlated residuals we use the Cholesky factorization of the desired 
correlation matrix. 
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Table 4 
2-step Procedure Using CSS Estimator where the Original Process is an ARFIMA(1,d,0) process 

Table 4a 
Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1=0 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.0470 0.0460 0.0490 0.0450 0.0457 0.0513 0.0477 0.0503 0.0487 
-0.95 0.0447 0.0477 0.0483 0.0493 0.0503 0.0440 0.0443 0.0443 0.0423 
-0.80 0.0457 0.0480 0.0493 0.0490 0.0477 0.0450 0.0423 0.0423 0.0440 
-0.40 0.0470 0.0493 0.0467 0.0510 0.0500 0.0510 0.0470 0.0453 0.0410 
0.00 0.0540 0.0510 0.0497 0.0540 0.0547 0.0523 0.0507 0.0487 0.0497 
0.40 0.0550 0.0567 0.0547 0.0523 0.0547 0.0530 0.0560 0.0553 0.0520 
0.80 0.0473 0.0490 0.0507 0.0483 0.0503 0.0513 0.0597 0.0563 0.0573 
0.95 0.0537 0.0567 0.0570 0.0493 0.0493 0.0517 0.0547 0.0577 0.0590 
0.99 0.1387 0.1260 0.1093 0.0763 0.0593 0.0647 0.1153 0.1383 0.1503 

Table 4b 
Bias of 1β̂  using two step-procedure  

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 -0.1888 -0.1796 -0.1623 -0.0838 -0.0020 0.0795 0.1611 0.1805 0.1897 
-0.95 -0.1712 -0.1646 -0.1503 -0.0850 -0.0131 0.0626 0.1365 0.1546 0.1640 
-0.80 -0.1295 -0.1265 -0.1185 -0.0756 -0.0231 0.0344 0.0919 0.1070 0.1153 
-0.40 0.0263 0.0195 0.0103 -0.0158 -0.0329 -0.0456 -0.0501 -0.0490 -0.0470 
0.00 0.1700 0.1568 0.1336 0.0521 -0.0260 -0.0976 -0.1577 -0.1709 -0.1773 
0.40 0.2416 0.2293 0.1993 0.0920 -0.0169 -0.1182 -0.2118 -0.2353 -0.2480 
0.80 0.2546 0.2385 0.2113 0.1005 -0.0075 -0.1150 -0.2240 -0.2515 -0.2612 
0.95 0.3033 0.2889 0.2588 0.1310 0.0025 -0.1286 -0.2596 -0.2904 -0.3068 
0.99 0.4550 0.4307 0.3849 0.2012 0.0100 -0.1855 -0.3739 -0.4236 -0.4497 

Table 4c 
Variance of 1β̂  using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.1549 0.1520 0.1478 0.1319 0.1245 0.1313 0.1504 0.1535 0.1541 
-0.95 0.6954 0.6965 0.7001 0.7066 0.7150 0.7087 0.6910 0.6864 0.6862 
-0.80 1.2362 1.2419 1.2515 1.2799 1.2975 1.2865 1.2358 1.2221 1.2180 
-0.40 2.8195 2.8390 2.8705 2.9546 2.9881 2.9549 2.8472 2.8135 2.7966 
0.00 3.4081 3.4209 3.4463 3.5145 3.5635 3.5640 3.4820 3.4536 3.4350 
0.40 3.0321 3.0172 3.0064 3.0215 3.0633 3.0794 3.0823 3.0578 3.0590 
0.80 1.3795 1.3701 1.3633 1.3592 1.3754 1.4260 1.4281 1.4261 1.4225 
0.95 0.8057 0.8017 0.7874 0.7684 0.7694 0.7846 0.8180 0.8258 0.8294 
0.99 0.2248 0.2162 0.2089 0.1920 0.1867 0.1933 0.2141 0.2240 0.2304 

Table 4d 
Mean Estimated Value of d 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.7926 0.7926 0.7925 0.7920 0.7917 0.7919 0.7925 0.7925 0.7925 
-0.95 0.7953 0.7953 0.7953 0.7950 0.7946 0.7947 0.7953 0.7953 0.7953 
-0.80 0.7949 0.7950 0.7950 0.7946 0.7941 0.7942 0.7948 0.7950 0.7951 
-0.40 0.7967 0.7969 0.7967 0.7965 0.7958 0.7957 0.7971 0.7973 0.7974 
0.00 0.7999 0.7998 0.7997 0.7994 0.7986 0.7988 0.8005 0.8008 0.8010 
0.40 0.8059 0.8057 0.8068 0.8060 0.8045 0.8055 0.8071 0.8072 0.8075 
0.80 0.8122 0.8120 0.8117 0.8127 0.8125 0.8128 0.8133 0.8128 0.8131 
0.95 0.8061 0.8060 0.8056 0.8067 0.8069 0.8062 0.8071 0.8070 0.8065 
0.99 0.7951 0.7950 0.7949 0.7947 0.7948 0.7943 0.7940 0.7941 0.7944 

Notes: The results here are based on a 2-step procedure with the true model given as:  
yt+1 = β0 + β1 (1-L)0.80xt+ε1t+1,               (1-φL)(1-L)0.80xt = c2+ε2t 

Here, d has been obtained from estimation of an ARFIMA(1,d,0) model using the CSS estimator. 
 



35 
 

Table 5 
2-step Procedure Using Semi-Parametric Estimator where the Original Process is an ARFIMA(1,d,0) process.

Table 5a 
Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1=0 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.0453 0.0463 0.0500 0.0447 0.0463 0.0513 0.0483 0.0503 0.0477 
-0.95 0.0437 0.0463 0.0497 0.0497 0.0513 0.0460 0.0460 0.0433 0.0423 
-0.80 0.0483 0.0470 0.0487 0.0513 0.0507 0.0477 0.0437 0.0433 0.0437 
-0.40 0.0497 0.0517 0.0493 0.0527 0.0487 0.0477 0.0483 0.0483 0.0457 
0.00 0.0600 0.0580 0.0497 0.0523 0.0543 0.0497 0.0560 0.0517 0.0527 
0.40 0.0610 0.0557 0.0520 0.0523 0.0520 0.0547 0.0600 0.0590 0.0547 
0.80 0.0567 0.0567 0.0567 0.0467 0.0510 0.0543 0.0643 0.0633 0.0617 
0.95 0.0570 0.0547 0.0517 0.0473 0.0520 0.0500 0.0623 0.0567 0.0570 
0.99 0.0537 0.0520 0.0513 0.0490 0.0510 0.0533 0.0570 0.0540 0.0533 

Table 5b 
Bias of 1β̂  using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 -0.1854 -0.1767 -0.1601 -0.0832 -0.0021 0.0781 0.1563 0.1758 0.1853 
-0.95 -0.1514 -0.1457 -0.1351 -0.0753 -0.0117 0.0548 0.1165 0.1344 0.1420 
-0.80 -0.0963 -0.0945 -0.0936 -0.0600 -0.0207 0.0226 0.0617 0.0747 0.0806 
-0.40 0.0806 0.0718 0.0511 0.0057 -0.0329 -0.0614 -0.0913 -0.1005 -0.1017 
0.00 0.2323 0.2165 0.1834 0.0722 -0.0283 -0.1141 -0.2076 -0.2386 -0.2487 
0.40 0.3615 0.3416 0.3020 0.1366 -0.0197 -0.1592 -0.3067 -0.3492 -0.3680 
0.80 0.3632 0.3465 0.3083 0.1429 -0.0210 -0.1638 -0.3119 -0.3471 -0.3669 
0.95 0.3067 0.2900 0.2529 0.1081 -0.0256 -0.1413 -0.2667 -0.2993 -0.3154 
0.99 0.2050 0.1925 0.1654 0.0676 -0.0203 -0.1049 -0.1913 -0.2154 -0.2246 

Table 5c 
Variance of 1β̂  using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.1580 0.1543 0.1521 0.1352 0.1277 0.1354 0.1506 0.1536 0.1537 
-0.95 0.7007 0.7023 0.7043 0.7149 0.7278 0.7267 0.6949 0.6877 0.6931 
-0.80 1.2397 1.2441 1.2479 1.2910 1.3097 1.3106 1.2433 1.2291 1.2349 
-0.40 2.8059 2.8156 2.8252 2.9155 2.9375 2.9120 2.8209 2.8050 2.8053 
0.00 3.3419 3.3452 3.3279 3.3752 3.4331 3.4130 3.3740 3.3505 3.3347 
0.40 2.8822 2.8787 2.8753 2.8979 2.9441 2.9599 2.9505 2.9163 2.8955 
0.80 2.1923 2.1905 2.1835 2.1557 2.1548 2.1977 2.2515 2.2382 2.2203 
0.95 2.5194 2.5231 2.5130 2.5133 2.5342 2.5661 2.5859 2.5513 2.5322 
0.99 3.1674 3.1733 3.1886 3.1926 3.3368 3.2996 3.1995 3.1801 3.1852 

Table 5d 
Mean Estimated Value of d 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.8003 0.8013 0.8001 0.7975 0.7954 0.7963 0.7990 0.7991 0.7997 
-0.95 0.8069 0.8073 0.8077 0.8045 0.8016 0.8011 0.8052 0.8053 0.8049 
-0.80 0.8072 0.8077 0.8081 0.8045 0.8019 0.8018 0.8054 0.8055 0.8053 
-0.40 0.8074 0.8079 0.8079 0.8041 0.8017 0.8019 0.8056 0.8055 0.8055 
0.00 0.8073 0.8079 0.8078 0.8038 0.8015 0.8019 0.8058 0.8055 0.8054 
0.40 0.8161 0.8165 0.8166 0.8122 0.8100 0.8105 0.8144 0.8143 0.8139 
0.80 1.0164 1.0170 1.0179 1.0141 1.0115 1.0115 1.0160 1.0159 1.0155 
0.95 1.2615 1.2632 1.2637 1.2611 1.2591 1.2579 1.2634 1.2625 1.2616 
0.99 1.6629 1.6630 1.6619 1.6609 1.6611 1.6604 1.6611 1.6607 1.6602 

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:  
yt+1 = β0 + β1 (1-L)0.80xt+ε1t+1,               (1-φL)(1-L)0.80xt = c2+ε2t 

Here we use the log periodogram regression based estimator of Andrews and Guggenberger (2003) to obtain d. We 
apply a taper equal to (1-L)0.50 to xt, and set m=T0.65.   
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Table 6 
2-step Procedure Using CSS Estimator where the Original Process is an ARFIMA(1,d,0) process. 

A Mis-Specified ARFIMA(0,d,0) Model is Fit Instead 
Table 6a 

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1=0 
ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 

-0.99 0.0617 0.0563 0.0513 0.0487 0.0470 0.0483 0.0540 0.0597 0.0607 
-0.95 0.0550 0.0517 0.0553 0.0520 0.0540 0.0500 0.0540 0.0573 0.0567 
-0.80 0.0560 0.0553 0.0560 0.0543 0.0497 0.0470 0.0527 0.0513 0.0510 
-0.40 0.0530 0.0510 0.0513 0.0523 0.0523 0.0507 0.0497 0.0520 0.0507 
0.00 0.0550 0.0543 0.0520 0.0537 0.0543 0.0530 0.0517 0.0513 0.0520 
0.40 0.0530 0.0537 0.0523 0.0553 0.0560 0.0583 0.0520 0.0543 0.0497 
0.80 0.0527 0.0540 0.0533 0.0540 0.0567 0.0553 0.0510 0.0523 0.0507 
0.95 0.0520 0.0537 0.0513 0.0540 0.0570 0.0567 0.0513 0.0537 0.0513 
0.99 0.0527 0.0530 0.0513 0.0537 0.0550 0.0550 0.0543 0.0510 0.0510 

Table 6b 
Bias of 1β̂  using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.0486 0.0455 0.0378 0.0185 0.0021 -0.0188 -0.0367 -0.0418 -0.0451 
-0.95 0.2324 0.2167 0.1892 0.0884 -0.0098 -0.1062 -0.2000 -0.2249 -0.2374 
-0.80 0.2745 0.2558 0.2219 0.0987 -0.0198 -0.1347 -0.2437 -0.2716 -0.2852 
-0.40 0.2118 0.1962 0.1676 0.0654 -0.0295 -0.1195 -0.2019 -0.2206 -0.2289 
0.00 0.1280 0.1176 0.0990 0.0331 -0.0265 -0.0816 -0.1306 -0.1404 -0.1443 
0.40 0.0810 0.0740 0.0612 0.0167 -0.0232 -0.0589 -0.0889 -0.0939 -0.0953 
0.80 0.0605 0.0543 0.0437 0.0072 -0.0246 -0.0521 -0.0726 -0.0752 -0.0754 
0.95 0.0514 0.0451 0.0344 0.0000 -0.0275 -0.0511 -0.0683 -0.0700 -0.0693 
0.99 0.0622 0.0549 0.0427 0.0038 -0.0286 -0.0570 -0.0790 -0.0816 -0.0813 

Table 6c 
Variance of 1β̂  using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.2859 0.2848 0.2908 0.3041 0.2961 0.2918 0.2936 0.2903 0.2865 
-0.95 1.1828 1.1874 1.1997 1.2299 1.2459 1.2227 1.1775 1.1693 1.1686 
-0.80 1.8519 1.8570 1.8642 1.9003 1.9269 1.9134 1.8608 1.8456 1.8412 
-0.40 3.2177 3.2215 3.2289 3.2618 3.2865 3.2885 3.2485 3.2328 3.2240 
0.00 3.4919 3.4959 3.5040 3.5409 3.5720 3.5743 3.5293 3.5108 3.5008 
0.40 3.3402 3.3541 3.3766 3.4388 3.4663 3.4417 3.3675 3.3430 3.3303 
0.80 3.2723 3.2882 3.3145 3.3891 3.4127 3.3697 3.2839 3.2610 3.2510 
0.95 3.3217 3.3346 3.3569 3.4288 3.4625 3.4310 3.3468 3.3228 3.3113 
0.99 3.4413 3.4484 3.4624 3.5126 3.5511 3.5483 3.4856 3.4614 3.4491 

Table 6d 
Mean Estimated Value of d 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 -0.0167 -0.0165 -0.0166 -0.0181 -0.0194 -0.0186 -0.0160 -0.0157 -0.0158 
-0.95 0.2369 0.2372 0.2368 0.2360 0.2354 0.2358 0.2376 0.2379 0.2378 
-0.80 0.3376 0.3377 0.3375 0.3367 0.3360 0.3365 0.3380 0.3380 0.3381 
-0.40 0.5761 0.5760 0.5759 0.5754 0.5746 0.5750 0.5762 0.5765 0.5766 
0.00 0.7964 0.7964 0.7962 0.7957 0.7953 0.7955 0.7962 0.7964 0.7965 
0.40 1.1045 1.1045 1.1043 1.1038 1.1037 1.1038 1.1042 1.1044 1.1045 
0.80 1.5457 1.5456 1.5454 1.5450 1.5447 1.5450 1.5453 1.5456 1.5457 
0.95 1.6672 1.6671 1.6670 1.6664 1.6661 1.6662 1.6667 1.6668 1.6669 
0.99 1.7805 1.7804 1.7802 1.7795 1.7791 1.7791 1.7797 1.7800 1.7802 

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:  
yt+1 = β0 + β1 (1-L)0.80xt+ε1t+1,               (1-φL)(1-L)0.80xt = c2+ε2t 

Note that the true model is an ARFIMA(1,0.80,0), where the values of φ appear under the heading ρ/φ.  The CSS 
estimator is used to incorrectly estimate a mis-specified ARFIMA(0,d,0) model.   
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Table 7 
2-Step Procedure Using CSS Estimator where the Original Process is Fractional Noise 

An Over-specified ARFIMA(1,d,0) Model has been Fit to the Original Process 
Table 7a 

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1=0 
ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 0.0537 0.0527 0.0520 0.0530 0.0530 0.0500 0.0533 0.0530 0.0487 
0.50 0.0533 0.0527 0.0533 0.0530 0.0550 0.0523 0.0567 0.0530 0.0523 
0.60 0.0530 0.0510 0.0520 0.0533 0.0523 0.0527 0.0550 0.0550 0.0517 
0.70 0.0513 0.0510 0.0520 0.0533 0.0543 0.0540 0.0550 0.0560 0.0527 
0.80 0.0517 0.0523 0.0507 0.0543 0.0527 0.0517 0.0523 0.0567 0.0550 
0.90 0.0530 0.0510 0.0533 0.0550 0.0540 0.0520 0.0570 0.0580 0.0570 
0.95 0.0543 0.0510 0.0533 0.0537 0.0543 0.0530 0.0567 0.0597 0.0580 
1.00 0.0547 0.0523 0.0517 0.0533 0.0527 0.0530 0.0553 0.0617 0.0597 

Table 7b 
Bias of 1β̂  using two step-procedure 

ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 0.2166 0.2030 0.1757 0.0716 -0.0244 -0.1174 -0.2030 -0.2219 -0.2332 
0.50 0.2963 0.2760 0.2425 0.1066 -0.0244 -0.1480 -0.2681 -0.2966 -0.3107 
0.60 0.3287 0.3082 0.2692 0.1228 -0.0232 -0.1597 -0.2922 -0.3247 -0.3415 
0.70 0.3697 0.3471 0.3055 0.1421 -0.0205 -0.1697 -0.3279 -0.3643 -0.3823 
0.80 0.4390 0.4157 0.3632 0.1726 -0.0162 -0.1995 -0.3762 -0.4225 -0.4461 
0.90 0.4835 0.4559 0.4018 0.1953 -0.0124 -0.2170 -0.4076 -0.4540 -0.4774 
0.95 0.5016 0.4735 0.4135 0.1928 -0.0134 -0.2223 -0.4185 -0.4644 -0.4903 
1.00 0.5110 0.4851 0.4251 0.2019 -0.0210 -0.2298 -0.4314 -0.4832 -0.5042 

Table 7c 
Variance of 1β̂  using two step-procedure 

ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 3.4317 3.4353 3.4480 3.5092 3.5559 3.5584 3.4759 3.4533 3.4294 
0.50 3.4009 3.4056 3.4186 3.4933 3.5495 3.5499 3.4685 3.4393 3.4177 
0.60 3.3582 3.3658 3.3757 3.4584 3.5206 3.5162 3.4557 3.4193 3.3873 
0.70 3.2756 3.2789 3.2911 3.3971 3.4815 3.4914 3.3735 3.3373 3.3140 
0.80 3.1449 3.1557 3.1860 3.3309 3.3866 3.3787 3.2529 3.2375 3.2121 
0.90 3.0855 3.0918 3.0932 3.2404 3.3006 3.2944 3.1764 3.1727 3.1523 
0.95 3.0409 3.0292 3.0403 3.1491 3.2635 3.2238 3.1245 3.1171 3.1091 
1.00 2.9601 2.9722 2.9767 3.1077 3.1889 3.1565 3.0847 3.0518 3.0333 

Table 7d 
Mean Estimated Value of d 

ρ/d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
0.40 0.3697 0.3686 0.3677 0.3687 0.3675 0.3680 0.3678 0.3687 0.3678 
0.50 0.4305 0.4313 0.4317 0.4295 0.4307 0.4307 0.4304 0.4295 0.4295 
0.60 0.5030 0.5027 0.5038 0.5033 0.5028 0.5031 0.5033 0.5021 0.5025 
0.70 0.5786 0.5786 0.5777 0.5765 0.5761 0.5764 0.5755 0.5768 0.5768 
0.80 0.6486 0.6488 0.6488 0.6477 0.6474 0.6483 0.6473 0.6482 0.6479 
0.90 0.7238 0.7226 0.7224 0.7226 0.7212 0.7230 0.7248 0.7241 0.7248 
0.95 0.7588 0.7596 0.7574 0.7584 0.7576 0.7597 0.7586 0.7606 0.7601 
1.00 0.7971 0.7967 0.7967 0.7961 0.7940 0.7959 0.7988 0.7970 0.7967 

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:  
                                  yt+1 = β0 + β1 (1-L)0.80xt+ε1t+1,               (1-L)0.80xt = c2+ε2t 
The true model is an ARFIMA(0,d,0), where the true value of d appears under the heading ρ/d.  Here an over-
parametrized ARFIMA(1,d,0) model is estimated instead of an ARFIMA (0,d,0) model using the CSS estimator.  

 



38 
 

Table 8 
OLS Estimates from the FRUH Regressions 

No differencing applied 
Sample (1973-2000): Country: Canada France Germ. Japan UK 
        
Dependent Variable        
∆st+1      1ĉ  -0.0021 -0.0028 0.0019 0.0030 -0.0046 
   [0.0087] [0.1615] [0.3819] [0.1921] [0.0365] 
      1b̂  -1.1356 -0.8457 -0.7150 -0.0215 -1.4554 
   [0.00000] [0.0007] [0.0139] [0.0245] [0.0001] 
        
      2ĉ  -0.0021 -0.0028 0.0019 0.0030 -0.0046 
Dependent Variable   [0.0087] [0.0020] [0.3819] [0.1921] [0.0365] 
(st+1-ft)      2b̂  -2.1356 -1.8457 -1.7150 -1.0215 -2.4554 
   [0.00000] [0.0007] [0.0139] [0.0245] [0.0001] 

 
Notes:  The independent variables throughout are a constant and the forward premium.  The 
OLS estimates of the constant and the slope parameter are given by iĉ  and ib̂ , respectively 
where i=1,2.  The quantities appearing in brackets are p-values.  When the dependent 
variable is the change in the spot rate, we use a two-sided test of the null hypothesis that 
b1=1.  The remaining p-values are associated with the null hypothesis that the given 
coefficient is equal to zero. 

 
 

Table 9 
OLS Estimates from the FRUH-type Regressions 
Differencing Applied from ARFIMA(p,d,q) Model 

Differencing Parameter Estimated from CSS Estimator 
 

Sample (1973-2000): Country: Canada France Germ. Japan UK 
         
       0β̂  -0.0004 0.0000 -0.0010 0.0004 0.0001 
Dependent Variable   [0.9596] [0.9803] [0.5987] [0.8415] [0.9557] 
(st+1-ft)        1β̂  -4.2539 -2.1508 -2.4152 0.0142 -3.3031 
    [0.00001] [0.0104] [0.2190] [0.9784] [0.0038] 
       d̂  0.7152 0.5837 0.9734 0.5865 0.4362 
    {0.1284} {0.0637} {0.1126} {0.0918} {0.2070} 

 
Notes:  The independent variables throughout are a constant and the fractional difference of the forward premium. The 
OLS estimates of the constant and the slope parameter are given by 0β̂  and 1β̂ , respectively. The quantities appearing 
in brackets are p-values associated with the hypothesis that the given coefficient is zero. The first stage estimate of d is 
obtained via the CSS estimator for an ARFIMA(p,d,q) model. The quantities appearing in braces under the estimates of 
d are numerical standard errors calculated from the outer product of the numerical gradient vector. 
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Table 10 
OLS Estimates of the FRUH-type Regressions with Fractional Differencing:  First Stage Semi-

Parametric used to Estimate d 
Table 10a 

Differencing Parameter Estimated from BRLP Regression Estimator with m=T0.50 
 

Sample (1973-2000):  Country: Canada France Germ. Japan UK 
       

0β̂  -0.0004 -0.0007 -0.0010 0.0004 -0.0006 
Dependent Variable   [0.5677] [0.6974] [0.5987] [0.8415] [0.7389] 
(st+1-ft)       

1β̂  -4.6593 -2.3097 -2.0775 0.1532 -3.3995 
    [0.0000] [0.0019] [0.2631] [0.7456] [0.0008] 
       d̂  0.5702 0.2472 1.3045 0.8684 0.3026 

 
Notes:  The independent variables throughout are a constant and the fractional difference of the forward 
premium. The OLS estimates of the constant and the slope parameter are given by 0β̂  and 1β̂ , respectively. 
The quantities appearing in brackets are p-values associated with the hypothesis that the given coefficient is 
zero. The first stage estimate of d is obtained via the LP Regression based estimator of Andrews and 
Guggenberger (2003).  A taper of (1-L)0.50 has been applied to the forward premium and the number of 
periodogram ordinates used has been set equal to T0.50. 

 
Table 10b 

Differencing Parameter Estimated from BRLP Regression Estimator with m=T0.65 
 

Sample (1973-2000):  Country: Canada France Germ. Japan UK 
       

0β̂  -0.0004 -0.0002 -0.0010 0.0006 -0.0009 
Dependent Variable   [0.5677] [0.9115] [0.5987] [0.7642] [0.6171] 
(st+1-ft)       

1β̂  -3.0268 -2.3039 -2.1961 -0.3500 -3.3516 
    [0.0018] [0.0051] [0.2511] [0.5184] [0.0005] 
       d̂  1.0171 0.4421 1.1679 0.3436 0.2594 

 
Notes:  The independent variables throughout are a constant and the fractional difference of the forward 
premium. The OLS estimates of the constant and the slope parameter are given by 0β̂  and 1β̂ , respectively. 
The quantities appearing in brackets are p-values associated with the hypothesis that the given coefficient is 
zero. The first stage estimate of d is obtained via the LP Regression based estimator of Andrews and 
Guggenberger (2003).  A taper of (1-L)0.50 has been applied to the forward premium and the number of 
periodogram ordinates used has been set equal to T0.65. 
Notes for Table 10:  Numerical standard errors do not exist for the BRLPR given their simple calculation.  
Further, the asymptotic standard error applies to the stationary processes, and do not consider the 
application of our taper.   Thus, we do not include an estimate of the standard error of d. 

 
 


