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Abstract 
While tests for stationarity and cointegration have important econometric and economic 
implications, they do not always offer conclusive results.  In this paper we suggest that 
exploiting the parametric structure of the multivariate correlated unobserved components 
framework can provide a more powerful way to test for stationarity and cointegration than the 
non-parametric, asymptotic tests currently available.  The parametric test nests a partial or 
restricted unobserved components model within a more general unobserved components model. 
Then we estimate both the general and the restricted models and determine the likelihood ratio 
test statistic. The distribution of this likelihood ratio test statistic is nonstandard, but a Monte 
Carlo simulation provides proper error bands for use in inference.  We then compare these results 
to the asymptotic, non-parametric KPSS test and the common trends test of Nyblom and Harvey 
(2000).   

                                                 
1 The authors gratefully acknowledge the support of the Murray Weidenbaum Center on the Economy, Government, 
and Public Policy for this project.  We wish to thank Tom King, Michael Owyang, and Christoph Schleicher for 
helpful discussions and comments.  All remaining errors are our own.   
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Introduction 

Beginning in the 1970s, a number of papers appeared which suggested that permanent 

movements in many major economic time series follow a variable, or stochastic, trend, instead of 

a smooth deterministic time trend.  Granger and Newbold (1974) were among the first to argue 

that macroeconomic data as a rule contained stochastic trends, characterized by unit roots, and 

that using these series in traditional econometric models may lead to spurious regressions.   In 

addition, it was found that some series appear to share a common stochastic trend.  These series, 

referred to as cointegrated, provide one way to avoid spurious regressions. 

Nelson and Plosser’s seminar work (1982) could not reject the unit root hypothesis in 

favor of trend stationarity for 13 out of 14 major macroeconomic time series using statistical 

techniques developed by Dickey and Fuller (1979).   Their results suggest that nonstationarity is 

indeed prevalent in macroeconomic time series data.  

Tests for unit roots and cointegration do not always offer conclusive results, however.  

Rudebusch (1992; 1993) demonstrates that unit root tests have low power against estimated trend 

stationary alternatives. In addition, Perron (1989) shows that unit root tests cannot always 

distinguish unit root from stationary processes that contain segmented or shifted trends. He finds 

evidence of trend stationarity when he incorporates a single break in 1929 for 10 out of the 13 

series found to contain unit roots by Nelson and Plosser. 

Using an appropriate parametric model should provide more power than existing 

nonparametric tests.  Recent research (Harvey 1993; Engel and Morley 2001; Morley, Nelson et 

al. 2003; Morley 2004; Sinclair 2004) suggests that unobserved components models are useful 

for representing economic time series which may contain unit roots and for those series which 

may be cointegrated.  These series can be modeled as containing a permanent component, 
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representing the stochastic trend, and a transitory component, representing the stationary 

component of the series.   

The purpose of this paper is to suggest a new way to test for both stationarity and 

cointegration by exploiting the parametric structure of the correlated unobserved components 

framework.  An unobserved components model may often be an appropriate way to model 

macroeconomic time series, and using the parametric model should provide additional power 

over a non-parametric test.  The test nests a partial or restricted unobserved components model 

within a more general unobserved components model.  Then the general and the restricted 

models are estimated which provides a likelihood ratio test statistic. The distribution of this 

likelihood ratio test statistic is nonstandard, but a Monte Carlo simulation can provide proper 

error bands for use in inference.  The simulation uses data generated with the results from the 

partial unobserved components model as the values for the null.   Consequently, the null 

hypothesis for this test is stationarity or cointegration, which is useful in many cases.  In this 

sense the test is like the well-known KPSS test (Kwiatkowski, Phillips et al. 1992), but we 

propose a parametric test which should provide more power.  In addition, using Monte Carlo 

simulations also corrects for size, whereas KPSS and other tests similar to KPSS such as Nyblom 

and Harvey’s (2001) test for common trends, appeal to asymptotic results. 

This test will thus provide a new and more powerful way to test for the presence of unit 

roots and cointegration, which will help in evaluating many important macroeconomic theories.  

The applications presented in this current draft include the variability of the permanent 

component of the unemployment rate and the  permanent income hypothesis.  Other potential 

applications include certain real business cycle theories and purchasing power parity. 
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A traditional unobserved components model (Harvey 1985; Clark 1987) imposes zero-

correlation restrictions in order to achieve identification.  In addition, these models are generally 

applied to a single series for univariate detrending.  One exception to this is Clark (1989), which 

explores the relationship between output and the unemployment rate, but imposes ad-hoc 

restrictions on the correlations for identification.  A recent paper by Morley, Nelson, and Zivot 

(2003, hereafter MNZ) shows that in some cases we can estimate an unobserved components 

(UC) model without restricting the correlations between the components.  Their correlated 

unobserved components (UC-UR) model, extended to the multivariate case by Sinclair (2005) 

and by Schleicher (2003) allows for a new way to test for both stationarity and cointegration 

using a parametric model and information from correlated, but not necessarily perfectly 

correlated additional series.  An example of this test appears in Sinclair (2005) where output and 

the unemployment rate are jointly decomposed into permanent and transitory movements with a 

general variance-covariance matrix.  Including GDP as a second series allows for additional 

information about the permanent movements in the unemployment rate, which provides a much 

more powerful test for stationarity of the unemployment rate than the non-parametric test 

presented in Kwiatkowski et al (1992, hereafter KPSS).2  The KPSS test weakly rejects 

stationarity of the unemployment rate (at the 10% level), but the test based on the parametric 

model clearly rejects stationarity.  Similarly, the multivariate correlated unobserved components 

approach allows for a more powerful test of cointegration.  Nyblom and Harvey (2000) have 

provided a test of cointegration in the uncorrelated UC framework, but their test appeals to 

asymptotics.  In addition, their structure does not allow for the inclusion of additional series 

                                                 
2 Alternative tests involving testing for a unit MA root, which appears when a series is over-differenced are 
discussed in Saikkonen and Luukkonen (1993) and Tanaka (1990). 
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which are correlated but not necessarily cointegrated in order to provide additional information 

in testing for stationarity and cointegration.  For example, Nyblom and Harvey’s common trends 

test requires stepwise testing:  is x cointegrated with y?  If so, is z also cointegrated with x and y?  

Within the correlated unobserved components framework we can instead test whether z is 

cointegrated with x and y or just correlated with them without it being a problem for estimation.   

This paper proceeds as follows.  Section 2 presents the correlated unobserved components 

(UC-UR) model.  Section 3 discusses existing asymptotic tests for stationarity and cointegration 

in the unobserved components framework.  Section 4 discusses our proposed test.  Section 5 

presents two preliminary applications.  Application 1 applies the stationarity test to the 

unemployment rate within a bivariate model of output and the unemployment rate.  Application 

2 applies the cointegration test to consumption and income.  Section 6 concludes and suggests 

some future directions. 
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Section 2:  The Correlated Unobserved Components Model 

Suppose we have n series (y) which may each be represented as the sum of two 

unobserved components:  a “trend” component and a “cycle” component.  The “trend” (τ), also 

called the permanent component, is the steady-state level after removing all temporary 

movements.  The “cycle” (c), also called the transitory component, embodies all temporary 

movements and is assumed to be stationary:   

 ititit cy +=τ , (1) 

t = 1,…, T and i = 1,…, n. 

We begin by assuming that each series is I(1), thus a random walk for each of the trend 

components allows for permanent movements in the series.  It is also possible to allow for a drift 

(µ) in the trend:   

 ititiit ητµτ ++= −1  (2) 

Following Sinclair (2004), Morley, Nelson, and Zivot(2003), and Morley (2004), we 

model each transitory component as an autoregressive process of order two (AR(2))3:   

 ititiitiit ccc εφφ ++= −− 2211  (3) 

We assume the innovations (ηit, and εit) are normally distributed random variables with mean 

zero and a general covariance matrix (allowing possible correlation between any of the 

innovations to the unobserved components).  This model also nests the partial unobserved 

components model, where the variance of some of the ηi’s may be zero, and the restricted 

                                                 
3 Sinclair (2005) shows that the correlated unobserved components model is identified as long as each transitory 
component has at least AR(2) dynamics.  Thus this analysis generalizes to any higher-order AR process.  Morley 
(2004) shows that an AR(1) may be sufficient for identification in the case of cointegration, but for testing purposes 
we need both the null and the alternative to be identified, thus we require at least an AR(2) for the transitory 
component. 
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(cointegrated) unobserved components model, where some of the ηi’s may be perfectly (or 

perfectly negatively) correlated with each other. 

As shown in Appendix 1, the model can be cast into state-space form.  Then it is possible 

to use the Kalman filter for maximum likelihood estimation of the parameters for both the 

restricted and unrestricted models.4 

Section 3:  Asymptotic Tests for Stationarity and Cointegration in the UC Framework 

Bailey and Taylor (2002) provide us with a useful result: if the cycle error and the trend 

error are contemporaneously correlated then the test statistic used by KPSS, Nabeya and Tanaka 

(1988), and Nyblom and Harvey (2000) is still the locally best invariant test for a null of 

stationarity (or cointegration).  These tests do not benefit, however, from the parameterization of 

the correlated model.  In addition, they do not allow for the inclusion of series which are 

correlated, but not cointegrated with the series of interest.   

Nyblom and Harvey (2000, hereafter NH) propose a test of common trends where the null 

hypothesis that there exists k < n common trends (i.e. rank (Ση) = k), and the alternative is that 

there exists more than k common trends (i.e. rank (Ση) > k).  If A, the r x n matrix of 

cointegrating vectors, is known, then their test statistic can be written as: 

ξr(A) = tr(ASA′)-1ACA′, 

where S is the nonparametric estimator of the spectral density at frequency zero using a Bartlett 

Window following KPSS5: 

                                                 
4See chapter 3 of Kim and Nelson (1999) or chapter 4 of Harvey (1993) for a discussion of the implementation of 
the Kalman filter.  The estimation was done in GAUSS.   
5 Harvey and Streibel (1997) show that if the process generating the stationary part of the model were known, then 
the locally best invariant (LBI) test for the presence of a random walk component could be constructed with a 
parametric estimator of the long-run variance. The also provide a not strictly LBI test which is more reliable in terms 
of size in small samples using the standardized one-step ahead prediction errors calculated assuming that the initial 
value of the random walk (τ0) is fixed. 
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This test is more specifically a test of the pre-specified cointegrating vectors, i.e. a test of 

A.  In many cases, however, we do not know the correct matrix A, but we may still be interested 

the testing for common trends.   When we do not know A, NH propose the following 

modification: 

ζk,n = .7 ]')'[(min 1ACAASA
A

−tr

This allows us to estimate A and test for common trends.   

The univariate version of this test was shown by Nyblom and Mäkeläinen (1983) to be 

the locally best invariant test of the null hypothesis that ση2 = 0, i.e. that the series is stationary.  

Note that this test can also be interpreted as a one-sided Lagrange multiplier (LM) test. The test 

statistic in this case is: 

ζ1 = C/S, since C and S will both be scalars when n = 1.   

                                                 
6 In practice, more lags are generally included in the window than are actually modeled in the transitory component 
because there is a size/power tradeoff.  For example, in Schleicher (2003), he includes 2 lags in the transitory 
component, but he uses m=8 for the test. 
7 Although asymptotically AS( y)A΄ and S(Ay) return the same result, it may be appropriate to use S(Ay) in small 
samples and use the stationarity test described below.  Here we simply present what NH reported as the test statistic. 
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Nyblom and Harvey also suggest a multivariate joint test for unit roots, a test for Ση = 0.  

The test statistic in this final case is: 

ζ n = tr[S-1C]. 

The alternative is Ση = qΣε.  The test maximizes the power against homogenous 

alternatives, but it is consistent against all non-null Ση’s.   

Section 4:  The Proposed Test 

One advantage of the parametric test is that it allows for us to include variables which 

may be correlated with the variables of interest, thus they provide additional information, but 

they may not be cointegrated with the variables of interest.  This is not a possibility in the NH 

world because the vector A is required in order to work with a spectral density at frequency zero. 

From the state-space representation of the correlated unobserved components model (see 

appendix), we have the following variance-covariance matrix:   
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Recall that ηit represents the innovation to the permanent component of series i in our model, 

thus the submatrix of interest from the variance-covariance matrix is Ση.  If this matrix is of full 

rank then the series are all integrated but there does not exist any cointegrating vector.  If it is of 

less than full rank, then either one or more of the series is stationary or there exists at least one 

common trend. 

Section 4.1:  The Proposed Test for Stationarity 

The general correlated unobserved components model nests the partial unobserved 

components model with one or more of the diagonal elements of Ση set equal to zero.  The 

distribution of the likelihood ratio test statistic is nonstandard, but a Monte Carlo simulation can 
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be used to establish appropriate confidence bands.  The data for the Monte Carlo simulation can 

be generated under the assumption that the partial unobserved components model is the true 

model.   

Section 4.2:  The Proposed Test for Cointegration 

The general correlated unobserved components model nests in this case the restricted 

unobserved components model with at least one of the innovations to the permanent component 

of one series is equal to a scale constant λ times the innovation to the permanent component of 

another series.8  The distribution of the likelihood ratio test statistic is once again nonstandard, 

but a Monte Carlo simulation can again be used to establish appropriate confidence bands.  The 

data for the Monte Carlo simulation can be generated under the assumption that the restricted 

unobserved components model is the true model.  Consider the two-series example under the 

null of cointegration: 
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Note that the correlated unobserved components model also finds information relevant 

for the test of cointegration from the variance-covariance submatrix of permanent-transitory 

covariances.  If under the null η1=η2 and η2 = λη1 = λη, then we have: 
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8 Or, in a larger system, we may have a weighted sum of other innovations.  For example, in a three-series system 
we may have η1t=λ1η2t + λ2η3t.  We could alternatively have η1t=λη2t where η3t remains an integrated series which 
is not cointegrated with the other two series (of course other combinations are also possible).  Note that for 
cointegration there can be no additional error term.  That would instead be imperfect correlation, not cointegration.   
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Section 5:  Applications 

Allowing for correlation between the components opens up the possibility of useful 

multivariate correlated unobserved components models.  In particular, for permanent-transitory 

decomposition, there are many series which may be correlated with each other, thus providing 

useful information for the decomposition, but they may not be cointegrated.  For example, 

Okun’s Law suggests that output and the unemployment rate are correlated, but it does not 

suggest they are cointegrated.  Estimating the permanent and transitory movements jointly, 

however, provides better estimates of these movements than univariate decomposition.  With the 

additional information from output, we can have more power for a test of whether 

unemployment should be modeled as stationary.  Previously multivariate UC models depended 

upon imposing the correlation, hence they were primarily used to impose cointegration, but we 

can now test for cointegration in this framework, as is shown in application 2 where we consider 

consumption and income.9 

Application 1:  Is the Unemployment Rate Stationary? 

Sinclair (2005) jointly estimates the components of the unemployment rate and output in a 

correlated unobserved components model.  Her paper provides new estimates of the relative 

importance of permanent versus transitory movements in the U.S. unemployment rate and 

contributes to the debate about the variability in the natural rate of unemployment, or the 

NAIRU,10 by finding support for a variable permanent component in the unemployment rate.  In 

addition, this model provides a new way to test if the unemployment rate is stationary, which is 

                                                 
9 There will be additional and hopefully more novel examples in a future version of this paper.   
10 There has been much discussion about the different nuances of these terms.  We use them here to represent the 
permanent component of the unemployment rate.  For the different sides of the debate on the variability of trend 
unemployment, see Weiner (1993), Gordon (1997), Salemi (1999), Grant (2002), and King and Morley (2003).   
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rejected for the U.S. in favor of a model with significant permanent movements in the 

unemployment rate.  

The unemployment rate is bounded between zero and one, but it can undergo permanent 

shocks.  For example, the random walk will capture frequent structural breaks.  Some models 

(for example Blanchard and Quah 1989), assume the unemployment rate does not contain a 

stochastic permanent component, so it is important to test this assumption of the UC-UR model 

used in Sinclair (2005).  The distribution of the likelihood ratio test statistic is nonstandard, but a 

Monte Carlo simulation can be used to establish appropriate confidence bands.  The data was 

generated under the assumption that the unemployment rate can be represented as a stationary 

AR(2). The largest likelihood ratio test statistic generated from 999 draws was 39.8.  The 

likelihood ratio test statistic for this restriction in the UC-UR model is 67.2, which implies that 

the null of stationary unemployment can clearly be rejected in favor of the alternative of 

permanent movements in the unemployment rate.  In addition, recall that the UC-UR model finds 

a large variance for the permanent component of the unemployment rate, when it is not 

constrained to zero.11  These results presented in Table 1 and Figure 1 suggest that the 

unemployment rate should be modeled with a permanent component.  In comparison, the  KPSS 

test only weakly rejects stationarity of the same unemployment rate data (at the 10% level), but 

the test based on the parametric model clearly rejects stationarity.   

 

                                                 
11 Unemployment may experience a few large permanent movements which might be difficult to capture with the 
random walk and might better be modeled as structural breaks.  Another possibility is that unemployment responds 
asymmetrically to shocks.  Caner and Hansen (2001) find that allowing asymmetric responses in unemployment 
results in the rejection of a unit root. 
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Application 2:  Are Consumption and Income Cointegrated? 

Both Morley (2004) and Schleicher (2003) explore the relationship between consumption 

and income in a bivariate correlated unobserved components model.  Morley assumes 

cointegration for his analysis, whereas Schleicher tests for cointegration (and is unable to reject 

it) using the test of Nyblom and Harvey (2000).  Here we employ the parametric test.  Table 2 

presents the unrestricted and restricted estimates of the model.  Using the common trends test of 

Nyblom and Harvey, Schleicher finds a test statistic of 0.136 where the critical value at the 10% 

level is 0.162, thus he cannot reject cointegration.   

In our example, as shown in Table 2, it is clear even from the unrestricted UC-UR 

estimate that consumption and income are cointegrated since the point estimate of the correlation 

of ηy and ηu is exactly 1, but the t-statistic on the estimate of this correlation is nonstandard, so 

we turn to a likelihood ratio test to confirm that these two series are cointegrated.  The likelihood 

ratio test statistic is 1.4674.  This test statistic does not have the standard chi-squared 

distribution, so we use a Monte Carlo simulation to establish the correct distribution.12  This also 

corrects for small-sample issues.   

                                                 
12 Monte Carlo simulation is not available at this time, but it will be available shortly in a more complete version of 
this paper. 
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Section 6:  Conclusions and Extensions 

The problem with any parametric test is that it does depend critically on the assumed 

structure of the model.  For applications employing an unobserved components model for 

analysis, however, we believe that it appropriate to test for stationarity and for cointegration 

within the model being assumed for the analysis.  This provides a more powerful test and is 

consistent with the assumptions made for analysis.  For the small samples available for many 

macroeconomic time series asymptotic tests are also questionable on size issues.   

In future work we intend to extend the test to an asymmetric UC-UR model such as that 

of Sinclair (2005).  We also need to develop a grid search to confirm that we are not counting 

any local maxima in the Monte Carlo simulation.  Finally, additional desirable applications 

include applying the test to the data of King, Plosser, Stock, and Watson (1991), purchasing 

power parity, and the inclusion of additional variables which may be correlated but not 

cointegrated with important macroeconomic time series. 
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Appendix 1:  State Space Form 

We can cast the model into state-space form and apply the Kalman filter for maximum 

likelihood estimation of the parameters and the permanent and transitory components for both 

the restricted and the unrestricted UC-UR models.  For the permanent components the Kalman 

filter requires initial values.  We use diffuse priors for the initial values, but the results are robust 

to instead estimating them as parameters.  
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where yt, τt, ct, ηt, εt, Φ1, and Φ2 are each vectors with n rows and the identity and zero matrices 

are each n x n, with zero vectors being n x 1.   

Variance-Covariance Matrix:  ,  [ ]
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where  is the n x n variance-covariance matrix for the innovations to the permanent 

components,  is the n x n variance-covariance matrix for the innovations to the transitory 

components, and represent the cross-covariance terms between the permanent and 

transitory innovations.  For this paper we focus on the rank of .  If it is of full rank then the 

series are all integrated but there does not exist any cointegrating vector.  If it is of less than full 

rank, then either one or more of the series is stationary or there exists at least one common trend. 
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Table 1:  Comparing the UC-UR Results to Stationary Unemployment 

Description Parameter UC-UR Estimate 
(Standard Error) 

Partial UC-UR Estimate 
(Standard Error) 

 Log Likelihood -327.7777 -361.354939 

S.D. of Permanent Innovation to GDP σηy 
1.5689 

( 0.2334 ) 
0.9207 

( 0.1350 ) 

S.D. of Temporary Innovation to GDP σεy 
1.1406 

( 0.3407 ) 
0.6402   

( 0.2231 ) 

Correlation between GDP Components ρηyεy 
-0.8666 

( 0.0500 ) 
-0.3005 

( 0.2784 ) 

GDP 1st AR parameter φ1y 
0.7576 

( 0.0698 ) 
1.2382   

( 0.0946 ) 

GDP 2nd AR parameter φ2y 
-0.2047 

( 0.1008 ) 
-0.4092   

( 0.1137 ) 

GDP Drift µ 0.8570 
( 0.0364 ) 

0.8588   
( 0.0625 ) 

S.D. of Permanent Innovation to 
Unemployment σηu 

0.7109 
( 0.1037 ) = 0 by assumption 

S.D. of Temporary Innovation to 
Unemployment σεu 

0.6860 
( 0.1512 ) 

0.3818   
( 0.0182 ) 

Correlation between Unemployment 
Components ρηuεu 

-0.9286 
( 0.0371 ) 

Does not exist by 
assumption 

Unemployment 1st AR parameter φ1u 
0.7416 

( 0.0628 ) 
1.4192  13 
( 0.0567 ) 

Unemployment 2nd AR parameter φ2u 
-0.1789 

( 0.0621 ) 
-0.4822   

( 0.0567 ) 
Correlation:  

Permanent GDP/Permanent Unemp. ρηyηu 
-0.9395 

( 0.0249 ) 
Does not exist by 

assumption 
Correlation:  

Permanent Unemp./Transitory GDP ρηuεy 
0.6644 

( 0.1289 ) 
Does not exist by 

assumption 
Correlation:  

Transitory GDP/Transitory Unemp. ρεyεu 
-0.6583 

( 0.3688 ) 
-0.9779 

( 0.0363 ) 
Correlation:  

Permanent GDP/Transitory Unemp. ρηyεu 
0.9939 

( 0.0206 ) 
0.0961 

( 0.2820 ) 
 

                                                 
13 Note that the model used constrains the AR parameters to be within the unit circle.   
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Table 2:  Comparing the UC-UR Results to Cointegrated UC-UR 

Description Parameter UC-UR Estimate 
(Standard Error) 

Cointegrated UC-UR 
Estimate 

(Standard Error) 
 Log Likelihood 1431.3265 1430.5928 

S.D. of Permanent Innovation to Income σηy 
0.0191 

(0.0020) 
0.0198 

(0.0021) 

S.D. of Temporary Innovation to Income σεy 
0.0245 

(0.0018) 
0.0251 

(0.0020) 

Correlation between Income Components ρηyεy 
-0.9964 
(0.0054) 

-0.9976 
(0.0039) 

Income 1st AR parameter φ1y 
0.8440 

(0.0325) 
0.8387 

(0.0369) 

Income 2nd AR parameter φ2y 
-0.0360 
(0.0236) 

-0.0320 
(0.0257) 

Income Drift µ1 0.0080 
(0.0016) 

0.0080 
(0.0015) 

S.D. of Permanent Innovation to 
Consumption σηc 

0.0211 
(0.0021) = σηy by assumption 

S.D. of Temporary Innovation to 
Consumption σεc 

0.0201 
(0.0023) 

0.0194 
(0.0023) 

Correlation between Consumption 
Components ρηcεc 

-0.9849 
(0.0043) = ρηyεc by assumption 

Consumption 1st AR parameter φ1c 
0.9511 

(0.0154) 
0.9449 

(0.0130) 

Consumption 2nd AR parameter φ2c 
-0.0219 
(0.0134) 

-0.0218 
(0.0141) 

Consumption Drift µ2 0.0080 
(0.0017) 

0.0080 
(0.0015) 

Correlation:  
Permanent Income /Permanent Consump. ρηyηc 

1.0000 
(0.0000) = 1 by assumption 

Correlation:  
Permanent Consump./Transitory Income ρηcεy 

-0.9965 
(0.0062) = ρηyεy by assumption 

Correlation:  
Transitory Income /Transitory Consump. ρεyεc 

0.9960 
(0.0053) 

0.9934 
(0.0040) 

Correlation:  
Permanent Income /Transitory Consump. ρηyεc 

-0.9848 
(0.0075) 

-0.9831 
(0.0052) 
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Figure 1:  Distribution of LR Test Statistic Under the Null of Stationarity for Application 1 
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