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Abstract

Using a simplified version of Merton’s problem as a benchmark, a numerical procedure for solving

stochastic control problems is developed. The algorithm involves the estimation of conditional

expectations, which are conditioned on the controlled state process. Although Merton’s problem

can be reduced to not depend on the controlled state process the suggested method does not use

this fact.



1 Introduction

The problem of choosing optimal investment and consumption strategies has been widely studied.

In continuous time theory the pioneering work by Merton (1969) is a standard reference. In his

work, Merton studied a continuous time economy with constant investment opportunities. Since

then Merton’s problem has been extended in many ways to capture empirically observed investment

and consumption behavior. As more realism is incorporated into a model, the problem of optimal

investment and consumption becomes harder to solve. Only rarely can analytical solutions be

found, and only for problems possessing nice characteristics. To solve problems lacking analytical

solutions we must apply numerical methods. Many realistic problems, however, are difficult to

solve even numerically, due to their dimensionality. It was such a problem that motivated this

paper. To be more specific, we were interested in the problem of choosing between fixed-rate

mortgages and adjustable-rate mortgages. In a recent paper, Campbell and Cocco (2003) take a

utility-based approach to analyze this problem in discrete time when inflation, labor income and

interest rates are stochastic. Moreover, house prices and financial assets could be introduced to

further complicate the problem, leaving a large number of state variables affecting the mortgage

decision. This realistic problem lacks a closed-form solution and must be solved numerically.

Unfortunately, most existing numerical methods suffer from the curse of dimensionality, meaning

that the time and space required to find a solution grow exponentially as the dimension increases.

The so-called grid-based methods suffer from this curse. One such method is the Markov chain

approximation approach developed by Kushner and described in the book by Kushner and Dupuis

(2001). An application of the method to Merton’s problem can be found in Munk (2003). The

method approximates a continuous-time, continuous-state problem with a discrete-time, discrete-

state Markov chain, which converges to the continuous-time problem as the discretization becomes

finer. The state space is discretized with a grid, whose size grows exponentially as the number of

state variables increase. Another grid-based method is the so-called quantization algorithm studied

in Pagès, Pham, and Printems (2004) for multi-dimensional stochastic control problems. The idea

in this method is to project a time-discretized version of a continuous-time stochastic process onto

an “optimal” grid, in the sense that some error is minimized for the “optimal” grid. For many state

variables these grids become large and computationally intractable.

Unlike the grid-based methods, the space and time required to solve a problem with Monte-

Carlo methods only grows linearly in the number of state variables. Recently, Monte-Carlo methods

have been introduced in the solution of stochastic control problems. The papers by Detemple, Gar-

cia, and Rindisbacher (2003) and Cvitanić, Goukasian, and Zapatero (2003) exploit the martingale

approach for a complete market to express the optimal investment strategies as (conditional) expec-

tations which can be simulated. As noted earlier optimal mortgage choice depends on labor income,

which cannot be hedged in the financial market. Hence markets are incomplete and these methods

are inapplicable. Brandt, Goyal, Santa-Clara, and Stroud (2005) use the dynamic programming

principle to solve an optimal portfolio problem recursively backwards. By approximating the value

function with a fourth-order Taylor series expansion, they derive formulas which implicitly define
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the optimal controls. The formulas involve conditional expectations, which are estimated as sug-

gested by Longstaff and Schwartz (2001) for the pricing of American options. Specifically, they

regress ex-post simulated values of the stochastic variable in interest onto a set of basis functions,

e.g. polynomials. Whereas the pricing of an American option involves a binary decision variable

(exercise or not), optimal portfolio choice involves continuous decision variables. Because of this,

an imprecise estimator has greater significance in the optimal portfolio choice problem, since it

could still lead to the right choices in the binary choice problem. Longstaff (2001) applies the least-

squares Monte-Carlo method to a continuous-time portfolio choice problem. However, it turns out

that the control is binary, so an imprecise estimator could still lead to an optimal choice.

The purpose of this paper is to present a numerical procedure for solving high-dimensional

stochastic control problems arising in the study of optimal portfolio choice. For expositional reasons

we develop the algorithm in one dimension, but the mathematical results needed can be generalized

to a multi-dimensional setting. The starting point of the algorithm is an initial guess about the

agent’s consumption strategy at all times and wealth levels. Given this guess it is possible to

simulate the wealth process until the investment horizon of the agent. We exploit the dynamic

programming principle to break the problem into a series of smaller one-period problems, which

can be solved recursively backwards. To be specific we determine a first-order condition relating

the optimal control to the value function in the next period. Starting from the end we now

numerically solve this first-order condition for all simulated paths. Part of this computation involves

the estimation of a conditional expectation, in which the wealth process is the conditioning variable.

Therefore, these conditional expectations depend on the simulated distribution of wealth, which

in turn depends on the initial guess about the consumption strategy. We can, however, use the

consumption strategy resulting from the above backwards procedure to update the simulated wealth

paths and repeat the procedure iteratively.

In an option pricing framework Fournié, Lasry, Lebuchoux, and Lions (2001) demonstrate how

to compute conditional expectations with the use of Malliavin calculus. Bouchard, Ekeland, and

Touzi (2004) generalize this result and discuss variance minimizing issues related to the Monte-Carlo

simulated estimate of the conditional expectation. The idea in the papers is to express conditional

expectations as a ratio between two unconditional expectations, which can be estimated by ordinary

Monte-Carlo simulations of the conditioning variables. Strongly inspired by the latter paper, we

use this approach to estimate the conditional expectations arising in the above mentioned problem.

Bouchard, Ekeland, and Touzi also apply the approach to a dynamic portfolio problem, but the

problem is reduced so the (controlled) wealth process is not a conditioning variable. For many

interesting problems, like the optimal mortgage problem mentioned earlier, such simplifications

cannot be made. This paper focuses on the issues related to conditioning on a controlled process.

Specifically, the algorithm we suggest does not exploit the homogeneity property that exists in

Merton’s problem.

The numerical properties of the algorithm are analyzed by testing it on a simplified version of

Merton’s optimal portfolio choice problem. The reason for this is that the solution to Merton’s
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problem is explicitly known and can therefore serve as a benchmark for the algorithm. Our results

indicate that it is possible to obtain some sort of convergence in both the initial control and in the

future distribution of the control. However, the results are obtained for a coarse time discretization,

and numerical experiments indicate problems when the discretization is fine. Possible explanations

of this problem are discussed and suggestions for improvement are made.

Bearing in mind that we intend to apply the algorithm to a multi-dimensional setting, we also

consider the possible complications that might arise. However, the state variables added will in

most cases be exogenous non-controllable processes, which does not complicate the optimization

routine in the proposed algorithm. Problems with computer storage could arise, but they should

be solvable with clever computer programming.

The rest of this paper is organized as follows. In section 2 we review Merton’s problem. Section

3 discretize Merton’s problem and describes the numerical method. In section 4 we apply the

method to Merton’s problem and discuss some issues related to the implementation. Finally, we

conclude in section 5. Appendix A contains some result from Malliavin calculus that the algorithm

in section 3 builds upon.

2 Merton’s Problem Revisited

In this section we formulate Merton’s problem and provide the closed-form solution. Readers

familiar with Merton’s problem can safely skip this section, perhaps after reviewing theorem 2.1.

The problem consists in finding the optimal consumption and investment strategies for an economic

agent with a finite investment horizon in a continuous time economy. This problem was first studied

and solved in the pioneering paper by Merton (1969). In a discrete time economy Samuelson (1969)

solved a similar problem. However, since the purpose of this paper is to test a numerical approach’s

ability to solve continuous time problems, we walk down the same road as Merton.

2.1 The Mathematical Problem

We consider an agent with initial wealth W0 and investment horizon [0, T ], who wants to choose

a consumption strategy, (ct)t∈[0,T ], and an investment strategy, (πt)t∈[0,T ], such that his expected

lifetime utility is maximized. At time t, the agent consumes at the rate ct and holds a fraction

πt of his wealth invested in a risky asset. The wealth dynamics of the agent is governed by the

stochastic differential equation

dWt = Wt [r + πt(µ− r)] dt− ctdt+WtπtσdBt, (2.1)

where r is the instantaneous risk free rate and µ and σ are the instantaneous drift rate and volatility

of the risky asset price process, respectively. In Merton’s problem these are all assumed constant,

i.e. investment opportunities are constant. As a consequence, the risky asset price process is a

geometric Brownian motion. Finally, (Bt)t∈[0,T ] is a Brownian motion defined on a probability
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space (Ω,F, P ), i.e. (Bt)t∈[0,T ] is a Brownian motion with respect to the probability measure P .

We let the σ-algebra, F, be the natural filtration, i.e. F , FT where Ft , σ (Bs | 0 ≤ s ≤ t) is the

σ-algebra generated by the Brownian motion. The state space, Ω, will be specified in much more

detail in appendix A.

To ensure that the integrals in (2.1) are well-defined the integrands (and hence the controls)

must satisfy some integrability conditions, see e.g. Duffie (2001). Since we are going to apply the

dynamic programming approach, the agent is restricted to choose the consumption and investment

strategies from the class of Markov controls. Hence the consumption and investment strategies at

time t only depend on the state of the system at that time, i.e. ct = C(Wt, t) and πt = Π(Wt, t) for

some functions C and Π. Fortunately, this assumption is not crucial, since allowing the agent to

choose from the larger class of Ft-adapted controls does not lead to higher expected lifetime utility,

as long as some regularity conditions are satisfied, cf. Øksendal (2000, Theorem 11.2.3). At last,

for a consumption process to be admissible we will require it to assume positive values only, i.e. for

fixed t ∈ [0, T ] the random variable ω → ct(ω) must be a positive random variable. The investment

process is allowed to take on any real values, i.e. short-sale of the risky asset is allowed.

The agent derives utility from intertemporal consumption and terminal wealth according to a

utility function, u. In our examples u will always be a constant relative risk aversion (CRRA)

utility function with constant relative risk aversion parameter γ, on the form

u(x) =
x1−γ

1 − γ
.

The agent chooses consumption and investment strategies in order to maximize his expected lifetime

utility

E
{
∫ T

0
e−δsu(cs)ds+ e−δTu(WT )

}

.

Since Merton’s problem is a dynamic problem we need to consider the agent’s problem at a

future time, t. To this purpose we define the indirect utility function (a.k.a. the value function) as

J(w, t) , sup
(cs,πs)s∈[t,T ]

E
{
∫ T

t
e−δ(s−t)u(cs)ds+ e−δ(T−t)u(WT )

∣

∣

∣

∣

Wt = w

}

, (2.2)

and the corresponding indirect utility process as Jt , J(Wt, t). The indirect utility function is

essential to the solution of Merton’s problem as we shall see in the next section.
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2.2 The Closed-Form Solution

A fundamental result from stochastic control theory states that the indirect utility function (2.2)

must satisfy the Hamilton-Jacobi-Bellman (HJB) equation

δJ(w, t) = sup
c≥0,π∈R

{

u(c) +
∂J

∂t
(w, t) + Jw(w, t) (w [r + π(µ− r)] − c) +

1

2
Jww(w, t)w2π2σ2

}

,

for all (w, t) ∈ R+ × [0, T ) with the boundary condition J(w, T ) = u(w) for all w ∈ R+. Subscripts

indicate partial derivatives. Essentially, this is a continuous time version of the dynamic program-

ming principle, which states that an agent with wealth w at time t chooses a consumption rate

c and a portfolio weight π, given optimal behavior at all future dates. We immediately get the

following first-order conditions for the optimal strategies

0 = u′(c) − Jw(w, t)

0 = Jw(w, t)w(µ − r) + Jww(w, t)w2πσ2.

Isolating c and π, we get the following candidates for the optimal consumption and investment

strategies

C(w, t) = (u′)−1(Jw(w, t))

Π(w, t) = − Jw(w, t)

Jww(w, t)w

µ− r

σ2
.

Letting W ∗
t denote the wealth process induced by following the optimal strategies, the optimal

strategies at time t are

c∗t = C(W ∗
t , t)

π∗t = Π(W ∗
t , t).

If the candidate optimal controls are substituted back into the HJB equation we need to solve a

nonlinear partial differential equation in order to find J . Such equations are not easy to solve, but

fortunately we are able to make a qualified guess and then verify that it actually solves the HJB

equation.

Due to the linearity of the wealth dynamics, it seems reasonable to make the following con-

jecture. If an agent with time t wealth w optimally chooses to consume c∗t and invest π∗t in the

risky asset and following these strategies imply a terminal wealth of W ∗
T then an agent with time t

wealth kw will optimally consume kc∗t and invest π∗t in the risky asset, implying a terminal wealth
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of kW ∗
T . With CRRA utility we get

J(kw, t) = E
{
∫ T

t
e−δ(s−t)u(kc∗s)ds+ e−δ(T−t)u(kW ∗

T )

∣

∣

∣

∣

Wt = kw

}

= k1−γE
{
∫ T

t
e−δ(s−t)u(c∗s)ds+ e−δ(T−t)u(W ∗

T )

∣

∣

∣

∣

Wt = w

}

= k1−γJ(w, t),

which for k = 1
w reads

J(w, t) = J(1, t)w1−γ (2.3)

=
g(t)γw1−γ

1 − γ
, (2.4)

where g(t)γ , (1 − γ)J(1, t). In other words, w → J(w, t) is homogeneous of degree 1 − γ.

To verify our conjecture we check whether the HJB equation is satisfied or not. The relevant

derivatives are

∂J

∂t
(w, t) =

γg(t)γ−1g′(t)w1−γ

1 − γ

Jw(w, t) = g(t)γw−γ

Jww(w, t) = −γg(t)γw−γ−1,

which gives the following candidate consumption and investment strategies

C(w, t) = (u′)−1(g(t)γw−γ)

= (u′)−1

(

u′
(

w

g(t)

))

=
w

g(t)

Π(w, t) =
g(t)γw−γ

γg(t)γw−γ

µ− r

σ2

=
1

γ

µ− r

σ2
.

Substituting the candidate controls, the conjecture, and its derivatives into the HJB equation, we
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arrive at

δ
g(t)γw1−γ

1 − γ
=
g(t)γ−1w1−γ

1 − γ
+
γg(t)γ−1g′(t)w1−γ

1 − γ

+ g(t)γw1−γ

([

r +
1

γ

(µ− r)2

σ2

]

− 1

g(t)

)

− 1

2
γg(t)γw1−γ 1

γ2

(µ− r)2

σ2

=
g(t)γ−1w1−γ

1 − γ

(

γg′(t) + g(t)

(

r(1 − γ) +
1

2

1 − γ

γ

(µ− r)2

σ2

)

+ γ

)

.

Moving everything to the right-hand side and collecting terms with common factors, we obtain

0 =
g(t)γ−1w1−γ

1 − γ

(

γg′(t) + g(t)

(

−δ + r(1 − γ) +
1

2

1 − γ

γ

(µ− r)2

σ2

)

+ γ

)

.

For this equation to be satisfied for all t and w, the expression in parentheses must be equal to

zero, i.e.

γg′(t) = g(t)

(

δ − r(1 − γ) − 1

2

1 − γ

γ

(µ− r)2

σ2

)

− γ.

Hence g must satisfy the ordinary differential equation

g′(t) = g(t)

(

δ − r(1 − γ)

γ
− 1

2

1 − γ

γ2

(µ− r)2

σ2

)

− 1

= Ag(t) − 1,

where we have defined

A ,

(

δ − r(1 − γ)

γ
− 1

2

1 − γ

γ2

(µ− r)2

σ2

)

. (2.5)

Imposing the boundary condition g(T ) = [(1 − γ)u(1)]1/γ = 1, the solution is

g(t) = A−1
(

1 + [A− 1] e−A(T−t)
)

.

With this g our conjecture in equation (2.4) satisfies the HJB equation. Furthermore, it satisfies

some technical conditions for it to equal the indirect utility function. We have now justified the

following theorem, which was first proved by Merton (1969).

Theorem 2.1. With

g(t) , A−1
(

1 + [A− 1] e−A(T−t)
)
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the indirect utility function is given by

J(w, t) =
g(t)γw1−γ

1 − γ

= g(t)γu(w).

The optimal investment strategy is given by

Π(w, t) =
1

γ

µ− r

σ2
,

and the optimal consumption rate is given by

C(w, t) =
1

g(t)
w

= A
(

1 + [A− 1] e−A(T−t)
)−1

w.

Remark. The homogeneity property in equation (2.3) reduces the dimensionality of the problem

by one: instead of solving a second-order partial differential equation, the problem is reduced to

finding the solution of a much simpler ordinary differential equation. In some multi-dimensional

models similar homogeneity properties lead to a similar reduction in the dimensionality of the

problem. In general, however, the value function does not possess such homogeneity properties,

and the approach we develop does not exploit such. Of course, this seems foolish, but bear in mind

that the algorithm will be applied to a more general problem.

3 The Numerical Method

Merton’s problem can be solved analytically, whereas multi-dimensional problems in general cannot.

With this in mind we now consider a numerical approach to solving Merton’s problem, which can

be tested up against the explicitly known solution. Hopefully, the numerical procedure is applicable

for multi-dimensional problems as well. To simplify the problem as much as possible, we only allow

the agent to control the consumption rate, i.e. we fix the portfolio weight at the (constant) Merton

solution. By doing this, future wealth is still stochastic and the control variable is both time and

state dependent.

3.1 A Discrete-Time Approximation

Since computers in their nature work discretely, we cannot feed them with a continuous time

problem like the one in equation (2.2) subject to the wealth dynamics in equation (2.1). The

problem must be discretized. We therefore partition the time horizon [0, T ] into N intervals of equal

length ∆t , T
N and put tn , n∆t for n = 0, 1, . . . , N . Approximating the stochastic differential
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equation (2.1) with an Euler discretization

Wtn+1 = Wtn +Wtn [r + π(µ− r)]∆t− ctn∆t+Wtnπσ(Btn+1 −Btn), (3.1)

we now consider the discrete time problem of choosing a consumption strategy (ctn)N−1
n=0 such that

the discretized objective

E

{

N−1
∑

n=0

e−δtnu(ctn)∆t+ e−δTu(WT )

}

(3.2)

is maximized. Instead of using an Euler discretization we could consider a true discrete time wealth

dynamics. However, the purpose of this paper is to test a numerical approach’s ability to solve

continuous time problems, which should be possible with the Euler dynamics, since it converges to

the continuous time wealth dynamics when ∆t→ 0.

The maximization of the objective in equation (3.2) involves the entire consumption process. As

the following computation demonstrates, the problem can be decomposed into a series of one-period

maximization problems. The indirect utility process at time tn is

Jtn = sup
(cti

)N−1
i=n

E

{

N−1
∑

i=n

e−δ(ti−tn)u(cti)∆t+ e−δ(T−tn)u(WT )

∣

∣

∣

∣

Ftn

}

= sup
(cti

)N−1
i=n

E

{

N−1
∑

i=n

e−δ(i−n)∆tu(cti)∆t+ e−δ(N−n)∆tu(WT )

∣

∣

∣

∣

Ftn

}

= sup
(cti

)N−1
i=n

E

{

u(ctn)∆t+

N−1
∑

i=n+1

e−δ(i−n)∆tu(cti)∆t+ e−δ(N−n)∆tu(WT )

∣

∣

∣

∣

Ftn

}

= sup
(cti

)N−1
i=n

E
{

u(ctn)∆t

+ E

{

N−1
∑

i=n+1

e−δ(i−n)∆tu(cti)∆t+ e−δ(N−n)∆tu(WT )

∣

∣

∣

∣

Ftn+1

}

∣

∣

∣

∣

Ftn

}

= sup
ctn

E
{

u(ctn)∆t+ e−δ∆tJtn+1 | Ftn

}

= sup
ctn

{

u(ctn)∆t+ e−δ∆tE
{

Jtn+1 | Ftn

}

}

,

and the associated indirect utility function is

J(w, tn) = sup
ctn

{

u(ctn)∆t+ e−δ∆tE
{

J(Wtn+1 , tn+1) | Wtn = w
}

}

. (3.3)

This is the so-called Bellman equation, which is the building block in backward recursive solutions

of dynamic programming problems. The HJB equation can also be seen as a limit of the Bellman

equation when ∆t→ 0.
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3.2 First-Order Conditions

In this section we derive the formulas that we will use in the numerical approach. At each time

tn we need to find the optimal consumption strategy. Inserting the Euler dynamics (3.1) in the

Bellman equation (3.3) we have

J(w, tn) = sup
ctn

{

u(ctn)∆t+ e−δ∆tE
{

J(Wtn+1 , tn+1) | Wtn = w
}

}

= sup
ctn

{

u(ctn)∆t

+ e−δ∆tE
{

J(w + w [r + π(µ− r)]∆t− ctn∆t+ wπσ(Btn+1 −Btn), tn+1)
}

}

The first-order condition with respect to ctn is

0 = u′(ctn)∆t

+ e−δ∆tE
{

Jw(w + w [r + π(µ− r)]∆t− ctn∆t+ wπσ(Btn+1 −Btn), tn+1)(−∆t)
}

= u′(ctn)∆t− e−δ∆tE
{

Jw(Wtn+1 , tn+1) | Wtn = w
}

∆t

=
[

u′(ctn) − e−δ∆tE
{

Jw(Wtn+1 , tn+1) | Wtn = w
}

]

∆t,

i.e.

u′(ctn) = e−δ∆tE
{

Jw(Wtn+1 , tn+1) | Wtn = w
}

. (3.4)

It is equation (3.4) that will be the main driver in our numerical approach. Since the indirect

utility function is known at time tN = T , the problem can be solved recursively backwards by the

dynamic programming approach. Because Wtn+1 depends on ctn equation (3.4) only defines the

consumption rate implicitly. Later we shall discuss how to find the optimal consumption rate, but

for the moment we just assume that an optimal consumption strategy exists and denote it by c∗tn .

Inserting the optimal consumption rate into the Bellman equation (3.3), the indirect utility at time

tn is

J(w, tn) = u(c∗tn)∆t+ e−δ∆tE
{

J(W ∗
tn+1

, tn+1) | Wtn = w
}

,

where

W ∗
tn+1

= Wtn +Wtn [r + π(µ− r)]∆t− c∗tn∆t+Wtnπσ(Btn+1 −Btn).
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In order to find the optimal consumption strategy at time tn−1 we need the partial derivative of

the indirect utility function with respect to wealth at time tn, which is

Jw(w, tn) = u′(c∗tn)
∂c∗tn
∂w

∆t+ e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)
∂W ∗

tn+1

∂w

∣

∣

∣

∣

Wtn = w

}

= u′(c∗tn)
∂c∗tn
∂w

∆t+ e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)

(

1 + [r + π(µ− r)]∆t

− ∂c∗tn
∂w

∆t+ πσ(Btn+1 −Btn)

) ∣

∣

∣

∣

Wtn = w

}

= e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)
(

1 + [r + π(µ− r)] ∆t+ πσ(Btn+1 −Btn)
)

| Wtn = w
}

= e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)
W ∗

tn+1
+ c∗tn∆t

Wtn

∣

∣

∣

∣

Wtn = w

}

where the third equality follows since c∗tn satisfies the first-order condition in equation (3.4). Mul-

tiplying both sides by w we see that the marginal indirect utility function, Jw, must satisfy

wJw(w, tn) = e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)W
∗
tn+1

| Wtn = w
}

+ e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1) | Wtn = w
}

c∗tn∆t

= e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)W
∗
tn+1

| Wtn = w
}

+ u′(c∗tn)c∗tn∆t. (3.5)

Equations (3.4) and (3.5) are the main ingredients in the backward recursive algorithm presented

in section 3.4.

3.3 Computing Conditional Expectations

In order to implement the formulas we need a way to compute conditional expectations for all

points (w, t) ∈ R+ × {t0, t1, . . . , tN}. Over one period such expectations could be estimated with

Monte-Carlo simulation, i.e. given M simulations, W 1
tn+1

,W 2
tn+1

, . . . ,WM
tn+1

, of the random variable

Wtn+1 we have

E
{

g(Wtn+1) | Wtn = w
}

≈ 1

M

M
∑

m=1

g(Wm
tn+1

).

In a multi-period model where we need to know such conditional expectations for n = 0, 1, . . . , N−1,

we could try to do the same. Initially, we simulate M values of the random variable Ww
t1 , where

the superscript indicates the value of the process at the beginning of the period. For each of these

simulations we simulate M values of the random variable W
W m

t1
t2 , and hence have M2 simulations

of Wt2 . With N periods there will be MN simulations of WT . Not much imagination is needed

to see that this requires many computations. Hence this type of Monte-Carlo simulation seems

to be a computationally infeasible task. The following result emanating from Malliavin calculus

provides an alternative representation of conditional expectations, which at all points, Wm
tn , can be

11



estimated from one set of simulations.

Theorem 3.1 (Bouchard, Ekeland, and Touzi (2004), Corollary 3.1). Let hn
t satisfy

∫ tn+1

0
(DtWtn)hn

t dt = 1 and

∫ tn+1

0
(DtWtn+1)h

n
t dt = 0, (3.6)

where Dt is the Malliavin derivative. Further, let ϕ : R → R be a smooth localizing function in the

sense that ϕ and ϕ′ are continuous and bounded mappings and ϕ(0) = 1. Then

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

E {Hw(Wtn)Shn(ϕ(Wtn − w))} , (3.7)

where Hw(Wtn) = 1[w,∞)(Wtn) is the indicator function and Shn
(ϕ(Wtn − w)) is the Skorohod

integral
∫ tn+1

0 ϕ(Wtn − w)hn
t δBt.

Proof. See appendix A.4.

Remark. The localizing functions in the numerator and denominator of (3.7) need not be the

same, which we will use in our implementation to minimize the var.

3.3.1 Monte-Carlo Simulation of Conditional Expectations

It is theorem 3.1 that tells us how to compute conditional expectations. Given M simulated paths

of (Wtn)Nn=0 all starting at the same initial point, W0, we have

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn −w))
}

E {Hw(Wtn)Shn(ϕ(Wtn − w))}

≈
1
M

∑M
m=1Hw(Wm

tn )g(Wm
tn+1

)Shn
(ϕ(Wm

tn − w))

1
M

∑M
m=1Hw(Wm

tn )Shn(ϕ(Wm
tn − w))

. (3.8)

Remark. Notice that the Skorohod integral does not depend on g. Hence we only need to com-

pute them once for each point (n,m) in our simulation, even though we need to compute several

conditional expectations for different g’s.

3.3.2 Optimal Localizing Functions

A problem related to Monte-Carlo simulations is the relatively high number of simulations required

to get a precise estimate, i.e. small confidence intervals. In fact, the accuracy of a simulation is only

increased by a factor
√
k when the number of simulations is k-doubled. Another way to improve

Monte-Carlo simulation is to use so-called variance-reduction techniques, which can speed up the

simulation as they require fewer simulations. Examples of such variance reduction techniques are

to use antithetic variables and control variates. As in Bouchard, Ekeland, and Touzi (2004) we

here consider another type of variance reduction: localizing functions. The idea of such functions

is that paths closer to the conditioning value, w, are weighted heavier than paths far away from w.

12



The variance of the Monte-Carlo estimator

E
{

Hw(Wtn)f(Wtn+1)S
hn

(ϕ(Wtn −w))
}

≈ 1

M

M
∑

m=1

Hw(Wm
tn )f(Wm

tn+1
)Shn

(ϕ(Wm
tn − w))

is

V

{

1

M

M
∑

m=1

Hw(Wm
tn )f(Wm

tn+1
)Shn

(ϕ(Wm
tn −w))

}

=
1

M2

M
∑

m=1

V
{

Hw(Wm
tn )f(Wm

tn+1
)Shn

(ϕ(Wm
tn − w))

}

=
1

M
V
{

Hw(Wtn)f(Wtn+1)S
hn

(ϕ(Wtn − w))
}

=
1

M
E
{

Hw(Wtn)f(Wtn+1)
2Shn

(ϕ(Wtn − w))2
}

− 1

M
E
{

Hw(Wtn)f(Wtn+1)S
hn

(ϕ(Wtn − w))
}2

since the Wm
tn ’s are independent and identically distributed random variables.

We now consider the problem of minimizing the mean square error

Ihn

[f ](ϕ) ,

∫

R

E
{

Hw(Wtn)f(Wtn+1)
2Shn

(ϕ(Wtn − w))2
}

dw (3.9)

for exponential localizing functions ϕ(x) = e−ηx, η ≥ 0.

Remark. Due to the indicator function, we are only considering Wtn ≥ w. On this set Ihn
[f ] is

convex as the following computation shows

Ihn

[f ](λϕ+ (1 − λ)ψ)

=

∫

R

E
{

Hw(Wtn)f(Wtn+1)
2
(

λShn

(ϕ(Wtn − w)) + (1 − λ)Shn

(ψ(Wtn − w))
)2
}

dw

≤
∫

R

E
{

Hw(Wtn)f(Wtn+1)
2λShn

(ϕ(Wtn − w))2
}

dw

+

∫

R

E
{

Hw(Wtn)f(Wtn+1)
2(1 − λ)Shn

(ψ(Wtn − w))2
}

dw

= λIhn

[f ](ϕ) + (1 − λ)Ihn

[f ](ψ),

since the Skorohod integral is linear and x→ x2 is convex.

Remark. Bouchard, Ekeland, and Touzi (2004) show that the optimal localizing function in the

class of separable localizing function will be of the exponential form in a d-dimensional setting.

In general they prove an existence and uniqueness result, and give a partial differential equation

characterization in the 2-dimensional case.

Since ϕ is parameterized by η, minimizing the mean square error in equation (3.9) simply

13



reduces to an ordinary minimization problem over η

inf
η≥0

∫

R

E
{

Hw(Wtn)f(Wtn+1)
2Sh(ϕ(Wtn − w))2

}

dw.

Since ϕ is also convex, the mean square error is convex in the parameter η. Moreover,

Sh(ϕ(Wtn − w)) = ϕ(Wtn − w)Sh(1) − ϕ′(Wtn − w)

= ϕ(Wtn − w)
[

Sh(1) + η
]

,

so we get

∫

R

Hw(Wtn)f(Wtn+1)
2Sh(ϕ(Wtn − w))2dw

=

∫ Wtn

−∞

f(Wtn+1)
2ϕ(Wtn − w)2

[

Sh(1) + η
]2

dw

= f(Wtn+1)
2

∫ Wtn

−∞

ϕ(Wtn − w)2dw
[

Sh(1) + η
]2

= f(Wtn+1)
2

∫ Wtn

−∞

e−2η(Wtn−w)dw
[

Sh(1) + η
]2

= f(Wtn+1)
2

[

1

2η
e−2η(Wtn−w)

]Wtn

−∞

[

Sh(1) + η
]2

= f(Wtn+1)
2 1

2η

[

Sh(1) + η
]2

= f(Wtn+1)
2

[

Sh(1)2

2η
+ Sh(1) +

η

2

]

.

Taking expectations on both sides, and differentiating with respect to η we get the following first-

order condition for a minimum

E
{

f(Wtn+1)
2

[

−S
h(1)2

2η2
+

1

2

]}

= 0,

i.e.

E
{

f(Wtn+1)
2
[

−Sh(1)2 + η2
]}

= 0,

which reduces to

η2 =
E
{

f(Wtn+1)
2Sh(1)2

}

E
{

f(Wtn+1)
2
} .

Remark. As noted earlier we can choose different localizing functions in the nominator and de-
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nominator of

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
h(ϕ(Wtn − w))

}

E {Hw(Wtn)Sh(ϕ(Wtn − w))} .

With exponential localizing functions this means that we can choose two η’s to minimize the mean

square error of both expectations on the right hand side.

3.3.3 Control Variate

A common way to reduce the error induced by a numerical method is to adjust the estimate with

the error the method gives on a similar problem, for which the solution is known. This is called a

control variate technique. By definition of the Skorohod integral we have

E
{

g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

= E
{
∫ T

0
(Dtg(Wtn+1))ϕ(Wtn −w)hn

t dt

}

= E
{

g′(Wtn+1)ϕ(Wtn − w)

∫ T

0
(DtWtn+1)h

n
t dt

}

= 0

since hn ∈ Hn. Hence, instead of estimating

E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

,

we might as well estimate

E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

− 0

= E
{

(Hw(Wtn) − c)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

,

for some c ∈ R. If we choose c in order to minimize the variance of the Monte-Carlo estimator, we

get

c =
E
{

Hw(Wtn)g(Wtn+1)
2Shn

(ϕ(Wtn − w))2
}

E
{

g(Wtn+1)
2Shn(ϕ(Wtn − w))2

} .

Remark. Like Bouchard, Ekeland, and Touzi (2004) our numerical tests indicate that the control

variate has little effect on our results, and we will therefore not use it in our implementation.

3.4 The Algorithm

The basic ingredient in the algorithm is M simulated paths of the wealth process. To begin with

we assume that we can find an initial feasible consumption strategy, (cm,0
tn )N−1

n=0 , for all simulated

paths m = 1, 2, . . . ,M . Later we will discuss how to initialize this solution. Given this strategy we
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are now able to simulate wealth according to the Euler dynamics in equation (3.1), i.e.

W0 = 0

Wtn+1 = Wtn +Wtn [r + π(µ− r)]∆t− ctn∆t+Wtnπσ(Btn+1 −Btn)

= Wtn +Wtn [r + π(µ− r)]∆t− ctn∆t+Wtnπσ
√

∆tZtn+1 ,

where Ztn+1 ∼ N(0, 1) is a standard normally distributed random variable.

We will use the notation Wm
tn to denote wealth at time tn on the m’th simulated path. The

algorithm proceeds as follows:

• At time tN = T we impose the boundary condition JT (w) = u(w) to calculate the derivative

J ′
T (Wm

T ) = u′(Wm
T ) for all m = 1, 2, . . . ,M .

• At time tn, n = N−1, N−2, . . . , 1 we iteratively solve the first-order conditions estimating the

conditional expectations with the Malliavin Monte-Carlo approach, i.e. for all m = 1, 2, . . . ,M

we update the control iteratively until the consumption rate in the i’th iteration satisfies

u′(cm,i
tn )

= e−δ∆tE
{

Jw(Wtn+1 , tn+1) | Wtn = Wm
tn

}

= e−δ∆tE
{

Jw(Wm
tn +Wm

tn [r + π(µ− r)]∆t− cm,i−1
tn ∆t+Wm

tn πσ(Btn+1 −Btn), tn+1)
}

≈ e−δ∆t

∑M
l=1Hw(W l

tn)Jw(W l
tn+1

, tn+1)S
hn,l

(ϕ(W l
tn −Wm

tn ))
∑M

l=1Hw(W l
tn)Shn,l(ϕ(W l

tn −Wm
tn ))

at some pre-specified tolerance level. If we keep wealth at time tn sorted in some way, say

W 1
tn ≤ W 2

tn ≤ · · · ≤ WM
tn , this can be done iteratively as follows: starting at the M ’th path,

the sums only contain one term involving the M ’th path, so one iteration looks like this:

– update the control

– update wealth WM
tn+1

– update Jw(WM
tn+1

, tn+1)

– update the Skorohod integral Shn,M

We iterate until some pre-specified tolerance level is satisfied. When the M ’th path is done

we move onto the (M − 1)’th path. Now the sums involve two terms, one for the M ’th path

and one for the (M − 1)’th path. However, we have solved for the M ’th path so given this

solution we can now solve for the (M − 1)’th path as above. We continue with this until we

have solved for all paths.

When the optimal strategy has been found for all paths, we need to find Jw(Wm
tn , tn) for

all paths m = 1, . . . ,M , since this must be used at the next time step. This is done using
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equation (3.5)

Wm
tn Jw(Wm

tn , tn) = e−δ∆tE
{

Jw(W ∗
tn+1

, tn+1)W
∗
tn+1

| Wtn = Wm
tn

}

+ u′(c∗tn)c∗tn∆t,

where the conditional expectation is estimated with the Malliavin Monte-Carlo approach.

• At time t0 = 0 we only have one wealth level, so we use ordinary Monte-Carlo simulation to

solve the first-order condition numerically.

• Now we have estimated the optimal consumption strategy for wealth levels Wm
tn , for n =

0, 1, . . . , N and m = 1, . . . ,M . We now estimate a new candidate control process (cm,0
tn )N−1

n=0 ,

by simulating the wealth process (with the same random numbers), but along each path we

choose the consumption rate by interpolating between the consumption rates found in the

previous iteration.

• This procedure could be repeated until the candidate control does not change much from one

iteration to the next or until a given number of iterations have been completed. To compare

the convergence properties when the algorithm is started with different initial guesses, we

implement the latter.

• When simulating the wealth process we simultaneously compute the indirect utility from

following the current candidate consumption strategy.

3.5 Initialization

In this section we discuss how important the initial candidate consumption strategy is. Over one

period the dynamic programming principle states that the optimal strategy only depends on the

current state and not on the past. However, seen from time 0 the initial guess does matter since

the future wealth distribution depends on this guess. Intuitively, the simulated distribution would

be better the closer the guess is to the optimal strategy. Brandt, Goyal, Santa-Clara, and Stroud

(2005) also note this, but their approach is somewhat different: instead of simulating the wealth

process they choose a grid of wealth levels according to some distributional assumptions.

In the next section we will analyze the algorithm for three different initial consumption strategies

• The exact continuous time solution.

• A good guess.

• A bad guess.

For the bad guess, the consumption rate is fixed at a level ct = 0.1 for all t ∈ [0, T ]. For the

good guess, we choose the control ct = cWt, where c is a constant, such that the indirect utility is
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maximized. The problem is to

sup
c

E
{
∫ T

0
e−δsu(cWs)ds+ e−δTu(WT )

}

(3.10)

s.t. dWt = Wt [r + π(µ− r)] dt− cWtdt+WtπσdBt (3.11)

W0 = w.

Since all coefficient in the wealth dynamics in equation (3.11) are constant, the wealth process is a

geometric Brownian motion. Hence, future wealth is log-normally distributed

Wt = w exp

([

r + π(µ− r) − c− 1

2
π2σ2

]

t+ πσBt

)

.

Since we are considering a CRRA utility function, u(x) = x1−γ

1−γ , we observe from equation (3.10)

that we need to compute

E
{

W 1−γ
t

}

= E
{

w1−γ exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
π2σ2

]

t+ (1 − γ)πσBt

)}

= w1−γ exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
π2σ2 +

1

2
(1 − γ)π2σ2

]

t

)

= w1−γ exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2

]

t

)

,

so the expectation in equation (3.10) becomes

E
{
∫ T

0
e−δsu(cWs)ds+ e−δTu(WT )

}

=

∫ T

0
e−δsE {u(cWs)} ds+ e−δT E {u(WT )}

=
c1−γ

1 − γ

∫ T

0
e−δsE

{

W 1−γ
s

}

ds+
1

1 − γ
e−δT E

{

W 1−γ
T

}

=
(cw)1−γ

1 − γ

∫ T

0
e−δs exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2

]

s

)

ds

+
w1−γ

1 − γ
e−δT exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2

]

T

)

=
(cw)1−γ

1 − γ

∫ T

0
exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2 − δ

1 − γ

]

s

)

ds

+
w1−γ

1 − γ
exp

(

(1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2 − δ

1 − γ

]

T

)

=
(cw)1−γ

1 − γ

∫ T

0
exp (Cs) ds+

w1−γ

1 − γ
exp (CT )

=
(cw)1−γ

1 − γ

1

C
(exp (CT ) − 1) +

w1−γ

1 − γ
exp (CT ) , (3.12)
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where we have defined

C , (1 − γ)

[

r + π(µ− r) − c− 1

2
γπ2σ2 − δ

1 − γ

]

.

The good guess can now be found numerically by maximizing the expression in equation (3.12)

with respect to c.

4 Experiences from Merton’s Problem

In this section we solve Merton’s problem as described in section 2 by the algorithm suggested in

section 3. As seen earlier we need to estimate conditional expectations on the form

E
{

g(Wtn+1) | Wtn = w
}

,

for some function g, where Wtn+1 is described by the Euler dynamics given in equation (3.1)

Wt0 = W0

Wtn+1 = Wtn +Wtn [r + π(µ− r)]∆t− ctn∆t+Wtnπσ(Btn+1 −Btn).

As described in section 3.3 such conditional expectations can be calculated as

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn −w))
}

E {Hw(Wtn)Shn(ϕ(Wtn − w))} .

4.1 Derivation of h
n
t and the Skorohod Integral

In this section we derive the process hn
t and compute the Skorohod integral used in equation (3.7).

According to equation (3.6) we look for a process hn
t satisfying

∫ tn+1

0
(DtWtn)hn

t dt = 1 and

∫ tn+1

0
(DtWtn+1)h

n
t dt = 0.

The Malliavin derivative of the wealth process can be determined recursively as

DtWt1 = W0πσ1[0,t1](t)

DtWtn+1 = DtWtn +DtWtn [r + π(µ− r)]∆t−DtWtn
∂ctn
∂Wtn

∆t

+DtWtnπσ(Btn+1 −Btn) +Wtnπσ1(tn,tn+1](t),
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where we have used the chain rule and product rule for Malliavin derivatives, see appendix A.

Assuming that hn
t satisfies the first condition in (3.6), the second condition reduces to

∫ tn+1

0
(DtWtn+1)h

n
t dt

=

∫ tn+1

0

(

DtWtn +DtWtn [r + π(µ− r)]∆t−DtWtn

∂ctn
∂Wtn

∆t

+DtWtnπσ(Btn+1 −Btn) +Wtnπσ1(tn,tn+1](t)

)

hn
t dt

= 1 + [r + π(µ− r)]∆t− ∂ctn
∂Wtn

∆t+ πσ(Btn+1 −Btn) +Wtnπσ

∫ tn+1

tn

hn
t dt. (4.1)

From this we see that if we define

hn
t , −(∆t)−1(Wtnπσ)−1

(

1 + [r + π(µ− r)]∆t− ∂ctn
∂Wtn

∆t+ πσ(Btn+1 −Btn)

)

for t ∈ (tn, tn+1], the second condition is satisfied as long as the first condition is satisfied. Since

DtWtn = 0 for t ∈ (tn, tn+1] cf. proposition A.5, the first condition reduces to

∫ tn+1

0
(DtWtn)hn

t dt =

∫ tn

0
(DtWtn)hn

t dt

= 1.

Thus, if we define

hn
t , (∆t)−1(DtWtn)−1

= (∆t)−1(Wtn−1πσ)−1

for t ∈ (tn−1, tn] the first condition is satisfied. To summarize,

hn
t ,



























0 for t ∈ [0, tn−1]
1

Wtn−1πσ∆t
for t ∈ (tn−1, tn]

−
1 + [r + π(µ− r)]∆t− ∂ctn

∂Wtn
∆t+ πσ(Btn+1 −Btn)

Wtnπσ∆t
for t ∈ (tn, tn+1]

satisfies (3.6). To compute the Skorohod integrals in equation (3.7) it is sufficient to compute the

Skorohod integral of hn
t since equation (A.9) gives

Shn

(ϕ(Wtn − w)) = ϕ(Wtn − w)Shn

(1) − ϕ′(Wtn − w)

= ϕ(Wtn − w)
[

Shn

(1) + η
]

,
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where the last equality holds if ϕ(x) = e−ηx for some η > 0. We obtain

∫ tn+1

0
hn

t δBt =

∫ tn−1

0
hn

t δBt +

∫ tn

tn−1

hn
t δBt +

∫ tn+1

tn

hn
t δBt

=

∫ tn

tn−1

hn
t δBt +

∫ tn+1

tn

hn
t δBt

=
Btn −Btn−1

Wtn−1πσ∆t
+

∫ tn+1

tn

hn
t δBt

=
Btn −Btn−1

Wtn−1πσ∆t
−

(

1 + [r + π(µ− r)]∆t− ∂ctn

∂Wtn
∆t
)

(Btn+1 −Btn)

Wtnπσ∆t

− πσ

Wtnπσ∆t

∫ tn+1

tn

(Btn+1 −Btn)δBt

=
Btn −Btn−1

Wtn−1πσ∆t
−

(

1 + [r + π(µ− r)]∆t− ∂ctn

∂Wtn
∆t
)

(Btn+1 −Btn)

Wtnπσ∆t

− (Btn+1 −Btn)2 − ∆t

Wtn∆t
, (4.2)

where the last Skorohod integral has been computed in example A.19.

4.2 The Solutions

In this section the numerical properties of the suggested algorithm will be presented and analyzed.

The exact solution to the continuous time Merton problem will be used as a benchmark. Of course,

we would only expect our algorithm to converge to the continuous time solution as the number of

time steps N → ∞. On the other hand, we could compare our solution to the exact solution of a

discrete time portfolio problem, but since we use an Euler approximation of the continuous time

wealth process, we would not expect the algorithm to converge to the discrete time solution either.

4.2.1 The Exact Continuous Time Solution

Since we try to solve Merton’s problem it seems reasonable to compare our results with the exact

solution. As parameter values we have chosen

µ = 0.08, σ = 0.20, r = 0.04, δ = 0.02, γ = 4, T = 1, and W0 = 1.
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Using the result stated in theorem 2.1, we get

A =
δ − r(1 − γ)

γ
− 1

2

1 − γ

γ2

(µ− r)2

σ2

=
0.02 + 0.12

4
+

1

2

3

16

0.0016

0.04

= 0.03875

g(0) = A−1
(

1 + [A− 1]e−AT
)

= 1.9429,

such that the investor should hold a fraction of

π∗t =
1

γ

µ− r

σ2
=

1

4

0.04

0.04
= 0.25

invested in the risky asset, and initially consume at a rate

c∗0 =
1

g(0)
W0 = 0.5147.

Following the optimal strategies the agent yields an indirect utility of

J(W0, 0) = g(0)4
W−3

0

−3
= −4.7495.

4.2.2 The Numerical Solution

In this subsection we will analyze the convergence properties of the algorithm. In the first test,

the consumption rate is initialized to the exact continuous time solution. For a given number of

simulations we then run the algorithm 100 times to obtain an estimate of the initial consumption

rate and indirect utility. The algorithm is run with one outer iteration, meaning that we perform

only one backward recursion and update the wealth process once. The results are shown in table

1. We observe that not much precision is gained when increasing the number of simulations above

5000. Hence we use a maximum of 5000 simulations in the following tests.

Note that the estimated indirect utility is higher than the exact continuous time solution, which

seems counterintuitive since the discrete time consumption strategy is feasible in a continuous time

setting. The peculiar difference occurs because we use an Euler discretization, which we only expect

to yield good results when ∆t = T
N is small. It would be more fair to compare with the indirect

utility obtained after zero iterations because we would expect this solution to converge to the exact

solution since we initialize the control to the exact continuous time consumption rate. These values

are also higher than the exact continuous time solution.

We now consider how many iterations are needed to obtain reasonable results with various initial

consumption strategies. The results are given in table 2 and figure 1 for M = 2400 simulations and

in table 3 and figure 2 for M = 5000 simulations. We observe that the initial candidate control
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Consumption rate Indirect utility
Simulations Estimate Standard deviation Estimate Standard deviation

1000 0.5129 0.0013 −4.7426 0.0020
2000 0.5132 0.0008 −4.7426 0.0021
3000 0.5135 0.0008 −4.7422 0.0016
4000 0.5138 0.0006 −4.7421 0.0011
5000 0.5136 0.0004 −4.7421 0.0011
6000 0.5135 0.0005 −4.7423 0.0011
7000 0.5136 0.0004 −4.7421 0.0009
8000 0.5136 0.0004 −4.7420 0.0007
9000 0.5137 0.0004 −4.7422 0.0008
10000 0.5137 0.0004 −4.7420 0.0007

Table 1: Dependence on the number of simulations for N = 12 time steps, 1 outer iteration and
100 batches. For both the consumption rate column and indirect utility column the estimate is the
average over the 100 runs and the standard deviation is the standard deviation of this estimate.

process plays a significant role in how fast the algorithm converges. This was expected, since a

bad guess gives a poor estimated wealth distribution and hence poor estimates for the conditional

expectations. We also note that the algorithm alters the exact guess, because this guess is not

optimal in the discretized problem.

So far we have only tested how well the algorithm finds the optimal solution at time 0. To

illustrate how well it finds the entire optimal consumption process, we now consider the future

distribution of the consumption process and the associated wealth process. First, we derive the

expected value and standard derivation of the continuous time optimal wealth process. Inserting

the optimal controls in the wealth dynamics in equation (2.1) we get

dWt = Wt [r + π(µ− r)] dt− Wt

g(t)
dt+WtπσdBt,

which has the solution

Wt = W0 exp

([

r + π(µ− r) − 1

2
σ2π2

]

t−
∫ t

0

1

g(s)
ds+ σπBt

)

. (4.3)
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Iteration Exact solution Good guess Bad guess
i ci0 J i

0 ci0 J i
0 ci0 J i

0

0 0.5147 −4.7406 0.6996 −5.3205 0.1000 −330.6860
1 0.5140 −4.7406 0.5037 −4.7509 0.7926 −56.2071
2 0.5141 −4.7406 0.5088 −4.7424 0.4545 −5.0308
3 0.5141 −4.7406 0.5163 −4.7407 0.5382 −4.7490
4 0.5141 −4.7406 0.5135 −4.7407 0.5088 −4.7414
5 0.5141 −4.7406 0.5142 −4.7406 0.5151 −4.7407
6 0.5141 −4.7406 0.5141 −4.7406 0.5138 −4.7409
7 0.5141 −4.7406 0.5141 −4.7406 0.5141 −4.7406
8 0.5141 −4.7406 0.5141 −4.7407 0.5141 −4.7406
9 0.5141 −4.7406 0.5141 −4.7406 0.5141 −4.7406
10 0.5140 −4.7406 0.5141 −4.7406 0.5140 −4.7407

Table 2: Convergence results for N = 12 time steps and M = 2400 simulations. For the three
different initializations the initial consumption rate and indirect utility resulting from the first 10
iterations are shown.
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Figure 1: Convergence results for N = 12 time steps and M = 2400 simulations. For the three
different initializations the initial consumption rate and indirect utility resulting from the first 10
iterations are shown.
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Iteration Exact solution Good guess Bad guess
i ci0 J i

0 ci0 J i
0 ci0 J i

0

0 0.5147 −4.7413 0.6996 −5.3213 0.1000 −330.6861
1 0.5128 −4.7416 0.5023 −4.7507 0.7907 −202.2616
2 0.5133 −4.7417 0.5082 −4.7436 0.5829 −4.9191
3 0.5132 −4.7419 0.5153 −4.7416 0.4882 −4.7578
4 0.5132 −4.7420 0.5122 −4.7421 0.5195 −4.7420
5 0.5130 −4.7421 0.5132 −4.7420 0.5117 −4.7419
6 0.5130 −4.7422 0.5132 −4.7418 0.5136 −4.7416
7 0.5131 −4.7431 0.5130 −4.7419 0.5130 −4.7419
8 0.5131 −4.7425 0.5130 −4.7420 0.5130 −4.7420
9 0.5131 −4.7424 0.5131 −4.7422 0.5130 −4.7420
10 0.5131 −4.7423 0.5131 −4.7422 0.5131 −4.7421

Table 3: Convergence results for N = 12 time steps and M = 5000 simulations. For the three
different initializations the initial consumption rate and indirect utility resulting from the first 10
iterations are shown.
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Figure 2: Convergence results for N = 12 time steps and M = 5000 simulations. For the three
different initializations the initial consumption rate and indirect utility resulting from the first 10
iterations are shown.
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In this equation

∫ t

0

1

g(s)
ds =

∫ t

0

A

1 + (A− 1)e−A(T−s)
ds

=

∫ −A(T−t)

−AT

A

1 + (A− 1)ex
1

A
dx

=

∫ −A(T−t)

−AT

1

1 + (A− 1)ex
dx

= [x− log (1 + (A− 1)ex)]
−A(T−t)
−AT

= At− log

(

1 + (A− 1)e−A(T−t)

1 + (A− 1)e−AT

)

,

where A is defined as in equation (2.5). Inserting into equation (4.3) we get

Wt = W0 exp

([

r + π(µ− r) − 1

2
σ2π2 −A

]

t+ σπBt

)

(

1 + (A− 1)e−A(T−t)

1 + (A− 1)e−AT

)

.

Since Wt is log-normally distributed the first two moments are

E {Wt} = W0 exp ([r + π(µ− r) −A] t)

(

1 + (A− 1)e−A(T−t)

1 + (A− 1)e−AT

)

E
{

W 2
t

}

= W 2
0 exp

(

2

[

r + π(µ− r) +
1

2
σ2π2 −A

]

t

)

(

1 + (A− 1)e−A(T−t)

1 + (A− 1)e−AT

)2

= E {Wt}2 exp
(

σ2π2t
)

.

Therefore, the variance of future expected wealth is

V {Wt} = E
{

W 2
t

}

− E {Wt}2

= E {Wt}2 exp
(

σ2π2t
)

− E {Wt}2

= E {Wt}2 [exp
(

σ2π2t
)

− 1
]

.

Likewise, the expected future consumption rate and its variance are given by

E {ct} = E
{

Wt

g(t)

}

=
1

g(t)
E {Wt}

V {ct} = V
{

Wt

g(t)

}

=
1

g(t)2
V {Wt} .
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Figure 3: Future wealth and consumption rate when the initial consumption rate is ct = 0.1
for all t ∈ [0, T ]. The red line ( ) indicates the exact expected wealth and consumption rate
from Merton’s problem. In the two upper subfigures the green line ( ), blue line ( ), and
yellow line ( ) indicate the average of the future simulated wealth levels and consumption rates
after iterations 0, 1, and 2, respectively. In the two lower subfigures the corresponding standard
deviations are depicted.

Inserting our parameter values in the above formulas, we can now compare the true wealth and

consumption rate distributions with the simulated distributions.

In figure 3 the average future consumption rate and its standard deviation are plotted for differ-

ent iterations when we initialize the algorithm with the bad guess. Also the exact expected wealth

and consumption rate and their standard deviations are depicted. Likewise, figure 4 illustrates the

same when the algorithm is initialized with the good guess. Again, we observe that the initial-

ization of the consumption strategy is important for the convergence speed. For the initial exact

continuous time guess the distribution is (nearly) correct from the beginning so a similar figure will

serve no purpose.
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Figure 4: Future wealth and consumption rate when the initial consumption rate is ct = cWt, where
c is chosen to maximize the expression in equation (3.12). The red line ( ) indicates the exact
expected wealth and consumption rate from Merton’s problem. In the two upper subfigures the
green line ( ), blue line ( ), and yellow line ( ) indicate the average of the future simulated
wealth levels and consumption rates after iterations 0, 1, and 2, respectively. In the two lower
subfigures the corresponding standard deviations are depicted.
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4.3 The Numerical Problems

Until now the convergence properties have only been analyzed for a coarse time discretization.1 In

this section we will discuss some numerical issues that we encountered during our tests for finer

time discretizations. Since we test the algorithm on a continuous time problem, the ultimate test

is whether the numerical solution converges to the exact solution when ∆t→ 0.

When we increase the number of time steps, however, numerical problems occur. For the exact

and good guesses, the first iterations behave nicely, but at some point the consumption rate process

diverges. Since we let ∆t → 0, the explanation should be found here. Numerical experiments

indicate that the problem is due to the Skorohod integral, which becomes large when ∆t → 0, as

can be seen from equation (4.2). A possible solution to this problem would be to find a different

hn
t ∈ Hn which behaves more nicely. Also, when the function g in

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

E {Hw(Wtn)Shn
(ϕ(Wtn − w))}

is differentiable, it is possible to relax the restrictions on hn
t , as shown by Fournié, Lasry, Lebuchoux,

and Lions (2001). To be specific we could drop the restriction that

∫ tn+1

0
(DtWtn+1)h

n
t dt = 0

in equation (A.8) and adjust the proof of lemma A.21 to obtain

E
{

g(Wtn+1) | Wtn = w
}

=
E
{

Hw(Wtn)g(Wtn+1)S
hn

(ϕ(Wtn − w))
}

E {Hw(Wtn)Shn(ϕ(Wtn − w))}

−
E
{

Hw(Wtn)g′(Wtn+1)ϕ(Wtn − w)
∫ tn+1

0 (DtWtn+1)h
n
t dt
}

E {Hw(Wtn)Shn(ϕ(Wtn − w))} .

However, to do this we must keep track of the Malliavin derivative of the wealth process and the

integral of it multiplied by hn
t . If, for example, we put hn

t = 0 for t ∈ (tn, tn+1], this is not as

difficult as it first might seem, since the last term in equation (4.1) disappears. However, as can be

seen from equation (4.2), it is not this restriction on hn
t that makes the Skorohod integral explode

when ∆t→ 0, so more effort should be made to choose hn
t carefully for t ∈ [0, tn].

4.4 Multi-Dimensional Problems

We will now consider how the algorithm can be extended to handle multi-dimensional problems.

As proved in Bouchard, Ekeland, and Touzi (2004), theorem 3.1 can be generalized to a multi-

dimensional Markov diffusion. Also, as example 2.2 in Bouchard, Ekeland, and Touzi demonstrates,

it is possible to find hn
t such that equation (A.8) is satisfied. Note, however, that the Malliavin

derivative of a multi-dimensional state variable is a matrix, in which the ij’th element in some

1The portfolio problem analyzed by Bouchard, Ekeland, and Touzi (2004) also has a coarse time discretization.

29



sense is the Malliavin derivative of the i’th state variable with respect to the j’th Brownian motion.

Hence, hn
t also becomes a matrix. However, the Skorohod integral involved in the alternative

representation of conditional expectations in equation (3.7) becomes a multiple stochastic integral,

which numerically is a challenging task to handle.

5 Conclusion

In this paper we have proposed an algorithm to solve stochastic control problems numerically. The

algorithm is based on the dynamic programming approach to the solution of stochastic control

problems. We focus on a classical stochastic control problem in finance, namely Merton’s optimal

portfolio choice problem. Given an initial guess about the agent’s consumption strategy, his wealth

process can be simulated. With a recursive backwards procedure the consumption strategy is up-

dated such that it satisfies a first-order condition at all simulated wealth paths. This procedure

requires the estimation of many conditional expectations. Malliavin calculus provides an alter-

native representation of such conditional expectations, which can be estimated with Monte-Carlo

simulation.

Our numerical tests indicate promising convergence results when the number of time steps is

small, so the algorithm seems to be applicable in the solution of discrete time stochastic control

problems. When the number of time steps is increased the algorithm improves the control and

indirect utility in the first iterations, but at some point it diverges from the optimal solution. Hence,

further research must be conducted before applying the algorithm to the solution of continuous

stochastic control problems.

Extending the algorithm to a multi-dimensional setting should be relatively unproblematic,

since the mathematical foundation has been developed in a multi-dimensional setting. Also, the

extension will usually consist in adding exogenous state variables, which does not complicate the

demanding control updating procedure much. However, problem specific issues could arise in

finding the process hn
t , which is a matrix in a multi-dimensional setting, and also in computing the

Skorohod integrals, if they cannot be solved analytically. These problems are subject to further

research.

A Some Results from Malliavin Calculus

This appendix will give a brief introduction to Malliavin calculus and provide the results needed

to develop the algorithm in section 3. To keep things simple the results are developed in one

dimension, and to some extent only heuristically. For a more thorough treatment of the subject

we refer the interested reader to Nualart (1995) or Øksendal (1997). Friz (2005) also gives a good

introduction to the topic.

Since the usual probability space (Ω,F, P ) is very abstract, it is not possible to define the concept

of differentiation per se. What we need is some kind of structure. For our needs the Wiener space
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turns out to have the desired properties. We begin this appendix with a justification of why the

Wiener space possess the necessary properties. We then define the concepts of differentiation and

integration on the Wiener Space, and demonstrate the concepts with some examples. We end this

appendix with a proof of theorem 3.1.

A.1 The Wiener Space

Definition A.1 (The Wiener Space). We let Ω , C0([0, T ]) denote the space of real continuous

functions on [0, T ] with value 0 at 0, i.e.

Ω , C0([0, T ]) , {ω : [0, T ] → R | ω continuous, ω(0) = 0} .

This space is called the Wiener space for reasons obvious by the end of this section.

Consider a probability space (Ξ,G, ν) and let β = (βt)t∈[0,T ] be a Brownian motion with respect

to the probability measure ν, and let the σ-algebra, G, be the natural filtration generated by this

Brownian motion, i.e. G = GT , where Gt , σ(βs | 0 ≤ s ≤ t). Since Brownian motion is continuous,

it can be regarded as a mapping from Ξ into Ω, namely the mapping of ξ from Ξ to the continuous

function t→ βt(ξ).

We equip Ω with the σ-algebra F generated by the finite-dimensional cylinder sets

{ω | ω(t1) ∈ A1, . . . , ω(tn) ∈ An} , 0 ≤ t1 < t2 < · · · < tn ≤ T, A1, A2, . . . , An ∈ B,

where B is the Borel σ-algebra on R. Now the Brownian motion, ξ → β(ξ), can be regarded as

a measurable mapping from (Ξ,G, ν) to (Ω,F), and therefore induces a probability measure P on

(Ω,F) given by

P ({ω | ω(t1) ∈ A1, . . . , ω(tn) ∈ An}) = ν (βt1 ∈ A1, . . . , βtn ∈ An) .

This measure is called the Wiener measure. Defining the coordinate mapping process, Bt : Ω → R,

on the Wiener space by

Bt(ω) , ω(t),

we now note that the process B = (Bt)t∈[0,T ] has the same distribution under P as β = (βt)t∈[0,T ]

has under ν. Hence B = (Bt)t∈[0,T ] is a Brownian motion on (Ω,F, P ). Moreover F = FT , where

Ft , σ (Bs | 0 ≤ s ≤ t) is the σ-algebra generated by the Brownian motion B = (Bt)t∈[0,T ].

We have now demonstrated that the coordinate mapping on the Wiener space becomes a Brown-

ian motion under the Wiener measure. Hence, when we need to work with a Brownian motion, we

can work with the coordinate mapping on Wiener space instead of some abstract probability space.
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A.2 Differentiation on Wiener Space

It is well-known that Brownian motion is nowhere differentiable with respect to time. However, it

is possible to define the concept of differentiation of random variables with respect to perturbations

in the underlying Brownian motion, as we shall see in this section.

Definition A.2 (Øksendal (1997), Definitions 4.6–4.7). Let h ∈ L2([0, T ]) be a deterministic

function and consider directions on the form

γ(t) =

∫ t

0
h(s)ds.

Notice that t→ γ(t) is continuous on [0, T ] and γ(0) = 0. Therefore, γ ∈ Ω and is a valid direction.

For a random variable F : Ω → R we define the directional derivative of F at the point ω in

the direction γ by

DγF (ω) , lim
ε→0

F (ω + εγ) − F (ω)

ε

if the limit exists in L2(Ω). Further, if there exists ψ(t, ω) ∈ L2([0, T ] × Ω) such that

DγF (ω) =

∫ T

0
ψ(t, ω)h(t)dt,

we say that F is differentiable and define the derivative of F to be the random variable

DtF (ω) , ψ(t, ω).

Finally, we let D1,2 denote the set of all differentiable random variables.

Remark. As noted in Øksendal (1997), it is not clear whether D1,2 is closed under the norm

‖F‖1,2 , ‖F‖L2(Ω) + ‖DtF‖L2([0,T ]×Ω), F ∈ D1,2.

To overcome this problem we introduce the family, P, of Wiener polynomials, i.e. random variables

F : Ω → R of the form

F (ω) = p

(
∫ T

0
h1(t)dBt(ω),

∫ T

0
h2(t)dBt(ω), . . . ,

∫ T

0
hn(t)dBt(ω)

)

,

where p is a polynomial of degree n and h1, . . . , hn ∈ L2([0, T ]). Due to the chain rule (A.1) and

example A.8 the family of Wiener polynomials is differentiable, i.e. P ⊂ D1,2. The closure of P

with respect to the norm ‖F‖1,2 is the space, D1,2, containing all F ∈ L2(Ω) for which there exists
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Fn ∈ P such that

Fn → F in L2(Ω)

(DtFn)∞n=1 is convergent in L2([0, T ] × Ω).

By definition P ⊆ D1,2 ⊆ L2(Ω). Noting that the closure of P with respect to the norm ‖F‖L2(Ω) is

equal to L2(Ω), one can be tempted to think that D1,2 = L2(Ω) as well. As we shall see in example

A.11, however, D1,2 $ L2(Ω) so the two norms are not equivalent.

For elements in D1,2 we can now define a derivative as the limit of DtFn. This is the so-called

Malliavin derivative. Since the two derivatives coincide for F ∈ D1,2∩D1,2, we will use the notation

DγF for the directional derivative and DtF for the derivative of such random variables.

A.2.1 Differentiation Rules

In this section we present some useful results, which make the computation of the Malliavin deriva-

tive easier. The results are developed on a heuristic level and are analogous to similar results from

ordinary calculus.

Proposition A.3 (Chain rule). Let F ∈ D1,2 and let f : R → R be a differentiable function. Then

f(F (ω)) ∈ D1,2 and

Dtf(F (ω)) = f ′(F (ω))DtF (ω). (A.1)

Proof. From definition A.2 we immediately get

Dγf(F (ω)) = lim
ε→0

1

ε
[f(F (ω + εγ)) − f(F (ω))]

= lim
ε→0

[

f(F (ω + εγ)) − f(F (ω))

F (ω + εγ) − F (ω)

F (ω + εγ) − F (ω)

ε

]

= f ′(F (ω))DγF (ω)

and since F ∈ D1,2 we know that DtF (ω) exists in L2([0, T ] × Ω) and that

Dγf(F (ω)) = f ′(F (ω))DγF (ω)

= f ′(F (ω))

∫ T

0
DtF (ω)h(t)dt

=

∫ T

0
f ′(F (ω))DtF (ω)h(t)dt.

Hence f(F ) ∈ D1,2 and

Dtf(F (ω)) = f ′(F (ω))DtF (ω).
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Proposition A.4 (Product rule). If F,G ∈ D1,2, then FG ∈ D1,2 and

Dt(F (ω)G(ω)) = (DtF (ω))G(ω) + F (ω)(DtG(ω)). (A.2)

Proof. From definition A.2 we immediately get

Dγ (F (ω)G(ω)) = lim
ε→0

F (ω + εγ)G(ω + εγ) − F (ω)G(ω)

ε

= lim
ε→0

F (ω + εγ)G(ω + εγ) − F (ω)G(ω + εγ) + F (ω)G(ω + εγ) − F (ω)G(ω)

ε

= lim
ε→0

[F (ω + εγ) − F (ω)]G(ω + εγ) + F (ω) [G(ω + εγ) −G(ω)]

ε

= lim
ε→0

(

F (ω + εγ) − F (ω)

ε
G(ω + εγ) + F (ω)

G(ω + εγ) −G(ω)

ε

)

= (DγF (ω))G(ω) + F (ω) (DγG(ω)) .

Also, since both F,G ∈ D1,2 we get

Dγ (F (ω)G(ω)) = (DγF (ω))G(ω) + F (ω)DγG(ω)

=

∫ T

0
(DtF (ω))h(t)dtG(ω) + F (ω)

∫ T

0
(DtG(ω))h(t)dt

=

∫ T

0
[(DtF (ω))G(ω) + F (ω)(DtG(ω))] h(t)dt

so

Dt(F (ω)G(ω)) = (DtF (ω))G(ω) + F (ω)(DtG(ω)).

Proposition A.5. Let F ∈ D1,2 be Fs-adapted. Then DtF will be Fs-adapted and for t > s we

have

DtF = 0.

Proof. We will only prove the result in a special case. A thorough proof builds on Wiener-Itô chaos

expansions, which are outside the scope of this paper. The interested reader is referred to Nualart

(1995) or Øksendal (1997). Consider a random variable on the form

F (ω) = exp

(
∫ T

0
h(u)dBu(ω) − 1

2

∫ T

0
h(u)2du

)

, (A.3)

where h ∈ L2([0, T ]) is deterministic. Note, that Novikov’s condition is satisfied, so F is an

exponential martingale. We then have

DtF = Fh(t)
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by the chain rule (A.1) and example A.8. Therefore

DtE {F | Fs} = Dt exp

(
∫ s

0
h(u)dBu(ω) − 1

2

∫ s

0
h(u)2du

)

= Dt exp

(
∫ T

0
h(u)1[0,s](u)dBu(ω) − 1

2

∫ s

0
h(u)2du

)

= exp

(
∫ s

0
h(u)dBu(ω) − 1

2

∫ s

0
h(u)2du

)

h(t)1[0,s](t)

= E {F | Fs}h(t)1[0,s](t)

= E {Fh(t) | Fs}1[0,s](t)

= E {DtF | Fs}1[0,s](t),

where we have used that F is a martingale, the chain rule (A.1) and example A.8. The above

computation extends to random variables in the linear span of random variables on the form (A.3).

Since this linear span is dense in L2(Ω) it seems reasonable that the result also holds for more

general random variables. Of course, the result does not hold for all F ∈ L2(Ω), since it involves

the Malliavin derivative of F , which does not exist for all F ∈ L2(Ω). The result can, however, be

proved for all F ∈ D1,2, as shown in Nualart (1995) or Øksendal (1997).

In particular, if F ∈ D1,2 is Fs-adapted, we get

DtF = DtE {F | Fs}
= E {DtF | Fs}1[0,s](t).

Hence DtF is Fs-adapted and

DtF = 0

if t > s.

We end this section with an important result that gives a representation of the integrand

from Itô’s representation theorem, see e.g. Øksendal (2000, Theorem 4.3.3). This theorem is the

cornerstone of the martingale approach to optimal portfolio choice, where the integrand represents

the optimal investment strategy. Since the representation theorem only gives the existence of such

investment strategy, the following proposition is an important financial application of Malliavin

calculus. Even though we will only use this result in example A.11, it has been used in Cvitanić,

Goukasian, and Zapatero (2003) to solve optimal portfolio problems in complete markets with

Monte-Carlo simulation.

Proposition A.6 (The Clark-Ocone formula). Let F ∈ D1,2 be FT -adapted. Then

F (ω) = E {F} +

∫ T

0
E {DtF | Ft} (ω)dω(t). (A.4)
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Proof. As in proposition A.5 we just sketch the proof by working with the exponential martingale

in equation (A.3). Define the stochastic process Ft by

Ft(ω) , exp

(
∫ t

0
h(u)dBu(ω) − 1

2

∫ t

0
h(u)2du

)

,

and let F , FT . Introducing the auxiliary process Zt ,
∫ t
0 h(u)dBu(ω)− 1

2

∫ t
0 h(u)

2du the dynamics

of Ft is given by Itô’s lemma as

dFt = FtdZt +
1

2
Ft(dZt)

2

= Ft

(

h(t)dBt −
1

2
h(t)2dt

)

+
1

2
Fth(t)

2dt

= Fth(t)dBt.

Moreover

E {DtF | Ft} = E {Fh(t) | Ft}
= E {F | Ft}h(t)
= Fth(t),

so writing the dynamics of F on integral form we obtain

F = E {F} +

∫ T

0
Fth(t)dBt

= E {F} +

∫ T

0
E {DtF | Ft} dBt

since F0 = 1 = E {F}. We have now proved the result in a special case. Again the result extends to

the linear span of random variables on the exponential form and can be extended to F ∈ D1,2.

A.2.2 Examples

Example A.7. Let F (ω) = Bt(ω) = ω(t). We then have

F (ω + εγ) = ω(t) + εγ(t),
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and hence

DγF (ω) = lim
ε→0

F (ω + εγ) − F (ω)

ε

= γ(t)

=

∫ t

0
h(s)ds

=

∫ T

0
1[0,t](s)h(s)ds.

We conclude from definition A.2 that

DsBt = 1[0,t](s).

If we think of the Malliavin derivative as a perturbation of the underlying Brownian motion, this

result also makes sense: when the Brownian path changes at time s ≤ t, the entire future path will

change as well. If we change the Brownian path at time s > t, nothing happens at time t, which

explains the use of the indicator function.

Example A.8. Let F (ω) =
∫ T
0 f(s)dBs(ω) =

∫ T
0 f(s)dω(s), where f ∈ L2([0, T ]) is a deterministic

function. We then have

F (ω + εγ) =

∫ T

0
f(s)d(ω(s) + εγ(s)),

and hence

DγF (ω) = lim
ε→0

1

ε
[F (ω + εγ) − F (ω)]

= lim
ε→0

1

ε

[
∫ T

0
f(s)d(ω(s) + εγ(s)) −

∫ T

0
f(s)dω(s)

]

=

∫ T

0
f(s)dγ(s)

=

∫ T

0
f(s)h(s)ds.

We conclude from definition A.2 that

DsF (ω) = f(s).

Choosing f(s) = 1[0,t](s), we get the previous example.

Example A.9. Let F (ω) = f(Bt(ω)) = f(ω(t)) where f is differentiable. By the chain rule (A.1)

and example A.7 we then have

DsF (ω) = f ′(Bt(ω))1[0,s](t).
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Example A.10. Let F (ω) =
∫ T
0 f(Bt(ω))dBt(ω) =

∫ T
0 f(ω(t))dω(t). We then have

F (ω + εγ) =

∫ T

0
f(ω(t) + εγ(t))d(ω(t) + εγ(t))

=

∫ T

0
f(ω(t) + εγ(t))dω(t) + ε

∫ T

0
f(ω(t) + εγ(t))dγ(t),

and hence

DγF (ω) = lim
ε→0

1

ε
[F (ω + εγ) − F (ω)]

= lim
ε→0

1

ε

[
∫ T

0
f(ω(t) + εγ(t))dω(t) + ε

∫ T

0
f(ω(t) + εγ(t))dγ(t) −

∫ T

0
f(ω(t))dω(t)

]

= lim
ε→0

1

ε

[
∫ T

0
[f(ω(t) + εγ(t)) − f(ω(t))] dω(t) + ε

∫ T

0
f(ω(t) + εγ(t))dγ(t)

]

= lim
ε→0

1

ε

[
∫ T

0
[f(ω(t) + εγ(t)) − f(ω(t))] dω(t)

]

+

∫ T

0
f(ω(t))dγ(t)

=

∫ T

0
f ′(ω(t))γ(t)dω(t) +

∫ T

0
f(ω(t))dγ(t)

=

∫ T

0
f ′(ω(t))

(
∫ t

0
h(s)ds

)

dω(t) +

∫ T

0
f(ω(t))h(t)dt

=

∫ T

0

(
∫ T

s
f ′(ω(t))dω(t)

)

h(s)ds+

∫ T

0
f(ω(s))h(s)ds

=

∫ T

0

(
∫ T

s
f ′(ω(t))dω(t) + f(ω(s))

)

h(s)ds

=

∫ T

0

(
∫ T

s
f ′(Bt(ω))dBt(ω) + f(Bs(ω))

)

h(s)ds.

We conclude from definition A.2 that

Ds

∫ T

0
f(Bt(ω))dBt(ω) =

∫ T

s
f ′(Bt(ω))dBt(ω) + f(Bs(ω)).

Example A.11. For F ∈ F, the indicator function 1F ∈ D1,2 if and only if P (F ) ∈ {0, 1}.
First assume that P (F ) ∈ {0, 1}. Then 1F (ω) is constant almost surely, and hence the Malliavin

derivative is zero, i.e. 1F ∈ D1,2 and Dt1F (ω) = 0.

Now assume that 1F ∈ D1,2. We need to show that this can only be true if P (F ) ∈ {0, 1}. To

see this remember that

1F (ω) = (1F (ω))2 =







1, if ω ∈ F

0, if ω /∈ F.
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Since the mapping x→ x2 is differentiable the chain rule (A.1) yields

Dt1F (ω) = Dt (1F (ω))2 = 21F (ω)Dt1F (ω).

For ω ∈ F c, we have 1F (ω) = 0 so

Dt1F (ω) = 2 · 0 ·Dt1F (ω) = 0,

and for ω ∈ F we get

Dt1F (ω) = 2Dt1F (ω),

which can only be satisfied if Dt1F (ω) = 0. Therefore, Dt1F (ω) = 0 for all ω ∈ Ω. Since, by

assumption, 1F ∈ D1,2 the Clark-Ocone formula (A.4) gives

1F (ω) = E {1F } +

∫ T

0
E {Dt1F | Ft} (ω)dBt

= P (F ) +

∫ T

0
E {0 | Ft} (ω)dBt

= P (F ),

which can only be true if P (F ) ∈ {0, 1}. Note, that we have also proved that D1,2 $ L2(Ω).

A.3 Integration

Is is well-known that the Itô integral is well-defined only for a limited class of processes. The

processes are for example required to be adapted to a filtration, which the Brownian motion is a

martingale with respect to. In this section we introduce the Skorohod integral, which allows us to

integrate more general processes. In order to distinguish the two stochastic integrals, the Itô integral

will be denoted
∫ T
0 htdBt as usual whereas the Skorohod integral will be denoted S(h) ,

∫ T
0 htδBt.

Sometimes we will also use the notation Sh(F ) for the Skorohod integral S(Fh).

A.3.1 Integration by Parts on the Wiener Space

Proposition A.12 (Integration by parts). Let F,G ∈ D1,2 and define γ(t) =
∫ t
0 hsds for h ∈

L2([0, T ]). Then

E
{
∫ T

0
(DtF )htdt

}

= E
{

F

∫ T

0
htdBt

}

. (A.5)
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Proof. By definition of the directional derivative we get

E
{
∫ T

0
(DtF )htdt

}

=

∫

Ω
DγF (ω)dP (ω)

=

∫

Ω
lim
ε→0

1

ε
[F (ω + εγ) − F (ω)] dP (ω)

= lim
ε→0

1

ε

∫

Ω
[F (ω + εγ) − F (ω)] dP (ω)

= lim
ε→0

1

ε

[
∫

Ω
F (ω + εγ)dP (ω) −

∫

Ω
F (ω)dP (ω)

]

. (A.6)

Since h ∈ L2([0, T ]), εh satisfies Novikov’s condition which ensures that

Mt , exp

(

−ε
∫ t

0
hsdBs −

1

2
ε2
∫ t

0
h2

sds

)

is a P -martingale. By the Girsanov theorem B̃t , Bt + ε
∫ t
0 hsds is a Brownian motion under the

measure P̃ defined by

dP̃

dP
= MT

= exp

(

−ε
∫ T

0
hsdBs −

1

2
ε2
∫ T

0
h2

sds

)

= exp

(

−ε
∫ T

0
hsdB̃s +

1

2
ε2
∫ T

0
h2

sds

)

.

We can now write the first integral in equation (A.6) as

∫

Ω
F (ω + εγ)dP (ω) =

∫

Ω
F (ω̃) exp

(

ε

∫ T

0
hsdB̃s(ω) − 1

2
ε2
∫ T

0
h2

sds

)

dP̃ (ω)

=

∫

Ω
F (ω) exp

(

ε

∫ T

0
hsdBs(ω) − 1

2
ε2
∫ T

0
h2

sds

)

dP (ω),
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so we get

E
{
∫ T

0
(DtF )htdt

}

= lim
ε→0

1

ε

[
∫

Ω
F (ω + εγ)dP (ω) −

∫

Ω
F (ω)dP (ω)

]

= lim
ε→0

1

ε

∫

Ω
F (ω)

[

exp

(

ε

∫ T

0
hsdBs(ω) − 1

2
ε2
∫ T

0
h2

sds

)

− 1

]

dP (ω)

=

∫

Ω
F (ω) lim

ε→0

1

ε

[

exp

(

ε

∫ T

0
hsdBs(ω) − 1

2
ε2
∫ T

0
h2

sds

)

− 1

]

dP (ω)

=

∫

Ω
F (ω)

d

dε

[

exp

(

ε

∫ T

0
hsdBs(ω) − 1

2
ε2
∫ T

0
h2

sds

)]

ε=0

dP (ω)

=

∫

Ω

[

F (ω)

∫ T

0
hsdBs(ω)

]

dP (ω)

= E
{

F

∫ T

0
htdBt

}

.

Corollary A.13. Let F,G ∈ D1,2 and define γ(t) =
∫ t
0 hsds for h ∈ L2([0, T ]). Then

E
{

G

∫ T

0
(DtF )htdt

}

= E
{

FG

∫ T

0
htdBt

}

− E
{

F

∫ T

0
(DtG)htdt

}

.

Proof. By the product rule (A.2) we have that FG ∈ D1,2 and that

Dt(FG) = FDtG+GDtF.

Using the above proposition with “F = FG”, we get

E
{

FG

∫ T

0
htdBt

}

= E
{
∫ T

0
(DtFG)htdt

}

= E
{

F

∫ T

0
(DtG)htdt

}

+ E
{

G

∫ T

0
(DtF )htdt

}

.

A.3.2 The Skorohod Integral and its Properties

As shown in e.g. Øksendal (1997), the Skorohod integral of a stochastic process can be constructed

from the Wiener-Itô chaos expansion. However, it turns out that the Skorohod integral coincides

with the adjoint operator of the Malliavin differential operator, i.e. for a Skorohod integrable process

ht and a Malliavin differentiable random variable F the Skorohod integral, S(h), is defined as

〈F, S(h)〉L2(Ω) = 〈DtF, h〉L2([0,T ]×Ω) ,

where 〈·, ·〉 denotes inner product. Hence we arrive at the following definition, in which we omitted

the technical condition for a process to be Skorohod integrable.

Definition A.14 (Nualart (1995), Definition 1.3.1). If h is Skorohod integrable, we define the
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Skorohod integral of h, as the element S(h) ∈ L2(Ω) that satisfies

E {FS(h)} = E
{
∫ T

0
(DtF )htdt

}

(A.7)

for all F ∈ D1,2.

Proposition A.15. If ht is Ft-adapted, the Skorohod integral coincides with the Itô integral when

defined, i.e.

∫ T

0
htδBt =

∫ T

0
htdBt.

Proof. We will only prove the result for deterministic L2([0, T ]) functions, ht. Let F,G ∈ D1,2 be

two Malliavin differentiable random variables. Using the definition of the Skorohod integral and

the integration by parts property in corollary A.13, we get

E {GS(Fh)} = E
{
∫ T

0
(DtG)Fhtdt

}

= E
{

F

∫ T

0
(DtG)htdt

}

= E
{

GF

∫ T

0
htdBt

}

− E
{

G

∫ T

0
(DtF )htdt

}

= E
{

G

(

F

∫ T

0
htdBt −

∫ T

0
(DtF )htdt

)}

.

Since this must hold for all G ∈ D1,2, an inner product argument gives

S(Fh) = F

∫ T

0
htdBt −

∫ T

0
(DtF )htdt.

With F = 1 we see that the Itô integral and the Skorohod integral coincide for deterministic

L2([0, T ]) functions. If we take F to be Fs-measurable and ht = 1(s,u](t) we obtain

S(Fh) = F

∫ T

0
htdBt −

∫ T

0
(DtF )htdt

= F

∫ u

s
dBt −

∫ u

s
(DtF )dt

= F (Bu −Bs) − 0,

where we have used proposition A.5 to get that DtF = 0 for t > s since F is Fs-measurable. Since

we can write

Fht = 0 · 1[0,s](t) + F1(s,u](t) + 0 · 1(u,T ](t),
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we see that Fht is an elementary process and hence

∫ T

0
FhtdBt = 0 · (Bs −B0) + F (Bu −Bs) + 0 · (BT −Bu)

= F (Bu −Bs).

Therefore the Skorohod integral and Itô integral also coincide in this case, i.e.

S(Fh) =

∫ T

0
FhtdBt.

To show the result for any Ft-adapted process ht ∈ L2([0, T ] × Ω), one can use an approximation

argument.

Proposition A.16. Let F be a Malliavin differentiable random variable. Then

∫ T

0
FhtδBt = F

∫ T

0
htδBt −

∫ T

0
(DtF )htdt,

where ht is Skorohod integrable. If ht is Ft-adapted we get

∫ T

0
FhtδBt = F

∫ T

0
htdBt −

∫ T

0
(DtF )htdt.

Proof. Let G be a Malliavin differentiable random variable. Using the product rule (A.2) and

integration by parts (A.5) we obtain

E
{
∫ T

0
(DtG)Fhtdt

}

= E
{
∫ T

0
[(DtGF ) −G(DtF )] htdt

}

= E
{

GF

∫ T

0
htδBt −G

∫ T

0
(DtF )htdt

}

= E
{

G

[

F

∫ T

0
htδBt −

∫ T

0
(DtF )htdt

]}

.

Applying the definition of the Skorohod integral in equation (A.7) to the left hand side we have

E
{

G

∫ T

0
FhtdBt

}

= E
{

G

[

F

∫ T

0
htδBt −

∫ T

0
(DtF )htdt

]}

,

and since this should be true for any choice of G, the result follows by an inner product argument.

The last statement follows from the first statement and proposition A.15.
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A.3.3 Examples

Example A.17. With ht = Bt we have

∫ T

0
BtδBt =

∫ T

0
BtdBt

=
1

2
B2

T − 1

2
T.

since Bt is Ft-adapted and the Skorohod integral coincides with the Itô integral cf. proposition

A.15.

Example A.18. With ht = 1 and F = BT in proposition A.16 we have

∫ T

0
BT δBt = BT

∫ T

0
δBt −

∫ T

0
(DtBT )dt

= BT (BT −B0) −
∫ T

0
1[0,T ](t)dt

= B2
T − T,

where we have used example A.7 to compute the Malliavin derivative of BT .

Example A.19. With ht = 1 and F = Btn+1 −Btn in proposition A.16 we have

∫ tn+1

tn

(Btn+1 −Btn)δBt = (Btn+1 −Btn)

∫ tn+1

tn

δBt −
∫ tn+1

tn

(Dt(Btn+1 −Btn))dt

= (Btn+1 −Btn)2 −
∫ tn+1

tn

1(tn,tn+1]dt

= (Btn+1 −Btn)2 − (tn+1 − tn),

where we have used example A.7 to determine the Malliavin derivative of Btn+1 −Btn .

A.4 Conditional Expectations

In this section we will show how a conditional expectation can be computed from unconditional

expectations. In the following we let Hn denote the set of processes hn
t satisfying

∫ tn+1

0
(DtWtn)hn

t dt = 1 and

∫ tn+1

0
(DtWtn+1)h

n
t dt = 0. (A.8)

Definition A.20 (Localizing functions). Let ϕ : R → R be a continuous and bounded mapping.

If ϕ(0) = 1 and ϕ′ is continuous and bounded, we say that ϕ is a smooth localizing function. The

set of such localizing functions is denoted by L.
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Remark. Since ϕ is smooth, ϕ(Wtn − w) is Malliavin differentiable. The chain rule (A.1) gives

Dtϕ(Wtn − w) = ϕ′(Wtn − w)DtWtn .

Furthermore, proposition A.16 with F = ϕ(Wtn −w) gives

Shn

(ϕ(Wtn − w)) =

∫ T

0
ϕ(Wtn − w)hn

t δBt

= ϕ(Wtn − w)

∫ T

0
hn

t δBt −
∫ T

0
(Dtϕ(Wtn − w))hn

t dt

= ϕ(Wtn − w)Shn

(1) −
∫ T

0
ϕ′(Wtn − w)(DtWtn)hn

t dt

= ϕ(Wtn − w)Shn

(1) − ϕ′(Wtn − w) (A.9)

since ϕ′(Wtn − w) does not depend on t, hn
t ∈ Hn and DtWtn = 0 for t > tn+1 cf. proposition A.5.

The main theorem 3.1 is based on the following lemma.

Lemma A.21 (Bouchard, Ekeland, and Touzi (2004), Theorem 3.1). Let f be a mapping from R

into R with f(Wtn+1) ∈ L2(Ω), and A ∈ B a Borel subset of R. Then, for all hn ∈ Hn, and ϕ ∈ L

E
{

1A(Wtn)f(Wtn+1)
}

=

∫

A
E
{

Hw(Wtn)f(Wtn+1)S
h(ϕ(Wtn − w))

}

dw

where Hw(Wtn) = 1[w,∞)(Wtn) is the indicator function.

Proof. Since the expectation on the right-hand side involves a Skorohod integral, we are tempted

to use the Malliavin integration by parts formula at some point in the proof. This requires that

we compute the Malliavin derivative of what is multiplied with the Skorohod integral. As shown

in example A.11, the indicator function is not Malliavin differentiable unless it is equal to zero or

one almost surely.2 To overcome this problem we define the function

F (w1, w2) ,

∫ w1

−∞

1A(w)f(w2)ϕ(w1 − w)dw,

and consider the random variable

F (Wtn ,Wtn+1) =

∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ(Wtn −w)dw.

The Malliavin derivative of F is

DtF =
∂F (Wtn ,Wtn+1)

∂w1
(DtWtn) +

∂F (Wtn ,Wtn+1)

∂w2
(DtWtn+1).

2Actually, the indicator function in example A.11 is defined for sets F ∈ F whereas the indicator function in
the lemma is defined for intervals I ∈ B. However, since 1I(Wtn

(ω)) = 1
W

−1

tn
(I)

(ω), the problem is the same as in

example A.11.
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Multiplying both sides with hn
t ∈ Hn and integrating from 0 to T we get

∫ T

0
(DtF )hn

t dt =
∂F (Wtn ,Wtn+1)

∂w1

∫ T

0
(DtWtn)hn

t dt+
∂F (Wtn ,Wtn+1)

∂w2

∫ T

0
(DtWtn+1)h

n
t dt

=
∂F (Wtn ,Wtn+1)

∂w1

= 1A(Wtn)f(Wtn+1) +

∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ
′(Wtn −w)dw,

since the partial derivatives of F with respect to w1 is

∂F (w1, w2)

∂w1
= 1A(w1)f(w2)ϕ(w1 − w1) +

∫ w1

−∞

1A(w)f(w2)ϕ
′(w1 − w)dw

= 1A(w1)f(w2) +

∫ w1

−∞

1A(w)f(w2)ϕ
′(w1 − w)dw

where the first equality follows from Leibnitz’ rule.3

If we take expectations on both sides and rearrange the terms, we are left with

E
{

1A(Wtn)f(Wtn+1)
}

= E
{
∫ T

0
(DtF )hn

t dt

}

− E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ
′(Wtn − w)dw

}

.

If we apply the Malliavin integration by parts formula to the first term on the right-hand side, we

get

E
{
∫ T

0
(DtF )hn

t dt

}

= E
{

F

∫ T

0
hn

t δBt

}

= E
{

FSh(1)
}

= E
{(
∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ(Wtn − w)dw

)

Sh(1)

}

= E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ(Wtn − w)Sh(1)dw

}

.

3Leibnitz’ rule: ∂
∂x

R g(x)

f(x)
h(x, y)dy = h(x, g(x)) ∂g(x)

∂x
− h(x, f(x)) ∂f(x)

∂x
+

R g(x)

f(x)

∂h(x,y)
∂x

dy.
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Substituting this expression into the former we get

E
{

1A(Wtn)f(Wtn+1)
}

= E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ(Wtn − w)Sh(1)dw

}

− E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)ϕ
′(Wtn − w)dw

}

= E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)
[

ϕ(Wtn − w)Sh(1) − ϕ′(Wtn − w)
]

dw

}

= E
{
∫ Wtn

−∞

1A(w)f(Wtn+1)S
h(ϕ(Wtn − w))dw

}

= E
{
∫

R

1A(w)1(−∞,Wtn ](w)f(Wtn+1)S
h(ϕ(Wtn − w))dw

}

= E
{
∫

A
1(−∞,Wtn ](w)f(Wtn+1)S

h(ϕ(Wtn −w))dw

}

= E
{
∫

A
Hw(Wtn)f(Wtn+1)S

h(ϕ(Wtn − w))dw

}

=

∫

A
E
{

Hw(Wtn)f(Wtn+1)S
h(ϕ(Wtn − w))

}

dw,

where we have used equation (A.9) in the third equality.

As a direct consequence of lemma A.21 we can now prove theorem 3.1.

Proof of theorem 3.1. Consider the conditional expectation

E
{

g(Wtn+1) | Mtn

}

,

where Mt , σ (Ws | 0 ≤ s ≤ t) is the σ-algebra generated by (Ws)s∈[0,t]. By construction this

conditional expectation is Mtn -measurable. Hence the Doob-Dynkin lemma ensures the existence

of a Borel measurable function G : R → R such that

E
{

g(Wtn+1) | Mtn

}

= G(Wtn).

The function w → G(w) is actually the conditional expectation E
{

g(Wtn+1) | Wtn = w
}

we are

looking for. Let A ∈ B be a Borel measurable set. Then (Wtn ∈ A) ∈ Mtn and by definition of

conditional expectations

∫

(Wtn∈A)
g(Wtn+1)dP =

∫

(Wtn∈A)
G(Wtn)dP

=

∫

A
G(w)dP̂ (w)

=

∫

A
G(w)p(w)dw,
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by the integral transformation theorem, where P̂ = Wtn(P ) is the distribution of Wtn and p is the

density of Wtn . The last equality follows since Wtn has a density function.

From lemma A.21 we have

∫

(Wtn∈A)
g(Wtn+1)dP = E

{

1A(Wtn)g(Wtn+1)
}

=

∫

A
E
{

Hw(Wtn)g(Wtn+1)S
h(ϕ(Wtn − w))

}

dw

and therefore

∫

A
G(w)p(w)dw =

∫

A
E
{

Hw(Wtn)g(Wtn+1)S
h(ϕ(Wtn −w))

}

dw

for all A ∈ B. We therefore conclude that

G(w) =
E
{

Hw(Wtn)g(Wtn+1)S
h(ϕ(Wtn − w))

}

p(w)

=
E
{

Hw(Wtn)g(Wtn+1)S
h(ϕ(Wtn − w))

}

E {Hw(Wtn)Sh(ϕ(Wtn − w))} ,

where we have used lemma A.21 with f = 1 to find the density of Wtn .
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