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Wealth-Robust Intertemporal

Incentive Contracts.

Abstract.

We study optimal incentive contracts in a continuous time principal-agent setting
with hidden actions. The agent, whose e¤ort controls the output, has a concave utility
function which is non-separable in wealth and monetary cost of e¤ort. The principal
is risk neutral and optimally selects the e¤ort to be induced and the contract design.
Output follows a mean-reverting process with random coe¢ cients. We characterize the
class of W-robust compensation schemes that elicit a desired e¤ort which is immune to
the principal�s mispeci�cations of the future wealth of the manager. We demonstrate the
existence of a solution to the principal�s problem, characterize the optimal e¤ort policy,
derive the optimal W-robust contract and show that our contract dominates randomized
contracts.

KEYWORDS: Continuous time principal-agent problem, hidden actions, wealth robust-
ness.



1 Introduction

In recent years, the study of non-market based contracts, notably the principal-agent
paradigm, has been successful in explaining many economic phenomena that appeared
inconsistent with the traditional e¢ cient market-mediated contract theory. Despite its
success, however, the principal-agent framework su¤ers from the limitation that even for
moderately rich economic settings, it becomes complicated to solve for optimal contracts.
For situations where contracts can be explicitly characterized, they appear formidable
to implement in practice. Paradoxically, in real life multiperiod settings, incentive con-
tracts are much simpler. In fact, they often take on linear forms. In addition, they are
frequently speci�ed in terms of a simple veri�able aggregate variable such as year-end
pro�ts, and not as functions of �ner measures, even if those are also potentially veri�able.
One could argue that it is costly to write optimal contracts that are complicated and so
linear contracts, written on coarse aggregates, serve as approximations that are easy to
implement. A more appealing approach would develop economic arguments suggesting
that contracts written on aggregate measures are indeed optimal and robust. This is
what we propose to do here within the framework of a general dynamic principal-agent
setting with hidden actions.
One of the major di¢ culties associated with the practical implementation of a com-

pensation scheme derived from theoretical considerations is the fact that many personal
details may not, and in some instances cannot, be known with certainty by a princi-
pal o¤ering a contract. This is particularly true for contracting in the private sector.
Federal laws in the United States and many other countries as well, often augmented
by state and local laws, prohibit the principal from seeking any information from the
manager that is not connected with the service to be provided . Often included in the
list of personal details are the private wealth situations of managers and the private
wealth opportunities available to them. These details are particularly crucial for incen-
tive contracting. Small errors by the principal in the assessing the agent�s private wealth
could obviate the objective of a �nely tuned contractual relationship, which is to elicit
a desired e¤ort level from the manager.
Even without the legal restrictions, it may also be impractical to write contracts

which depend on outcomes of other contractual obligations or a manager�s �nancial
portfolio, especially if the agent can enter into contractual obligations in the future.
These problems can be particularly severe in a dynamic framework. Di¤use knowledge
of a manager�s trading patterns in �nancial markets is one example of a contingency
which may lead to a breakdown of the contractual objectives. One typical example is
that of a CEO (the manager) of an oil company who holds other companies stocks in the
same industry. The presence of any correlation between traded securities and the reward
scheme o¤ered by shareholders of the oil company (the principal) could, in principle, be
exploited by the CEO to hedge against undesirable outcomes, and not provide the e¤ort
sought by the principal. The shareholders could attempt to place additional restrictions
on the trading activities of the CEO entering the contract, but it is inconceivable that an
exhaustive list of contingencies and opportunities a¤ecting the contractual outcome could
ever be identi�ed. Managers could always enter into private contracts with investment
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banks as well as other parties. Thus, the menu of possibilities far exceeds the set of
traded assets available in �nancial markets and is only limited by the creativity of the
parties. While, in a static setting it may be possible under certain circumstances, to
o¤er a an array of contracts to separate managers in di¤erent initial wealth categories,
it would be quite impossible to attempt this in a dynamic framework where the private
wealth positions and opportunities are randomly and constantly changing over time.
Given all these di¢ culties associated with allowing managers to have private wealth

opportunities, and given that the complexities increase rapidly as we go from static mod-
els to dynamic settings, it is not surprising that the prior principal-agent literature has
mostly ignored these issues. We propose a simple way to circumvent these problems by
restricting the space of contracts to those that are immune to the situations described.
This leads to the requirement that the optimal e¤ort elicited by the contractual rela-
tionship be robust to any perturbations of the terminal wealth of the manager that are
correlated with the reward scheme. Contracts that satisfy these conditions are, what we
call, W-robust (i.e. robust to wealth perturbations).
In this paper we characterize the class of W-robust contracts and derive the W-

robust contract which is optimal for the principal in a general, dynamic principal-agent
relationship with a risk neutral principal2 and a risk and work averse agent. The agent�s
utility function is a concave function de�ned over wealth, i.e. compensation net of the
monetary cost of e¤ort. This is a major innovation since we do not require the usually
assumed additive separability with respect to the reward and the cost of e¤ort (see for
example, Gjesdal (1982) regarding the complexities introduced by the absence of additive
separability, including the possiblity that randomization of contracts may be optimal).
In our model the agent�s hidden actions in�uence the output of the �rm. Output follows
a mean reverting process with random coe¢ cients, that is, we allow for a stochastic
mean-reversion parameter and a stochastic volatility. The agent�s e¤ort in�uences the
drift of the output process. Given mean-reversion, e¤ort has both an immediate in�uence
on the change in output as well as an impact on future output changes, as do shocks to
output. Our only restriction is that the uncertainty a¤ecting the coe¢ cients of the model
(such as interest rate, speed of mean reversion, volatility, etc...) be public information.
Uncertainty a¤ecting the local evolution of output, by contrast, is privately observed only
by the manager. In this setting, any contract written on output and other relevant public
information variables (in the coe¢ cients of the model) can also be speci�ed in terms of
net output ex (i.e., the di¤erence between realized and the mean-reverting component
of output) and the other public information. Net output ex can then be interpreted
as the managed account. This dynamic setting is inherently di¤erent from the static
contracting framework since revisions over time in the e¤ort exerted, as new information
becomes available, a¤ect the future values of output and the salary function.
Our �rst contribution is to characterize the class of W-robust contracts. We show

that, in our setting, a contract is W-robust if and only if it consists of three parts, (i)
a stochastic integral with respect to the change in the managed account

R
fdex, (ii) a

2Risk neutrality is for convenience only. Our results hold with minor modi�cations for risk averse
principals.
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random Riemann integral with respect to the level of the managed account
R
fexdt and

(iii) a random variable A. The main restriction in this speci�cation is that the slope of
the contract f (i.e. the integrand in the stochastic integral) and the random variable
A are independent of the managed account ex. That, is the pair (A; f) depends only on
public information and not on the (ex-ante) private information of the manager. This
leaves us with a class of contracts which is still very large, in which the principal will
select an optimal contract that is (i) incentive compatible and (ii) individual rational for
the manager.
Our second contribution is at the level of the principal�s problem. It is easily shown,

given the general stochastic model of output, that manyW-robust contracts (A; f) are in-
centive compatible and individual rational. Roughly speaking, these di¤er in the agent�s
compensation A provided for inducing participation. In e¤ect, any random variable that
depends on public information can be added onto the contract without distorting the
incentives required to elicit the e¤ort level desired by the principal. This contract will
also satisfy the individual rationality constraint provided the agent is adequately com-
pensated for the risk borne. Naturally, the principal will not be indi¤erent between all
contracts satisfying these basic constraints. His/her choice set includes not only the de-
sign of the contract but also the selection of the e¤ort level that is required of the agent.
We examine and resolve this bivariate dynamic optimization problem. Our contribution
in that respect is threefold: (i) we demonstrate the existence of a solution to the princi-
pal�s problem, (ii) we characterize the optimal W-robust contract and the desired e¤ort
level and (iii) we show that randomized contracts do not improve welfare in the class
of W-robust contracts. Establishing the existence of a solution to the principal�s prob-
lem is a non-trivial issue and prior literature has often assumed that a solution exists.
The reason the existence is hard to show is that the principal�s choice problem is over
an in�nite dimensional space of controls which is not norm-compact. Hence, standard
existence proofs do not apply. In spite of this technical di¢ culty, our paper resolves the
existence question in the generality of our model with arbitrary agent�s utility function
and random coe¢ cient of the output process. In short, the existence proof rests on the
identi�cation of a suitable weakly compact space of controls in which the maximizer is
shown to lie. The characterization (ii) that we obtain is new and provides interesting
economic insights about the structure of the optimal contract. Finally, result (iii) ap-
pears especially surprising in light of Gjesdal (1982) who showed that the principal is
better o¤with randomized contracts when the agent�s utility is not additively separable
in wealth/reward and cost of e¤ort. In our setting, randomized contracts are dominated
even though the utility function is non-separable. This result reinforces the robustness
of the class of contracts that we study. Given this space of contracts, the key factors
underlying this result are the concavity of the principal�s objective function and the
convexity of the individual rationality constraint with respect to the principal�s choice
variables.
Our results provide new insights about the structure of the optimal contract in a

general setting with arbitrary utility function for the agent. The optimal W-robust
contract, that we obtain, is a linear, suitably weighted functional of the cumulative

3



output and the change in output over the period of the contract.3 The weights, in general,
will be stochastic and path dependent. Moreover, in the absence of mean-reversion and
when the coe¢ cients of the model (interest rate, reinvestment rate, volatility, etc.) are
constants the optimal weights in the contract become constant, even when the agent�s
utility function and the production function are concave. Under these conditions the
principal requisitions a constant e¤ort policy and the optimal contract becomes a linear
function of the terminal value of the managed account. This is a striking result which
extends Holmstrom and Milgrom (1987) and shows that simple, linear contracts are
optimal, within our class, even for non-exponential utility functions.
The earliest paper that addressed the issue of dynamic contracts in continuous time

settings is by Holmstrom and Milgrom (HM) (1987). They demonstrate the optimality
of linear contracts based on the value of an aggregate counting measure of outcomes at
the time of compensation in dynamic environments where the principal and the agent
have negative exponential utility function and the agent can exert e¤ort to in�uence a
history independent technology. The absence of mean-reversion implies that the cur-
rent e¤ort and random shocks manifest themselves immediately in the outcome and
have no in�uence on the change in output after that. Time independence also excludes
discounting on the part of the principal and the agent. Further progress was achieved
by Schattler and Sung (1993) who consider the principal-agent problem when (i) both
parties have exponential utility and (ii) the output process is a Brownian semimartin-
gale with history-dependent (progressively measurable) coe¢ cients. In this setting they
characterize the class of contracts which implement the principal�s desired action and
provide necessary conditions for optimality in the principal�s problem. Moreover, they
show that Holmstrom-Milgrom contracts rely on constant coe¢ cients. They also give
su¢ cient conditions when the technology has a Markovian evolution.4 In proving these
results they make extensive use of stochastic control and martingale methods.5 ;6 Addi-
tional contributions to the continuous time contracting literature include Sung (1995)
who allows for control over the drift and the volatility of a di¤usion process with con-
stant coe¢ cients and Sung (1997) who deals with jump processes. Recent applications
of Schattler and Sung include Ou-Yang (2000, 2001).
As noted before, our paper di¤ers from this prior literature in that we consider

utility functions for the agent that are non-separable in wealth and e¤ort. Hence the
contractual components designed to satisfy the agent�s participation constraint cannot
be chosen separately from the incentive part of the contract, which leads to non-trivial
di¢ culties in proving the existence of an optimal solution to the principal�s problem and
raises the issue of randomized contracts discussed above. Our methodology also di¤ers

3A functional F (x) is said to be linear if F (�x) = �F (x) for any � 2 R:
4Their results extend to utility functions that are additively separable in reward and e¤ort (see

Schattler and Sung (1993), footnote 11).
5Govindaraj and Ramakrishnan (2001) extend HM to a setting where e¤ort in�uences the mean path

of earnings and earnings display mean-reversion. In obtaining an explicit optimal contract, they assume
(i) exponential utility for the agent, (ii) that the agent�s cost of e¤ort is discounted at the interest rate
and (iii) that earnings follows a linear stochastic equation with constant coe¢ cients.

6The literature on intertemporal contracting is typically based on exponential utility.

4



from the prior literature. In our paper extensive use is made of perturbation methods
as opposed to (i) variational inequalities, (ii) dynamic programming methods or (iii)
convergence arguments. These provide crisp characterizations of the optimal controls in
the principal�s and the agent�s problems which can be used to shed light on the structure
of the optimal contract.
Our next section details the dynamic model and describes the principal-agent rela-

tion under study. W-robust contracts are characterized in section 3. Section 4 resolves
the principal�s problem. We �rst identify the class of incentive compatible (W-robust)
contracts. Then we solve for the optimal W-robust contract: we prove the existence of
a solution, characterize the optimal policy, address the issue of randomized contracts,
and provide economic insights about the structure of the contract. Section 5 examines
special cases and, in particular, shows the optimality of simple linear contracts in cer-
tain settings. Conclusions are formulated in section 6. All proofs are collected in the
appendix.

2 The dynamic principal-agent problem

2.1 The output process

We postulate a general stochastic output process which encompasses most models that
have appeared in the theoretical and empirical �nance literature. Uncertainty in the
evolution of output is captured by a bivariate Brownian motion process denoted by
(B;Z). Let FB;Z

(�) denote the �ltration associated with the pair (B;Z):
Let x(t) be the output rate. Its dynamics is given by

dx(t) = [��(t)x(t) + g(et)] dt+ �(t)dB(t); (1)

with initial value x(0). In this expression the quantity et is the rate at which the
agent provides e¤ort, g(et) is the productivity of e¤ort, �(t) the volatility of output and
�(t) the speed of mean reversion. The processes �(t) and �(t) can be stochastic, with
the restriction that they be bounded and progressively measurable with respect to the
�ltration FZ

(�) generated by Z.
7 The volatility � is bounded away from zero: there exists

" > 0 such that � > ". We assume that the production function satis�es the following
conditions

Assumption 1: The production function g(�; t) : R+! R is
(i) strictly increasing, concave and twice continuously di¤erentiable, with g(0; t) = 0

and limx!0 g
0(x; t) =1 for all t 2 [0; T ].

(ii) For any given constant et = e the production process g(e; �) � fg(�; t) : t 2 [0; T ]g
is an FZ

(�)-progressively measurable stochastic process.

7A process X is said to be progressively measurable with respect to the �ltration generated by Z if
Xt depends on time and on the trajectories of the Brownian motion Z up to time t, for all t 2 [0; T ]
(i.e. Xt is FZt � B([0; t]) measurable where B([0; t]) is the Borel sigma��eld on [0; t]).
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These assumptions are standard. Condition (i), in particular, stipulates that there
are decreasing returns to e¤ort and that e¤ort must be exerted to increase returns.
Condition (ii) allows the production function to evolve randomly over time. This enables
us to capture stochastic shocks to production which are unrelated to the e¤ort of the
manager.
The output model (1) formalizes the intuitive notion that changes in the output rate

dx(t) arise from e¤ort exerted by the agent, g(et); and from random shocks (innovations),
�(t)dB(t). They are also in�uenced by a mean reverting component, �(t)x(t). In the
absence of external uncertainty (�(t) = 0) and e¤ort (et = 0) the output rate would
simply decay at the rate �(t). This captures the notion that net cash �ows generated
by the current projects of the �rm depreciate and in the very long run will eventually
dry up. In the presence of uncertainty, however, actual realizations x(t) may deviate
from the long term value due to random shocks a¤ecting the production process. In the
absence of structural changes in production or in market conditions, it is reasonable to
expect that output does not drift too far away from the long term mean. This pull to
the central tendency is captured by the stochastic coe¢ cient �(t) which measures the
speed of reversion to the mean. For large values of �, the output rate exhibits faster
reversion to the long term value. Similarly, large deviations from the long term value
imply a larger magnitude of the reversion in the output rate.
The speed of mean-reversion � a¤ects the extent to which output shocks persist. If

future e¤ort after current time t is set equal to zero, then the expected future output is
given by

Et [x(t+ �) j et+v = 0;8v 2 [0; � ]] = x(t)Et
h
e�

R �
t �(v)dv

i
(2)

Observe that for �(v) = 0 for all v � t, the output process is a martingale and all inno-
vations will have permanent e¤ects. The polar opposite is when � approaches in�nity.
In this case, the e¤ects of random shocks on the evolution of output is temporary or
transient.
Another key aspect of the model is the information structure. We assume that

the agent observes both Brownian motions: his/her information �ltration is FB;Z
(�) . In

contrast the principal observes the output process x and the Brownian motion Z (but
not B): his/her information is given by the �ltration Fx;Z

(�) .
8 Since the principal does not

observe the manager�s e¤ort either, there is asymmetric information between the two
parties. It is the presence of this asymmetry that motivates the contractual problem
to be studied. Note also that contracts based on output are feasible since x is in the
information set of the principal Fx;Z

t at date t and this for all t 2 [0; T ].
8As we have it here, observing Z is not informative about B. It would be a simple matter to extend

the results to a situation where the two Brownian motions are correlated, i.e. where observing B tells
the principal something about Z. In this case, the contracting is simply based on all the information
shared by the parties; only the component of B that cannot be inferred from Z is left out of the
contractible information set.
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2.2 The agent�s optimization problem

The manager�s expected utility function is

U(	; e) = Eu

�
	�

Z T

0

c(et; t)dt

�
(3)

where 	 is the compensation to be paid to the agent at terminal time T , and c(et; t) is
a stochastic monetary cost in�icted by e¤ort. We will assume that

Assumption 2: The utility function u(�) : R! R is
(i) strictly increasing, concave, and twice di¤erentiable function, and
(ii) marginal utility has the limits limx#�1 u

0(x) =1 and limx"1 u
0(x) = 0.

(iii) Let n(�) be the standard normal density. The integrability condition
R1
�1 u(x+


�)n(�)d� <1 holds, for all x 2 R; 
 2 R+.

Conditions (i)-(ii) are standard. Condition (iii) ensures that expected utility is �nite
when wealth is normally distributed. This is a weak condition which is automatically
satis�ed in standard examples such as exponential utility.

Assumption 3: The monetary cost function c(�; t) : R+! R is
(i) strictly increasing, convex and twice continuously di¤erentiable, with c(0; t) = 0

and limx!0 c
0(x; t) = 0 for all t 2 [0; T ].

(ii) For any given constant et = e the cost c(e; �) � fc(�; t) : t 2 [0; T ]g is an
FZ
(�)-progressively measurable stochastic process.
(iii) The function f(e; t) = c0(e; t)=g0(e; t) is convex for all t 2 [0; T ].

Condition (i) in Assumption 3 is standard. Condition (ii) allows us to encompass a
monetary cost of e¤ort which changes stochastically over time as information changes.
Our formulation is very general in that respect. It includes, for example, the speci�cation
c(e; t) = exp(�

R t
0
�vdv)c(e) where the discount rate � > 0 applied to the cost of e¤ort

captures the notion that early e¤ort is more costly than late e¤ort. The stochastic nature
of the discount rate � enables us to model situations in which the cost of early e¤ort
is state dependent. Finally, condition (iii) is a restriction on the ratio of the marginal
cost to the marginal product of e¤ort. Convexity of this ratio ensures that the objective
function of the principal is concave with respect to his/her choice variables.
Given our information/uncertainty structure the compensation scheme will be some

functional of the output process x. Moreover, we can write 	 � 	(x(e)). In fact, de�ne
the stochastic process

ex(t) � x(t) + Z t

0

�(v)x(v)dv =

Z t

0

(g(ev; v)dv + �(v)dBv)
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for t 2 [0; T ]. Clearly, ex is Fx;Z
(�) -adapted. Conversely, since

x(t) = x(0)e�
R t
0 �(u)du +

Z t

0

e�
R t
v �(u)dudex(v)

we have that x is F ex;Z
(�) -adapted. Thus, the �ltrations F

x;Z
(�) and F ex;Z

(�) coincide and any
contract written in terms of (x; Z) can also be written in terms of (ex; Z). Without loss
of generality, we can then think of contracts as functionals of the form 	 � 	(ex(e)).
At date 0, the manager has two options: either taking the contract and working for

the principal, or rejecting the contractual o¤er and idling. In the �rst instance, the agent
seeks to maximize (3) by choosing a stochastic process for e¤ort e = fet : t 2 [0; T ]g
taking the contractual structure 	(ex(e)) o¤ered to him/her as given. In the second
instance, welfare is provided by the reservation utility u. Naturally the manager selects
the best of these two options, and solves

maxfmax
e
U(	(ex(e)); e); ug

where e is an FB;Z
(�) -progressively measurable process and e controls the process (1).

2.3 The principal�s problem

The risk neutral principal�s problem is to select the e¤ort level to be induced from the risk
averse agent as well as the contract 	, so as to maximize the expected discounted payo¤
net of compensation. Suppose that the principal�s payo¤ at time T , before managerial
expenses, is an a¢ ne function of terminal output x(T ),

G0 +G1x(T )

whereG0; G1 are random variables which are strictly positive, bounded andFZ
T -measurable.

Taking account of the compensation to the manager, leads to the principal�s valuation
of the �rm at date 0,

V0 = E
h
e�

R T
0 r(v)dv (G0 +G1x(T ))

i
� E

h
e�

R T
0 r(v)dv	(ex(e))i

where e is the e¤ort of the manager and r � fr(v) : v 2 [0; T ]g denotes the interest
rate process in the market (locally riskless rate); we assume that r is a bounded FZ

(�)-
progressively measurable process.
Since the output process satis�es (1) over the course of the management period the

following decomposition of the value of the �rm holds,

Lemma 1: The principal�s valuation of the �rm is V0 = I0 + x(0)I1 + J(e;	) where

I0 = E
h
e�

R T
0 r(v)dvG0

i
; I1 = E

h
e�

R T
0 (r(v)+�(v))dvG1

i
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and

J(e;	) = E

�Z T

0

g(es)Dsds

�
� E

h
e�

R T
0 r(v)dv	(ex(e))i (4)

with Ds � e�
R s
0 r(v)dvEs

h
e�

R T
s (r(u)+�(u))duG1

i
, a strictly positive and bounded process.

The value of the �rm, for the principal, has two components, one which depends
only on technological parameters, I = I0 + x(0)I1, and the other which is a function of
the e¤ort of the manager and of the contractual payment, J(e;	(e; ex)). The �rst term
of J(�; �) is the present value of the bene�ts, to the principal, from managerial e¤ort.
The second term is the present value of the cost incurred to elicit the desired level of
e¤ort. Thus, J(e;	(e; ex)) captures the net bene�ts, to the principal, from motivating
managerial e¤ort e.
The owner of the �rm seeks to maximize this net value subject to (i) inducing the

manager to follow the e¤ort policy e, (ii) meeting the manager�s individual rationality
constraint, (iii) the information available, and (iv) the non-negativity constraint on
desired e¤ort level. Let

IC =
�
	 : e solves max

e
Eu

�
	(ex(e))� Z T

0

c(et; t)dt

��
denote the set of contracts that are incentive compatible (hence satisfy (i)) and let A
denote the set of admissible pairs (e;	) which satisfy the constraints (i)-(iv) in the
principal�s optimization problem. This is the set of stochastic processes e and random
functionals 	(ex(e)) such that8>>>>>>>>>>>>><>>>>>>>>>>>>>:

	 2 IC

Eu
�
	(ex(e))� R T

0
c(et; t)dt

�
� u

	 is F ex;Z
T -measurable

e is F ex;Z
(�) -progressively measurable

e � 0:

(5)

The second condition in (5) is the IR constraint. Here we used the notation ex(e) to
emphasize the fact that the agent follows the action e desired by the principal, when
	 2 IC. The principal then solves the problem

maxe;	 J(e;	(ex(e))) subject to (e;	(ex(e))) 2 A (6)

where A is de�ned in (5).
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2.4 The space of contracts

Before turning to the resolution of the principal-agent problem described above, we
specify the space of contracts. Clearly, the informational constraint 	 2 F ex;Z

T must be
satis�ed. In addition, we need to ensure that the agent can identify the impact of a
change in e¤ort on compensation. In e¤ect, this suggests a notion of di¤erentiability
for the functionals 	 representing the reward scheme. In what follows, we restrict
attention to contracts which induce interior e¤ort levels. This is justi�ed because, given
our assumptions, starting from a contract which does not motivate interior e¤ort, it is
always possible to construct contracts that make both the principal and the agent better
o¤ at an interior point.
Formally, let ex(�)+� R �

0
h(v)dv denote a perturbation of ex(�), in the direction R �

0
h(v)dv

where h is anF ex;Z
(�) -progressively measurable process. Here h(v) represents a perturbation

in e¤ort at time v. We consider the space of contracts D de�ned as follows,

De�nition 1: The space of contracts D is the class of F ex;Z
T -measurable random variables

	(ex) such that,
(i) there exists a kernel �	 2 F ex;Z

T such that the limit

lim
�!0

	(ex(�) + � R �
0
h(v)dv)�	(ex(�))
�

=

Z T

0

�	(v; T )h(v)dv (7)

exists (P-a.s.),
(ii) E [	(B)2] <1 where B is a Brownian motion,
(iii) there exists a random variables ! such that E[!2] <1 and a function F such

that lim�#0
F (�)
"
<1 and����	�B + � Z h(s)ds

�
�	(B)

���� � !(B)F (khk)
wherekhk denotes the sup norm, and
(iv) the agent�s optimal e¤ort e satis�es the integrability condition

E

�
exp

�
1

2

Z T

0

g(et)
2dt

��
<1:

(v) The process �	(v; T ) > 0, l 
 P � a:s:9

Condition (i) is a notion of di¤erentiability. In this representation �	(v; T ) captures
the impact of the perturbation h(v) on the compensation collected at T (i.e. �	(v; T )
is the sensitivity of the terminal reward with respect to a small change h(v) in e¤ort at
v). The representation (7) holds, in particular, for functionals that are pathwise Frechet
di¤erentiable.

9P is the probability measure and l is the Lebesgue measure.
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Condition (ii) ensures that the contract has �nite variance. It implies, in particular
that the compensation has �nite variance in the absence of managerial e¤ort (i.e. if
e = 0).
Condition (iii) is technical. It has the nature of a random Lipschitz condition. Con-

dition (iv) is a Novikov condition which ensures that the Girsanov change of measure
theorem applies. This condition is automatically satis�ed if the production function
g(�; �) is bounded. The condition is only required to hold at the optimal e¤ort level.
Lastly, condition (v) will imply that the agent�s optimal e¤ort is interior. Contracts

which do not induce interior e¤ort can be treated using similar techniques. However,
these contracts are not relevant for the principal�s problem in section 5.2, since they can
be dominated by one which motivates interior e¤ort (see footnote 11).
The class of contracts D is very general; it includes, for example, path-dependent

contracts of the form maxt2[0;T ](ext). Further examples are,
Example 1: The class D includes all random variables of the form 	(ex) = 	(ext1 ; :::; extn)
where 	 : Rn ! R and 	 2 C1b for some collection fti : i = 1; :::; ng with @	

@xti
> 0: In

this instance,

lim�!0
	(ext1+� R t10 h(v)dv;:::;extn+� R tn0 h(v)dv)�	(ext1 ;:::;extn )

�

=
Pn

i=1
@	
@xti

R ti
0
h(v)dv =

R T
0

Pn
i=1

@	
@xti
1fv�tigh(v)dv:

In this case, a change in e¤ort at time v a¤ects compensation through all derivatives
with respect to the values of the managed account at those times ti � v. Contracts of
the form 	(ext1 ; :::; extn) include, in the limit, forcing contracts (Mirrlees (1974)).
Example 2: Random Riemann-Stieljes integrals, stochastic integrals and combinations
of the two are also included in D. Thus, contracts of the form

	 =

Z T

0

�(ex(�); v)dv + Z T

0

�(ex(�); v)dex(v)
where �(ex(�); �) and �(ex(�); �) are Frechet di¤erentiable functionals, are admissible. In
e¤ect, this includes the class of contracts considered by Schattler and Sung (1993).

3 Robust contracts

We now formalize a notion of robustness to perturbations in the manager�s environment.
Let Y denote a random variable which is FB;Z

T -measurable. The random variable Y can
be interpreted as a random cash �ow collected by the manager at date T; due to his/her
engagement in other activities which are not controllable by the principal.

De�nition (W-robustness): An incentive scheme 	 2 F ex;Z
T is said to be W-robust if

and only if any manager u; receiving compensation 	 would provide the same optimal
e¤ort when terminal wealth equals 	+ Y where Y 2 FB;Z

T .

11



In essence W-robustness requires that the action induced by the contract be immu-
nized against perturbations in the terminal wealth of the manager in FB;Z

T . This would
ensure that the contract elicits the proper incentives even if the manager has access
to other activities, outside the contractual relationship, which could produce correlated
cash �ows. The property seems especially relevant in economies with developed capital
markets where managers typically have access to securities whose returns are correlated
with the cash �ows generated by the �rm under management. Even in the absence
of correlated traded securities �nancial technology usually provides the means to write
contracts between managers and investment banks based on variables, such as B and
Z, that are mutually observable (exotic derivatives are routinely quoted and purchased
over-the-counter).
Our next theorem provides a complete characterization of W-robust contracts.

Theorem 1: Suppose that the output process is given by (1) with stochastic speed of
reversion and volatility (�(t); �(t)) and that assumption 1 holds. Suppose also that the
risk-work averse agent has general utility function u(�) and cost of e¤ort c(�; t) satisfying
assumptions 2 and 3. A compensation contract in D is W-robust (i.e.	 2 W) if and
only if

	 = A+

Z T

0

f(v) (dx(v) + �(v)x(v)dv) (8)

where A 2 FZ
T and f is an FZ

(�)-progressively measurable process, f > 0 (l 
 P � a:s:).

Theorem 1 gives a necessary and su¢ cient condition for a contract which induces
interior e¤ort to be W-robust.10 It shows that W contracts can be identi�ed with
random variables consisting of a (stochastic) integral with respect to the change in the
managed account dx(v), augmented by a (Riemann-Stieljes) integral with respect to
the level of the account x(v)dv and a random variable depending on public information
Z. The notable restrictions embedded in (8) are that the random variable A and the
stochastic integrand f are independent of the managed account, i.e. that (A; f) depend
solely on the public information available Z. The intuition for this structure is fairly
straightforward. Any dependence of the slope f on the value of the account x would
imply a correlation between the manager�s private wealth and the impact of e¤ort on
the compensation. In turn, this would produce a dependence of the optimal e¤ort on
the private wealth of the manager, contradicting the de�nition of W-robustness.
Thus, W-robustness restricts the space of contracts to those satisfying (8). This leaves

us with a very large class of compensation schemes, parametrized by (A; f) 2 FZ
T �FZ

(�),
in which the principal will choose a maximum.

10If condition (v) in the de�nition of D is not included then a somewhat involved analysis shows that
a W-robust contract must involve an incentive portion

R T
0
f(v)dZ(v) where f(v) � 0 and f(v) 2 FZ(�).

Other terms may depend on ex but are easily shown to be dominated from the principal�s perspective,
using an analysis similar to that in section 5.
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4 The optimal contract

In this section we derive the optimal W-robust contract that a risk neutral principal
would o¤er a risk averse and work averse agent to motivate a given desired e¤ort level.
We �rst characterize the class of IC contracts (section 5.1). Then we solve the prin-
cipal�s problem (section 5.2): we successively (i) prove the existence of a solution to
the principal�s problem, (ii) characterize the optimal contract, (iii) resolve the issue of
randomized contractual schemes and (iv) discuss the structure of the optimal contract.

4.1 The class of IC contracts

Suppose that the principal seeks to motivate stochastic e¤ort fet : t 2 [0; T ]g with e > 0
(l
P�a:s:). Our �rst theorem characterizes the set of contracts inW that are incentive
compatible.

Theorem 2: Suppose that the output process is given by (1) with stochastic speed of
reversion and volatility (�(t); �(t)) and that assumption 1 holds. Suppose also that the
risk-work averse agent has general utility function u(�) and cost of e¤ort c(�; t) satisfying
assumptions 2 and 3. A W-robust compensation contract is IC if and only if

	(x(e)) = A(e) +

Z T

0

c0(ev; v)

g0(ev; v)
(dx(v) + �(v)x(v)dv) (9)

A(e) = �
Z T

0

h(ev; v)dv +H (10)

where e is FZ
(�)-progressively measurable and h(ev; v) � f(ev; v)g(ev; v) � c(ev; v) with

f(ev; v) � c0(ev ;v)
g0(ev ;v)

. Let y �
R T
0
f(ev; v)

2�(v)2dv denote the FZ
T -conditional variance of

the contract. The random variable H is any FZ
T -measurable random variable.

Theorem 2 provides a characterization of the set of W-robust contracts that are
incentive compatible. In e¤ect IC restricts the slope of the contract to be the ratio
c0=g0. Evidently, many contracts (parametrized by A) will satisfy this constraint. The
principal will choose over this general class to determine the contractual design that
optimizes his/her welfare.
But �rst we elaborate on the structure of an IC contract. As revealed by the theorem

such a contract has two components. To begin with consider the second componentZ T

0

c0(ev; v)

g0(ev; v)
(dx(v) + �(v)x(v)dv)

which represents the incentive part of contract. Both the change dx(v) and the level x(v)
of residual output weighted by the mean reversion parameter �(v) �gure in this incentive
portion. As explained above, this structure is a consequence of W-robustness. The
presence of the multiplier c

0(ev ;v)
g0(ev ;v)

, can also be intuitively explained. Marginal productivity
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g0(ev; v) appears in the denominator to counter any increase in compensation that comes
due to the agent merely because of skill (higher endowment of productive capability)
and not because of increased e¤ort. It ensures that two agents with di¤erent productive
capacities providing the same level of e¤ort will be rewarded identically at the margin.
The numerator c0(ev; v) captures the fact that the agent has to be compensated for
increasing marginal cost of e¤ort. Finally, note that implementation of the optimal
e¤ort level ev induced by the contract leads to an incentive compensation ofZ T

0

c0(ev; v)

g0(ev; v)
(dx(v) + �(v)x(v)dv) =

Z T

0

c0(ev; v)

g0(ev; v)
(g(ev; v)dv + �(v)dB(v)) (11)

at the payment date T . This incentive compensation consists of a reward for productivity
as well as a reward induced by random realizations of abnormal output.
It is also interesting to note that, under our assumptions on preferences, the incen-

tive part of the contract is impervious to the structure of the utility function: agents
with di¤erent preferences will be motivated to take the desired action through the same
incentive package. The sources of this perhaps surprising robustness of the incentive
component of the contract are twofold. First, it should be noted that e¤ort and pro-
ductivity only a¤ect the combined process dex(t) = dx(t) + �(t)x(t)dt, i.e. for a given
productivity function the impact of e¤ort is unrelated to the preferences of the agent.
To the extent that W-robust contracts are written on this component the marginal local
bene�t of e¤ort from the agent�s point of view is the marginal impact on the combination
dx(t) + �(t)x(t)dt. Second, the agent values terminal wealth net of the cumulative cost
of e¤ort which is a summation of local costs. The linearity of this objective function
implies that the marginal local bene�t of e¤ort balances the marginal local cost of e¤ort
at every point in time. Since this trade-o¤ is independent of preference considerations
the contractual weights that provide the incentives to select the e¤ort desired by the
principal are also independent of preferences. However, as we show later, preferences do
matter for individual rationality.
The �rst component, A, of the contract will be selected by the principal so as to

ensure individual rationality. Without loss of generality we can decompose A as

A(e) = �
Z T

0

h(ev; v)dv +H

where H is chosen by the principal. We provide further interpretation of this part of the
contract after resolving the principal�s problem.
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4.2 The optimal contract

4.2.1 Existence

The characterization of W-robust IC contracts in Theorem 6 implies that

	(x(e)) = H +

Z T

0

c(ev; v)dv +

Z T

0

f(ev; v)�(v)dBv

= H +

Z T

0

c(ev; v)dv +
p
y e�

where e� is a random variable with standard normal distribution and

y �
Z T

0

f(et; t)
2�(t)2dt

denotes the quadratic variation (variance) of the contract conditional on FZ
T .

We can then write the principal�s objective function as bJ(e;H) � J(e;	(x(e))) and
the principal�s problem (6) becomes

maxe;H bJ(e;H) subject to (e;H) 2 A(e;H) (12)

where A(e;H) is the set of (e;H) such that8>>>>>>>><>>>>>>>>:

E
R +1
�1 u

�
H +

p
y�
�
n(�)d� � u

H is FZ
T �measurable

e is FZ
(�) � progressively measurable

e � 0:

(13)

The outside expectation in the �rst equation of (13) is taken with respect to Z. The
inside integral is with respect to the normal density n(�).
The main di¢ culty in proving the existence of an optimal policy (e�; H�) is that the

set of admissible controls, A, is not compact in the topology where the objective function
is continuous. As a result an optimizer may not exist in the sense that the maximal
value function may not be attainable. By the same token, standard existence theorems
(such as Brouwer�s theorem or Kakutani�s theorem) which assume that the controls lie
in a compact space, do not apply. In essence, these theorems rely on the ability to invert
the �rst order conditions, which is not easily done in our setting. Yet, in spite of these
di¢ culties we establish the following result (see appendix).

Theorem 3: Problem (12)-(13) has a unique solution (e�; H�).

To circumvent the failure of norm-compactness of the choice space we proceed as
follows. We �rst prove that the maximizing choices are bounded and that the value
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function is �nite. This enables us to restrict attention to a set of approximating sequences
which is convex, norm-bounded and norm-closed (in the L2[0; T ] � L2-norm), hence
weakly compact. Roughly speaking, these sequences have a weak limit point. Hence,
sequences formed of convex combinations of elements of this sequence converge in norm,
in fact strongly along some subsequence, to a limit point. Moreover, this limit point is
bounded. Finally, using the concavity of the objective function we show that the value
function evaluated at this limit point is maximal and that the limit point satis�es the
IR constraint.
In order to provide intuition about the maximizing choices we next produce a char-

acterization in the form of necessary and su¢ cient conditions for optimality.

4.2.2 Necessary and su¢ cient conditions for optimality

Let � denote the Lagrange multiplier for the IR constraint and �t the stochastic Kuhn-
Tucker multiplier for the non-negativity constraint on desired e¤ort level. Necessary
conditions for a maximum (see proof in the appendix) are given by

0 = Dvg
0(ev; v)� Ev

�
e�

R T
0 r(v)dv

�
c0(ev; v) + �t

+�Ev

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(ev; v)f

0(ev; v)�(v)
2 (14)

0 = �e�
R T
0 r(v)dv + �

Z +1

�1
u0 (H +

p
y�)n(�)d� (15)

E

�Z +1

�1
u (H +

p
y�)n(�)d�

�
� u = 0; � > 0 (16)

�t � 0; et � 0; �tet = 0: (17)

where the �rst two conditions and the last one must hold for all t 2 [0; T ].
These conditions are intuitive. Condition (14) states that the principal balances the

productivity bene�t of increased e¤ort (the term involving g0(ev; v)) with the marginal
cost of optimal contracting (the terms involving c0(ev; v) and f 0(ev; v)). Condition (15)
expresses the optimality of the contract design: the principal equates the marginal cost
of contracting, corresponding to the discount factor �e�

R T
0 r(v)dv to the marginal impact

on the IR constraint. Condition (16) is the IR constraint. Finally condition (17) is a
typical Kuhn-Tucker restriction which enforces the non-negativity of desired e¤ort; in
particular �tet = 0 represents the complementary slackness condition which must hold
at all t 2 [0; T ].
Condition (14) deserves additional discussion. The productivity bene�t is reduced

by the natural depreciation of output �. In the absence of depreciation (� = 0) the
marginal product of e¤ort exerted at date t results in incremental output at date T
equal to G1(T ). The present value of this incremental bene�t is the process Dv de�ned
in Lemma 1. If the speed of reversion is in�nite (� = 1) there is no bene�t to e¤ort
and D = 0. In intermediate cases the bene�t of e¤ort is curtailed by the speed of
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reversion which explains the discount factor involving � in the expression for D. The
marginal cost of e¤ort to the principal is the additional compensation that �ows to the
manager. As shown in the earlier section this additional compensation arises both from
the cost of e¤ort to the manager and from the risk sharing component of the contract.
Clearly risk aversion (embedded in the derivative u0) only a¤ects the risk sharing portion.
Since f 0(et; t) is positive (because the ratio of the marginal cost of e¤ort over marginal
productivity is an increasing function of e¤ort), u00 is negative and the normal density is
symmetric about 0 the risk sharing component increases the marginal contractual cost
of e¤ort. Therefore, as the riskiness of the contract increases, it increases the cost of the
contract due to risk aversion. Naturally, the manager�s cost of e¤ort also increases at
the margin, i.e., additional e¤ort requires compensation.
Our next theorem establishes the su¢ ciency of (14)-(17).

Theorem 4: (optimality) Suppose that (e;H) solves (14)-(17) and let (e0; H 0) denote
any alternative pair which is admissible, (e0; H 0) 2 A. Then J(e;H) � J(e0; H 0), i.e.
(e;H) is optimal for the principal.

Theorem 4 shows that pairs (e;H) which satisfy the conditions (14)-(17) dominate
alternative admissible pairs (e0; H 0). An essential ingredient behind the result is the
assumption that f is convex, which ensures the convexity of the set of controls for the
principal. The existence of a solution to (14)-(17) follows from Theorem 3.
Before providing further intuition about the structure of the optimal contract we

elaborate on an issue raised by Gjesdal (1982) namely the possibility of improving welfare
by using randomized contracts.

4.2.3 Randomized contracts

When preferences are not additively separable over wealth and cost of e¤ort the princi-
pal�s welfare may be improved by randomizing the compensation provided to the man-
ager (Gjesdal (1982)). In short, this may occur when the bene�ts of the additional e¤ort
extracted from the manager o¤set the direct and indirect costs placed on the parties in
the contractual relationship.
Randomized contracts are formalized as follows. Introduce a new probability space

(
;G; Q) where the sigma-algebra G is independent of FZ;B and Q is a probability
measure on (
;G). A randomized contract (H"; e") � (H+"1g1; e+"2g2) is a perturbation
of (H; e) in the direction (g1; g2) where g1; g2 are G-measurable and "1; "2 � 0. Since
the probability space is arbitrary any random perturbation of the contract is included
in our speci�cation. Notice that this notion of perturbation can be implemented using
wealth-robust contracts.
Our main result in this section identi�es the optimal contract when randomization

is permitted.

Proposition 1: Let (H�; e�) denote the solution to the �rst order conditions (14)-
(17) and consider the class of randomized contract (H�"; e�"), "1; "2 � 0. The contract
"1 = "2 = 0 is optimal (i.e. the non-randomized contract (H�; e�) is optimal).
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The intuition for the suboptimality of randomized compensation schemes is straight-
forward. A perturbation in a (g1; g2)-direction is welfare improving if and only if the
principal stands to gain while meeting the manager�s reservation utility and inducing the
proper incentives. Evidently, this occurs if and only if the principal�s expected payo¤,
evaluated at the agent�s optimal e¤ort choice, attains an IR-constrained maximum at
" � ("1; "2) 6= (0; 0). Simple analysis, however, shows that both the principal�s objective
function and the agent�s expected utility are concave in ". Moreover, the �rst order con-
ditions with respect to " are null at " = 0. Combining these two properties establishes
the optimality of the non-randomized contract " = (0; 0).
Gjesdal shows that randomization dominates if the Lagrangian associated with the

principal�s IR-constrained optimization problem is convex with respect to the perturba-
tion parameter " when evaluated at the point " = (0; 0). This convexity property can
be restated in terms of a condition involving the risk aversions of the principal and the
manager (Gjesdal (1982), proposition 3, eq. (19)). In our setting, Gjesdal�s condition
fails. More speci�cally, the convexity of the ratio of the marginal cost to the marginal
productivity (assumption 3(iii)) ensures the concavity of the manager�s expected utility
function and, hence, the concavity of the principal�s Lagrangian associated with the
constrained problem. De facto, this violates Gjesdal�s condition (19) and precludes any
bene�t from randomizing.

4.2.4 The structure of the optimal contract

Combining Theorems 1 and 2 and the �rst order conditions (14)-(17) enables us to
further characterize the structure of the optimal contract and the associated optimal
e¤ort policy.

Corollary 1: The optimal contract solves (14)-(17) and takes the form

	(e; x) = H(y; �)�
Z T

0

h(ev; v)dv +

Z T

0

c0(ev; v)

g0(ev; v)
(dx(v) + �(v)x(v)dv) (18)

where H(y; �) is the FZ
T �measurable random variable which uniquely solves the nonlin-

ear equation Z +1

�1
u0 (H +

p
y�)n(�)d� = e�

R T
0 r(v)dv��1 (19)

and � is a constant which uniquely solves

E

�Z +1

�1
u (H(y; �) +

p
y�)n(�)d�

�
= u:

The optimal e¤ort level exists and solves the nonlinear equation

0 = Dvg
0(ev; v)� Ev

�
e�

R T
0 r(v)dv

�
c0(ev; v)

+�Ev

�Z +1

�1
u0 (H(y; �) +

p
y�)

�
p
y
n(�)d�

�
f(ev; v)f

0(ev; v)�(v)
2: (20)
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Optimal e¤ort is strictly positive at all times, et > 0 for all t 2 [0; T ].

The incentive part of the contract was already discussed in section 4.1. We now
elaborate on the component motivated by the need to induce the agent to accept the
contract (the IR constraint) and work for the principal, i.e. H(y; �)�

R T
0
h(ev; v)dv. The

second term in this decomposition has two parts (recall that h(ev; v) � f(ev; v)g(ev; v)�
c(ev; v)). The �rst of these

�
Z T

0

f(ev; v)g(ev; v)dv

is a reduction in compensation which precisely o¤sets the identical term of opposite sign
in the incentive compensation received under the optimal e¤ort policy (see (11)). This
shows that, in the end, the agent is not additionally compensated for his production.
However, he/she is compensated for the disutility for work required and the risk imposed.
Therefore, the agent�s reward stems from the second partZ T

0

c(ev; v)dv

which provides compensation for disutility of work and from the component, H, which
provides adequate compensation to induce work (i.e. it satis�es the IR constraint).
In section 4.1 we discussed the property that preferences (i.e. the utility function) do

not impact the incentive part of the contract. In contrast preferences determine the �rst
term of the optimal contract (10), more speci�cally its component H. There are two
distinct reasons for preference dependence. The �rst is the fact that the contract must
motivate work (rather than allow the agent to idle) at inception. Since di¤erent utility
functions give rise to di¤erent reservation values for work the result follows: the random
variable H is chosen to satisfy the IR-constraint (equation (32) in the appendix) and will
therefore depend on the agent�s characteristics. The second is the optimizing behavior
of the principal. As explained above the class of IC-IR contracts is parametrized by
random variables H which motivate work. The principal optimizes over this class to
arrive at the selection of a speci�c contractual design.

5 Examples

5.1 Exponential utility (CARA)

When the agent exhibit constant absolute risk aversion (u(x) = � 1
R
exp(�Rx); R � 0)

the optimal contract in corollary 1 simpli�es to11

	(e; x) = H(y; �) +

Z T

0

c(ev; v)dv +

Z T

0

c0(ev; v)

g0(ev; v)
(dx(v) + �(v)x(v)dv � g(ev; v)dv)

11The limit of the binomial model in Govindaraj and Ramakrishnan (2001) is a subcase of this model.
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H(y; �) =
1

2
R

�Z T

0

f(et; t)
2�(t)2dt

�
� 1

R
log

0@ e�
R T
0 r(v)dv

E
�
e�

R T
0 r(v)dv

�
1A

where ev is the unique solution of the equation

Dv

Ev

�
e�

R T
0 r(v)dv

�g0(ev; v) = c0(ev; v) +Rf(ev; v)f 0(ev; v)�(v)2:
Simple calculations yield the following comparative static results

Proposition 2: The optimal e¤ort level e desired by the principal is
(i) a decreasing function of the manager�s risk aversion R and of the riskiness of the

output process �
(ii) an increasing function of the ratio Dv=Ev exp(�

R T
0
r(v)dv). Thus, an increasing

function of the reinvestment rate q and a decreasing function of the speed of mean-
reversion �.

The Brownian model explored by Holmstrom and Milgrom (1987) corresponds to
the parametrization q = � = 0; �; r constants, g(e; v) = e; c(e; v) = c(e); G0 = 0 and
G1 constant. Under these conditions the optimal e¤ort is a constant e� which uniquely
solves

G1 = c
0(e�) +Rc0(e�)c00(e�)�2

and the optimal contract is linear in cumulative output

	(e; x) =
1

2
Rc0(e�)2�2T + c(e�)T + c0(e�)[x(T )� x(0)� e�T ];

which corresponds to the solution derived by HM (see Theorem 7). Under these circum-
stances the optimal contract is path-independent and therefore easy to implement. Path-
independence also holds when the drift of the output process is a function g(ev; v) = g(ev)
which does not depend on W -risk.

5.2 General utility function and constant coe¢ cients

Suppose that we now place ourselves in the context of HM (i.e. q = � = 0; �; r constants,
c0(e; v) = c0(e); G0 = 0 and G1 constant) except for the fact that the agent has a general
concave utility function u(�) and we maintain the assumption of a concave technology
g(e). The optimal contract of Corollary 1 becomes

	(e; x) = H(y; �) + c(e�)T +
c0(e�)

g0(e�)
[x(T )� x(0)� g(e�)T ] (21)

whereH(y; �) is the (non-random) function which uniquely solves the nonlinear equationZ +1

�1
u0 (H +

p
y�)n(�)d� = e�rT��1 (22)
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and � is a constant which uniquely solves

E

�Z +1

�1
u (H(y; �) +

p
y�)n(�)d�

�
= u:

The optimal e¤ort level exists and is a constant e� which solves the nonlinear equation

G1g
0(e�) = c0(e�) +

�

e�rT

�Z +1

�1
u00 (H(y; �) +

p
y�)n(�)d�

�
f(e�)f 0(e�)�2: (23)

where y � f(e�)2�2T:
Even though we allowed for general utility function the optimal e¤ort level is a

constant. This is driven by the fact that the coe¢ cients of the model are constants.
Under these circumstances there is no reason for the principal to requisition an e¤ort level
that changes over time. The immediate consequence of this result is that the comparative
static results of Proposition 2 are again valid. Moreover the optimal contract has the
linear, path-independent, form (21) which is easy to implement in practice.

6 Concluding remarks

One of the main results from our analysis has been the identi�cation of a class of con-
tracts that are robust to small errors in the principal�s assessment of the opportunities
available to the manager and the actions pursued outside the contractual relationship.
This leads to a class of W-robust incentive contracts that are linear functionals of the
account under management. Contracts, within this class, that are optimal for the prin-
cipal can be characterized explicitly, even in general environments when the managed
account has stochastic coe¢ cients and the utility of the manager is not separable over
reward and e¤ort. Moreover, the contractual structure obtained is reasonably simple and
intuitively appealing. The most interesting aspect is perhaps the fact that somewhat
similar contracts are observed in practice (Business Week (1993)). Indeed, it is common
for a manager (agent) to be compensated not only on the level of cumulative aggregated
output (typically a stock variable like output) that he/she in�uences, but also on the
change in observed output (a �ow variable that is typically the change in output).
>From an empirical perspective, there are clearly testable implications with respect

to the relative weights placed on the levels and changes in output, and with respect to the
slope coe¢ cient of the incentive part of the contract. One prediction is that �rms with
low mean reversion in output (or � small) will tend to put more weight on the change
variable. This prediction extends a similar �nding by Govindaraj and Ramakrishnan
(2001) to more realistic incentive situations. Other potential implications relate to the
slope which is a¤ected by the agent�s cost of e¤ort and productivity. The nature and
direction of these e¤ects provides scope for empirical investigations.
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7 Appendix: proofs

Proof of Theorem 1: Suppose that the optimal solution of the agent problem entails
e¤ort e� and private wealth eY � under the general contract 	(ex). We �rst show that
there exists a wealth-robust contract which induces the same optimal e¤ort level and
leaves the agent equally well o¤.
Since (e�; eY �) is optimal for the agent it must be that

E
h
u0
�eY � +	(ex�)� c(e�)� (	0(ex�)g0(e�)� c0(e�))i = 0 (24)

u0
�eY � +	(ex�)� c(e�)� = � (25)

where ex� = g(e�)+� eB and � is a Lagrange multiplier for the budget constraint E[eY �] =
0. Simple arguments show thateY � = I(�)�	(ex�) + c(e�)
where I(�) is the inverse marginal utility function and � is the unique solution of the
nonlinear equation

E [(I(�)�	(ex�) + c(e�))] = 0:
Combining (25) and (24) shows that

E [	0(ex�)] = c0(e�)

g0(e�)
:

Now de�ne

H(ex�) = 	(ex�)� c0(e�)

g0(e�)
ex�

and note that

	(ex�) = c0(e�)

g0(e�)
ex� +H(ex�)

with

E[H 0(ex�)] = E[	0(ex�)]� c0(e�)

g0(e�)
= 0:

Consider now the wealth-robust contract

e	(ex) = c0(e�)

g0(e�)
ex+ E[H(ex�)]:

We show next that this contract will induce optimal e¤ort e� and leaves the agent equally
well o¤ as the general contract 	(ex). To prove this we must show that the agents �rst
order conditions associated with e	(ex) reduce to those associated with 	(ex).
Solving the agent�s problem under e	(ex) leads to the �rst order conditions

E

�
u0
�eY + c0(e�)

g0(e�)
ex+ E[H(ex�)]� c(e)�� c0(e�)

g0(e�)
g0(e)� c0(e)

��
= 0
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u0
�eY + c0(e�)

g0(e�)
ex+ E[H(ex�)]� c(e)� = e�:

Concavity of the objective function and convexity of the constraints implies that the
second order conditions are satis�ed. Simple manipulations show that e� solves the �rst
equation and is therefore the unique optimal e¤ort. To verify that eY � is optimal note
that

eY = I(e�)� c0(e�)

g0(e�)
ex� � E[H(ex�)] + c(e�)

= I(e�)� (	(ex�)�H(ex�))� E[H(ex�)] + c(e�):
Since the budget constraint mandates E[eY ] = 0 we must have

0 = E
h
I(e�)i� E [	(ex�)�H(ex�)]� E[H(ex�)] + E [c(e�)]

= E
h
I(e�)i� E [	(ex�)] + c(e�) = E h�I(e�)�	(ex�) + c(e�)�i

which implies e� = �. We conclude that eY � is also optimal for the agent under the
wealth-robust contract. It follows now that the agent achieves the same welfare under
the two contracts. Since the principal is risk neutral, and E[e	(ex)] = E[	(ex)], it also
follows that the principal is equally well o¤.

Proof of Lemma 1: Given the payo¤ to the principal and the compensation package,
the value of the �rm to the risk neutral principal at date 0 is given by,

V0 = E
h
e�

R T
0 r(v)dv (G0 +G1x(T ))

i
� E

h
e�

R T
0 r(v)dv	

i
where G0; G1 are FZ

T -measurable random variables and

x(s) = x(0)e�
R s
0 �(u)du +

Z s

0

e�
R s
v �(u)du (g(ev; v)dv + �(v)dB(v)) :

The second component of the �rm value simpli�es as follows

E
h
e�

R T
0 r(v)dvG1x(T )

i
= E

�
e�

R T
0 r(v)dvG1

�
x(0)e�

R T
0 �(u)du +

Z T

0

e�
R T
v �(u)du (g(ev; v)dv + �(v)dB(v))

��
= x(0)E

h
e�

R T
0 r(v)dve�

R T
0 �(u)duG1

i
+ E

�
e�

R T
0 r(v)dv

�Z T

0

e�
R T
v �(u)dug(ev; v)dv

�
G1

�
and, therefore,

V0 = E
h
e�

R T
0 r(v)dvG0

i
+ x(0)E

h
e�

R T
0 (r(v)+�(v))dvG1

i
+E

�
e�

R T
0 r(v)dv

Z T

0

g(es; s)e
�
R T
s �(u)duG1ds

�
� E

h
e�

R T
0 r(v)dv	

i
:
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De�ning the process D as in the lemma and substituting in the second line gives the
decomposition announced.

Proof of Theorem 2: Consider a contract 	(ex) 2 D. Since we are interested in
contracts which are W-robust, we can limit our attention to agents whose wealth Y is
such that appropriate limits can be taken to get the �rst order conditions.
Given the space of contracts D, the �rst order conditions for an interior optimum at

e can be stated as

E

�
u0 (T )

�Z T

0

�
�	(v; T )g0(ev; v)� c0(ev; v)

�
(ev � ev) dv

��
= 0 (26)

where u0(T ) � u0
�
Y +	�

R T
0
c(eu; u)du

�
denotes marginal utility of terminal net com-

pensation and �	(v; T ) 2 F ex;Z
T for all v 2 [0; T ]. By de�nition a contract is W-robust

if the agent�s optimal e¤ort choice is impervious to perturbations of terminal wealth in
FB;Z
T . Thus, (26) must hold for all u0(T ) 2 FB;Z

T and for all e � 0 such that e 2 F ex;Z
T .

As a result we must have �	(v; T ) 2 F ex;Z
v for all v 2 [0; T ]: That is, �	(v; T ) = �	(v)

where �	(v) 2 F ex;Z
v , for all v 2 [0; T ] (i.e. there is no dependence on events posterior to

v). Moreover, optimal choice of e¤ort e 2 F ex;Z
(�) .

Thus, for any perturbation ex(�)+ � R �
0
h(v)dv of ex(�), where h is an F ex;Z

(�) -progressively
measurable process, the gradient has the representation

rh	 =

Z T

0

�	(v)h(v)dv

where �	(�) is F ex;Z
v -progressively measurable. Since rhex(v) = R v

0
h(s)ds we have

drhex(v) = h(v)dv and, hence,
rh	 =

Z T

0

�	(v)drhex(v) (27)

for �	(v) 2 F ex;Z
v . In particular note that �	(v) may involve a dependence on fex(s) :

s � vg.
We now introduce the stochastic process

B�(s) = B(s) +

Z s

0

g(ev)

�(v)
dv =

Z s

0

1

�(v)
dex(v):

Notice that B� is a Brownian motion under P � de�ned by

dP �

dP
= exp

 
�1
2

Z T

0

�
g(ev)

�(v)

�2
dv �

Z T

0

g(ev)

�(v)
dB(v)

!
� ��:

Additionally, since all our contracts are functionals written on (ex; Z) and since the
�ltrations F ex;Z

(�) = FB�;Z
(�) they can also be written on (B�; Z). Since 	 2 L2(P �), by
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assumption (ii) in the de�nition of D, the Martingale Representation Theorem applies
to give

	 = E� [	] +

Z T

0

�1(v)dZ(v) +

Z T

0

�2(v)dB�(v): (28)

Consider perturbing ex in the direction R �
0
h(v)dv, such that

ex�(t) � ex(t)� � Z t

0

h(v)dv =

Z t

0

g(ev)dv +

Z t

0

�(v)dB�(v)

where B�(v) = B�(t)� �
R t
0
h(v)
�(v)
dv is a (P �;FB�;Z

(�) )-Brownian motion with

dP �

dP �
= exp

 
��

2

2

Z T

0

�
h(v)

�(v)

�2
dv + �

Z t

0

h(v)

�(v)
dB�(v)

!
� ��:

Then

E� [	 (ex)] = E� [	(ex�)] = E� ���	�ex� � Z �

0

h(v)dv

��
and, by simple algebra,

1

�
E�
�
	(ex)�	�ex� � Z �

0

h(v)dv

��
+E�

�
�� � 1
�

�
	(ex)�	�ex� � Z �

0

h(v)dv

���
= E�

�
�� � 1
�

	(ex)� :
Letting � ! 0 and using assumption (iii) of the de�nition of the space of contracts D
gives

E�
�
5h	(ex)� = E� �	(ex)Z T

0

h(v)

�(v)
dB�(v)

�
:

Substituting 5h	(ex) = R T
0
�	(v)h(v)dv with �	(v) 2 F ex;Z

v on the left hand side of this
equality, and using the representation (28) on the right hand side to compute the cross
variation gives

E�
�Z T

0

�	(v)h(v)dv

�
= E�

�
	(ex)Z T

0

h(v)

�(v)
dB�(v)

�
= E�

�Z T

0

�2(v)
h(v)

�(v)
dv

�
so that

�2(v) = �	(v)�(v):

This relation implies that �1(v) is independent of ex, i,e., �1(v) 2 FZ
v (otherwise �

	(v)
would also depend on the gradient of �1(v)). Moreover, since, �	(v) is the gradient of
	 (by de�nition) and �	 is adapted, we must also have �	(v) 2 FZ

v . Thus, the contract
must have the form
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	 = E� [	] +

Z T

0

�1(v)dZ(v) +

Z T

0

�	(v)�(v)dB�(v)

= E� [	] +

Z T

0

�1(v)dZ(v) +

Z T

0

�	(v)dex(v)
with

E�[	] = k; �1(v) 2 FZ
v ; and �	(v) 2 FZ

v

for some constant k. We conclude that wealth-robust contracts are linear functionals ofex.
Finally, notice that with this form of contract, second order conditions are satis�ed

(since u; f and�c are concave). Solutions of the �rst order conditions above are therefore
global maxima for the agent�s problem.

Proof of Theorem 3: Consider the W-robust contract

	 = A+

Z T

0

f(t) (dx(t) + �(t)x(t)dt)

where A is a random variable measurable with respect to public information FZ
T but

independent of x and f a stochastic process in FZ
(�) but independent of x. Substituting

the equation for output (1) gives

	 = A+

Z T

0

f(t) (g(et; t)dt+ �(t)dB(t)) :

Given this contract, the agent solves the optimization problem

max
e
Eu

�
A+

Z T

0

(f(t)g(et; t)� c(et; t)) dt+
Z T

0

f(t)�(t)dB(t)

�
: (29)

A stochastic process for e¤ort e(t) is optimal only if it cannot be dominated by any
feasible perturbation. Consider an "-perturbation in the feasible direction e0(t) de�ned
by e(t)+"(e(t)�e0(t)), where " � 0 and e0(t) is an arbitrary nonnegative and progressively
measurable e¤ort policy. The �rst order condition evaluated at " = 0 is (see for example
Luenberger (1969))

F (e) � E
�
u0(T )

Z T

0

(f(t)g0(et; t)� c0(et; t)) (e(t)� e0(t))dt
�
= 0; 8 e0 6= e;

where u0(T ) is de�ned as the marginal utility at date T (i.e. evaluated at XT = 	 �R T
0
c(et; t)dt). The expression F (e) on the left hand side of this equality can be written

as

F (e) � E

�Z T

0

u0(T ) (f(t)g0(et; t)� c0(et; t)) (e(t)� e0(t))dt
�

= E

�Z T

0

Et[u
0(T )] (f(t)g0(et; t)� c0(et; t)) (e(t)� e0(t))dt

�
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where we used the law of iterated expectations and the fact that

(f(t)g0(et; t)� c0(et; t)) (e(t)� e0(t))

is known at date t and therefore factors out of the conditional expectation. Since this
equation must hold for all progressively measurable processes e0(t) we must have

Et[u
0(T )] (f(t)g0(et; t)� c0(et; t)) = 0; for all t 2 [0; T ] and all A 2 Ft

(otherwise it is easy to �nd feasible e¤ort policies that improve on e(t)), i.e this equality
must hold at all times and in all states of nature that materialize at time t. Since
marginal utility is strictly positive we conclude that

f(t)g0(et; t)� c0(et; t) = 0: (30)

From (30) it follows that the policy et = et is optimal only if the slope of the contract
equals f(t) = f(et; t) � c0(et;t)

g0(et;t)
. Moreover since the function f(e; t) = c0(e;t)

g0(e;t) is strictly
increasing in e the slope f(et; t) implements a unique policy et. Finally, Lemma A1
below shows that condition (30) is su¢ cient for a maximum. This shows that the e¤ort
policy et = et is the unique maximizer when f(t) = f(et; t).
Under this optimal policy, et = et, the net compensation at time T to the agent is

given by XT , where

XT = 	�
Z T

0

c(et; t)dt = A+

Z T

0

(h(et; t)dt+ f(et; t)�(t)dB(t))

with h(et; t) = f(et; t)g(et; t)� c(et; t): Furthermore, since A is a function of the princi-
pal�s information we can, without any loss of generality, perform the change of variable

A = �
Z T

0

h(et; t)dt+H

where H is an FZ
T -measurable random variable.

We now prove Lemma A1 which was used in the proof of Theorem 6 above.

Lemma A1: Suppose that the policy e satis�es the necessary condition (30) for all
t 2 [0; T ]. Then there is no other e¤ort policy be such than be dominates e for the agent
(i.e. U(be) > U(e)).
Proof of Lemma A1: Let e denote the solution of (30) and let be denote any other
arbitrary e¤ort policy. To simplify notation let

XT (e) � 	T (e)�
Z T

0

c(et; t)dt

27



and note that

XT (e)�XT (be) = 	T (e)�
Z T

0

c(et; t)dt�
�
	T (be)� Z T

0

c(bet; t)dt�
=

Z T

0

(f(et; t)g(et; t)� c(et; t)� (f(et; t)g(bet; t)� c(bet; t))) dt
�

Z T

0

(f(et; t)g
0(et; t)� c0(et; t)) (et � bet)dt

= 0;

where the inequality follows from the concavity of the function f(et; t)g(e; t) � c(e; t)
with respect to e and the last line follows from the fact that e satis�es (30). Concavity
of the utility function then implies

u (XT (e)) � u (XT (be)) + u0 (XT (e)) (XT (e)�XT (be))
� u (XT (be)) + u0 (XT (e))

Z T

0

(f(et; t)g
0(et; t)� c0(et; t)) (et � bet)dt

= u (XT (be)) :
Taking the expectation on both sides of the last inequality shows U(e) � U(be), i.e. e
dominates any other e¤ort policy be.
Proof of Theorem 4: Let

J(e;H) = E

�Z T

0

g(es; s)Dsds

�
� E

�
e�

R T
0 rvdv

�Z T

0

c(ev; v)dv +H

��
We wish to show the existence of (e�; H�) 2 A such that

sup
(e;H)2A

J(e;H) = J(e�; H�)

where

A =
n
(e;H) : E

h
u
�
H +

p
y(e) e��i � u; e is FZ

(�)-progressively measurable; H 2 FZ
T

o
y(e) =

Z T

0

f(ev; v)
2�2vdv

and e� is standard normal independent of Z. If A is empty there is a trivial solution; so
we assume that A is non-empty.
We �rst prove three auxiliary lemmas. The �rst of these demonstrates useful bounds

on the value function and candidate optimizing random variables H,

Lemma A2: The following bounds hold:
(i) sup(e;H)2A J(e;H) � V <1
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(ii) 0 � E[H] � cV for some constant c.

Proof of Lemma A2: De�ne

V = sup
e
J(e; 0) = sup

e

�
E

�Z T

0

g(es; s)Dsds

�
� E

�
e�

R T
0 rvdv

Z T

0

c(ev; v)Dvdv

��
:

Note that this optimization problem has a unique maximizer given by

bet � f�1
0@ Dt

Et exp
�
�
R T
0
rvdv

�
1A

(using the fact that the function f has a unique inverse), and therefore V < 1. Fur-
thermore, using the IR constraint, the concavity of the utility function and Jensen�s
inequality gives

u (E[H]) � E
h
u
�
H +

p
y(e) e��i � u;

so that E[H] � 0. We conclude

sup
(e;H)2A

J(e;H) � V:

This establishes (i). Moreover, since (0; 0) 2 A, any potential (e;H) must satisfy
J(e;H) � J(0; 0) � 0. Thus,

E
h
e�

R T
0 rvdvH

i
� J(e; 0) � V:

Since e�
R T
0 rvdv � k > 0 (because r is bounded) the upper bound on E[H] follows. This

demonstrates (ii).

Our second auxiliary result shows that e is bounded by the unconstrained pro�t
maximizing choice be,
Lemma A3: Let (e;H) 2 A and for all t 2 [0; T ] de�ne et = (et ^ bet) _ 0. Then
J(e;H) � J(e;H) and (e;H) 2 A.

Proof of Lemma A3: Notice that e is uniformly bounded above and independent of
H since be is uniformly bounded above. Moreover the pair (e;H) remains IR. Indeed,
state by state in FZ

T ,Z 1

�1
u
�
H +

p
y(e)�

�
n(�)d� �

Z 1

�1
u
�
H +

p
y(e)�

�
n(�)d�

since
@

@y

Z 1

�1
u (H +

p
y�)n(�)d� =

Z 1

�1
u0 (H +

p
y�)

�
p
y
n(�)d� < 0
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(i.e. expected utility is decreasing in y). Integrating over Z gives

E

Z 1

�1
u
�
H +

p
y(e)�

�
n(�)d� � E

Z 1

�1
u
�
H +

p
y(e)�

�
n(�)d� � u:

Also, J(e;H) � J(e;H) follows directly.

Our third auxiliary result demonstrates that we can focus attention on random vari-
ables H which obey uniform bounds: given any uniformly bounded e paired with an
arbitrary H, we can improve the principal�s welfare by replacing H by some H which
lies in a uniformly bounded set.

Lemma A4: Let (e;H) 2 A. Then J(e;H) � J(e;H), for some H which obeys uniform
bounds that are independent of e, and (e;H) 2 A.

Proof of Lemma A4: Consider the optimization problem (over H)

max
H
�E

h
e�

R T
0 rvdvH

i
subject to

E

�Z +1

�1
u
�
H +

p
y(e)�

�
n(�)d�

�
� u;

where the IR constraint is evaluated at e. The solution is a constant (Lagrange multi-
plier) � and a function H(y(e); �) which solve the system of equations

e�
R T
0 rvdv = �

Z +1

�1
u0
�
H +

p
y(e)�

�
n(�)d�

E

Z +1

�1
u
�
H +

p
y(e)�

�
n(�)d� = u:

Note that a solution �;H(y(e); �) exists and is unique. Furthermore, H(y(e); �) is an
increasing function of � which satis�es the limits

lim
�"1

H(y(e); �) =1 and lim
�#0
H(y(e); �) = �1:

Let � denote the unique solution of the IR constraint. The facts thatH(�; �) is continuous,
y(e) is bounded (i.e. e is bounded), combined with the results from Lemma A-2 (and

the fact that the function E
R +1
�1 u

�
H +

p
y(e)�

�
n(�)d� is an increasing function of H)

yield uniform bounds on �. We conclude that H � H(y(e); �) is uniformly bounded.
From the optimality of H and lemma A3, we have J(e;H) � J(e;H) � J(e;H).

We now complete the proof of Theorem 4. Given the bound in lemma A4 we can
restrict attention to maximizing sequences (see Ekeland and Turnbull (1983)) (en; Hn) 2
A such that

J(en; Hn) �! sup
(e;H)2A

J(e;H)
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and �
E

�Z T

0

(env )
2dv

��1=2
+
�
E[(Hn)2]

�1=2
< K; for some constant K (31)

and
E
h
u
�
Hn +

p
y(en) e��i = u: (32)

Moreover, without loss of generality, we can focus on increasing maximizing sequences
(i.e. sequences (en; Hn) 2 A such that J(en; Hn) increases). With this L2[0; T ]�L2-norm
we have a Hilbert space with inner product

h(e1; H1); (e2; H2)i = E
�Z T

0

e1ve2vdv

�
+ E[H1H2]:

Let BK denote the set of pairs (e;H) satisfying (31)-(32). The closure of the convex
hull c0(A \ BK) is norm bounded, convex and norm closed, hence, weakly compact by
Alaoglu�s theorem (see Conway (1990), theorem V.1.4 and V.3.1). From lemmas A2-A4
we can take (en; Hn) to satisfy uniform bounds. Thus,

(en; Hn)
w�! (e�; H�) 2 c0(A \ BK)

(weak convergence) and there exist convex combinations

(e�n; H
�
n ) =

NnX
i=n

�n;i(e
i; H i)

where
PNn

i=n �n;i = 1, such that (see Conway, exercise V.1.7)

(e�n; H
�
n )
kk
�!(e

�; H�);

(convergence in norm), hence a:s: l 
 P � P; along some subsequence (see Ekeland and
Turnbull (1983, Theorem II.3). Moreover, (e�; H�) must in fact be bounded.
Concavity of the objective function implies

NnX
i=n

�n;iJ(e
i; H i) � J

 
NnX
i=n

�n;i(e
i; H i)

!
so that

lim
n

NnX
i=n

�n;iJ(e
i; H i) � lim

n
J

 
NnX
i=n

�n;i(e
i; H i)

!
= lim

n!1
J

 
NnX
i=n

�n;i(e
i; H i)

!
= J(e�; H�):

(The inequality, on the left hand side, follows from concavity and the next two equalities,
on the right hand side, from dominated convergence). But

NnX
i=n

�n;iJ(e
i; H i) � inf

k�n
J(ek; Hk) = J(en; Hn);
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where the equality follows since the sequence J(ek; Hk) is increasing, and therefore,
taking the inf of the sup on each side,

inf
n0
sup
n�n0

 
NnX
i=n

�n;iJ(e
i; H i)

!
� inf

n0
sup
n�n0

J(en; Hn)

= lim
n!1

J(en; Hn):

We conclude that J(e�; H�) � limn!1 J(e
n; Hn) (which equals sup(e;H)2A J(e;H)).

To complete the proof we need to show that (e�; H�) is individual rational. But by
concavity of u, convexity of f 2 and the fact that the function

R +1
�1 u

�
H +

p
y�
�
n(�)d�

is decreasing in y (see Lemma A.5 below), we obtain

u =
NnX
i=n

�n;iE
h
u
�
H i +

p
y(ei)e��i

� E

24u
0@ NnX
i=n

�n;iH
i +

vuuty NnX
i=n

�n;iei

!e�
1A35 :

By dominated convergence, using assumption 2(iii),

lim
n!1

E

24u
0@ NnX
i=n

�n;iH
i +

vuuty( NnX
i=n

�n;iei)e�
1A35 = E hu�H� +

p
y(e�)e��i :

Thus,
u � E

h
u
�
H� +

p
y(e�)e��i :

This completes the proof of the theorem.

Lemma A5: The agent�s expected utility function

E

�Z +1

�1
u
�
H" +

p
y(e")�

�
n(�)d�

�
is decreasing in the conditional standard deviation

p
y, and concave in e:

Proof of Lemma A5: Let y(e") = y, a constant. Taking the derivative with respect
to
p
y and using integration by parts gives

E

�Z +1

�1
u0 (H" +

p
y�) �n(�)d�

�
=
p
yE

�Z +1

�1
u00 (H" +

p
y�)n(�)d�

�
:

Since u(�) is concave we conclude that expected utility is a decreasing function of py.
Assumption 3(iii) on the convexity of f(e; t) = c0(e; t)=g0(e; t) ensures that

f(�e1 + (1� �)e2; t) � �f(e1; t) + (1� �)f(e2; t):
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With the notation f1 � f(e1; t) and f2 � f(e2; t), this convexity property and the
triangle inequality for norms (see Luenberger (1969)) give

p
y(�e1 + (1� �)e2) �

sZ T

0

f(�e1s + (1� �)e2s; s)2�(s)2ds

�

sZ T

0

(�f(e1s; s) + (1� �)f(e2s; s))2 �(s)2ds

�

sZ T

0

(�f(e1s; s))
2 �(s)2ds+

sZ T

0

((1� �)f(e2s; s))2 �(s)2ds

= �

sZ T

0

f(e1s; s)2�(s)2ds+ (1� �)

sZ T

0

f(e2s; s)2�(s)2ds

= �
p
y(e1) + (1� �)

p
y(e2):

In the second line above, we used the convexity of f ; the third line follows from the
triangle inequality and the fourth from the fact that � is a constant.
The concavity of the agent�s expected utility now follows from the fact that

E

�Z +1

�1
u
�
H" +

p
y(e")�

�
n(�)d�

�
is a decreasing function of

p
y(e") and that the composition of a decreasing function

and a convex function is concave.

Derivation of the �rst order conditions (14)-(16): The principal maximizes

J(e;H) = E

�Z T

0

g(ev; v)Dvdv

�
� E

�
e�

R T
0 r(u)du

�Z T

0

c(ev; v)dv +H

��
subject to the individual rationality constraint

E

�Z +1

�1
u (H +

p
y�)n(�)d�

�
� u = 0

where

y =

Z T

0

f(et; t)
2�(t)2dt:

Let � denote the Lagrange multiplier for the IR constraint and let �e
t � e0t � et and

�H � H 0 � H. Taking an " = ("1; "2)-perturbation in the direction (e0t; H
0
t) where

e0t 6= et and H 0
t 6= Ht yields the �rst order conditions

0 = E

�Z T

0

Dvg
0(ev; v)�

e
vdv

�
� E

�
e�

R T
0 r(u)du

�Z T

0

c0(ev; v)�
e
vdv

��
+�E

�Z +1

�1
u0 (H +

p
y�)

�
p
y

�Z T

0

f(ev; v)f
0(ev; v)�(v)

2�e
vdv

�
n(�)d�

�
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0 = �E
h
e�

R T
0 r(u)du�H

i
+ �E

�Z +1

�1
u0 (H +

p
y�)�Hn(�)d�

�
E

�Z +1

�1
u (H +

p
y�)n(�)d�

�
� u = 0

where � > 0. Since this must hold for all progressively measurable processes e0t 6= et;
(i.e. for all progressively measurable �e) and for all FZ

T -measurable random variables
H 0 6= H (i.e. all measurable �H) it must be that

0 = Dvg
0(ev; v)� Ev

�
e�

R T
0 r(v)dv

�
c0(ev; v)

+�Ev

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(ev; v)f

0(ev; v)�(v)
2

0 = �e�
R T
0 r(v)dv + �

Z +1

�1
u0 (H +

p
y�)n(�)d�

E

�Z +1

�1
u (H +

p
y�)n(�)d�

�
� u = 0

where the �rst two equations must hold for all v 2 [0; T ].

Proof of Theorem 5: Suppose that (e;H) solves (14)-(17) and let (e0; H 0) 2 A denote
an alternative admissible policy.
Concavity of the production function g(�) and convexity of the cost function c(�) (i.e.

concavity of �c(�)) imply that

g(es; s) � g(e0s; s) + g0(es; s)(es � e0s) for all s 2 [0; T ]

�c(es; s) � �c(e0s; s)� c0(es; s)(es � e0s) for all s 2 [0; T ]

or, multiplying the �rst inequality by Ds and the second one by e�
R T
0 r(v)dv gives

Dsg(es; s) � Dsg(e
0
s; s) +Dsg

0(es; s)(es � e0s) for all s 2 [0; T ]

�e�
R T
0 r(v)dvc(es; s) � �e�

R T
0 r(v)dvc(e0s; s)�e�

R T
0 r(v)dvc0(es; s)(es�e0s) for all s 2 [0; T ]:

Let �e
s � es � e0s and �H � H � H 0. Integrating over the product measure P 
 l

(where l is Lebesgue measure) gives,
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J(e;H) = E

�Z T

0

g(es; s)Dsds

�
� E

�
e�

R T
0 r(v)dv

Z T

0

c(es; s)ds+ e
�
R T
0 r(v)dvH

�
� E

�Z T

0

g(e0s; s)Dsds

�
� E

�
e�

R T
0 r(v)dv

Z T

0

c(e0s; s)ds+ e
�
R T
0 r(v)dvH 0

�
+E

�Z T

0

Dsg
0(es; s)�

e
sds

�
�E

�
e�

R T
0 r(v)dv

Z T

0

c0(es; s)�
e
sds+ e

�
R T
0 r(v)dv�H

�
= J(e0; H 0) + E

�Z T

0

�
Dsg

0(es; s)� e�
R T
0 r(v)dvc0(es; s)

�
�e
sds� e�

R T
0 r(v)dv�H

�
= J(e0; H 0)

+E

�Z T

0

�
Dsg

0(es; s)� Es
�
e�

R T
0 r(v)dv

�
c0(es; s)

�
�e
sds� e�

R T
0 r(v)dv�H

�
:

Using (14) enables us to write

J(e;H) � J(e0; H 0)

�E
Z T

0

�
�s + �Es

�Z +1

�1
u0 (H +

p
yz)

z
p
y
n(z)dz

�
f(es; s)f

0(es; s)�(s)
2

�
�e
sds

�Ee�
R T
0 r(v)dv�H : (33)

Note that the function u
�
H +

p
y�
�
is concave with respect to y �

R T
0
f(es; s)

2�(s)2ds.
The assumption that f(e; s)2 is convex with respect to e implies that y is a convex
function of e¤ort e. Since

R +1
�1 u

�
H +

p
y�
�
n(�)d� is also decreasing in y it follows that

it is concave in the pair (e;H). We can then writeZ +1

�1
u (H +

p
y�)n(�)d�

�
Z +1

�1
u
�
H 0 +

p
y0�
�
n(�)d� +

Z +1

�1
u0
�
H 0 +

p
y0�
�
n(�)d��H

+

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

��Z T

0

f(es; s)f
0(es; s)�(s)

2�e
sds

�
where we used the FZ

T -measurability of H;H
0 in the second line and the FZ

(�)-progressive
measurability of e; e0 in the third line. Multiplying both sides of the inequality by � and
using the fact that the expression

R +1
�1 u0

�
H +

p
y�
�

�p
y
n(�)d� on the third line does not

depend on the integrator s enables us to write
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�

Z +1

�1
u (H +

p
y�)n(�)d�

� �

Z +1

�1
u
�
H 0 +

p
y0�
�
n(�)d� + �

Z +1

�1
u0 (H +

p
y�)n(�)d��H

+�

Z T

0

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(es; s)f

0(es; s)�(s)
2�e

sds:

Since condition (15) implies �
R +1
�1 u0

�
H +

p
y�
�
n(�)d� = e�

R T
0 r(v)dv we then obtain

�

Z +1

�1
u (H +

p
y�)n(�)d�

� �

Z +1

�1
u
�
H 0 +

p
y0�
�
n(�)d� + e�

R T
0 r(v)dv�H

+�

Z T

0

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(es; s)f

0(es; s)�(s)
2�e

sds:

Taking unconditional expectations on each side of this inequality, using theFZ
s -measurability

of es; e0s and rearranging the terms then gives

�E

Z +1

�1
u (H +

p
y�)n(�)d�

� �E

Z +1

�1
u
�
H 0 +

p
y0�
�
n(�)d� + Ee�

R T
0 r(v)dv�H

+�E

Z T

0

Es

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(es; s)f

0(es; s)�(s)
2�e

sds:

Since H satis�es (16) and since H 0 satis�es the IR constraint (by admissibility) this
becomes

u � u+ Ee�
R T
0 r(v)dv�H

+�E

Z T

0

Es

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(es; s)f

0(es; s)�(s)
2�e

sds

or,

��E
Z T

0

Es

�Z +1

�1
u0 (H +

p
y�)

�
p
y
n(�)d�

�
f(es; s)f

0(es; s)�(s)
2�e

sds�Ee�
R T
0 r(v)dv�H � 0

Substituting in (33) then produces

J(e;H) � J(e0; H 0)� E
Z T

0

�s�
e
sds:
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The complementary slackness condition (17) stipulates that �ses = 0 for all s 2 [0; T ].
Admissibility of e0 and, again, condition (17) imply �se

0
s � 0 for all s 2 [0; T ]. We

conclude that

J(e;H) � J(e0; H 0) + E

Z T

0

�se
0
sds � J(e0; H 0)

i.e. (e;H) is optimal for the principal.
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